model_management.py 22 KB
Newer Older
1
2
import psutil
from enum import Enum
comfyanonymous's avatar
comfyanonymous committed
3
from comfy.cli_args import args
comfyanonymous's avatar
comfyanonymous committed
4
import comfy.utils
5
import torch
comfyanonymous's avatar
comfyanonymous committed
6
import sys
7

8
class VRAMState(Enum):
9
10
    DISABLED = 0    #No vram present: no need to move models to vram
    NO_VRAM = 1     #Very low vram: enable all the options to save vram
11
12
13
    LOW_VRAM = 2
    NORMAL_VRAM = 3
    HIGH_VRAM = 4
14
    SHARED = 5      #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both.
15
16
17
18
19

class CPUState(Enum):
    GPU = 0
    CPU = 1
    MPS = 2
20

21
22
23
# Determine VRAM State
vram_state = VRAMState.NORMAL_VRAM
set_vram_to = VRAMState.NORMAL_VRAM
24
cpu_state = CPUState.GPU
25

26
total_vram = 0
27

28
lowvram_available = True
藍+85CD's avatar
藍+85CD committed
29
xpu_available = False
30

31
directml_enabled = False
32
if args.directml is not None:
33
34
    import torch_directml
    directml_enabled = True
35
36
37
38
39
40
    device_index = args.directml
    if device_index < 0:
        directml_device = torch_directml.device()
    else:
        directml_device = torch_directml.device(device_index)
    print("Using directml with device:", torch_directml.device_name(device_index))
41
    # torch_directml.disable_tiled_resources(True)
42
    lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
43

44
try:
45
46
47
    import intel_extension_for_pytorch as ipex
    if torch.xpu.is_available():
        xpu_available = True
48
49
50
except:
    pass

51
52
53
try:
    if torch.backends.mps.is_available():
        cpu_state = CPUState.MPS
KarryCharon's avatar
KarryCharon committed
54
        import torch.mps
55
56
57
58
59
60
except:
    pass

if args.cpu:
    cpu_state = CPUState.CPU

61
62
def is_intel_xpu():
    global cpu_state
63
    global xpu_available
64
65
66
67
68
69
    if cpu_state == CPUState.GPU:
        if xpu_available:
            return True
    return False

def get_torch_device():
70
    global directml_enabled
71
    global cpu_state
72
73
74
    if directml_enabled:
        global directml_device
        return directml_device
75
    if cpu_state == CPUState.MPS:
76
        return torch.device("mps")
77
    if cpu_state == CPUState.CPU:
78
79
        return torch.device("cpu")
    else:
80
        if is_intel_xpu():
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
            return torch.device("xpu")
        else:
            return torch.device(torch.cuda.current_device())

def get_total_memory(dev=None, torch_total_too=False):
    global directml_enabled
    if dev is None:
        dev = get_torch_device()

    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
        mem_total = psutil.virtual_memory().total
        mem_total_torch = mem_total
    else:
        if directml_enabled:
            mem_total = 1024 * 1024 * 1024 #TODO
            mem_total_torch = mem_total
97
        elif is_intel_xpu():
98
99
            stats = torch.xpu.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
100
            mem_total = torch.xpu.get_device_properties(dev).total_memory
101
            mem_total_torch = mem_reserved
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
            _, mem_total_cuda = torch.cuda.mem_get_info(dev)
            mem_total_torch = mem_reserved
            mem_total = mem_total_cuda

    if torch_total_too:
        return (mem_total, mem_total_torch)
    else:
        return mem_total

total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
print("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
if not args.normalvram and not args.cpu:
    if lowvram_available and total_vram <= 4096:
        print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
        set_vram_to = VRAMState.LOW_VRAM

122
123
124
125
126
try:
    OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
    OOM_EXCEPTION = Exception

127
128
XFORMERS_VERSION = ""
XFORMERS_ENABLED_VAE = True
129
130
if args.disable_xformers:
    XFORMERS_IS_AVAILABLE = False
131
132
133
134
else:
    try:
        import xformers
        import xformers.ops
135
        XFORMERS_IS_AVAILABLE = True
136
137
138
139
        try:
            XFORMERS_IS_AVAILABLE = xformers._has_cpp_library
        except:
            pass
140
141
142
143
144
145
146
147
148
149
150
        try:
            XFORMERS_VERSION = xformers.version.__version__
            print("xformers version:", XFORMERS_VERSION)
            if XFORMERS_VERSION.startswith("0.0.18"):
                print()
                print("WARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
                print("Please downgrade or upgrade xformers to a different version.")
                print()
                XFORMERS_ENABLED_VAE = False
        except:
            pass
151
    except:
152
        XFORMERS_IS_AVAILABLE = False
153

154
155
156
157
158
def is_nvidia():
    global cpu_state
    if cpu_state == CPUState.GPU:
        if torch.version.cuda:
            return True
159
    return False
160

161
162
163
164
165
ENABLE_PYTORCH_ATTENTION = False
if args.use_pytorch_cross_attention:
    ENABLE_PYTORCH_ATTENTION = True
    XFORMERS_IS_AVAILABLE = False

166
VAE_DTYPE = torch.float32
167

168
169
170
171
try:
    if is_nvidia():
        torch_version = torch.version.__version__
        if int(torch_version[0]) >= 2:
172
            if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
173
                ENABLE_PYTORCH_ATTENTION = True
174
175
            if torch.cuda.is_bf16_supported():
                VAE_DTYPE = torch.bfloat16
176
177
178
    if is_intel_xpu():
        if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
            ENABLE_PYTORCH_ATTENTION = True
179
180
181
except:
    pass

182
183
184
if is_intel_xpu():
    VAE_DTYPE = torch.bfloat16

185
186
187
188
189
190
191
if args.fp16_vae:
    VAE_DTYPE = torch.float16
elif args.bf16_vae:
    VAE_DTYPE = torch.bfloat16
elif args.fp32_vae:
    VAE_DTYPE = torch.float32

192

193
if ENABLE_PYTORCH_ATTENTION:
194
195
196
    torch.backends.cuda.enable_math_sdp(True)
    torch.backends.cuda.enable_flash_sdp(True)
    torch.backends.cuda.enable_mem_efficient_sdp(True)
197

198
199
if args.lowvram:
    set_vram_to = VRAMState.LOW_VRAM
200
    lowvram_available = True
201
202
elif args.novram:
    set_vram_to = VRAMState.NO_VRAM
203
elif args.highvram or args.gpu_only:
204
    vram_state = VRAMState.HIGH_VRAM
205

206
FORCE_FP32 = False
207
FORCE_FP16 = False
208
209
210
211
if args.force_fp32:
    print("Forcing FP32, if this improves things please report it.")
    FORCE_FP32 = True

212
213
214
215
if args.force_fp16:
    print("Forcing FP16.")
    FORCE_FP16 = True

216
if lowvram_available:
217
218
    try:
        import accelerate
219
220
        if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
            vram_state = set_vram_to
221
222
223
    except Exception as e:
        import traceback
        print(traceback.format_exc())
224
225
        print("ERROR: LOW VRAM MODE NEEDS accelerate.")
        lowvram_available = False
226

227

228
229
if cpu_state != CPUState.GPU:
    vram_state = VRAMState.DISABLED
230

231
232
if cpu_state == CPUState.MPS:
    vram_state = VRAMState.SHARED
233

234
print(f"Set vram state to: {vram_state.name}")
235

236
237
238
239
DISABLE_SMART_MEMORY = args.disable_smart_memory

if DISABLE_SMART_MEMORY:
    print("Disabling smart memory management")
240

241
242
def get_torch_device_name(device):
    if hasattr(device, 'type'):
243
        if device.type == "cuda":
244
245
246
247
248
            try:
                allocator_backend = torch.cuda.get_allocator_backend()
            except:
                allocator_backend = ""
            return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
249
250
        else:
            return "{}".format(device.type)
251
    elif is_intel_xpu():
252
        return "{} {}".format(device, torch.xpu.get_device_name(device))
253
254
    else:
        return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
255
256

try:
257
    print("Device:", get_torch_device_name(get_torch_device()))
258
259
260
except:
    print("Could not pick default device.")

261
print("VAE dtype:", VAE_DTYPE)
262

comfyanonymous's avatar
comfyanonymous committed
263
current_loaded_models = []
264

comfyanonymous's avatar
comfyanonymous committed
265
266
267
268
269
class LoadedModel:
    def __init__(self, model):
        self.model = model
        self.model_accelerated = False
        self.device = model.load_device
270

comfyanonymous's avatar
comfyanonymous committed
271
272
    def model_memory(self):
        return self.model.model_size()
273

comfyanonymous's avatar
comfyanonymous committed
274
275
276
277
278
    def model_memory_required(self, device):
        if device == self.model.current_device:
            return 0
        else:
            return self.model_memory()
279

comfyanonymous's avatar
comfyanonymous committed
280
281
282
283
    def model_load(self, lowvram_model_memory=0):
        patch_model_to = None
        if lowvram_model_memory == 0:
            patch_model_to = self.device
284

comfyanonymous's avatar
comfyanonymous committed
285
286
        self.model.model_patches_to(self.device)
        self.model.model_patches_to(self.model.model_dtype())
287

comfyanonymous's avatar
comfyanonymous committed
288
289
290
291
292
293
        try:
            self.real_model = self.model.patch_model(device_to=patch_model_to) #TODO: do something with loras and offloading to CPU
        except Exception as e:
            self.model.unpatch_model(self.model.offload_device)
            self.model_unload()
            raise e
294

comfyanonymous's avatar
comfyanonymous committed
295
296
297
298
299
        if lowvram_model_memory > 0:
            print("loading in lowvram mode", lowvram_model_memory/(1024 * 1024))
            device_map = accelerate.infer_auto_device_map(self.real_model, max_memory={0: "{}MiB".format(lowvram_model_memory // (1024 * 1024)), "cpu": "16GiB"})
            accelerate.dispatch_model(self.real_model, device_map=device_map, main_device=self.device)
            self.model_accelerated = True
300

301
        if is_intel_xpu() and not args.disable_ipex_optimize:
302
            self.real_model = torch.xpu.optimize(self.real_model.eval(), inplace=True, auto_kernel_selection=True, graph_mode=True)
303

comfyanonymous's avatar
comfyanonymous committed
304
        return self.real_model
305

comfyanonymous's avatar
comfyanonymous committed
306
307
308
309
    def model_unload(self):
        if self.model_accelerated:
            accelerate.hooks.remove_hook_from_submodules(self.real_model)
            self.model_accelerated = False
310

comfyanonymous's avatar
comfyanonymous committed
311
312
        self.model.unpatch_model(self.model.offload_device)
        self.model.model_patches_to(self.model.offload_device)
313

comfyanonymous's avatar
comfyanonymous committed
314
315
    def __eq__(self, other):
        return self.model is other.model
comfyanonymous's avatar
comfyanonymous committed
316

comfyanonymous's avatar
comfyanonymous committed
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
def minimum_inference_memory():
    return (1024 * 1024 * 1024)

def unload_model_clones(model):
    to_unload = []
    for i in range(len(current_loaded_models)):
        if model.is_clone(current_loaded_models[i].model):
            to_unload = [i] + to_unload

    for i in to_unload:
        print("unload clone", i)
        current_loaded_models.pop(i).model_unload()

def free_memory(memory_required, device, keep_loaded=[]):
    unloaded_model = False
    for i in range(len(current_loaded_models) -1, -1, -1):
comfyanonymous's avatar
comfyanonymous committed
333
334
335
        if not DISABLE_SMART_MEMORY:
            if get_free_memory(device) > memory_required:
                break
comfyanonymous's avatar
comfyanonymous committed
336
337
338
        shift_model = current_loaded_models[i]
        if shift_model.device == device:
            if shift_model not in keep_loaded:
comfyanonymous's avatar
comfyanonymous committed
339
340
341
                m = current_loaded_models.pop(i)
                m.model_unload()
                del m
comfyanonymous's avatar
comfyanonymous committed
342
343
344
345
                unloaded_model = True

    if unloaded_model:
        soft_empty_cache()
346
347
348
349
350
    else:
        if vram_state != VRAMState.HIGH_VRAM:
            mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True)
            if mem_free_torch > mem_free_total * 0.25:
                soft_empty_cache()
comfyanonymous's avatar
comfyanonymous committed
351
352

def load_models_gpu(models, memory_required=0):
353
354
    global vram_state

comfyanonymous's avatar
comfyanonymous committed
355
356
357
358
359
360
361
362
363
364
365
366
367
    inference_memory = minimum_inference_memory()
    extra_mem = max(inference_memory, memory_required)

    models_to_load = []
    models_already_loaded = []
    for x in models:
        loaded_model = LoadedModel(x)

        if loaded_model in current_loaded_models:
            index = current_loaded_models.index(loaded_model)
            current_loaded_models.insert(0, current_loaded_models.pop(index))
            models_already_loaded.append(loaded_model)
        else:
368
369
            if hasattr(x, "model"):
                print(f"Requested to load {x.model.__class__.__name__}")
comfyanonymous's avatar
comfyanonymous committed
370
371
372
373
374
375
376
            models_to_load.append(loaded_model)

    if len(models_to_load) == 0:
        devs = set(map(lambda a: a.device, models_already_loaded))
        for d in devs:
            if d != torch.device("cpu"):
                free_memory(extra_mem, d, models_already_loaded)
377
378
        return

379
    print(f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}")
380

comfyanonymous's avatar
comfyanonymous committed
381
382
383
384
    total_memory_required = {}
    for loaded_model in models_to_load:
        unload_model_clones(loaded_model.model)
        total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
comfyanonymous's avatar
comfyanonymous committed
385

comfyanonymous's avatar
comfyanonymous committed
386
387
388
    for device in total_memory_required:
        if device != torch.device("cpu"):
            free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded)
comfyanonymous's avatar
comfyanonymous committed
389

comfyanonymous's avatar
comfyanonymous committed
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
    for loaded_model in models_to_load:
        model = loaded_model.model
        torch_dev = model.load_device
        if is_device_cpu(torch_dev):
            vram_set_state = VRAMState.DISABLED
        else:
            vram_set_state = vram_state
        lowvram_model_memory = 0
        if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
            model_size = loaded_model.model_memory_required(torch_dev)
            current_free_mem = get_free_memory(torch_dev)
            lowvram_model_memory = int(max(256 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
            if model_size > (current_free_mem - inference_memory): #only switch to lowvram if really necessary
                vram_set_state = VRAMState.LOW_VRAM
            else:
                lowvram_model_memory = 0
406

comfyanonymous's avatar
comfyanonymous committed
407
408
        if vram_set_state == VRAMState.NO_VRAM:
            lowvram_model_memory = 256 * 1024 * 1024
409

comfyanonymous's avatar
comfyanonymous committed
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
        cur_loaded_model = loaded_model.model_load(lowvram_model_memory)
        current_loaded_models.insert(0, loaded_model)
    return


def load_model_gpu(model):
    return load_models_gpu([model])

def cleanup_models():
    to_delete = []
    for i in range(len(current_loaded_models)):
        if sys.getrefcount(current_loaded_models[i].model) <= 2:
            to_delete = [i] + to_delete

    for i in to_delete:
        x = current_loaded_models.pop(i)
        x.model_unload()
        del x
428

429
430
431
432
433
434
def dtype_size(dtype):
    dtype_size = 4
    if dtype == torch.float16 or dtype == torch.bfloat16:
        dtype_size = 2
    return dtype_size

435
def unet_offload_device():
comfyanonymous's avatar
comfyanonymous committed
436
    if vram_state == VRAMState.HIGH_VRAM:
437
438
439
440
        return get_torch_device()
    else:
        return torch.device("cpu")

comfyanonymous's avatar
comfyanonymous committed
441
442
443
444
445
446
def unet_inital_load_device(parameters, dtype):
    torch_dev = get_torch_device()
    if vram_state == VRAMState.HIGH_VRAM:
        return torch_dev

    cpu_dev = torch.device("cpu")
447
448
449
    if DISABLE_SMART_MEMORY:
        return cpu_dev

450
    model_size = dtype_size(dtype) * parameters
comfyanonymous's avatar
comfyanonymous committed
451
452
453
454
455
456
457
458

    mem_dev = get_free_memory(torch_dev)
    mem_cpu = get_free_memory(cpu_dev)
    if mem_dev > mem_cpu and model_size < mem_dev:
        return torch_dev
    else:
        return cpu_dev

459
def unet_dtype(device=None, model_params=0):
460
461
    if args.bf16_unet:
        return torch.bfloat16
462
463
464
465
    if should_use_fp16(device=device, model_params=model_params):
        return torch.float16
    return torch.float32

466
def text_encoder_offload_device():
comfyanonymous's avatar
comfyanonymous committed
467
    if args.gpu_only:
468
469
470
471
        return get_torch_device()
    else:
        return torch.device("cpu")

472
def text_encoder_device():
comfyanonymous's avatar
comfyanonymous committed
473
    if args.gpu_only:
474
        return get_torch_device()
475
    elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
476
477
        if is_intel_xpu():
            return torch.device("cpu")
478
        if should_use_fp16(prioritize_performance=False):
479
480
481
            return get_torch_device()
        else:
            return torch.device("cpu")
482
483
484
    else:
        return torch.device("cpu")

485
486
487
488
def vae_device():
    return get_torch_device()

def vae_offload_device():
comfyanonymous's avatar
comfyanonymous committed
489
    if args.gpu_only:
490
491
492
493
        return get_torch_device()
    else:
        return torch.device("cpu")

494
def vae_dtype():
495
496
    global VAE_DTYPE
    return VAE_DTYPE
497

498
499
500
501
def get_autocast_device(dev):
    if hasattr(dev, 'type'):
        return dev.type
    return "cuda"
502

503
504
505
506
507
508
509
def cast_to_device(tensor, device, dtype, copy=False):
    device_supports_cast = False
    if tensor.dtype == torch.float32 or tensor.dtype == torch.float16:
        device_supports_cast = True
    elif tensor.dtype == torch.bfloat16:
        if hasattr(device, 'type') and device.type.startswith("cuda"):
            device_supports_cast = True
510
511
        elif is_intel_xpu():
            device_supports_cast = True
512
513
514
515
516
517
518
519
520
521

    if device_supports_cast:
        if copy:
            if tensor.device == device:
                return tensor.to(dtype, copy=copy)
            return tensor.to(device, copy=copy).to(dtype)
        else:
            return tensor.to(device).to(dtype)
    else:
        return tensor.to(dtype).to(device, copy=copy)
522

523
def xformers_enabled():
524
    global directml_enabled
525
526
    global cpu_state
    if cpu_state != CPUState.GPU:
527
        return False
528
    if is_intel_xpu():
529
530
531
        return False
    if directml_enabled:
        return False
532
    return XFORMERS_IS_AVAILABLE
533

534
535
536
537
538

def xformers_enabled_vae():
    enabled = xformers_enabled()
    if not enabled:
        return False
539
540

    return XFORMERS_ENABLED_VAE
541

542
def pytorch_attention_enabled():
543
    global ENABLE_PYTORCH_ATTENTION
544
545
    return ENABLE_PYTORCH_ATTENTION

546
547
548
549
def pytorch_attention_flash_attention():
    global ENABLE_PYTORCH_ATTENTION
    if ENABLE_PYTORCH_ATTENTION:
        #TODO: more reliable way of checking for flash attention?
550
        if is_nvidia(): #pytorch flash attention only works on Nvidia
551
552
553
            return True
    return False

554
def get_free_memory(dev=None, torch_free_too=False):
555
    global directml_enabled
556
    if dev is None:
557
        dev = get_torch_device()
558

Yurii Mazurevich's avatar
Yurii Mazurevich committed
559
    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
560
561
562
        mem_free_total = psutil.virtual_memory().available
        mem_free_torch = mem_free_total
    else:
563
564
565
        if directml_enabled:
            mem_free_total = 1024 * 1024 * 1024 #TODO
            mem_free_torch = mem_free_total
566
        elif is_intel_xpu():
567
568
569
570
571
            stats = torch.xpu.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_allocated = stats['allocated_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_torch = mem_reserved - mem_active
572
            mem_free_total = torch.xpu.get_device_properties(dev).total_memory - mem_allocated
573
574
575
576
577
578
579
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
            mem_free_torch = mem_reserved - mem_active
            mem_free_total = mem_free_cuda + mem_free_torch
580
581
582
583
584

    if torch_free_too:
        return (mem_free_total, mem_free_torch)
    else:
        return mem_free_total
585

586
def cpu_mode():
587
588
    global cpu_state
    return cpu_state == CPUState.CPU
589

Yurii Mazurevich's avatar
Yurii Mazurevich committed
590
def mps_mode():
591
592
    global cpu_state
    return cpu_state == CPUState.MPS
Yurii Mazurevich's avatar
Yurii Mazurevich committed
593

594
595
def is_device_cpu(device):
    if hasattr(device, 'type'):
comfyanonymous's avatar
comfyanonymous committed
596
597
598
599
600
601
602
        if (device.type == 'cpu'):
            return True
    return False

def is_device_mps(device):
    if hasattr(device, 'type'):
        if (device.type == 'mps'):
603
604
605
            return True
    return False

606
def should_use_fp16(device=None, model_params=0, prioritize_performance=True):
607
608
    global directml_enabled

609
610
611
612
    if device is not None:
        if is_device_cpu(device):
            return False

613
614
615
    if FORCE_FP16:
        return True

616
    if device is not None: #TODO
617
        if is_device_mps(device):
618
            return False
619

620
621
622
    if FORCE_FP32:
        return False

623
624
625
    if directml_enabled:
        return False

626
    if cpu_mode() or mps_mode():
627
628
        return False #TODO ?

629
    if is_intel_xpu():
comfyanonymous's avatar
comfyanonymous committed
630
631
632
        return True

    if torch.cuda.is_bf16_supported():
633
634
        return True

comfyanonymous's avatar
comfyanonymous committed
635
    props = torch.cuda.get_device_properties("cuda")
636
637
638
639
640
641
642
643
644
645
646
647
648
649
    if props.major < 6:
        return False

    fp16_works = False
    #FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled
    #when the model doesn't actually fit on the card
    #TODO: actually test if GP106 and others have the same type of behavior
    nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050"]
    for x in nvidia_10_series:
        if x in props.name.lower():
            fp16_works = True

    if fp16_works:
        free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
650
        if (not prioritize_performance) or model_params * 4 > free_model_memory:
651
652
            return True

653
654
655
    if props.major < 7:
        return False

656
    #FP16 is just broken on these cards
657
    nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX", "T2000", "T1000", "T1200"]
658
659
660
661
662
663
    for x in nvidia_16_series:
        if x in props.name:
            return False

    return True

664
def soft_empty_cache(force=False):
665
666
    global cpu_state
    if cpu_state == CPUState.MPS:
comfyanonymous's avatar
comfyanonymous committed
667
        torch.mps.empty_cache()
668
    elif is_intel_xpu():
669
670
        torch.xpu.empty_cache()
    elif torch.cuda.is_available():
671
        if force or is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda
672
673
674
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()

comfyanonymous's avatar
comfyanonymous committed
675
676
677
678
679
680
681
def resolve_lowvram_weight(weight, model, key):
    if weight.device == torch.device("meta"): #lowvram NOTE: this depends on the inner working of the accelerate library so it might break.
        key_split = key.split('.')              # I have no idea why they don't just leave the weight there instead of using the meta device.
        op = comfy.utils.get_attr(model, '.'.join(key_split[:-1]))
        weight = op._hf_hook.weights_map[key_split[-1]]
    return weight

682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
#TODO: might be cleaner to put this somewhere else
import threading

class InterruptProcessingException(Exception):
    pass

interrupt_processing_mutex = threading.RLock()

interrupt_processing = False
def interrupt_current_processing(value=True):
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        interrupt_processing = value

def processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        return interrupt_processing

def throw_exception_if_processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        if interrupt_processing:
            interrupt_processing = False
            raise InterruptProcessingException()