model_management.py 24.1 KB
Newer Older
1
2
import psutil
from enum import Enum
comfyanonymous's avatar
comfyanonymous committed
3
from comfy.cli_args import args
comfyanonymous's avatar
comfyanonymous committed
4
import comfy.utils
5
import torch
comfyanonymous's avatar
comfyanonymous committed
6
import sys
7

8
class VRAMState(Enum):
9
10
    DISABLED = 0    #No vram present: no need to move models to vram
    NO_VRAM = 1     #Very low vram: enable all the options to save vram
11
12
13
    LOW_VRAM = 2
    NORMAL_VRAM = 3
    HIGH_VRAM = 4
14
    SHARED = 5      #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both.
15
16
17
18
19

class CPUState(Enum):
    GPU = 0
    CPU = 1
    MPS = 2
20

21
22
23
# Determine VRAM State
vram_state = VRAMState.NORMAL_VRAM
set_vram_to = VRAMState.NORMAL_VRAM
24
cpu_state = CPUState.GPU
25

26
total_vram = 0
27

28
lowvram_available = True
藍+85CD's avatar
藍+85CD committed
29
xpu_available = False
30

31
32
33
34
if args.deterministic:
    print("Using deterministic algorithms for pytorch")
    torch.use_deterministic_algorithms(True, warn_only=True)

35
directml_enabled = False
36
if args.directml is not None:
37
38
    import torch_directml
    directml_enabled = True
39
40
41
42
43
44
    device_index = args.directml
    if device_index < 0:
        directml_device = torch_directml.device()
    else:
        directml_device = torch_directml.device(device_index)
    print("Using directml with device:", torch_directml.device_name(device_index))
45
    # torch_directml.disable_tiled_resources(True)
46
    lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
47

48
try:
49
50
51
    import intel_extension_for_pytorch as ipex
    if torch.xpu.is_available():
        xpu_available = True
52
53
54
except:
    pass

55
56
57
try:
    if torch.backends.mps.is_available():
        cpu_state = CPUState.MPS
KarryCharon's avatar
KarryCharon committed
58
        import torch.mps
59
60
61
62
63
64
except:
    pass

if args.cpu:
    cpu_state = CPUState.CPU

65
66
def is_intel_xpu():
    global cpu_state
67
    global xpu_available
68
69
70
71
72
73
    if cpu_state == CPUState.GPU:
        if xpu_available:
            return True
    return False

def get_torch_device():
74
    global directml_enabled
75
    global cpu_state
76
77
78
    if directml_enabled:
        global directml_device
        return directml_device
79
    if cpu_state == CPUState.MPS:
80
        return torch.device("mps")
81
    if cpu_state == CPUState.CPU:
82
83
        return torch.device("cpu")
    else:
84
        if is_intel_xpu():
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
            return torch.device("xpu")
        else:
            return torch.device(torch.cuda.current_device())

def get_total_memory(dev=None, torch_total_too=False):
    global directml_enabled
    if dev is None:
        dev = get_torch_device()

    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
        mem_total = psutil.virtual_memory().total
        mem_total_torch = mem_total
    else:
        if directml_enabled:
            mem_total = 1024 * 1024 * 1024 #TODO
            mem_total_torch = mem_total
101
        elif is_intel_xpu():
102
103
            stats = torch.xpu.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
104
            mem_total = torch.xpu.get_device_properties(dev).total_memory
105
            mem_total_torch = mem_reserved
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
            _, mem_total_cuda = torch.cuda.mem_get_info(dev)
            mem_total_torch = mem_reserved
            mem_total = mem_total_cuda

    if torch_total_too:
        return (mem_total, mem_total_torch)
    else:
        return mem_total

total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
print("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
if not args.normalvram and not args.cpu:
    if lowvram_available and total_vram <= 4096:
        print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
        set_vram_to = VRAMState.LOW_VRAM

126
127
128
129
130
try:
    OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
    OOM_EXCEPTION = Exception

131
132
XFORMERS_VERSION = ""
XFORMERS_ENABLED_VAE = True
133
134
if args.disable_xformers:
    XFORMERS_IS_AVAILABLE = False
135
136
137
138
else:
    try:
        import xformers
        import xformers.ops
139
        XFORMERS_IS_AVAILABLE = True
140
141
142
143
        try:
            XFORMERS_IS_AVAILABLE = xformers._has_cpp_library
        except:
            pass
144
145
146
147
148
149
150
151
152
153
154
        try:
            XFORMERS_VERSION = xformers.version.__version__
            print("xformers version:", XFORMERS_VERSION)
            if XFORMERS_VERSION.startswith("0.0.18"):
                print()
                print("WARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
                print("Please downgrade or upgrade xformers to a different version.")
                print()
                XFORMERS_ENABLED_VAE = False
        except:
            pass
155
    except:
156
        XFORMERS_IS_AVAILABLE = False
157

158
159
160
161
162
def is_nvidia():
    global cpu_state
    if cpu_state == CPUState.GPU:
        if torch.version.cuda:
            return True
163
    return False
164

165
166
167
168
169
ENABLE_PYTORCH_ATTENTION = False
if args.use_pytorch_cross_attention:
    ENABLE_PYTORCH_ATTENTION = True
    XFORMERS_IS_AVAILABLE = False

170
VAE_DTYPE = torch.float32
171

172
173
174
175
try:
    if is_nvidia():
        torch_version = torch.version.__version__
        if int(torch_version[0]) >= 2:
176
            if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
177
                ENABLE_PYTORCH_ATTENTION = True
178
179
            if torch.cuda.is_bf16_supported():
                VAE_DTYPE = torch.bfloat16
180
181
182
    if is_intel_xpu():
        if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
            ENABLE_PYTORCH_ATTENTION = True
183
184
185
except:
    pass

186
187
188
if is_intel_xpu():
    VAE_DTYPE = torch.bfloat16

189
190
191
192
193
194
195
if args.fp16_vae:
    VAE_DTYPE = torch.float16
elif args.bf16_vae:
    VAE_DTYPE = torch.bfloat16
elif args.fp32_vae:
    VAE_DTYPE = torch.float32

196

197
if ENABLE_PYTORCH_ATTENTION:
198
199
200
    torch.backends.cuda.enable_math_sdp(True)
    torch.backends.cuda.enable_flash_sdp(True)
    torch.backends.cuda.enable_mem_efficient_sdp(True)
201

202
203
if args.lowvram:
    set_vram_to = VRAMState.LOW_VRAM
204
    lowvram_available = True
205
206
elif args.novram:
    set_vram_to = VRAMState.NO_VRAM
207
elif args.highvram or args.gpu_only:
208
    vram_state = VRAMState.HIGH_VRAM
209

210
FORCE_FP32 = False
211
FORCE_FP16 = False
212
213
214
215
if args.force_fp32:
    print("Forcing FP32, if this improves things please report it.")
    FORCE_FP32 = True

216
217
218
219
if args.force_fp16:
    print("Forcing FP16.")
    FORCE_FP16 = True

220
if lowvram_available:
221
222
    if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
        vram_state = set_vram_to
223

224

225
226
if cpu_state != CPUState.GPU:
    vram_state = VRAMState.DISABLED
227

228
229
if cpu_state == CPUState.MPS:
    vram_state = VRAMState.SHARED
230

231
print(f"Set vram state to: {vram_state.name}")
232

233
234
235
236
DISABLE_SMART_MEMORY = args.disable_smart_memory

if DISABLE_SMART_MEMORY:
    print("Disabling smart memory management")
237

238
239
def get_torch_device_name(device):
    if hasattr(device, 'type'):
240
        if device.type == "cuda":
241
242
243
244
245
            try:
                allocator_backend = torch.cuda.get_allocator_backend()
            except:
                allocator_backend = ""
            return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
246
247
        else:
            return "{}".format(device.type)
248
    elif is_intel_xpu():
249
        return "{} {}".format(device, torch.xpu.get_device_name(device))
250
251
    else:
        return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
252
253

try:
254
    print("Device:", get_torch_device_name(get_torch_device()))
255
256
257
except:
    print("Could not pick default device.")

258
print("VAE dtype:", VAE_DTYPE)
259

comfyanonymous's avatar
comfyanonymous committed
260
current_loaded_models = []
261

comfyanonymous's avatar
comfyanonymous committed
262
263
264
265
266
class LoadedModel:
    def __init__(self, model):
        self.model = model
        self.model_accelerated = False
        self.device = model.load_device
267

comfyanonymous's avatar
comfyanonymous committed
268
269
    def model_memory(self):
        return self.model.model_size()
270

comfyanonymous's avatar
comfyanonymous committed
271
272
273
274
275
    def model_memory_required(self, device):
        if device == self.model.current_device:
            return 0
        else:
            return self.model_memory()
276

comfyanonymous's avatar
comfyanonymous committed
277
278
279
280
    def model_load(self, lowvram_model_memory=0):
        patch_model_to = None
        if lowvram_model_memory == 0:
            patch_model_to = self.device
281

comfyanonymous's avatar
comfyanonymous committed
282
283
        self.model.model_patches_to(self.device)
        self.model.model_patches_to(self.model.model_dtype())
284

comfyanonymous's avatar
comfyanonymous committed
285
286
287
288
289
290
        try:
            self.real_model = self.model.patch_model(device_to=patch_model_to) #TODO: do something with loras and offloading to CPU
        except Exception as e:
            self.model.unpatch_model(self.model.offload_device)
            self.model_unload()
            raise e
291

comfyanonymous's avatar
comfyanonymous committed
292
293
        if lowvram_model_memory > 0:
            print("loading in lowvram mode", lowvram_model_memory/(1024 * 1024))
294
295
296
297
298
299
300
301
302
303
304
305
306
307
            mem_counter = 0
            for m in self.real_model.modules():
                if hasattr(m, "comfy_cast_weights"):
                    m.prev_comfy_cast_weights = m.comfy_cast_weights
                    m.comfy_cast_weights = True
                    module_mem = 0
                    sd = m.state_dict()
                    for k in sd:
                        t = sd[k]
                        module_mem += t.nelement() * t.element_size()
                    if mem_counter + module_mem < lowvram_model_memory:
                        m.to(self.device)
                        mem_counter += module_mem

comfyanonymous's avatar
comfyanonymous committed
308
            self.model_accelerated = True
309

310
        if is_intel_xpu() and not args.disable_ipex_optimize:
311
            self.real_model = torch.xpu.optimize(self.real_model.eval(), inplace=True, auto_kernel_selection=True, graph_mode=True)
312

comfyanonymous's avatar
comfyanonymous committed
313
        return self.real_model
314

comfyanonymous's avatar
comfyanonymous committed
315
316
    def model_unload(self):
        if self.model_accelerated:
317
318
319
320
321
            for m in self.real_model.modules():
                if hasattr(m, "prev_comfy_cast_weights"):
                    m.comfy_cast_weights = m.prev_comfy_cast_weights
                    del m.prev_comfy_cast_weights

comfyanonymous's avatar
comfyanonymous committed
322
            self.model_accelerated = False
323

comfyanonymous's avatar
comfyanonymous committed
324
325
        self.model.unpatch_model(self.model.offload_device)
        self.model.model_patches_to(self.model.offload_device)
326

comfyanonymous's avatar
comfyanonymous committed
327
328
    def __eq__(self, other):
        return self.model is other.model
comfyanonymous's avatar
comfyanonymous committed
329

comfyanonymous's avatar
comfyanonymous committed
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
def minimum_inference_memory():
    return (1024 * 1024 * 1024)

def unload_model_clones(model):
    to_unload = []
    for i in range(len(current_loaded_models)):
        if model.is_clone(current_loaded_models[i].model):
            to_unload = [i] + to_unload

    for i in to_unload:
        print("unload clone", i)
        current_loaded_models.pop(i).model_unload()

def free_memory(memory_required, device, keep_loaded=[]):
    unloaded_model = False
    for i in range(len(current_loaded_models) -1, -1, -1):
comfyanonymous's avatar
comfyanonymous committed
346
347
348
        if not DISABLE_SMART_MEMORY:
            if get_free_memory(device) > memory_required:
                break
comfyanonymous's avatar
comfyanonymous committed
349
350
351
        shift_model = current_loaded_models[i]
        if shift_model.device == device:
            if shift_model not in keep_loaded:
comfyanonymous's avatar
comfyanonymous committed
352
353
354
                m = current_loaded_models.pop(i)
                m.model_unload()
                del m
comfyanonymous's avatar
comfyanonymous committed
355
356
357
358
                unloaded_model = True

    if unloaded_model:
        soft_empty_cache()
359
360
361
362
363
    else:
        if vram_state != VRAMState.HIGH_VRAM:
            mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True)
            if mem_free_torch > mem_free_total * 0.25:
                soft_empty_cache()
comfyanonymous's avatar
comfyanonymous committed
364
365

def load_models_gpu(models, memory_required=0):
366
367
    global vram_state

comfyanonymous's avatar
comfyanonymous committed
368
369
370
371
372
373
374
375
376
377
378
379
380
    inference_memory = minimum_inference_memory()
    extra_mem = max(inference_memory, memory_required)

    models_to_load = []
    models_already_loaded = []
    for x in models:
        loaded_model = LoadedModel(x)

        if loaded_model in current_loaded_models:
            index = current_loaded_models.index(loaded_model)
            current_loaded_models.insert(0, current_loaded_models.pop(index))
            models_already_loaded.append(loaded_model)
        else:
381
382
            if hasattr(x, "model"):
                print(f"Requested to load {x.model.__class__.__name__}")
comfyanonymous's avatar
comfyanonymous committed
383
384
385
386
387
388
389
            models_to_load.append(loaded_model)

    if len(models_to_load) == 0:
        devs = set(map(lambda a: a.device, models_already_loaded))
        for d in devs:
            if d != torch.device("cpu"):
                free_memory(extra_mem, d, models_already_loaded)
390
391
        return

392
    print(f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}")
393

comfyanonymous's avatar
comfyanonymous committed
394
395
396
397
    total_memory_required = {}
    for loaded_model in models_to_load:
        unload_model_clones(loaded_model.model)
        total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
comfyanonymous's avatar
comfyanonymous committed
398

comfyanonymous's avatar
comfyanonymous committed
399
400
401
    for device in total_memory_required:
        if device != torch.device("cpu"):
            free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded)
comfyanonymous's avatar
comfyanonymous committed
402

comfyanonymous's avatar
comfyanonymous committed
403
404
405
406
407
408
409
410
411
412
413
    for loaded_model in models_to_load:
        model = loaded_model.model
        torch_dev = model.load_device
        if is_device_cpu(torch_dev):
            vram_set_state = VRAMState.DISABLED
        else:
            vram_set_state = vram_state
        lowvram_model_memory = 0
        if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
            model_size = loaded_model.model_memory_required(torch_dev)
            current_free_mem = get_free_memory(torch_dev)
414
            lowvram_model_memory = int(max(64 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
comfyanonymous's avatar
comfyanonymous committed
415
416
417
418
            if model_size > (current_free_mem - inference_memory): #only switch to lowvram if really necessary
                vram_set_state = VRAMState.LOW_VRAM
            else:
                lowvram_model_memory = 0
419

comfyanonymous's avatar
comfyanonymous committed
420
        if vram_set_state == VRAMState.NO_VRAM:
421
            lowvram_model_memory = 64 * 1024 * 1024
422

comfyanonymous's avatar
comfyanonymous committed
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
        cur_loaded_model = loaded_model.model_load(lowvram_model_memory)
        current_loaded_models.insert(0, loaded_model)
    return


def load_model_gpu(model):
    return load_models_gpu([model])

def cleanup_models():
    to_delete = []
    for i in range(len(current_loaded_models)):
        if sys.getrefcount(current_loaded_models[i].model) <= 2:
            to_delete = [i] + to_delete

    for i in to_delete:
        x = current_loaded_models.pop(i)
        x.model_unload()
        del x
441

442
443
444
445
def dtype_size(dtype):
    dtype_size = 4
    if dtype == torch.float16 or dtype == torch.bfloat16:
        dtype_size = 2
446
447
448
449
450
451
452
    elif dtype == torch.float32:
        dtype_size = 4
    else:
        try:
            dtype_size = dtype.itemsize
        except: #Old pytorch doesn't have .itemsize
            pass
453
454
    return dtype_size

455
def unet_offload_device():
comfyanonymous's avatar
comfyanonymous committed
456
    if vram_state == VRAMState.HIGH_VRAM:
457
458
459
460
        return get_torch_device()
    else:
        return torch.device("cpu")

comfyanonymous's avatar
comfyanonymous committed
461
462
463
464
465
466
def unet_inital_load_device(parameters, dtype):
    torch_dev = get_torch_device()
    if vram_state == VRAMState.HIGH_VRAM:
        return torch_dev

    cpu_dev = torch.device("cpu")
467
468
469
    if DISABLE_SMART_MEMORY:
        return cpu_dev

470
    model_size = dtype_size(dtype) * parameters
comfyanonymous's avatar
comfyanonymous committed
471
472
473
474
475
476
477
478

    mem_dev = get_free_memory(torch_dev)
    mem_cpu = get_free_memory(cpu_dev)
    if mem_dev > mem_cpu and model_size < mem_dev:
        return torch_dev
    else:
        return cpu_dev

479
def unet_dtype(device=None, model_params=0):
480
481
    if args.bf16_unet:
        return torch.bfloat16
482
483
    if args.fp16_unet:
        return torch.float16
484
485
486
487
    if args.fp8_e4m3fn_unet:
        return torch.float8_e4m3fn
    if args.fp8_e5m2_unet:
        return torch.float8_e5m2
488
489
490
491
    if should_use_fp16(device=device, model_params=model_params):
        return torch.float16
    return torch.float32

492
493
494
495
496
497
498
499
500
501
502
503
504
505
# None means no manual cast
def unet_manual_cast(weight_dtype, inference_device):
    if weight_dtype == torch.float32:
        return None

    fp16_supported = comfy.model_management.should_use_fp16(inference_device, prioritize_performance=False)
    if fp16_supported and weight_dtype == torch.float16:
        return None

    if fp16_supported:
        return torch.float16
    else:
        return torch.float32

506
def text_encoder_offload_device():
comfyanonymous's avatar
comfyanonymous committed
507
    if args.gpu_only:
508
509
510
511
        return get_torch_device()
    else:
        return torch.device("cpu")

512
def text_encoder_device():
comfyanonymous's avatar
comfyanonymous committed
513
    if args.gpu_only:
514
        return get_torch_device()
515
    elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
516
517
        if is_intel_xpu():
            return torch.device("cpu")
518
        if should_use_fp16(prioritize_performance=False):
519
520
521
            return get_torch_device()
        else:
            return torch.device("cpu")
522
523
524
    else:
        return torch.device("cpu")

525
526
527
528
529
530
531
532
533
534
def text_encoder_dtype(device=None):
    if args.fp8_e4m3fn_text_enc:
        return torch.float8_e4m3fn
    elif args.fp8_e5m2_text_enc:
        return torch.float8_e5m2
    elif args.fp16_text_enc:
        return torch.float16
    elif args.fp32_text_enc:
        return torch.float32

535
536
537
    if is_device_cpu(device):
        return torch.float16

538
539
540
541
542
    if should_use_fp16(device, prioritize_performance=False):
        return torch.float16
    else:
        return torch.float32

543
544
545
546
547
548
def intermediate_device():
    if args.gpu_only:
        return get_torch_device()
    else:
        return torch.device("cpu")

549
550
551
552
def vae_device():
    return get_torch_device()

def vae_offload_device():
comfyanonymous's avatar
comfyanonymous committed
553
    if args.gpu_only:
554
555
556
557
        return get_torch_device()
    else:
        return torch.device("cpu")

558
def vae_dtype():
559
560
    global VAE_DTYPE
    return VAE_DTYPE
561

562
563
564
565
def get_autocast_device(dev):
    if hasattr(dev, 'type'):
        return dev.type
    return "cuda"
566

567
568
569
def supports_dtype(device, dtype): #TODO
    if dtype == torch.float32:
        return True
570
    if is_device_cpu(device):
571
572
573
574
575
576
577
        return False
    if dtype == torch.float16:
        return True
    if dtype == torch.bfloat16:
        return True
    return False

578
579
580
581
582
def device_supports_non_blocking(device):
    if is_device_mps(device):
        return False #pytorch bug? mps doesn't support non blocking
    return True

583
584
585
586
587
588
589
def cast_to_device(tensor, device, dtype, copy=False):
    device_supports_cast = False
    if tensor.dtype == torch.float32 or tensor.dtype == torch.float16:
        device_supports_cast = True
    elif tensor.dtype == torch.bfloat16:
        if hasattr(device, 'type') and device.type.startswith("cuda"):
            device_supports_cast = True
590
591
        elif is_intel_xpu():
            device_supports_cast = True
592

593
    non_blocking = device_supports_non_blocking(device)
comfyanonymous's avatar
comfyanonymous committed
594

595
596
597
    if device_supports_cast:
        if copy:
            if tensor.device == device:
comfyanonymous's avatar
comfyanonymous committed
598
599
                return tensor.to(dtype, copy=copy, non_blocking=non_blocking)
            return tensor.to(device, copy=copy, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
600
        else:
comfyanonymous's avatar
comfyanonymous committed
601
            return tensor.to(device, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
602
    else:
comfyanonymous's avatar
comfyanonymous committed
603
        return tensor.to(device, dtype, copy=copy, non_blocking=non_blocking)
604

605
def xformers_enabled():
606
    global directml_enabled
607
608
    global cpu_state
    if cpu_state != CPUState.GPU:
609
        return False
610
    if is_intel_xpu():
611
612
613
        return False
    if directml_enabled:
        return False
614
    return XFORMERS_IS_AVAILABLE
615

616
617
618
619
620

def xformers_enabled_vae():
    enabled = xformers_enabled()
    if not enabled:
        return False
621
622

    return XFORMERS_ENABLED_VAE
623

624
def pytorch_attention_enabled():
625
    global ENABLE_PYTORCH_ATTENTION
626
627
    return ENABLE_PYTORCH_ATTENTION

628
629
630
631
def pytorch_attention_flash_attention():
    global ENABLE_PYTORCH_ATTENTION
    if ENABLE_PYTORCH_ATTENTION:
        #TODO: more reliable way of checking for flash attention?
632
        if is_nvidia(): #pytorch flash attention only works on Nvidia
633
634
635
            return True
    return False

636
def get_free_memory(dev=None, torch_free_too=False):
637
    global directml_enabled
638
    if dev is None:
639
        dev = get_torch_device()
640

Yurii Mazurevich's avatar
Yurii Mazurevich committed
641
    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
642
643
644
        mem_free_total = psutil.virtual_memory().available
        mem_free_torch = mem_free_total
    else:
645
646
647
        if directml_enabled:
            mem_free_total = 1024 * 1024 * 1024 #TODO
            mem_free_torch = mem_free_total
648
        elif is_intel_xpu():
649
650
651
652
653
            stats = torch.xpu.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_allocated = stats['allocated_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_torch = mem_reserved - mem_active
654
            mem_free_total = torch.xpu.get_device_properties(dev).total_memory - mem_allocated
655
656
657
658
659
660
661
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
            mem_free_torch = mem_reserved - mem_active
            mem_free_total = mem_free_cuda + mem_free_torch
662
663
664
665
666

    if torch_free_too:
        return (mem_free_total, mem_free_torch)
    else:
        return mem_free_total
667

668
def cpu_mode():
669
670
    global cpu_state
    return cpu_state == CPUState.CPU
671

Yurii Mazurevich's avatar
Yurii Mazurevich committed
672
def mps_mode():
673
674
    global cpu_state
    return cpu_state == CPUState.MPS
Yurii Mazurevich's avatar
Yurii Mazurevich committed
675

676
677
def is_device_cpu(device):
    if hasattr(device, 'type'):
comfyanonymous's avatar
comfyanonymous committed
678
679
680
681
682
683
684
        if (device.type == 'cpu'):
            return True
    return False

def is_device_mps(device):
    if hasattr(device, 'type'):
        if (device.type == 'mps'):
685
686
687
            return True
    return False

688
def should_use_fp16(device=None, model_params=0, prioritize_performance=True):
689
690
    global directml_enabled

691
692
693
694
    if device is not None:
        if is_device_cpu(device):
            return False

695
696
697
    if FORCE_FP16:
        return True

698
    if device is not None: #TODO
699
        if is_device_mps(device):
700
            return False
701

702
703
704
    if FORCE_FP32:
        return False

705
706
707
    if directml_enabled:
        return False

708
    if cpu_mode() or mps_mode():
709
710
        return False #TODO ?

711
    if is_intel_xpu():
comfyanonymous's avatar
comfyanonymous committed
712
713
714
        return True

    if torch.cuda.is_bf16_supported():
715
716
        return True

comfyanonymous's avatar
comfyanonymous committed
717
    props = torch.cuda.get_device_properties("cuda")
718
719
720
721
722
723
724
725
726
727
728
729
730
731
    if props.major < 6:
        return False

    fp16_works = False
    #FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled
    #when the model doesn't actually fit on the card
    #TODO: actually test if GP106 and others have the same type of behavior
    nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050"]
    for x in nvidia_10_series:
        if x in props.name.lower():
            fp16_works = True

    if fp16_works:
        free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
732
        if (not prioritize_performance) or model_params * 4 > free_model_memory:
733
734
            return True

735
736
737
    if props.major < 7:
        return False

738
    #FP16 is just broken on these cards
739
    nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX", "T2000", "T1000", "T1200"]
740
741
742
743
744
745
    for x in nvidia_16_series:
        if x in props.name:
            return False

    return True

746
def soft_empty_cache(force=False):
747
748
    global cpu_state
    if cpu_state == CPUState.MPS:
comfyanonymous's avatar
comfyanonymous committed
749
        torch.mps.empty_cache()
750
    elif is_intel_xpu():
751
752
        torch.xpu.empty_cache()
    elif torch.cuda.is_available():
753
        if force or is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda
754
755
756
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()

757
def resolve_lowvram_weight(weight, model, key): #TODO: remove
comfyanonymous's avatar
comfyanonymous committed
758
759
    return weight

760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
#TODO: might be cleaner to put this somewhere else
import threading

class InterruptProcessingException(Exception):
    pass

interrupt_processing_mutex = threading.RLock()

interrupt_processing = False
def interrupt_current_processing(value=True):
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        interrupt_processing = value

def processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        return interrupt_processing

def throw_exception_if_processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        if interrupt_processing:
            interrupt_processing = False
            raise InterruptProcessingException()