model_management.py 27 KB
Newer Older
1
import psutil
2
import logging
3
from enum import Enum
comfyanonymous's avatar
comfyanonymous committed
4
from comfy.cli_args import args
comfyanonymous's avatar
comfyanonymous committed
5
import comfy.utils
6
import torch
comfyanonymous's avatar
comfyanonymous committed
7
import sys
8

9
class VRAMState(Enum):
10
11
    DISABLED = 0    #No vram present: no need to move models to vram
    NO_VRAM = 1     #Very low vram: enable all the options to save vram
12
13
14
    LOW_VRAM = 2
    NORMAL_VRAM = 3
    HIGH_VRAM = 4
15
    SHARED = 5      #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both.
16
17
18
19
20

class CPUState(Enum):
    GPU = 0
    CPU = 1
    MPS = 2
21

22
23
24
# Determine VRAM State
vram_state = VRAMState.NORMAL_VRAM
set_vram_to = VRAMState.NORMAL_VRAM
25
cpu_state = CPUState.GPU
26

27
total_vram = 0
28

29
lowvram_available = True
藍+85CD's avatar
藍+85CD committed
30
xpu_available = False
31

32
if args.deterministic:
comfyanonymous's avatar
comfyanonymous committed
33
    logging.info("Using deterministic algorithms for pytorch")
34
35
    torch.use_deterministic_algorithms(True, warn_only=True)

36
directml_enabled = False
37
if args.directml is not None:
38
39
    import torch_directml
    directml_enabled = True
40
41
42
43
44
    device_index = args.directml
    if device_index < 0:
        directml_device = torch_directml.device()
    else:
        directml_device = torch_directml.device(device_index)
comfyanonymous's avatar
comfyanonymous committed
45
    logging.info("Using directml with device: {}".format(torch_directml.device_name(device_index)))
46
    # torch_directml.disable_tiled_resources(True)
47
    lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
48

49
try:
50
51
52
    import intel_extension_for_pytorch as ipex
    if torch.xpu.is_available():
        xpu_available = True
53
54
55
except:
    pass

56
57
58
try:
    if torch.backends.mps.is_available():
        cpu_state = CPUState.MPS
KarryCharon's avatar
KarryCharon committed
59
        import torch.mps
60
61
62
63
64
65
except:
    pass

if args.cpu:
    cpu_state = CPUState.CPU

66
67
def is_intel_xpu():
    global cpu_state
68
    global xpu_available
69
70
71
72
73
74
    if cpu_state == CPUState.GPU:
        if xpu_available:
            return True
    return False

def get_torch_device():
75
    global directml_enabled
76
    global cpu_state
77
78
79
    if directml_enabled:
        global directml_device
        return directml_device
80
    if cpu_state == CPUState.MPS:
81
        return torch.device("mps")
82
    if cpu_state == CPUState.CPU:
83
84
        return torch.device("cpu")
    else:
85
        if is_intel_xpu():
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
            return torch.device("xpu")
        else:
            return torch.device(torch.cuda.current_device())

def get_total_memory(dev=None, torch_total_too=False):
    global directml_enabled
    if dev is None:
        dev = get_torch_device()

    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
        mem_total = psutil.virtual_memory().total
        mem_total_torch = mem_total
    else:
        if directml_enabled:
            mem_total = 1024 * 1024 * 1024 #TODO
            mem_total_torch = mem_total
102
        elif is_intel_xpu():
103
104
            stats = torch.xpu.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
105
            mem_total = torch.xpu.get_device_properties(dev).total_memory
106
            mem_total_torch = mem_reserved
107
108
109
110
111
112
113
114
115
116
117
118
119
120
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
            _, mem_total_cuda = torch.cuda.mem_get_info(dev)
            mem_total_torch = mem_reserved
            mem_total = mem_total_cuda

    if torch_total_too:
        return (mem_total, mem_total_torch)
    else:
        return mem_total

total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
comfyanonymous's avatar
comfyanonymous committed
121
logging.info("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
122
123
if not args.normalvram and not args.cpu:
    if lowvram_available and total_vram <= 4096:
124
        logging.warning("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
125
126
        set_vram_to = VRAMState.LOW_VRAM

127
128
129
130
131
try:
    OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
    OOM_EXCEPTION = Exception

132
133
XFORMERS_VERSION = ""
XFORMERS_ENABLED_VAE = True
134
135
if args.disable_xformers:
    XFORMERS_IS_AVAILABLE = False
136
137
138
139
else:
    try:
        import xformers
        import xformers.ops
140
        XFORMERS_IS_AVAILABLE = True
141
142
143
144
        try:
            XFORMERS_IS_AVAILABLE = xformers._has_cpp_library
        except:
            pass
145
146
        try:
            XFORMERS_VERSION = xformers.version.__version__
comfyanonymous's avatar
comfyanonymous committed
147
            logging.info("xformers version: {}".format(XFORMERS_VERSION))
148
            if XFORMERS_VERSION.startswith("0.0.18"):
149
150
                logging.warning("\nWARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
                logging.warning("Please downgrade or upgrade xformers to a different version.\n")
151
152
153
                XFORMERS_ENABLED_VAE = False
        except:
            pass
154
    except:
155
        XFORMERS_IS_AVAILABLE = False
156

157
158
159
160
161
def is_nvidia():
    global cpu_state
    if cpu_state == CPUState.GPU:
        if torch.version.cuda:
            return True
162
    return False
163

164
165
166
167
168
ENABLE_PYTORCH_ATTENTION = False
if args.use_pytorch_cross_attention:
    ENABLE_PYTORCH_ATTENTION = True
    XFORMERS_IS_AVAILABLE = False

169
VAE_DTYPE = torch.float32
170

171
172
173
174
try:
    if is_nvidia():
        torch_version = torch.version.__version__
        if int(torch_version[0]) >= 2:
175
            if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
176
                ENABLE_PYTORCH_ATTENTION = True
177
            if torch.cuda.is_bf16_supported() and torch.cuda.get_device_properties(torch.cuda.current_device()).major >= 8:
178
                VAE_DTYPE = torch.bfloat16
179
180
181
    if is_intel_xpu():
        if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
            ENABLE_PYTORCH_ATTENTION = True
182
183
184
except:
    pass

185
186
187
if is_intel_xpu():
    VAE_DTYPE = torch.bfloat16

188
189
190
if args.cpu_vae:
    VAE_DTYPE = torch.float32

191
192
193
194
195
196
197
if args.fp16_vae:
    VAE_DTYPE = torch.float16
elif args.bf16_vae:
    VAE_DTYPE = torch.bfloat16
elif args.fp32_vae:
    VAE_DTYPE = torch.float32

198

199
if ENABLE_PYTORCH_ATTENTION:
200
201
202
    torch.backends.cuda.enable_math_sdp(True)
    torch.backends.cuda.enable_flash_sdp(True)
    torch.backends.cuda.enable_mem_efficient_sdp(True)
203

204
205
if args.lowvram:
    set_vram_to = VRAMState.LOW_VRAM
206
    lowvram_available = True
207
208
elif args.novram:
    set_vram_to = VRAMState.NO_VRAM
209
elif args.highvram or args.gpu_only:
210
    vram_state = VRAMState.HIGH_VRAM
211

212
FORCE_FP32 = False
213
FORCE_FP16 = False
214
if args.force_fp32:
comfyanonymous's avatar
comfyanonymous committed
215
    logging.info("Forcing FP32, if this improves things please report it.")
216
217
    FORCE_FP32 = True

218
if args.force_fp16:
comfyanonymous's avatar
comfyanonymous committed
219
    logging.info("Forcing FP16.")
220
221
    FORCE_FP16 = True

222
if lowvram_available:
223
224
    if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
        vram_state = set_vram_to
225

226

227
228
if cpu_state != CPUState.GPU:
    vram_state = VRAMState.DISABLED
229

230
231
if cpu_state == CPUState.MPS:
    vram_state = VRAMState.SHARED
232

comfyanonymous's avatar
comfyanonymous committed
233
logging.info(f"Set vram state to: {vram_state.name}")
234

235
236
237
DISABLE_SMART_MEMORY = args.disable_smart_memory

if DISABLE_SMART_MEMORY:
comfyanonymous's avatar
comfyanonymous committed
238
    logging.info("Disabling smart memory management")
239

240
241
def get_torch_device_name(device):
    if hasattr(device, 'type'):
242
        if device.type == "cuda":
243
244
245
246
247
            try:
                allocator_backend = torch.cuda.get_allocator_backend()
            except:
                allocator_backend = ""
            return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
248
249
        else:
            return "{}".format(device.type)
250
    elif is_intel_xpu():
251
        return "{} {}".format(device, torch.xpu.get_device_name(device))
252
253
    else:
        return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
254
255

try:
comfyanonymous's avatar
comfyanonymous committed
256
    logging.info("Device: {}".format(get_torch_device_name(get_torch_device())))
257
except:
258
    logging.warning("Could not pick default device.")
259

comfyanonymous's avatar
comfyanonymous committed
260
logging.info("VAE dtype: {}".format(VAE_DTYPE))
261

comfyanonymous's avatar
comfyanonymous committed
262
current_loaded_models = []
263

264
265
266
267
268
269
270
271
def module_size(module):
    module_mem = 0
    sd = module.state_dict()
    for k in sd:
        t = sd[k]
        module_mem += t.nelement() * t.element_size()
    return module_mem

comfyanonymous's avatar
comfyanonymous committed
272
273
274
275
class LoadedModel:
    def __init__(self, model):
        self.model = model
        self.device = model.load_device
276
        self.weights_loaded = False
277
        self.real_model = None
278

comfyanonymous's avatar
comfyanonymous committed
279
280
    def model_memory(self):
        return self.model.model_size()
281

comfyanonymous's avatar
comfyanonymous committed
282
283
284
285
286
    def model_memory_required(self, device):
        if device == self.model.current_device:
            return 0
        else:
            return self.model_memory()
287

comfyanonymous's avatar
comfyanonymous committed
288
    def model_load(self, lowvram_model_memory=0):
289
        patch_model_to = self.device
290

comfyanonymous's avatar
comfyanonymous committed
291
292
        self.model.model_patches_to(self.device)
        self.model.model_patches_to(self.model.model_dtype())
293

294
295
        load_weights = not self.weights_loaded

comfyanonymous's avatar
comfyanonymous committed
296
        try:
297
            if lowvram_model_memory > 0 and load_weights:
298
299
                self.real_model = self.model.patch_model_lowvram(device_to=patch_model_to, lowvram_model_memory=lowvram_model_memory)
            else:
300
                self.real_model = self.model.patch_model(device_to=patch_model_to, patch_weights=load_weights)
comfyanonymous's avatar
comfyanonymous committed
301
302
303
304
        except Exception as e:
            self.model.unpatch_model(self.model.offload_device)
            self.model_unload()
            raise e
305

306
        if is_intel_xpu() and not args.disable_ipex_optimize:
307
            self.real_model = torch.xpu.optimize(self.real_model.eval(), inplace=True, auto_kernel_selection=True, graph_mode=True)
308

309
        self.weights_loaded = True
comfyanonymous's avatar
comfyanonymous committed
310
        return self.real_model
311

312
313
    def model_unload(self, unpatch_weights=True):
        self.model.unpatch_model(self.model.offload_device, unpatch_weights=unpatch_weights)
comfyanonymous's avatar
comfyanonymous committed
314
        self.model.model_patches_to(self.model.offload_device)
315
        self.weights_loaded = self.weights_loaded and not unpatch_weights
316
        self.real_model = None
317

comfyanonymous's avatar
comfyanonymous committed
318
319
    def __eq__(self, other):
        return self.model is other.model
comfyanonymous's avatar
comfyanonymous committed
320

comfyanonymous's avatar
comfyanonymous committed
321
322
323
def minimum_inference_memory():
    return (1024 * 1024 * 1024)

324
def unload_model_clones(model, unload_weights_only=True, force_unload=True):
comfyanonymous's avatar
comfyanonymous committed
325
326
327
328
329
    to_unload = []
    for i in range(len(current_loaded_models)):
        if model.is_clone(current_loaded_models[i].model):
            to_unload = [i] + to_unload

330
    if len(to_unload) == 0:
331
        return True
332
333

    same_weights = 0
comfyanonymous's avatar
comfyanonymous committed
334
    for i in to_unload:
335
336
337
338
339
340
341
342
        if model.clone_has_same_weights(current_loaded_models[i].model):
            same_weights += 1

    if same_weights == len(to_unload):
        unload_weight = False
    else:
        unload_weight = True

343
344
345
    if not force_unload:
        if unload_weights_only and unload_weight == False:
            return None
346
347
348
349
350

    for i in to_unload:
        logging.debug("unload clone {} {}".format(i, unload_weight))
        current_loaded_models.pop(i).model_unload(unpatch_weights=unload_weight)

351
    return unload_weight
comfyanonymous's avatar
comfyanonymous committed
352
353

def free_memory(memory_required, device, keep_loaded=[]):
354
355
356
    unloaded_model = []
    can_unload = []

comfyanonymous's avatar
comfyanonymous committed
357
358
359
360
    for i in range(len(current_loaded_models) -1, -1, -1):
        shift_model = current_loaded_models[i]
        if shift_model.device == device:
            if shift_model not in keep_loaded:
361
362
363
364
365
366
367
368
369
370
371
372
                can_unload.append((sys.getrefcount(shift_model.model), shift_model.model_memory(), i))

    for x in sorted(can_unload):
        i = x[-1]
        if not DISABLE_SMART_MEMORY:
            if get_free_memory(device) > memory_required:
                break
        current_loaded_models[i].model_unload()
        unloaded_model.append(i)

    for i in sorted(unloaded_model, reverse=True):
        current_loaded_models.pop(i)
comfyanonymous's avatar
comfyanonymous committed
373

374
    if len(unloaded_model) > 0:
comfyanonymous's avatar
comfyanonymous committed
375
        soft_empty_cache()
376
377
378
379
380
    else:
        if vram_state != VRAMState.HIGH_VRAM:
            mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True)
            if mem_free_torch > mem_free_total * 0.25:
                soft_empty_cache()
comfyanonymous's avatar
comfyanonymous committed
381
382

def load_models_gpu(models, memory_required=0):
383
384
    global vram_state

comfyanonymous's avatar
comfyanonymous committed
385
386
387
388
389
390
391
392
393
394
395
396
397
    inference_memory = minimum_inference_memory()
    extra_mem = max(inference_memory, memory_required)

    models_to_load = []
    models_already_loaded = []
    for x in models:
        loaded_model = LoadedModel(x)

        if loaded_model in current_loaded_models:
            index = current_loaded_models.index(loaded_model)
            current_loaded_models.insert(0, current_loaded_models.pop(index))
            models_already_loaded.append(loaded_model)
        else:
398
            if hasattr(x, "model"):
comfyanonymous's avatar
comfyanonymous committed
399
                logging.info(f"Requested to load {x.model.__class__.__name__}")
comfyanonymous's avatar
comfyanonymous committed
400
401
402
403
404
405
406
            models_to_load.append(loaded_model)

    if len(models_to_load) == 0:
        devs = set(map(lambda a: a.device, models_already_loaded))
        for d in devs:
            if d != torch.device("cpu"):
                free_memory(extra_mem, d, models_already_loaded)
407
408
        return

comfyanonymous's avatar
comfyanonymous committed
409
    logging.info(f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}")
410

comfyanonymous's avatar
comfyanonymous committed
411
412
    total_memory_required = {}
    for loaded_model in models_to_load:
413
414
        if unload_model_clones(loaded_model.model, unload_weights_only=True, force_unload=False) == True:#unload clones where the weights are different
            total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
comfyanonymous's avatar
comfyanonymous committed
415

comfyanonymous's avatar
comfyanonymous committed
416
417
418
    for device in total_memory_required:
        if device != torch.device("cpu"):
            free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded)
comfyanonymous's avatar
comfyanonymous committed
419

420
    for loaded_model in models_to_load:
421
422
423
        weights_unloaded = unload_model_clones(loaded_model.model, unload_weights_only=False, force_unload=False) #unload the rest of the clones where the weights can stay loaded
        if weights_unloaded is not None:
            loaded_model.weights_loaded = not weights_unloaded
424

comfyanonymous's avatar
comfyanonymous committed
425
426
427
428
429
430
431
432
433
434
435
    for loaded_model in models_to_load:
        model = loaded_model.model
        torch_dev = model.load_device
        if is_device_cpu(torch_dev):
            vram_set_state = VRAMState.DISABLED
        else:
            vram_set_state = vram_state
        lowvram_model_memory = 0
        if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
            model_size = loaded_model.model_memory_required(torch_dev)
            current_free_mem = get_free_memory(torch_dev)
436
            lowvram_model_memory = int(max(64 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
comfyanonymous's avatar
comfyanonymous committed
437
438
439
440
            if model_size > (current_free_mem - inference_memory): #only switch to lowvram if really necessary
                vram_set_state = VRAMState.LOW_VRAM
            else:
                lowvram_model_memory = 0
441

comfyanonymous's avatar
comfyanonymous committed
442
        if vram_set_state == VRAMState.NO_VRAM:
443
            lowvram_model_memory = 64 * 1024 * 1024
444

comfyanonymous's avatar
comfyanonymous committed
445
446
447
448
449
450
451
452
        cur_loaded_model = loaded_model.model_load(lowvram_model_memory)
        current_loaded_models.insert(0, loaded_model)
    return


def load_model_gpu(model):
    return load_models_gpu([model])

453
def cleanup_models(keep_clone_weights_loaded=False):
comfyanonymous's avatar
comfyanonymous committed
454
455
456
    to_delete = []
    for i in range(len(current_loaded_models)):
        if sys.getrefcount(current_loaded_models[i].model) <= 2:
457
458
459
460
461
            if not keep_clone_weights_loaded:
                to_delete = [i] + to_delete
            #TODO: find a less fragile way to do this.
            elif sys.getrefcount(current_loaded_models[i].real_model) <= 3: #references from .real_model + the .model
                to_delete = [i] + to_delete
comfyanonymous's avatar
comfyanonymous committed
462
463
464
465
466

    for i in to_delete:
        x = current_loaded_models.pop(i)
        x.model_unload()
        del x
467

468
469
470
471
def dtype_size(dtype):
    dtype_size = 4
    if dtype == torch.float16 or dtype == torch.bfloat16:
        dtype_size = 2
472
473
474
475
476
477
478
    elif dtype == torch.float32:
        dtype_size = 4
    else:
        try:
            dtype_size = dtype.itemsize
        except: #Old pytorch doesn't have .itemsize
            pass
479
480
    return dtype_size

481
def unet_offload_device():
comfyanonymous's avatar
comfyanonymous committed
482
    if vram_state == VRAMState.HIGH_VRAM:
483
484
485
486
        return get_torch_device()
    else:
        return torch.device("cpu")

comfyanonymous's avatar
comfyanonymous committed
487
488
489
490
491
492
def unet_inital_load_device(parameters, dtype):
    torch_dev = get_torch_device()
    if vram_state == VRAMState.HIGH_VRAM:
        return torch_dev

    cpu_dev = torch.device("cpu")
493
494
495
    if DISABLE_SMART_MEMORY:
        return cpu_dev

496
    model_size = dtype_size(dtype) * parameters
comfyanonymous's avatar
comfyanonymous committed
497
498
499
500
501
502
503
504

    mem_dev = get_free_memory(torch_dev)
    mem_cpu = get_free_memory(cpu_dev)
    if mem_dev > mem_cpu and model_size < mem_dev:
        return torch_dev
    else:
        return cpu_dev

comfyanonymous's avatar
comfyanonymous committed
505
def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]):
506
507
    if args.bf16_unet:
        return torch.bfloat16
508
509
    if args.fp16_unet:
        return torch.float16
510
511
512
513
    if args.fp8_e4m3fn_unet:
        return torch.float8_e4m3fn
    if args.fp8_e5m2_unet:
        return torch.float8_e5m2
514
    if should_use_fp16(device=device, model_params=model_params, manual_cast=True):
comfyanonymous's avatar
comfyanonymous committed
515
516
        if torch.float16 in supported_dtypes:
            return torch.float16
517
    if should_use_bf16(device, model_params=model_params, manual_cast=True):
comfyanonymous's avatar
comfyanonymous committed
518
519
        if torch.bfloat16 in supported_dtypes:
            return torch.bfloat16
520
521
    return torch.float32

522
# None means no manual cast
comfyanonymous's avatar
comfyanonymous committed
523
def unet_manual_cast(weight_dtype, inference_device, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]):
524
525
526
    if weight_dtype == torch.float32:
        return None

comfyanonymous's avatar
comfyanonymous committed
527
    fp16_supported = should_use_fp16(inference_device, prioritize_performance=False)
528
529
530
    if fp16_supported and weight_dtype == torch.float16:
        return None

comfyanonymous's avatar
comfyanonymous committed
531
532
533
534
535
    bf16_supported = should_use_bf16(inference_device)
    if bf16_supported and weight_dtype == torch.bfloat16:
        return None

    if fp16_supported and torch.float16 in supported_dtypes:
536
        return torch.float16
comfyanonymous's avatar
comfyanonymous committed
537
538
539

    elif bf16_supported and torch.bfloat16 in supported_dtypes:
        return torch.bfloat16
540
541
542
    else:
        return torch.float32

543
def text_encoder_offload_device():
comfyanonymous's avatar
comfyanonymous committed
544
    if args.gpu_only:
545
546
547
548
        return get_torch_device()
    else:
        return torch.device("cpu")

549
def text_encoder_device():
comfyanonymous's avatar
comfyanonymous committed
550
    if args.gpu_only:
551
        return get_torch_device()
552
    elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
553
554
        if is_intel_xpu():
            return torch.device("cpu")
555
        if should_use_fp16(prioritize_performance=False):
556
557
558
            return get_torch_device()
        else:
            return torch.device("cpu")
559
560
561
    else:
        return torch.device("cpu")

562
563
564
565
566
567
568
569
570
571
def text_encoder_dtype(device=None):
    if args.fp8_e4m3fn_text_enc:
        return torch.float8_e4m3fn
    elif args.fp8_e5m2_text_enc:
        return torch.float8_e5m2
    elif args.fp16_text_enc:
        return torch.float16
    elif args.fp32_text_enc:
        return torch.float32

572
573
574
    if is_device_cpu(device):
        return torch.float16

575
576
    return torch.float16

577

578
579
580
581
582
583
def intermediate_device():
    if args.gpu_only:
        return get_torch_device()
    else:
        return torch.device("cpu")

584
def vae_device():
585
586
    if args.cpu_vae:
        return torch.device("cpu")
587
588
589
    return get_torch_device()

def vae_offload_device():
comfyanonymous's avatar
comfyanonymous committed
590
    if args.gpu_only:
591
592
593
594
        return get_torch_device()
    else:
        return torch.device("cpu")

595
def vae_dtype():
596
597
    global VAE_DTYPE
    return VAE_DTYPE
598

599
600
601
602
def get_autocast_device(dev):
    if hasattr(dev, 'type'):
        return dev.type
    return "cuda"
603

604
605
606
def supports_dtype(device, dtype): #TODO
    if dtype == torch.float32:
        return True
607
    if is_device_cpu(device):
608
609
610
611
612
613
614
        return False
    if dtype == torch.float16:
        return True
    if dtype == torch.bfloat16:
        return True
    return False

615
616
617
618
619
def device_supports_non_blocking(device):
    if is_device_mps(device):
        return False #pytorch bug? mps doesn't support non blocking
    return True

620
621
622
623
624
625
626
def cast_to_device(tensor, device, dtype, copy=False):
    device_supports_cast = False
    if tensor.dtype == torch.float32 or tensor.dtype == torch.float16:
        device_supports_cast = True
    elif tensor.dtype == torch.bfloat16:
        if hasattr(device, 'type') and device.type.startswith("cuda"):
            device_supports_cast = True
627
628
        elif is_intel_xpu():
            device_supports_cast = True
629

630
    non_blocking = device_supports_non_blocking(device)
comfyanonymous's avatar
comfyanonymous committed
631

632
633
634
    if device_supports_cast:
        if copy:
            if tensor.device == device:
comfyanonymous's avatar
comfyanonymous committed
635
636
                return tensor.to(dtype, copy=copy, non_blocking=non_blocking)
            return tensor.to(device, copy=copy, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
637
        else:
comfyanonymous's avatar
comfyanonymous committed
638
            return tensor.to(device, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
639
    else:
comfyanonymous's avatar
comfyanonymous committed
640
        return tensor.to(device, dtype, copy=copy, non_blocking=non_blocking)
641

642
def xformers_enabled():
643
    global directml_enabled
644
645
    global cpu_state
    if cpu_state != CPUState.GPU:
646
        return False
647
    if is_intel_xpu():
648
649
650
        return False
    if directml_enabled:
        return False
651
    return XFORMERS_IS_AVAILABLE
652

653
654
655
656
657

def xformers_enabled_vae():
    enabled = xformers_enabled()
    if not enabled:
        return False
658
659

    return XFORMERS_ENABLED_VAE
660

661
def pytorch_attention_enabled():
662
    global ENABLE_PYTORCH_ATTENTION
663
664
    return ENABLE_PYTORCH_ATTENTION

665
666
667
668
def pytorch_attention_flash_attention():
    global ENABLE_PYTORCH_ATTENTION
    if ENABLE_PYTORCH_ATTENTION:
        #TODO: more reliable way of checking for flash attention?
669
        if is_nvidia(): #pytorch flash attention only works on Nvidia
670
671
672
            return True
    return False

673
def get_free_memory(dev=None, torch_free_too=False):
674
    global directml_enabled
675
    if dev is None:
676
        dev = get_torch_device()
677

Yurii Mazurevich's avatar
Yurii Mazurevich committed
678
    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
679
680
681
        mem_free_total = psutil.virtual_memory().available
        mem_free_torch = mem_free_total
    else:
682
683
684
        if directml_enabled:
            mem_free_total = 1024 * 1024 * 1024 #TODO
            mem_free_torch = mem_free_total
685
        elif is_intel_xpu():
686
687
688
689
690
            stats = torch.xpu.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_allocated = stats['allocated_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_torch = mem_reserved - mem_active
691
            mem_free_total = torch.xpu.get_device_properties(dev).total_memory - mem_allocated
692
693
694
695
696
697
698
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
            mem_free_torch = mem_reserved - mem_active
            mem_free_total = mem_free_cuda + mem_free_torch
699
700
701
702
703

    if torch_free_too:
        return (mem_free_total, mem_free_torch)
    else:
        return mem_free_total
704

705
def cpu_mode():
706
707
    global cpu_state
    return cpu_state == CPUState.CPU
708

Yurii Mazurevich's avatar
Yurii Mazurevich committed
709
def mps_mode():
710
711
    global cpu_state
    return cpu_state == CPUState.MPS
Yurii Mazurevich's avatar
Yurii Mazurevich committed
712

713
def is_device_type(device, type):
714
    if hasattr(device, 'type'):
715
        if (device.type == type):
comfyanonymous's avatar
comfyanonymous committed
716
717
718
            return True
    return False

719
720
721
def is_device_cpu(device):
    return is_device_type(device, 'cpu')

comfyanonymous's avatar
comfyanonymous committed
722
def is_device_mps(device):
723
724
725
726
    return is_device_type(device, 'mps')

def is_device_cuda(device):
    return is_device_type(device, 'cuda')
727

728
def should_use_fp16(device=None, model_params=0, prioritize_performance=True, manual_cast=False):
729
730
    global directml_enabled

731
732
733
734
    if device is not None:
        if is_device_cpu(device):
            return False

735
736
737
    if FORCE_FP16:
        return True

738
    if device is not None:
739
        if is_device_mps(device):
740
            return True
741

742
743
744
    if FORCE_FP32:
        return False

745
746
747
    if directml_enabled:
        return False

748
749
750
751
752
    if mps_mode():
        return True

    if cpu_mode():
        return False
753

754
    if is_intel_xpu():
comfyanonymous's avatar
comfyanonymous committed
755
756
        return True

757
    if torch.version.hip:
758
759
        return True

comfyanonymous's avatar
comfyanonymous committed
760
    props = torch.cuda.get_device_properties("cuda")
761
762
763
    if props.major >= 8:
        return True

764
765
766
767
768
769
770
    if props.major < 6:
        return False

    fp16_works = False
    #FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled
    #when the model doesn't actually fit on the card
    #TODO: actually test if GP106 and others have the same type of behavior
771
    nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050", "p40", "p100", "p6", "p4"]
772
773
774
775
    for x in nvidia_10_series:
        if x in props.name.lower():
            fp16_works = True

776
    if fp16_works or manual_cast:
777
        free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
778
        if (not prioritize_performance) or model_params * 4 > free_model_memory:
779
780
            return True

781
782
783
    if props.major < 7:
        return False

784
    #FP16 is just broken on these cards
785
    nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX", "T2000", "T1000", "T1200"]
786
787
788
789
790
791
    for x in nvidia_16_series:
        if x in props.name:
            return False

    return True

792
793
794
795
796
797
798
799
800
def should_use_bf16(device=None, model_params=0, prioritize_performance=True, manual_cast=False):
    if device is not None:
        if is_device_cpu(device): #TODO ? bf16 works on CPU but is extremely slow
            return False

    if device is not None: #TODO not sure about mps bf16 support
        if is_device_mps(device):
            return False

801
802
803
    if FORCE_FP32:
        return False

804
805
806
807
808
809
    if directml_enabled:
        return False

    if cpu_mode() or mps_mode():
        return False

comfyanonymous's avatar
comfyanonymous committed
810
811
812
813
814
815
816
817
818
819
    if is_intel_xpu():
        return True

    if device is None:
        device = torch.device("cuda")

    props = torch.cuda.get_device_properties(device)
    if props.major >= 8:
        return True

820
821
822
823
824
825
826
    bf16_works = torch.cuda.is_bf16_supported()

    if bf16_works or manual_cast:
        free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
        if (not prioritize_performance) or model_params * 4 > free_model_memory:
            return True

comfyanonymous's avatar
comfyanonymous committed
827
828
    return False

829
def soft_empty_cache(force=False):
830
831
    global cpu_state
    if cpu_state == CPUState.MPS:
comfyanonymous's avatar
comfyanonymous committed
832
        torch.mps.empty_cache()
833
    elif is_intel_xpu():
834
835
        torch.xpu.empty_cache()
    elif torch.cuda.is_available():
836
        if force or is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda
837
838
839
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()

840
841
842
843
def unload_all_models():
    free_memory(1e30, get_torch_device())


844
def resolve_lowvram_weight(weight, model, key): #TODO: remove
comfyanonymous's avatar
comfyanonymous committed
845
846
    return weight

847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
#TODO: might be cleaner to put this somewhere else
import threading

class InterruptProcessingException(Exception):
    pass

interrupt_processing_mutex = threading.RLock()

interrupt_processing = False
def interrupt_current_processing(value=True):
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        interrupt_processing = value

def processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        return interrupt_processing

def throw_exception_if_processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        if interrupt_processing:
            interrupt_processing = False
            raise InterruptProcessingException()