model_management.py 21.1 KB
Newer Older
1
2
import psutil
from enum import Enum
comfyanonymous's avatar
comfyanonymous committed
3
from comfy.cli_args import args
comfyanonymous's avatar
comfyanonymous committed
4
import comfy.utils
5
import torch
comfyanonymous's avatar
comfyanonymous committed
6
import sys
7

8
class VRAMState(Enum):
9
10
    DISABLED = 0    #No vram present: no need to move models to vram
    NO_VRAM = 1     #Very low vram: enable all the options to save vram
11
12
13
    LOW_VRAM = 2
    NORMAL_VRAM = 3
    HIGH_VRAM = 4
14
    SHARED = 5      #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both.
15
16
17
18
19

class CPUState(Enum):
    GPU = 0
    CPU = 1
    MPS = 2
20

21
22
23
# Determine VRAM State
vram_state = VRAMState.NORMAL_VRAM
set_vram_to = VRAMState.NORMAL_VRAM
24
cpu_state = CPUState.GPU
25

26
total_vram = 0
27

28
lowvram_available = True
藍+85CD's avatar
藍+85CD committed
29
xpu_available = False
30

31
directml_enabled = False
32
if args.directml is not None:
33
34
    import torch_directml
    directml_enabled = True
35
36
37
38
39
40
    device_index = args.directml
    if device_index < 0:
        directml_device = torch_directml.device()
    else:
        directml_device = torch_directml.device(device_index)
    print("Using directml with device:", torch_directml.device_name(device_index))
41
    # torch_directml.disable_tiled_resources(True)
42
    lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
43

44
try:
45
46
47
    import intel_extension_for_pytorch as ipex
    if torch.xpu.is_available():
        xpu_available = True
48
49
50
except:
    pass

51
52
53
try:
    if torch.backends.mps.is_available():
        cpu_state = CPUState.MPS
KarryCharon's avatar
KarryCharon committed
54
        import torch.mps
55
56
57
58
59
60
except:
    pass

if args.cpu:
    cpu_state = CPUState.CPU

61
62
def is_intel_xpu():
    global cpu_state
63
    global xpu_available
64
65
66
67
68
69
    if cpu_state == CPUState.GPU:
        if xpu_available:
            return True
    return False

def get_torch_device():
70
    global directml_enabled
71
    global cpu_state
72
73
74
    if directml_enabled:
        global directml_device
        return directml_device
75
    if cpu_state == CPUState.MPS:
76
        return torch.device("mps")
77
    if cpu_state == CPUState.CPU:
78
79
        return torch.device("cpu")
    else:
80
        if is_intel_xpu():
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
            return torch.device("xpu")
        else:
            return torch.device(torch.cuda.current_device())

def get_total_memory(dev=None, torch_total_too=False):
    global directml_enabled
    if dev is None:
        dev = get_torch_device()

    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
        mem_total = psutil.virtual_memory().total
        mem_total_torch = mem_total
    else:
        if directml_enabled:
            mem_total = 1024 * 1024 * 1024 #TODO
            mem_total_torch = mem_total
97
        elif is_intel_xpu():
98
99
            stats = torch.xpu.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
100
            mem_total = torch.xpu.get_device_properties(dev).total_memory
101
            mem_total_torch = mem_reserved
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
            _, mem_total_cuda = torch.cuda.mem_get_info(dev)
            mem_total_torch = mem_reserved
            mem_total = mem_total_cuda

    if torch_total_too:
        return (mem_total, mem_total_torch)
    else:
        return mem_total

total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
print("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
if not args.normalvram and not args.cpu:
    if lowvram_available and total_vram <= 4096:
        print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
        set_vram_to = VRAMState.LOW_VRAM

122
123
124
125
126
try:
    OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
    OOM_EXCEPTION = Exception

127
128
XFORMERS_VERSION = ""
XFORMERS_ENABLED_VAE = True
129
130
if args.disable_xformers:
    XFORMERS_IS_AVAILABLE = False
131
132
133
134
else:
    try:
        import xformers
        import xformers.ops
135
        XFORMERS_IS_AVAILABLE = True
136
137
138
139
140
141
142
143
144
145
146
        try:
            XFORMERS_VERSION = xformers.version.__version__
            print("xformers version:", XFORMERS_VERSION)
            if XFORMERS_VERSION.startswith("0.0.18"):
                print()
                print("WARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
                print("Please downgrade or upgrade xformers to a different version.")
                print()
                XFORMERS_ENABLED_VAE = False
        except:
            pass
147
    except:
148
        XFORMERS_IS_AVAILABLE = False
149

150
151
152
153
154
def is_nvidia():
    global cpu_state
    if cpu_state == CPUState.GPU:
        if torch.version.cuda:
            return True
155
    return False
156

157
ENABLE_PYTORCH_ATTENTION = args.use_pytorch_cross_attention
158
VAE_DTYPE = torch.float32
159

160
161
162
163
164
try:
    if is_nvidia():
        torch_version = torch.version.__version__
        if int(torch_version[0]) >= 2:
            if ENABLE_PYTORCH_ATTENTION == False and XFORMERS_IS_AVAILABLE == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
165
                ENABLE_PYTORCH_ATTENTION = True
166
167
168
169
170
            if torch.cuda.is_bf16_supported():
                VAE_DTYPE = torch.bfloat16
except:
    pass

171
172
173
if is_intel_xpu():
    VAE_DTYPE = torch.bfloat16

174
175
176
177
178
179
180
if args.fp16_vae:
    VAE_DTYPE = torch.float16
elif args.bf16_vae:
    VAE_DTYPE = torch.bfloat16
elif args.fp32_vae:
    VAE_DTYPE = torch.float32

181

182
if ENABLE_PYTORCH_ATTENTION:
183
184
185
    torch.backends.cuda.enable_math_sdp(True)
    torch.backends.cuda.enable_flash_sdp(True)
    torch.backends.cuda.enable_mem_efficient_sdp(True)
186
    XFORMERS_IS_AVAILABLE = False
187

188
189
if args.lowvram:
    set_vram_to = VRAMState.LOW_VRAM
190
    lowvram_available = True
191
192
elif args.novram:
    set_vram_to = VRAMState.NO_VRAM
193
elif args.highvram or args.gpu_only:
194
    vram_state = VRAMState.HIGH_VRAM
195

196
FORCE_FP32 = False
197
FORCE_FP16 = False
198
199
200
201
if args.force_fp32:
    print("Forcing FP32, if this improves things please report it.")
    FORCE_FP32 = True

202
203
204
205
if args.force_fp16:
    print("Forcing FP16.")
    FORCE_FP16 = True

206
if lowvram_available:
207
208
    try:
        import accelerate
209
210
        if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
            vram_state = set_vram_to
211
212
213
    except Exception as e:
        import traceback
        print(traceback.format_exc())
214
215
        print("ERROR: LOW VRAM MODE NEEDS accelerate.")
        lowvram_available = False
216

217

218
219
if cpu_state != CPUState.GPU:
    vram_state = VRAMState.DISABLED
220

221
222
if cpu_state == CPUState.MPS:
    vram_state = VRAMState.SHARED
223

224
print(f"Set vram state to: {vram_state.name}")
225

226
227
228
229
DISABLE_SMART_MEMORY = args.disable_smart_memory

if DISABLE_SMART_MEMORY:
    print("Disabling smart memory management")
230

231
232
def get_torch_device_name(device):
    if hasattr(device, 'type'):
233
        if device.type == "cuda":
234
235
236
237
238
            try:
                allocator_backend = torch.cuda.get_allocator_backend()
            except:
                allocator_backend = ""
            return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
239
240
        else:
            return "{}".format(device.type)
241
    elif is_intel_xpu():
242
        return "{} {}".format(device, torch.xpu.get_device_name(device))
243
244
    else:
        return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
245
246

try:
247
    print("Device:", get_torch_device_name(get_torch_device()))
248
249
250
except:
    print("Could not pick default device.")

251
print("VAE dtype:", VAE_DTYPE)
252

comfyanonymous's avatar
comfyanonymous committed
253
current_loaded_models = []
254

comfyanonymous's avatar
comfyanonymous committed
255
256
257
258
259
class LoadedModel:
    def __init__(self, model):
        self.model = model
        self.model_accelerated = False
        self.device = model.load_device
260

comfyanonymous's avatar
comfyanonymous committed
261
262
    def model_memory(self):
        return self.model.model_size()
263

comfyanonymous's avatar
comfyanonymous committed
264
265
266
267
268
    def model_memory_required(self, device):
        if device == self.model.current_device:
            return 0
        else:
            return self.model_memory()
269

comfyanonymous's avatar
comfyanonymous committed
270
271
272
273
    def model_load(self, lowvram_model_memory=0):
        patch_model_to = None
        if lowvram_model_memory == 0:
            patch_model_to = self.device
274

comfyanonymous's avatar
comfyanonymous committed
275
276
        self.model.model_patches_to(self.device)
        self.model.model_patches_to(self.model.model_dtype())
277

comfyanonymous's avatar
comfyanonymous committed
278
279
280
281
282
283
        try:
            self.real_model = self.model.patch_model(device_to=patch_model_to) #TODO: do something with loras and offloading to CPU
        except Exception as e:
            self.model.unpatch_model(self.model.offload_device)
            self.model_unload()
            raise e
284

comfyanonymous's avatar
comfyanonymous committed
285
286
287
288
289
        if lowvram_model_memory > 0:
            print("loading in lowvram mode", lowvram_model_memory/(1024 * 1024))
            device_map = accelerate.infer_auto_device_map(self.real_model, max_memory={0: "{}MiB".format(lowvram_model_memory // (1024 * 1024)), "cpu": "16GiB"})
            accelerate.dispatch_model(self.real_model, device_map=device_map, main_device=self.device)
            self.model_accelerated = True
290

291
        if is_intel_xpu() and not args.disable_ipex_optimize:
292
            self.real_model = torch.xpu.optimize(self.real_model.eval(), inplace=True, auto_kernel_selection=True, graph_mode=True)
293

comfyanonymous's avatar
comfyanonymous committed
294
        return self.real_model
295

comfyanonymous's avatar
comfyanonymous committed
296
297
298
299
    def model_unload(self):
        if self.model_accelerated:
            accelerate.hooks.remove_hook_from_submodules(self.real_model)
            self.model_accelerated = False
300

comfyanonymous's avatar
comfyanonymous committed
301
302
        self.model.unpatch_model(self.model.offload_device)
        self.model.model_patches_to(self.model.offload_device)
303

comfyanonymous's avatar
comfyanonymous committed
304
305
    def __eq__(self, other):
        return self.model is other.model
comfyanonymous's avatar
comfyanonymous committed
306

comfyanonymous's avatar
comfyanonymous committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
def minimum_inference_memory():
    return (1024 * 1024 * 1024)

def unload_model_clones(model):
    to_unload = []
    for i in range(len(current_loaded_models)):
        if model.is_clone(current_loaded_models[i].model):
            to_unload = [i] + to_unload

    for i in to_unload:
        print("unload clone", i)
        current_loaded_models.pop(i).model_unload()

def free_memory(memory_required, device, keep_loaded=[]):
    unloaded_model = False
    for i in range(len(current_loaded_models) -1, -1, -1):
comfyanonymous's avatar
comfyanonymous committed
323
324
325
        if not DISABLE_SMART_MEMORY:
            if get_free_memory(device) > memory_required:
                break
comfyanonymous's avatar
comfyanonymous committed
326
327
328
        shift_model = current_loaded_models[i]
        if shift_model.device == device:
            if shift_model not in keep_loaded:
comfyanonymous's avatar
comfyanonymous committed
329
330
331
                m = current_loaded_models.pop(i)
                m.model_unload()
                del m
comfyanonymous's avatar
comfyanonymous committed
332
333
334
335
336
337
338
                unloaded_model = True

    if unloaded_model:
        soft_empty_cache()


def load_models_gpu(models, memory_required=0):
339
340
    global vram_state

comfyanonymous's avatar
comfyanonymous committed
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
    inference_memory = minimum_inference_memory()
    extra_mem = max(inference_memory, memory_required)

    models_to_load = []
    models_already_loaded = []
    for x in models:
        loaded_model = LoadedModel(x)

        if loaded_model in current_loaded_models:
            index = current_loaded_models.index(loaded_model)
            current_loaded_models.insert(0, current_loaded_models.pop(index))
            models_already_loaded.append(loaded_model)
        else:
            models_to_load.append(loaded_model)

    if len(models_to_load) == 0:
        devs = set(map(lambda a: a.device, models_already_loaded))
        for d in devs:
            if d != torch.device("cpu"):
                free_memory(extra_mem, d, models_already_loaded)
361
362
        return

comfyanonymous's avatar
comfyanonymous committed
363
    print("loading new")
364

comfyanonymous's avatar
comfyanonymous committed
365
366
367
368
    total_memory_required = {}
    for loaded_model in models_to_load:
        unload_model_clones(loaded_model.model)
        total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
comfyanonymous's avatar
comfyanonymous committed
369

comfyanonymous's avatar
comfyanonymous committed
370
371
372
    for device in total_memory_required:
        if device != torch.device("cpu"):
            free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded)
comfyanonymous's avatar
comfyanonymous committed
373

comfyanonymous's avatar
comfyanonymous committed
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
    for loaded_model in models_to_load:
        model = loaded_model.model
        torch_dev = model.load_device
        if is_device_cpu(torch_dev):
            vram_set_state = VRAMState.DISABLED
        else:
            vram_set_state = vram_state
        lowvram_model_memory = 0
        if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
            model_size = loaded_model.model_memory_required(torch_dev)
            current_free_mem = get_free_memory(torch_dev)
            lowvram_model_memory = int(max(256 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
            if model_size > (current_free_mem - inference_memory): #only switch to lowvram if really necessary
                vram_set_state = VRAMState.LOW_VRAM
            else:
                lowvram_model_memory = 0
390

comfyanonymous's avatar
comfyanonymous committed
391
392
        if vram_set_state == VRAMState.NO_VRAM:
            lowvram_model_memory = 256 * 1024 * 1024
393

comfyanonymous's avatar
comfyanonymous committed
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
        cur_loaded_model = loaded_model.model_load(lowvram_model_memory)
        current_loaded_models.insert(0, loaded_model)
    return


def load_model_gpu(model):
    return load_models_gpu([model])

def cleanup_models():
    to_delete = []
    for i in range(len(current_loaded_models)):
        print(sys.getrefcount(current_loaded_models[i].model))
        if sys.getrefcount(current_loaded_models[i].model) <= 2:
            to_delete = [i] + to_delete

    for i in to_delete:
        x = current_loaded_models.pop(i)
        x.model_unload()
        del x
413

414
415
416
417
418
419
def dtype_size(dtype):
    dtype_size = 4
    if dtype == torch.float16 or dtype == torch.bfloat16:
        dtype_size = 2
    return dtype_size

420
def unet_offload_device():
comfyanonymous's avatar
comfyanonymous committed
421
    if vram_state == VRAMState.HIGH_VRAM:
422
423
424
425
        return get_torch_device()
    else:
        return torch.device("cpu")

comfyanonymous's avatar
comfyanonymous committed
426
427
428
429
430
431
def unet_inital_load_device(parameters, dtype):
    torch_dev = get_torch_device()
    if vram_state == VRAMState.HIGH_VRAM:
        return torch_dev

    cpu_dev = torch.device("cpu")
432
433
434
    if DISABLE_SMART_MEMORY:
        return cpu_dev

435
    model_size = dtype_size(dtype) * parameters
comfyanonymous's avatar
comfyanonymous committed
436
437
438
439
440
441
442
443

    mem_dev = get_free_memory(torch_dev)
    mem_cpu = get_free_memory(cpu_dev)
    if mem_dev > mem_cpu and model_size < mem_dev:
        return torch_dev
    else:
        return cpu_dev

444
def text_encoder_offload_device():
comfyanonymous's avatar
comfyanonymous committed
445
    if args.gpu_only:
446
447
448
449
        return get_torch_device()
    else:
        return torch.device("cpu")

450
def text_encoder_device():
comfyanonymous's avatar
comfyanonymous committed
451
    if args.gpu_only:
452
        return get_torch_device()
453
    elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
454
        if should_use_fp16(prioritize_performance=False):
455
456
457
            return get_torch_device()
        else:
            return torch.device("cpu")
458
459
460
    else:
        return torch.device("cpu")

461
462
463
464
def vae_device():
    return get_torch_device()

def vae_offload_device():
comfyanonymous's avatar
comfyanonymous committed
465
    if args.gpu_only:
466
467
468
469
        return get_torch_device()
    else:
        return torch.device("cpu")

470
def vae_dtype():
471
472
    global VAE_DTYPE
    return VAE_DTYPE
473

474
475
476
477
def get_autocast_device(dev):
    if hasattr(dev, 'type'):
        return dev.type
    return "cuda"
478

479

480
def xformers_enabled():
481
    global directml_enabled
482
483
    global cpu_state
    if cpu_state != CPUState.GPU:
484
        return False
485
    if is_intel_xpu():
486
487
488
        return False
    if directml_enabled:
        return False
489
    return XFORMERS_IS_AVAILABLE
490

491
492
493
494
495

def xformers_enabled_vae():
    enabled = xformers_enabled()
    if not enabled:
        return False
496
497

    return XFORMERS_ENABLED_VAE
498

499
def pytorch_attention_enabled():
500
    global ENABLE_PYTORCH_ATTENTION
501
502
    return ENABLE_PYTORCH_ATTENTION

503
504
505
506
def pytorch_attention_flash_attention():
    global ENABLE_PYTORCH_ATTENTION
    if ENABLE_PYTORCH_ATTENTION:
        #TODO: more reliable way of checking for flash attention?
507
        if is_nvidia(): #pytorch flash attention only works on Nvidia
508
509
510
            return True
    return False

511
def get_free_memory(dev=None, torch_free_too=False):
512
    global directml_enabled
513
    if dev is None:
514
        dev = get_torch_device()
515

Yurii Mazurevich's avatar
Yurii Mazurevich committed
516
    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
517
518
519
        mem_free_total = psutil.virtual_memory().available
        mem_free_torch = mem_free_total
    else:
520
521
522
        if directml_enabled:
            mem_free_total = 1024 * 1024 * 1024 #TODO
            mem_free_torch = mem_free_total
523
        elif is_intel_xpu():
524
525
526
527
528
            stats = torch.xpu.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_allocated = stats['allocated_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_torch = mem_reserved - mem_active
529
            mem_free_total = torch.xpu.get_device_properties(dev).total_memory - mem_allocated
530
531
532
533
534
535
536
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
            mem_free_torch = mem_reserved - mem_active
            mem_free_total = mem_free_cuda + mem_free_torch
537
538
539
540
541

    if torch_free_too:
        return (mem_free_total, mem_free_torch)
    else:
        return mem_free_total
542

comfyanonymous's avatar
comfyanonymous committed
543
544
545
546
547
548
549
def batch_area_memory(area):
    if xformers_enabled() or pytorch_attention_flash_attention():
        #TODO: these formulas are copied from maximum_batch_area below
        return (area / 20) * (1024 * 1024)
    else:
        return (((area * 0.6) / 0.9) + 1024) * (1024 * 1024)

550
551
def maximum_batch_area():
    global vram_state
552
    if vram_state == VRAMState.NO_VRAM:
553
554
555
        return 0

    memory_free = get_free_memory() / (1024 * 1024)
556
    if xformers_enabled() or pytorch_attention_flash_attention():
557
        #TODO: this needs to be tweaked
558
        area = 20 * memory_free
559
560
561
    else:
        #TODO: this formula is because AMD sucks and has memory management issues which might be fixed in the future
        area = ((memory_free - 1024) * 0.9) / (0.6)
562
    return int(max(area, 0))
563
564

def cpu_mode():
565
566
    global cpu_state
    return cpu_state == CPUState.CPU
567

Yurii Mazurevich's avatar
Yurii Mazurevich committed
568
def mps_mode():
569
570
    global cpu_state
    return cpu_state == CPUState.MPS
Yurii Mazurevich's avatar
Yurii Mazurevich committed
571

572
573
def is_device_cpu(device):
    if hasattr(device, 'type'):
comfyanonymous's avatar
comfyanonymous committed
574
575
576
577
578
579
580
        if (device.type == 'cpu'):
            return True
    return False

def is_device_mps(device):
    if hasattr(device, 'type'):
        if (device.type == 'mps'):
581
582
583
            return True
    return False

584
def should_use_fp16(device=None, model_params=0, prioritize_performance=True):
585
586
    global directml_enabled

587
588
589
590
    if device is not None:
        if is_device_cpu(device):
            return False

591
592
593
    if FORCE_FP16:
        return True

594
    if device is not None: #TODO
595
        if is_device_mps(device):
596
            return False
597

598
599
600
    if FORCE_FP32:
        return False

601
602
603
    if directml_enabled:
        return False

604
    if cpu_mode() or mps_mode():
605
606
        return False #TODO ?

607
    if is_intel_xpu():
comfyanonymous's avatar
comfyanonymous committed
608
609
610
        return True

    if torch.cuda.is_bf16_supported():
611
612
        return True

comfyanonymous's avatar
comfyanonymous committed
613
    props = torch.cuda.get_device_properties("cuda")
614
615
616
617
618
619
620
621
622
623
624
625
626
627
    if props.major < 6:
        return False

    fp16_works = False
    #FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled
    #when the model doesn't actually fit on the card
    #TODO: actually test if GP106 and others have the same type of behavior
    nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050"]
    for x in nvidia_10_series:
        if x in props.name.lower():
            fp16_works = True

    if fp16_works:
        free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
628
        if (not prioritize_performance) or model_params * 4 > free_model_memory:
629
630
            return True

631
632
633
    if props.major < 7:
        return False

634
    #FP16 is just broken on these cards
635
    nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX"]
636
637
638
639
640
641
    for x in nvidia_16_series:
        if x in props.name:
            return False

    return True

642
def soft_empty_cache():
643
644
    global cpu_state
    if cpu_state == CPUState.MPS:
comfyanonymous's avatar
comfyanonymous committed
645
        torch.mps.empty_cache()
646
    elif is_intel_xpu():
647
648
        torch.xpu.empty_cache()
    elif torch.cuda.is_available():
649
        if is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda
650
651
652
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()

comfyanonymous's avatar
comfyanonymous committed
653
654
655
656
657
658
659
def resolve_lowvram_weight(weight, model, key):
    if weight.device == torch.device("meta"): #lowvram NOTE: this depends on the inner working of the accelerate library so it might break.
        key_split = key.split('.')              # I have no idea why they don't just leave the weight there instead of using the meta device.
        op = comfy.utils.get_attr(model, '.'.join(key_split[:-1]))
        weight = op._hf_hook.weights_map[key_split[-1]]
    return weight

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
#TODO: might be cleaner to put this somewhere else
import threading

class InterruptProcessingException(Exception):
    pass

interrupt_processing_mutex = threading.RLock()

interrupt_processing = False
def interrupt_current_processing(value=True):
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        interrupt_processing = value

def processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        return interrupt_processing

def throw_exception_if_processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        if interrupt_processing:
            interrupt_processing = False
            raise InterruptProcessingException()