model_management.py 21.9 KB
Newer Older
1
2
import psutil
from enum import Enum
comfyanonymous's avatar
comfyanonymous committed
3
from comfy.cli_args import args
comfyanonymous's avatar
comfyanonymous committed
4
import comfy.utils
5
import torch
comfyanonymous's avatar
comfyanonymous committed
6
import sys
7

8
class VRAMState(Enum):
9
10
    DISABLED = 0    #No vram present: no need to move models to vram
    NO_VRAM = 1     #Very low vram: enable all the options to save vram
11
12
13
    LOW_VRAM = 2
    NORMAL_VRAM = 3
    HIGH_VRAM = 4
14
    SHARED = 5      #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both.
15
16
17
18
19

class CPUState(Enum):
    GPU = 0
    CPU = 1
    MPS = 2
20

21
22
23
# Determine VRAM State
vram_state = VRAMState.NORMAL_VRAM
set_vram_to = VRAMState.NORMAL_VRAM
24
cpu_state = CPUState.GPU
25

26
total_vram = 0
27

28
lowvram_available = True
藍+85CD's avatar
藍+85CD committed
29
xpu_available = False
30

31
directml_enabled = False
32
if args.directml is not None:
33
34
    import torch_directml
    directml_enabled = True
35
36
37
38
39
40
    device_index = args.directml
    if device_index < 0:
        directml_device = torch_directml.device()
    else:
        directml_device = torch_directml.device(device_index)
    print("Using directml with device:", torch_directml.device_name(device_index))
41
    # torch_directml.disable_tiled_resources(True)
42
    lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
43

44
try:
45
46
47
    import intel_extension_for_pytorch as ipex
    if torch.xpu.is_available():
        xpu_available = True
48
49
50
except:
    pass

51
52
53
try:
    if torch.backends.mps.is_available():
        cpu_state = CPUState.MPS
KarryCharon's avatar
KarryCharon committed
54
        import torch.mps
55
56
57
58
59
60
except:
    pass

if args.cpu:
    cpu_state = CPUState.CPU

61
62
def is_intel_xpu():
    global cpu_state
63
    global xpu_available
64
65
66
67
68
69
    if cpu_state == CPUState.GPU:
        if xpu_available:
            return True
    return False

def get_torch_device():
70
    global directml_enabled
71
    global cpu_state
72
73
74
    if directml_enabled:
        global directml_device
        return directml_device
75
    if cpu_state == CPUState.MPS:
76
        return torch.device("mps")
77
    if cpu_state == CPUState.CPU:
78
79
        return torch.device("cpu")
    else:
80
        if is_intel_xpu():
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
            return torch.device("xpu")
        else:
            return torch.device(torch.cuda.current_device())

def get_total_memory(dev=None, torch_total_too=False):
    global directml_enabled
    if dev is None:
        dev = get_torch_device()

    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
        mem_total = psutil.virtual_memory().total
        mem_total_torch = mem_total
    else:
        if directml_enabled:
            mem_total = 1024 * 1024 * 1024 #TODO
            mem_total_torch = mem_total
97
        elif is_intel_xpu():
98
99
            stats = torch.xpu.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
100
            mem_total = torch.xpu.get_device_properties(dev).total_memory
101
            mem_total_torch = mem_reserved
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
            _, mem_total_cuda = torch.cuda.mem_get_info(dev)
            mem_total_torch = mem_reserved
            mem_total = mem_total_cuda

    if torch_total_too:
        return (mem_total, mem_total_torch)
    else:
        return mem_total

total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
print("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
if not args.normalvram and not args.cpu:
    if lowvram_available and total_vram <= 4096:
        print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
        set_vram_to = VRAMState.LOW_VRAM

122
123
124
125
126
try:
    OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
    OOM_EXCEPTION = Exception

127
128
XFORMERS_VERSION = ""
XFORMERS_ENABLED_VAE = True
129
130
if args.disable_xformers:
    XFORMERS_IS_AVAILABLE = False
131
132
133
134
else:
    try:
        import xformers
        import xformers.ops
135
        XFORMERS_IS_AVAILABLE = True
136
137
138
139
140
141
142
143
144
145
146
        try:
            XFORMERS_VERSION = xformers.version.__version__
            print("xformers version:", XFORMERS_VERSION)
            if XFORMERS_VERSION.startswith("0.0.18"):
                print()
                print("WARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
                print("Please downgrade or upgrade xformers to a different version.")
                print()
                XFORMERS_ENABLED_VAE = False
        except:
            pass
147
    except:
148
        XFORMERS_IS_AVAILABLE = False
149

150
151
152
153
154
def is_nvidia():
    global cpu_state
    if cpu_state == CPUState.GPU:
        if torch.version.cuda:
            return True
155
    return False
156

157
158
159
160
161
ENABLE_PYTORCH_ATTENTION = False
if args.use_pytorch_cross_attention:
    ENABLE_PYTORCH_ATTENTION = True
    XFORMERS_IS_AVAILABLE = False

162
VAE_DTYPE = torch.float32
163

164
165
166
167
try:
    if is_nvidia():
        torch_version = torch.version.__version__
        if int(torch_version[0]) >= 2:
168
            if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
169
                ENABLE_PYTORCH_ATTENTION = True
170
171
            if torch.cuda.is_bf16_supported():
                VAE_DTYPE = torch.bfloat16
172
173
174
    if is_intel_xpu():
        if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
            ENABLE_PYTORCH_ATTENTION = True
175
176
177
except:
    pass

178
179
180
if is_intel_xpu():
    VAE_DTYPE = torch.bfloat16

181
182
183
184
185
186
187
if args.fp16_vae:
    VAE_DTYPE = torch.float16
elif args.bf16_vae:
    VAE_DTYPE = torch.bfloat16
elif args.fp32_vae:
    VAE_DTYPE = torch.float32

188

189
if ENABLE_PYTORCH_ATTENTION:
190
191
192
    torch.backends.cuda.enable_math_sdp(True)
    torch.backends.cuda.enable_flash_sdp(True)
    torch.backends.cuda.enable_mem_efficient_sdp(True)
193

194
195
if args.lowvram:
    set_vram_to = VRAMState.LOW_VRAM
196
    lowvram_available = True
197
198
elif args.novram:
    set_vram_to = VRAMState.NO_VRAM
199
elif args.highvram or args.gpu_only:
200
    vram_state = VRAMState.HIGH_VRAM
201

202
FORCE_FP32 = False
203
FORCE_FP16 = False
204
205
206
207
if args.force_fp32:
    print("Forcing FP32, if this improves things please report it.")
    FORCE_FP32 = True

208
209
210
211
if args.force_fp16:
    print("Forcing FP16.")
    FORCE_FP16 = True

212
if lowvram_available:
213
214
    try:
        import accelerate
215
216
        if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
            vram_state = set_vram_to
217
218
219
    except Exception as e:
        import traceback
        print(traceback.format_exc())
220
221
        print("ERROR: LOW VRAM MODE NEEDS accelerate.")
        lowvram_available = False
222

223

224
225
if cpu_state != CPUState.GPU:
    vram_state = VRAMState.DISABLED
226

227
228
if cpu_state == CPUState.MPS:
    vram_state = VRAMState.SHARED
229

230
print(f"Set vram state to: {vram_state.name}")
231

232
233
234
235
DISABLE_SMART_MEMORY = args.disable_smart_memory

if DISABLE_SMART_MEMORY:
    print("Disabling smart memory management")
236

237
238
def get_torch_device_name(device):
    if hasattr(device, 'type'):
239
        if device.type == "cuda":
240
241
242
243
244
            try:
                allocator_backend = torch.cuda.get_allocator_backend()
            except:
                allocator_backend = ""
            return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
245
246
        else:
            return "{}".format(device.type)
247
    elif is_intel_xpu():
248
        return "{} {}".format(device, torch.xpu.get_device_name(device))
249
250
    else:
        return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
251
252

try:
253
    print("Device:", get_torch_device_name(get_torch_device()))
254
255
256
except:
    print("Could not pick default device.")

257
print("VAE dtype:", VAE_DTYPE)
258

comfyanonymous's avatar
comfyanonymous committed
259
current_loaded_models = []
260

comfyanonymous's avatar
comfyanonymous committed
261
262
263
264
265
class LoadedModel:
    def __init__(self, model):
        self.model = model
        self.model_accelerated = False
        self.device = model.load_device
266

comfyanonymous's avatar
comfyanonymous committed
267
268
    def model_memory(self):
        return self.model.model_size()
269

comfyanonymous's avatar
comfyanonymous committed
270
271
272
273
274
    def model_memory_required(self, device):
        if device == self.model.current_device:
            return 0
        else:
            return self.model_memory()
275

comfyanonymous's avatar
comfyanonymous committed
276
277
278
279
    def model_load(self, lowvram_model_memory=0):
        patch_model_to = None
        if lowvram_model_memory == 0:
            patch_model_to = self.device
280

comfyanonymous's avatar
comfyanonymous committed
281
282
        self.model.model_patches_to(self.device)
        self.model.model_patches_to(self.model.model_dtype())
283

comfyanonymous's avatar
comfyanonymous committed
284
285
286
287
288
289
        try:
            self.real_model = self.model.patch_model(device_to=patch_model_to) #TODO: do something with loras and offloading to CPU
        except Exception as e:
            self.model.unpatch_model(self.model.offload_device)
            self.model_unload()
            raise e
290

comfyanonymous's avatar
comfyanonymous committed
291
292
293
294
295
        if lowvram_model_memory > 0:
            print("loading in lowvram mode", lowvram_model_memory/(1024 * 1024))
            device_map = accelerate.infer_auto_device_map(self.real_model, max_memory={0: "{}MiB".format(lowvram_model_memory // (1024 * 1024)), "cpu": "16GiB"})
            accelerate.dispatch_model(self.real_model, device_map=device_map, main_device=self.device)
            self.model_accelerated = True
296

297
        if is_intel_xpu() and not args.disable_ipex_optimize:
298
            self.real_model = torch.xpu.optimize(self.real_model.eval(), inplace=True, auto_kernel_selection=True, graph_mode=True)
299

comfyanonymous's avatar
comfyanonymous committed
300
        return self.real_model
301

comfyanonymous's avatar
comfyanonymous committed
302
303
304
305
    def model_unload(self):
        if self.model_accelerated:
            accelerate.hooks.remove_hook_from_submodules(self.real_model)
            self.model_accelerated = False
306

comfyanonymous's avatar
comfyanonymous committed
307
308
        self.model.unpatch_model(self.model.offload_device)
        self.model.model_patches_to(self.model.offload_device)
309

comfyanonymous's avatar
comfyanonymous committed
310
311
    def __eq__(self, other):
        return self.model is other.model
comfyanonymous's avatar
comfyanonymous committed
312

comfyanonymous's avatar
comfyanonymous committed
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
def minimum_inference_memory():
    return (1024 * 1024 * 1024)

def unload_model_clones(model):
    to_unload = []
    for i in range(len(current_loaded_models)):
        if model.is_clone(current_loaded_models[i].model):
            to_unload = [i] + to_unload

    for i in to_unload:
        print("unload clone", i)
        current_loaded_models.pop(i).model_unload()

def free_memory(memory_required, device, keep_loaded=[]):
    unloaded_model = False
    for i in range(len(current_loaded_models) -1, -1, -1):
comfyanonymous's avatar
comfyanonymous committed
329
330
331
        if not DISABLE_SMART_MEMORY:
            if get_free_memory(device) > memory_required:
                break
comfyanonymous's avatar
comfyanonymous committed
332
333
334
        shift_model = current_loaded_models[i]
        if shift_model.device == device:
            if shift_model not in keep_loaded:
comfyanonymous's avatar
comfyanonymous committed
335
336
337
                m = current_loaded_models.pop(i)
                m.model_unload()
                del m
comfyanonymous's avatar
comfyanonymous committed
338
339
340
341
                unloaded_model = True

    if unloaded_model:
        soft_empty_cache()
342
343
344
345
346
    else:
        if vram_state != VRAMState.HIGH_VRAM:
            mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True)
            if mem_free_torch > mem_free_total * 0.25:
                soft_empty_cache()
comfyanonymous's avatar
comfyanonymous committed
347
348

def load_models_gpu(models, memory_required=0):
349
350
    global vram_state

comfyanonymous's avatar
comfyanonymous committed
351
352
353
354
355
356
357
358
359
360
361
362
363
    inference_memory = minimum_inference_memory()
    extra_mem = max(inference_memory, memory_required)

    models_to_load = []
    models_already_loaded = []
    for x in models:
        loaded_model = LoadedModel(x)

        if loaded_model in current_loaded_models:
            index = current_loaded_models.index(loaded_model)
            current_loaded_models.insert(0, current_loaded_models.pop(index))
            models_already_loaded.append(loaded_model)
        else:
364
365
            if hasattr(x, "model"):
                print(f"Requested to load {x.model.__class__.__name__}")
comfyanonymous's avatar
comfyanonymous committed
366
367
368
369
370
371
372
            models_to_load.append(loaded_model)

    if len(models_to_load) == 0:
        devs = set(map(lambda a: a.device, models_already_loaded))
        for d in devs:
            if d != torch.device("cpu"):
                free_memory(extra_mem, d, models_already_loaded)
373
374
        return

375
    print(f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}")
376

comfyanonymous's avatar
comfyanonymous committed
377
378
379
380
    total_memory_required = {}
    for loaded_model in models_to_load:
        unload_model_clones(loaded_model.model)
        total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
comfyanonymous's avatar
comfyanonymous committed
381

comfyanonymous's avatar
comfyanonymous committed
382
383
384
    for device in total_memory_required:
        if device != torch.device("cpu"):
            free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded)
comfyanonymous's avatar
comfyanonymous committed
385

comfyanonymous's avatar
comfyanonymous committed
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
    for loaded_model in models_to_load:
        model = loaded_model.model
        torch_dev = model.load_device
        if is_device_cpu(torch_dev):
            vram_set_state = VRAMState.DISABLED
        else:
            vram_set_state = vram_state
        lowvram_model_memory = 0
        if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
            model_size = loaded_model.model_memory_required(torch_dev)
            current_free_mem = get_free_memory(torch_dev)
            lowvram_model_memory = int(max(256 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
            if model_size > (current_free_mem - inference_memory): #only switch to lowvram if really necessary
                vram_set_state = VRAMState.LOW_VRAM
            else:
                lowvram_model_memory = 0
402

comfyanonymous's avatar
comfyanonymous committed
403
404
        if vram_set_state == VRAMState.NO_VRAM:
            lowvram_model_memory = 256 * 1024 * 1024
405

comfyanonymous's avatar
comfyanonymous committed
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
        cur_loaded_model = loaded_model.model_load(lowvram_model_memory)
        current_loaded_models.insert(0, loaded_model)
    return


def load_model_gpu(model):
    return load_models_gpu([model])

def cleanup_models():
    to_delete = []
    for i in range(len(current_loaded_models)):
        if sys.getrefcount(current_loaded_models[i].model) <= 2:
            to_delete = [i] + to_delete

    for i in to_delete:
        x = current_loaded_models.pop(i)
        x.model_unload()
        del x
424

425
426
427
428
429
430
def dtype_size(dtype):
    dtype_size = 4
    if dtype == torch.float16 or dtype == torch.bfloat16:
        dtype_size = 2
    return dtype_size

431
def unet_offload_device():
comfyanonymous's avatar
comfyanonymous committed
432
    if vram_state == VRAMState.HIGH_VRAM:
433
434
435
436
        return get_torch_device()
    else:
        return torch.device("cpu")

comfyanonymous's avatar
comfyanonymous committed
437
438
439
440
441
442
def unet_inital_load_device(parameters, dtype):
    torch_dev = get_torch_device()
    if vram_state == VRAMState.HIGH_VRAM:
        return torch_dev

    cpu_dev = torch.device("cpu")
443
444
445
    if DISABLE_SMART_MEMORY:
        return cpu_dev

446
    model_size = dtype_size(dtype) * parameters
comfyanonymous's avatar
comfyanonymous committed
447
448
449
450
451
452
453
454

    mem_dev = get_free_memory(torch_dev)
    mem_cpu = get_free_memory(cpu_dev)
    if mem_dev > mem_cpu and model_size < mem_dev:
        return torch_dev
    else:
        return cpu_dev

455
def unet_dtype(device=None, model_params=0):
456
457
    if args.bf16_unet:
        return torch.bfloat16
458
459
460
461
    if should_use_fp16(device=device, model_params=model_params):
        return torch.float16
    return torch.float32

462
def text_encoder_offload_device():
comfyanonymous's avatar
comfyanonymous committed
463
    if args.gpu_only:
464
465
466
467
        return get_torch_device()
    else:
        return torch.device("cpu")

468
def text_encoder_device():
comfyanonymous's avatar
comfyanonymous committed
469
    if args.gpu_only:
470
        return get_torch_device()
471
    elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
472
473
        if is_intel_xpu():
            return torch.device("cpu")
474
        if should_use_fp16(prioritize_performance=False):
475
476
477
            return get_torch_device()
        else:
            return torch.device("cpu")
478
479
480
    else:
        return torch.device("cpu")

481
482
483
484
def vae_device():
    return get_torch_device()

def vae_offload_device():
comfyanonymous's avatar
comfyanonymous committed
485
    if args.gpu_only:
486
487
488
489
        return get_torch_device()
    else:
        return torch.device("cpu")

490
def vae_dtype():
491
492
    global VAE_DTYPE
    return VAE_DTYPE
493

494
495
496
497
def get_autocast_device(dev):
    if hasattr(dev, 'type'):
        return dev.type
    return "cuda"
498

499
500
501
502
503
504
505
def cast_to_device(tensor, device, dtype, copy=False):
    device_supports_cast = False
    if tensor.dtype == torch.float32 or tensor.dtype == torch.float16:
        device_supports_cast = True
    elif tensor.dtype == torch.bfloat16:
        if hasattr(device, 'type') and device.type.startswith("cuda"):
            device_supports_cast = True
506
507
        elif is_intel_xpu():
            device_supports_cast = True
508
509
510
511
512
513
514
515
516
517

    if device_supports_cast:
        if copy:
            if tensor.device == device:
                return tensor.to(dtype, copy=copy)
            return tensor.to(device, copy=copy).to(dtype)
        else:
            return tensor.to(device).to(dtype)
    else:
        return tensor.to(dtype).to(device, copy=copy)
518

519
def xformers_enabled():
520
    global directml_enabled
521
522
    global cpu_state
    if cpu_state != CPUState.GPU:
523
        return False
524
    if is_intel_xpu():
525
526
527
        return False
    if directml_enabled:
        return False
528
    return XFORMERS_IS_AVAILABLE
529

530
531
532
533
534

def xformers_enabled_vae():
    enabled = xformers_enabled()
    if not enabled:
        return False
535
536

    return XFORMERS_ENABLED_VAE
537

538
def pytorch_attention_enabled():
539
    global ENABLE_PYTORCH_ATTENTION
540
541
    return ENABLE_PYTORCH_ATTENTION

542
543
544
545
def pytorch_attention_flash_attention():
    global ENABLE_PYTORCH_ATTENTION
    if ENABLE_PYTORCH_ATTENTION:
        #TODO: more reliable way of checking for flash attention?
546
        if is_nvidia(): #pytorch flash attention only works on Nvidia
547
548
549
            return True
    return False

550
def get_free_memory(dev=None, torch_free_too=False):
551
    global directml_enabled
552
    if dev is None:
553
        dev = get_torch_device()
554

Yurii Mazurevich's avatar
Yurii Mazurevich committed
555
    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
556
557
558
        mem_free_total = psutil.virtual_memory().available
        mem_free_torch = mem_free_total
    else:
559
560
561
        if directml_enabled:
            mem_free_total = 1024 * 1024 * 1024 #TODO
            mem_free_torch = mem_free_total
562
        elif is_intel_xpu():
563
564
565
566
567
            stats = torch.xpu.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_allocated = stats['allocated_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_torch = mem_reserved - mem_active
568
            mem_free_total = torch.xpu.get_device_properties(dev).total_memory - mem_allocated
569
570
571
572
573
574
575
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
            mem_free_torch = mem_reserved - mem_active
            mem_free_total = mem_free_cuda + mem_free_torch
576
577
578
579
580

    if torch_free_too:
        return (mem_free_total, mem_free_torch)
    else:
        return mem_free_total
581

582
def cpu_mode():
583
584
    global cpu_state
    return cpu_state == CPUState.CPU
585

Yurii Mazurevich's avatar
Yurii Mazurevich committed
586
def mps_mode():
587
588
    global cpu_state
    return cpu_state == CPUState.MPS
Yurii Mazurevich's avatar
Yurii Mazurevich committed
589

590
591
def is_device_cpu(device):
    if hasattr(device, 'type'):
comfyanonymous's avatar
comfyanonymous committed
592
593
594
595
596
597
598
        if (device.type == 'cpu'):
            return True
    return False

def is_device_mps(device):
    if hasattr(device, 'type'):
        if (device.type == 'mps'):
599
600
601
            return True
    return False

602
def should_use_fp16(device=None, model_params=0, prioritize_performance=True):
603
604
    global directml_enabled

605
606
607
608
    if device is not None:
        if is_device_cpu(device):
            return False

609
610
611
    if FORCE_FP16:
        return True

612
    if device is not None: #TODO
613
        if is_device_mps(device):
614
            return False
615

616
617
618
    if FORCE_FP32:
        return False

619
620
621
    if directml_enabled:
        return False

622
    if cpu_mode() or mps_mode():
623
624
        return False #TODO ?

625
    if is_intel_xpu():
comfyanonymous's avatar
comfyanonymous committed
626
627
628
        return True

    if torch.cuda.is_bf16_supported():
629
630
        return True

comfyanonymous's avatar
comfyanonymous committed
631
    props = torch.cuda.get_device_properties("cuda")
632
633
634
635
636
637
638
639
640
641
642
643
644
645
    if props.major < 6:
        return False

    fp16_works = False
    #FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled
    #when the model doesn't actually fit on the card
    #TODO: actually test if GP106 and others have the same type of behavior
    nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050"]
    for x in nvidia_10_series:
        if x in props.name.lower():
            fp16_works = True

    if fp16_works:
        free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
646
        if (not prioritize_performance) or model_params * 4 > free_model_memory:
647
648
            return True

649
650
651
    if props.major < 7:
        return False

652
    #FP16 is just broken on these cards
653
    nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX", "T2000", "T1000", "T1200"]
654
655
656
657
658
659
    for x in nvidia_16_series:
        if x in props.name:
            return False

    return True

660
def soft_empty_cache(force=False):
661
662
    global cpu_state
    if cpu_state == CPUState.MPS:
comfyanonymous's avatar
comfyanonymous committed
663
        torch.mps.empty_cache()
664
    elif is_intel_xpu():
665
666
        torch.xpu.empty_cache()
    elif torch.cuda.is_available():
667
        if force or is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda
668
669
670
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()

comfyanonymous's avatar
comfyanonymous committed
671
672
673
674
675
676
677
def resolve_lowvram_weight(weight, model, key):
    if weight.device == torch.device("meta"): #lowvram NOTE: this depends on the inner working of the accelerate library so it might break.
        key_split = key.split('.')              # I have no idea why they don't just leave the weight there instead of using the meta device.
        op = comfy.utils.get_attr(model, '.'.join(key_split[:-1]))
        weight = op._hf_hook.weights_map[key_split[-1]]
    return weight

678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
#TODO: might be cleaner to put this somewhere else
import threading

class InterruptProcessingException(Exception):
    pass

interrupt_processing_mutex = threading.RLock()

interrupt_processing = False
def interrupt_current_processing(value=True):
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        interrupt_processing = value

def processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        return interrupt_processing

def throw_exception_if_processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        if interrupt_processing:
            interrupt_processing = False
            raise InterruptProcessingException()