model_management.py 9.15 KB
Newer Older
1
2
3
import psutil
from enum import Enum
from cli_args import args
4

5
6
7
8
9
10
11
class VRAMState(Enum):
    CPU = 0
    NO_VRAM = 1
    LOW_VRAM = 2
    NORMAL_VRAM = 3
    HIGH_VRAM = 4
    MPS = 5
12

13
14
15
# Determine VRAM State
vram_state = VRAMState.NORMAL_VRAM
set_vram_to = VRAMState.NORMAL_VRAM
16

17
total_vram = 0
18
19
total_vram_available_mb = -1

20
accelerate_enabled = False
藍+85CD's avatar
藍+85CD committed
21
xpu_available = False
22

23
24
try:
    import torch
藍+85CD's avatar
藍+85CD committed
25
26
27
28
29
30
    try:
        import intel_extension_for_pytorch as ipex
        if torch.xpu.is_available():
            xpu_available = True
            total_vram = torch.xpu.get_device_properties(torch.xpu.current_device()).total_memory / (1024 * 1024)
    except:
31
        total_vram = torch.cuda.mem_get_info(torch.cuda.current_device())[1] / (1024 * 1024)
32
    total_ram = psutil.virtual_memory().total / (1024 * 1024)
33
    if not args.normalvram and not args.cpu:
34
35
        if total_vram <= 4096:
            print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
36
            set_vram_to = VRAMState.LOW_VRAM
comfyanonymous's avatar
comfyanonymous committed
37
        elif total_vram > total_ram * 1.1 and total_vram > 14336:
38
            print("Enabling highvram mode because your GPU has more vram than your computer has ram. If you don't want this use: --normalvram")
39
            vram_state = VRAMState.HIGH_VRAM
40
41
42
except:
    pass

43
44
45
46
47
try:
    OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
    OOM_EXCEPTION = Exception

48
49
if args.disable_xformers:
    XFORMERS_IS_AVAILABLE = False
50
51
52
53
else:
    try:
        import xformers
        import xformers.ops
54
        XFORMERS_IS_AVAILABLE = True
55
    except:
56
        XFORMERS_IS_AVAILABLE = False
57

58
59
ENABLE_PYTORCH_ATTENTION = args.use_pytorch_cross_attention
if ENABLE_PYTORCH_ATTENTION:
60
61
62
    torch.backends.cuda.enable_math_sdp(True)
    torch.backends.cuda.enable_flash_sdp(True)
    torch.backends.cuda.enable_mem_efficient_sdp(True)
63
    XFORMERS_IS_AVAILABLE = False
64

65
66
67
68
69
70
if args.lowvram:
    set_vram_to = VRAMState.LOW_VRAM
elif args.novram:
    set_vram_to = VRAMState.NO_VRAM
elif args.highvram:
    vram_state = VRAMState.HIGH_VRAM
71

72

73
if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
74
75
76
77
78
79
80
81
    try:
        import accelerate
        accelerate_enabled = True
        vram_state = set_vram_to
    except Exception as e:
        import traceback
        print(traceback.format_exc())
        print("ERROR: COULD NOT ENABLE LOW VRAM MODE.")
82
83

    total_vram_available_mb = (total_vram - 1024) // 2
84
    total_vram_available_mb = int(max(256, total_vram_available_mb))
85

86
87
try:
    if torch.backends.mps.is_available():
88
        vram_state = VRAMState.MPS
89
90
91
except:
    pass

92
93
if args.cpu:
    vram_state = VRAMState.CPU
94

95
print(f"Set vram state to: {vram_state.name}")
96

97
98

current_loaded_model = None
comfyanonymous's avatar
comfyanonymous committed
99
current_gpu_controlnets = []
100

101
102
103
model_accelerated = False


104
105
def unload_model():
    global current_loaded_model
106
    global model_accelerated
comfyanonymous's avatar
comfyanonymous committed
107
    global current_gpu_controlnets
108
109
    global vram_state

110
    if current_loaded_model is not None:
111
112
113
114
        if model_accelerated:
            accelerate.hooks.remove_hook_from_submodules(current_loaded_model.model)
            model_accelerated = False

115
        #never unload models from GPU on high vram
116
        if vram_state != VRAMState.HIGH_VRAM:
117
            current_loaded_model.model.cpu()
118
119
        current_loaded_model.unpatch_model()
        current_loaded_model = None
120

121
    if vram_state != VRAMState.HIGH_VRAM:
122
123
124
125
        if len(current_gpu_controlnets) > 0:
            for n in current_gpu_controlnets:
                n.cpu()
            current_gpu_controlnets = []
126
127
128
129


def load_model_gpu(model):
    global current_loaded_model
130
131
132
    global vram_state
    global model_accelerated

133
134
135
136
137
138
139
140
141
    if model is current_loaded_model:
        return
    unload_model()
    try:
        real_model = model.patch_model()
    except Exception as e:
        model.unpatch_model()
        raise e
    current_loaded_model = model
142
    if vram_state == VRAMState.CPU:
143
        pass
144
    elif vram_state == VRAMState.MPS:
Yurii Mazurevich's avatar
Yurii Mazurevich committed
145
146
147
        mps_device = torch.device("mps")
        real_model.to(mps_device)
        pass
148
    elif vram_state == VRAMState.NORMAL_VRAM or vram_state == VRAMState.HIGH_VRAM:
149
        model_accelerated = False
comfyanonymous's avatar
comfyanonymous committed
150
        real_model.to(get_torch_device())
151
    else:
152
        if vram_state == VRAMState.NO_VRAM:
153
            device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "256MiB", "cpu": "16GiB"})
154
        elif vram_state == VRAMState.LOW_VRAM:
155
            device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "{}MiB".format(total_vram_available_mb), "cpu": "16GiB"})
comfyanonymous's avatar
comfyanonymous committed
156

comfyanonymous's avatar
comfyanonymous committed
157
        accelerate.dispatch_model(real_model, device_map=device_map, main_device=get_torch_device())
158
        model_accelerated = True
159
    return current_loaded_model
160

comfyanonymous's avatar
comfyanonymous committed
161
162
def load_controlnet_gpu(models):
    global current_gpu_controlnets
163
    global vram_state
164
    if vram_state == VRAMState.CPU:
165
        return
166

167
    if vram_state == VRAMState.LOW_VRAM or vram_state == VRAMState.NO_VRAM:
168
169
170
        #don't load controlnets like this if low vram because they will be loaded right before running and unloaded right after
        return

comfyanonymous's avatar
comfyanonymous committed
171
172
173
174
    for m in current_gpu_controlnets:
        if m not in models:
            m.cpu()

175
    device = get_torch_device()
comfyanonymous's avatar
comfyanonymous committed
176
177
    current_gpu_controlnets = []
    for m in models:
178
        current_gpu_controlnets.append(m.to(device))
comfyanonymous's avatar
comfyanonymous committed
179

180

181
182
def load_if_low_vram(model):
    global vram_state
183
    if vram_state == VRAMState.LOW_VRAM or vram_state == VRAMState.NO_VRAM:
comfyanonymous's avatar
comfyanonymous committed
184
        return model.to(get_torch_device())
185
186
187
188
    return model

def unload_if_low_vram(model):
    global vram_state
189
    if vram_state == VRAMState.LOW_VRAM or vram_state == VRAMState.NO_VRAM:
190
191
192
        return model.cpu()
    return model

193
def get_torch_device():
194
    global xpu_available
195
    if vram_state == VRAMState.MPS:
Yurii Mazurevich's avatar
Yurii Mazurevich committed
196
        return torch.device("mps")
197
    if vram_state == VRAMState.CPU:
198
199
        return torch.device("cpu")
    else:
200
201
202
203
        if xpu_available:
            return torch.device("xpu")
        else:
            return torch.cuda.current_device()
204
205
206
207
208

def get_autocast_device(dev):
    if hasattr(dev, 'type'):
        return dev.type
    return "cuda"
209

210

211
def xformers_enabled():
212
    if vram_state == VRAMState.CPU:
213
        return False
214
    return XFORMERS_IS_AVAILABLE
215

216
217
218
219
220
221
222
223
224
225
226
227
228

def xformers_enabled_vae():
    enabled = xformers_enabled()
    if not enabled:
        return False
    try:
        #0.0.18 has a bug where Nan is returned when inputs are too big (1152x1920 res images and above)
        if xformers.version.__version__ == "0.0.18":
            return False
    except:
        pass
    return enabled

229
230
231
def pytorch_attention_enabled():
    return ENABLE_PYTORCH_ATTENTION

232
def get_free_memory(dev=None, torch_free_too=False):
233
    global xpu_available
234
    if dev is None:
235
        dev = get_torch_device()
236

Yurii Mazurevich's avatar
Yurii Mazurevich committed
237
    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
238
239
240
        mem_free_total = psutil.virtual_memory().available
        mem_free_torch = mem_free_total
    else:
241
242
243
244
245
246
247
248
249
250
        if xpu_available:
            mem_free_total = torch.xpu.get_device_properties(dev).total_memory - torch.xpu.memory_allocated(dev)
            mem_free_torch = mem_free_total
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
            mem_free_torch = mem_reserved - mem_active
            mem_free_total = mem_free_cuda + mem_free_torch
251
252
253
254
255

    if torch_free_too:
        return (mem_free_total, mem_free_torch)
    else:
        return mem_free_total
256
257
258

def maximum_batch_area():
    global vram_state
259
    if vram_state == VRAMState.NO_VRAM:
260
261
262
263
264
        return 0

    memory_free = get_free_memory() / (1024 * 1024)
    area = ((memory_free - 1024) * 0.9) / (0.6)
    return int(max(area, 0))
265
266
267

def cpu_mode():
    global vram_state
268
    return vram_state == VRAMState.CPU
269

Yurii Mazurevich's avatar
Yurii Mazurevich committed
270
271
def mps_mode():
    global vram_state
272
    return vram_state == VRAMState.MPS
Yurii Mazurevich's avatar
Yurii Mazurevich committed
273

274
def should_use_fp16():
275
276
    global xpu_available
    if cpu_mode() or mps_mode() or xpu_available:
277
278
279
280
281
        return False #TODO ?

    if torch.cuda.is_bf16_supported():
        return True

comfyanonymous's avatar
comfyanonymous committed
282
    props = torch.cuda.get_device_properties("cuda")
283
284
285
286
    if props.major < 7:
        return False

    #FP32 is faster on those cards?
287
    nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600"]
288
289
290
291
292
293
    for x in nvidia_16_series:
        if x in props.name:
            return False

    return True

294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
#TODO: might be cleaner to put this somewhere else
import threading

class InterruptProcessingException(Exception):
    pass

interrupt_processing_mutex = threading.RLock()

interrupt_processing = False
def interrupt_current_processing(value=True):
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        interrupt_processing = value

def processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        return interrupt_processing

def throw_exception_if_processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        if interrupt_processing:
            interrupt_processing = False
            raise InterruptProcessingException()