"examples/academic_paper_scripts/detxoify_lm/generate-1.3b.sh" did not exist on "d48d95ab8a8b4d4d1dec10c8d6ed7abe90e3ac32"
model_management.py 20.9 KB
Newer Older
1
2
import psutil
from enum import Enum
comfyanonymous's avatar
comfyanonymous committed
3
from comfy.cli_args import args
comfyanonymous's avatar
comfyanonymous committed
4
import comfy.utils
5
import torch
comfyanonymous's avatar
comfyanonymous committed
6
import sys
7

8
class VRAMState(Enum):
9
10
    DISABLED = 0    #No vram present: no need to move models to vram
    NO_VRAM = 1     #Very low vram: enable all the options to save vram
11
12
13
    LOW_VRAM = 2
    NORMAL_VRAM = 3
    HIGH_VRAM = 4
14
    SHARED = 5      #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both.
15
16
17
18
19

class CPUState(Enum):
    GPU = 0
    CPU = 1
    MPS = 2
20

21
22
23
# Determine VRAM State
vram_state = VRAMState.NORMAL_VRAM
set_vram_to = VRAMState.NORMAL_VRAM
24
cpu_state = CPUState.GPU
25

26
total_vram = 0
27

28
lowvram_available = True
藍+85CD's avatar
藍+85CD committed
29
xpu_available = False
30

31
directml_enabled = False
32
if args.directml is not None:
33
34
    import torch_directml
    directml_enabled = True
35
36
37
38
39
40
    device_index = args.directml
    if device_index < 0:
        directml_device = torch_directml.device()
    else:
        directml_device = torch_directml.device(device_index)
    print("Using directml with device:", torch_directml.device_name(device_index))
41
    # torch_directml.disable_tiled_resources(True)
42
    lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
43

44
try:
45
46
47
    import intel_extension_for_pytorch as ipex
    if torch.xpu.is_available():
        xpu_available = True
48
49
50
except:
    pass

51
52
53
try:
    if torch.backends.mps.is_available():
        cpu_state = CPUState.MPS
KarryCharon's avatar
KarryCharon committed
54
        import torch.mps
55
56
57
58
59
60
except:
    pass

if args.cpu:
    cpu_state = CPUState.CPU

61
62
63
def get_torch_device():
    global xpu_available
    global directml_enabled
64
    global cpu_state
65
66
67
    if directml_enabled:
        global directml_device
        return directml_device
68
    if cpu_state == CPUState.MPS:
69
        return torch.device("mps")
70
    if cpu_state == CPUState.CPU:
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
        return torch.device("cpu")
    else:
        if xpu_available:
            return torch.device("xpu")
        else:
            return torch.device(torch.cuda.current_device())

def get_total_memory(dev=None, torch_total_too=False):
    global xpu_available
    global directml_enabled
    if dev is None:
        dev = get_torch_device()

    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
        mem_total = psutil.virtual_memory().total
        mem_total_torch = mem_total
    else:
        if directml_enabled:
            mem_total = 1024 * 1024 * 1024 #TODO
            mem_total_torch = mem_total
        elif xpu_available:
92
93
            stats = torch.xpu.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
94
            mem_total = torch.xpu.get_device_properties(dev).total_memory
95
            mem_total_torch = mem_reserved
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
            _, mem_total_cuda = torch.cuda.mem_get_info(dev)
            mem_total_torch = mem_reserved
            mem_total = mem_total_cuda

    if torch_total_too:
        return (mem_total, mem_total_torch)
    else:
        return mem_total

total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
print("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
if not args.normalvram and not args.cpu:
    if lowvram_available and total_vram <= 4096:
        print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
        set_vram_to = VRAMState.LOW_VRAM

116
117
118
119
120
try:
    OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
    OOM_EXCEPTION = Exception

121
122
XFORMERS_VERSION = ""
XFORMERS_ENABLED_VAE = True
123
124
if args.disable_xformers:
    XFORMERS_IS_AVAILABLE = False
125
126
127
128
else:
    try:
        import xformers
        import xformers.ops
129
        XFORMERS_IS_AVAILABLE = True
130
131
132
133
134
135
136
137
138
139
140
        try:
            XFORMERS_VERSION = xformers.version.__version__
            print("xformers version:", XFORMERS_VERSION)
            if XFORMERS_VERSION.startswith("0.0.18"):
                print()
                print("WARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
                print("Please downgrade or upgrade xformers to a different version.")
                print()
                XFORMERS_ENABLED_VAE = False
        except:
            pass
141
    except:
142
        XFORMERS_IS_AVAILABLE = False
143

144
145
146
147
148
149
def is_nvidia():
    global cpu_state
    if cpu_state == CPUState.GPU:
        if torch.version.cuda:
            return True

150
ENABLE_PYTORCH_ATTENTION = args.use_pytorch_cross_attention
151
152
153
154
155
156
157
158
159
160

if ENABLE_PYTORCH_ATTENTION == False and XFORMERS_IS_AVAILABLE == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
    try:
        if is_nvidia():
            torch_version = torch.version.__version__
            if int(torch_version[0]) >= 2:
                ENABLE_PYTORCH_ATTENTION = True
    except:
        pass

161
if ENABLE_PYTORCH_ATTENTION:
162
163
164
    torch.backends.cuda.enable_math_sdp(True)
    torch.backends.cuda.enable_flash_sdp(True)
    torch.backends.cuda.enable_mem_efficient_sdp(True)
165
    XFORMERS_IS_AVAILABLE = False
166

167
168
if args.lowvram:
    set_vram_to = VRAMState.LOW_VRAM
169
    lowvram_available = True
170
171
elif args.novram:
    set_vram_to = VRAMState.NO_VRAM
172
elif args.highvram or args.gpu_only:
173
    vram_state = VRAMState.HIGH_VRAM
174

175
FORCE_FP32 = False
176
FORCE_FP16 = False
177
178
179
180
if args.force_fp32:
    print("Forcing FP32, if this improves things please report it.")
    FORCE_FP32 = True

181
182
183
184
if args.force_fp16:
    print("Forcing FP16.")
    FORCE_FP16 = True

185
if lowvram_available:
186
187
    try:
        import accelerate
188
189
        if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
            vram_state = set_vram_to
190
191
192
    except Exception as e:
        import traceback
        print(traceback.format_exc())
193
194
        print("ERROR: LOW VRAM MODE NEEDS accelerate.")
        lowvram_available = False
195

196

197
198
if cpu_state != CPUState.GPU:
    vram_state = VRAMState.DISABLED
199

200
201
if cpu_state == CPUState.MPS:
    vram_state = VRAMState.SHARED
202

203
print(f"Set vram state to: {vram_state.name}")
204

205
206
207
208
DISABLE_SMART_MEMORY = args.disable_smart_memory

if DISABLE_SMART_MEMORY:
    print("Disabling smart memory management")
209

210
def get_torch_device_name(device):
211
    global xpu_available
212
    if hasattr(device, 'type'):
213
        if device.type == "cuda":
214
215
216
217
218
            try:
                allocator_backend = torch.cuda.get_allocator_backend()
            except:
                allocator_backend = ""
            return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
219
220
        else:
            return "{}".format(device.type)
221
222
    elif xpu_available:
        return "{} {}".format(device, torch.xpu.get_device_name(device))
223
224
    else:
        return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
225
226

try:
227
    print("Device:", get_torch_device_name(get_torch_device()))
228
229
230
except:
    print("Could not pick default device.")

231

comfyanonymous's avatar
comfyanonymous committed
232
current_loaded_models = []
233

comfyanonymous's avatar
comfyanonymous committed
234
235
236
237
238
class LoadedModel:
    def __init__(self, model):
        self.model = model
        self.model_accelerated = False
        self.device = model.load_device
239

comfyanonymous's avatar
comfyanonymous committed
240
241
    def model_memory(self):
        return self.model.model_size()
242

comfyanonymous's avatar
comfyanonymous committed
243
244
245
246
247
    def model_memory_required(self, device):
        if device == self.model.current_device:
            return 0
        else:
            return self.model_memory()
248

comfyanonymous's avatar
comfyanonymous committed
249
    def model_load(self, lowvram_model_memory=0):
250
        global xpu_available
comfyanonymous's avatar
comfyanonymous committed
251
252
253
        patch_model_to = None
        if lowvram_model_memory == 0:
            patch_model_to = self.device
254

comfyanonymous's avatar
comfyanonymous committed
255
256
        self.model.model_patches_to(self.device)
        self.model.model_patches_to(self.model.model_dtype())
257

comfyanonymous's avatar
comfyanonymous committed
258
259
260
261
262
263
        try:
            self.real_model = self.model.patch_model(device_to=patch_model_to) #TODO: do something with loras and offloading to CPU
        except Exception as e:
            self.model.unpatch_model(self.model.offload_device)
            self.model_unload()
            raise e
264

comfyanonymous's avatar
comfyanonymous committed
265
266
267
268
269
        if lowvram_model_memory > 0:
            print("loading in lowvram mode", lowvram_model_memory/(1024 * 1024))
            device_map = accelerate.infer_auto_device_map(self.real_model, max_memory={0: "{}MiB".format(lowvram_model_memory // (1024 * 1024)), "cpu": "16GiB"})
            accelerate.dispatch_model(self.real_model, device_map=device_map, main_device=self.device)
            self.model_accelerated = True
270

271
        if xpu_available and not args.disable_ipex_optimize:
272
            self.real_model = torch.xpu.optimize(self.real_model.eval(), inplace=True, auto_kernel_selection=True, graph_mode=True)
273

comfyanonymous's avatar
comfyanonymous committed
274
        return self.real_model
275

comfyanonymous's avatar
comfyanonymous committed
276
277
278
279
    def model_unload(self):
        if self.model_accelerated:
            accelerate.hooks.remove_hook_from_submodules(self.real_model)
            self.model_accelerated = False
280

comfyanonymous's avatar
comfyanonymous committed
281
282
        self.model.unpatch_model(self.model.offload_device)
        self.model.model_patches_to(self.model.offload_device)
283

comfyanonymous's avatar
comfyanonymous committed
284
285
    def __eq__(self, other):
        return self.model is other.model
comfyanonymous's avatar
comfyanonymous committed
286

comfyanonymous's avatar
comfyanonymous committed
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
def minimum_inference_memory():
    return (1024 * 1024 * 1024)

def unload_model_clones(model):
    to_unload = []
    for i in range(len(current_loaded_models)):
        if model.is_clone(current_loaded_models[i].model):
            to_unload = [i] + to_unload

    for i in to_unload:
        print("unload clone", i)
        current_loaded_models.pop(i).model_unload()

def free_memory(memory_required, device, keep_loaded=[]):
    unloaded_model = False
    for i in range(len(current_loaded_models) -1, -1, -1):
comfyanonymous's avatar
comfyanonymous committed
303
304
305
        if not DISABLE_SMART_MEMORY:
            if get_free_memory(device) > memory_required:
                break
comfyanonymous's avatar
comfyanonymous committed
306
307
308
        shift_model = current_loaded_models[i]
        if shift_model.device == device:
            if shift_model not in keep_loaded:
comfyanonymous's avatar
comfyanonymous committed
309
310
311
                m = current_loaded_models.pop(i)
                m.model_unload()
                del m
comfyanonymous's avatar
comfyanonymous committed
312
313
314
315
316
317
318
                unloaded_model = True

    if unloaded_model:
        soft_empty_cache()


def load_models_gpu(models, memory_required=0):
319
320
    global vram_state

comfyanonymous's avatar
comfyanonymous committed
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
    inference_memory = minimum_inference_memory()
    extra_mem = max(inference_memory, memory_required)

    models_to_load = []
    models_already_loaded = []
    for x in models:
        loaded_model = LoadedModel(x)

        if loaded_model in current_loaded_models:
            index = current_loaded_models.index(loaded_model)
            current_loaded_models.insert(0, current_loaded_models.pop(index))
            models_already_loaded.append(loaded_model)
        else:
            models_to_load.append(loaded_model)

    if len(models_to_load) == 0:
        devs = set(map(lambda a: a.device, models_already_loaded))
        for d in devs:
            if d != torch.device("cpu"):
                free_memory(extra_mem, d, models_already_loaded)
341
342
        return

comfyanonymous's avatar
comfyanonymous committed
343
    print("loading new")
344

comfyanonymous's avatar
comfyanonymous committed
345
346
347
348
    total_memory_required = {}
    for loaded_model in models_to_load:
        unload_model_clones(loaded_model.model)
        total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
comfyanonymous's avatar
comfyanonymous committed
349

comfyanonymous's avatar
comfyanonymous committed
350
351
352
    for device in total_memory_required:
        if device != torch.device("cpu"):
            free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded)
comfyanonymous's avatar
comfyanonymous committed
353

comfyanonymous's avatar
comfyanonymous committed
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
    for loaded_model in models_to_load:
        model = loaded_model.model
        torch_dev = model.load_device
        if is_device_cpu(torch_dev):
            vram_set_state = VRAMState.DISABLED
        else:
            vram_set_state = vram_state
        lowvram_model_memory = 0
        if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
            model_size = loaded_model.model_memory_required(torch_dev)
            current_free_mem = get_free_memory(torch_dev)
            lowvram_model_memory = int(max(256 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
            if model_size > (current_free_mem - inference_memory): #only switch to lowvram if really necessary
                vram_set_state = VRAMState.LOW_VRAM
            else:
                lowvram_model_memory = 0
370

comfyanonymous's avatar
comfyanonymous committed
371
372
        if vram_set_state == VRAMState.NO_VRAM:
            lowvram_model_memory = 256 * 1024 * 1024
373

comfyanonymous's avatar
comfyanonymous committed
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
        cur_loaded_model = loaded_model.model_load(lowvram_model_memory)
        current_loaded_models.insert(0, loaded_model)
    return


def load_model_gpu(model):
    return load_models_gpu([model])

def cleanup_models():
    to_delete = []
    for i in range(len(current_loaded_models)):
        print(sys.getrefcount(current_loaded_models[i].model))
        if sys.getrefcount(current_loaded_models[i].model) <= 2:
            to_delete = [i] + to_delete

    for i in to_delete:
        x = current_loaded_models.pop(i)
        x.model_unload()
        del x
393

394
395
396
397
398
399
def dtype_size(dtype):
    dtype_size = 4
    if dtype == torch.float16 or dtype == torch.bfloat16:
        dtype_size = 2
    return dtype_size

400
def unet_offload_device():
comfyanonymous's avatar
comfyanonymous committed
401
    if vram_state == VRAMState.HIGH_VRAM:
402
403
404
405
        return get_torch_device()
    else:
        return torch.device("cpu")

comfyanonymous's avatar
comfyanonymous committed
406
407
408
409
410
411
def unet_inital_load_device(parameters, dtype):
    torch_dev = get_torch_device()
    if vram_state == VRAMState.HIGH_VRAM:
        return torch_dev

    cpu_dev = torch.device("cpu")
412
413
414
    if DISABLE_SMART_MEMORY:
        return cpu_dev

415
    model_size = dtype_size(dtype) * parameters
comfyanonymous's avatar
comfyanonymous committed
416
417
418
419
420
421
422
423

    mem_dev = get_free_memory(torch_dev)
    mem_cpu = get_free_memory(cpu_dev)
    if mem_dev > mem_cpu and model_size < mem_dev:
        return torch_dev
    else:
        return cpu_dev

424
def text_encoder_offload_device():
comfyanonymous's avatar
comfyanonymous committed
425
    if args.gpu_only:
426
427
428
429
        return get_torch_device()
    else:
        return torch.device("cpu")

430
def text_encoder_device():
comfyanonymous's avatar
comfyanonymous committed
431
    if args.gpu_only:
432
        return get_torch_device()
433
    elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
434
        if should_use_fp16(prioritize_performance=False):
435
436
437
            return get_torch_device()
        else:
            return torch.device("cpu")
438
439
440
    else:
        return torch.device("cpu")

441
442
443
444
def vae_device():
    return get_torch_device()

def vae_offload_device():
comfyanonymous's avatar
comfyanonymous committed
445
    if args.gpu_only:
446
447
448
449
        return get_torch_device()
    else:
        return torch.device("cpu")

450
451
452
453
454
455
456
457
def vae_dtype():
    if args.fp16_vae:
        return torch.float16
    elif args.bf16_vae:
        return torch.bfloat16
    else:
        return torch.float32

458
459
460
461
def get_autocast_device(dev):
    if hasattr(dev, 'type'):
        return dev.type
    return "cuda"
462

463

464
def xformers_enabled():
465
466
    global xpu_available
    global directml_enabled
467
468
    global cpu_state
    if cpu_state != CPUState.GPU:
469
        return False
470
471
472
473
    if xpu_available:
        return False
    if directml_enabled:
        return False
474
    return XFORMERS_IS_AVAILABLE
475

476
477
478
479
480

def xformers_enabled_vae():
    enabled = xformers_enabled()
    if not enabled:
        return False
481
482

    return XFORMERS_ENABLED_VAE
483

484
def pytorch_attention_enabled():
485
    global ENABLE_PYTORCH_ATTENTION
486
487
    return ENABLE_PYTORCH_ATTENTION

488
489
490
491
def pytorch_attention_flash_attention():
    global ENABLE_PYTORCH_ATTENTION
    if ENABLE_PYTORCH_ATTENTION:
        #TODO: more reliable way of checking for flash attention?
492
        if is_nvidia(): #pytorch flash attention only works on Nvidia
493
494
495
            return True
    return False

496
def get_free_memory(dev=None, torch_free_too=False):
497
    global xpu_available
498
    global directml_enabled
499
    if dev is None:
500
        dev = get_torch_device()
501

Yurii Mazurevich's avatar
Yurii Mazurevich committed
502
    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
503
504
505
        mem_free_total = psutil.virtual_memory().available
        mem_free_torch = mem_free_total
    else:
506
507
508
509
        if directml_enabled:
            mem_free_total = 1024 * 1024 * 1024 #TODO
            mem_free_torch = mem_free_total
        elif xpu_available:
510
511
512
513
514
            stats = torch.xpu.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_allocated = stats['allocated_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_torch = mem_reserved - mem_active
515
            mem_free_total = torch.xpu.get_device_properties(dev).total_memory - mem_allocated
516
517
518
519
520
521
522
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
            mem_free_torch = mem_reserved - mem_active
            mem_free_total = mem_free_cuda + mem_free_torch
523
524
525
526
527

    if torch_free_too:
        return (mem_free_total, mem_free_torch)
    else:
        return mem_free_total
528

comfyanonymous's avatar
comfyanonymous committed
529
530
531
532
533
534
535
def batch_area_memory(area):
    if xformers_enabled() or pytorch_attention_flash_attention():
        #TODO: these formulas are copied from maximum_batch_area below
        return (area / 20) * (1024 * 1024)
    else:
        return (((area * 0.6) / 0.9) + 1024) * (1024 * 1024)

536
537
def maximum_batch_area():
    global vram_state
538
    if vram_state == VRAMState.NO_VRAM:
539
540
541
        return 0

    memory_free = get_free_memory() / (1024 * 1024)
542
    if xformers_enabled() or pytorch_attention_flash_attention():
543
        #TODO: this needs to be tweaked
544
        area = 20 * memory_free
545
546
547
    else:
        #TODO: this formula is because AMD sucks and has memory management issues which might be fixed in the future
        area = ((memory_free - 1024) * 0.9) / (0.6)
548
    return int(max(area, 0))
549
550

def cpu_mode():
551
552
    global cpu_state
    return cpu_state == CPUState.CPU
553

Yurii Mazurevich's avatar
Yurii Mazurevich committed
554
def mps_mode():
555
556
    global cpu_state
    return cpu_state == CPUState.MPS
Yurii Mazurevich's avatar
Yurii Mazurevich committed
557

558
559
def is_device_cpu(device):
    if hasattr(device, 'type'):
comfyanonymous's avatar
comfyanonymous committed
560
561
562
563
564
565
566
        if (device.type == 'cpu'):
            return True
    return False

def is_device_mps(device):
    if hasattr(device, 'type'):
        if (device.type == 'mps'):
567
568
569
            return True
    return False

570
def should_use_fp16(device=None, model_params=0, prioritize_performance=True):
571
    global xpu_available
572
573
    global directml_enabled

574
575
576
577
    if device is not None:
        if is_device_cpu(device):
            return False

578
579
580
    if FORCE_FP16:
        return True

581
    if device is not None: #TODO
582
        if is_device_mps(device):
583
            return False
584

585
586
587
    if FORCE_FP32:
        return False

588
589
590
    if directml_enabled:
        return False

591
    if cpu_mode() or mps_mode():
592
593
        return False #TODO ?

comfyanonymous's avatar
comfyanonymous committed
594
595
596
597
    if xpu_available:
        return True

    if torch.cuda.is_bf16_supported():
598
599
        return True

comfyanonymous's avatar
comfyanonymous committed
600
    props = torch.cuda.get_device_properties("cuda")
601
602
603
604
605
606
607
608
609
610
611
612
613
614
    if props.major < 6:
        return False

    fp16_works = False
    #FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled
    #when the model doesn't actually fit on the card
    #TODO: actually test if GP106 and others have the same type of behavior
    nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050"]
    for x in nvidia_10_series:
        if x in props.name.lower():
            fp16_works = True

    if fp16_works:
        free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
615
        if (not prioritize_performance) or model_params * 4 > free_model_memory:
616
617
            return True

618
619
620
    if props.major < 7:
        return False

621
    #FP16 is just broken on these cards
622
    nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX"]
623
624
625
626
627
628
    for x in nvidia_16_series:
        if x in props.name:
            return False

    return True

629
630
def soft_empty_cache():
    global xpu_available
631
632
    global cpu_state
    if cpu_state == CPUState.MPS:
comfyanonymous's avatar
comfyanonymous committed
633
634
        torch.mps.empty_cache()
    elif xpu_available:
635
636
        torch.xpu.empty_cache()
    elif torch.cuda.is_available():
637
        if is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda
638
639
640
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()

comfyanonymous's avatar
comfyanonymous committed
641
642
643
644
645
646
647
def resolve_lowvram_weight(weight, model, key):
    if weight.device == torch.device("meta"): #lowvram NOTE: this depends on the inner working of the accelerate library so it might break.
        key_split = key.split('.')              # I have no idea why they don't just leave the weight there instead of using the meta device.
        op = comfy.utils.get_attr(model, '.'.join(key_split[:-1]))
        weight = op._hf_hook.weights_map[key_split[-1]]
    return weight

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
#TODO: might be cleaner to put this somewhere else
import threading

class InterruptProcessingException(Exception):
    pass

interrupt_processing_mutex = threading.RLock()

interrupt_processing = False
def interrupt_current_processing(value=True):
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        interrupt_processing = value

def processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        return interrupt_processing

def throw_exception_if_processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        if interrupt_processing:
            interrupt_processing = False
            raise InterruptProcessingException()