"sgl-router/vscode:/vscode.git/clone" did not exist on "a4b424c6320cd680abf9d84f07de04458e66f26d"
model_management.py 27.7 KB
Newer Older
1
import psutil
2
import logging
3
from enum import Enum
comfyanonymous's avatar
comfyanonymous committed
4
from comfy.cli_args import args
comfyanonymous's avatar
comfyanonymous committed
5
import comfy.utils
6
import torch
comfyanonymous's avatar
comfyanonymous committed
7
import sys
8

9
class VRAMState(Enum):
10
11
    DISABLED = 0    #No vram present: no need to move models to vram
    NO_VRAM = 1     #Very low vram: enable all the options to save vram
12
13
14
    LOW_VRAM = 2
    NORMAL_VRAM = 3
    HIGH_VRAM = 4
15
    SHARED = 5      #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both.
16
17
18
19
20

class CPUState(Enum):
    GPU = 0
    CPU = 1
    MPS = 2
21

22
23
24
# Determine VRAM State
vram_state = VRAMState.NORMAL_VRAM
set_vram_to = VRAMState.NORMAL_VRAM
25
cpu_state = CPUState.GPU
26

27
total_vram = 0
28

29
lowvram_available = True
藍+85CD's avatar
藍+85CD committed
30
xpu_available = False
31

32
if args.deterministic:
comfyanonymous's avatar
comfyanonymous committed
33
    logging.info("Using deterministic algorithms for pytorch")
34
35
    torch.use_deterministic_algorithms(True, warn_only=True)

36
directml_enabled = False
37
if args.directml is not None:
38
39
    import torch_directml
    directml_enabled = True
40
41
42
43
44
    device_index = args.directml
    if device_index < 0:
        directml_device = torch_directml.device()
    else:
        directml_device = torch_directml.device(device_index)
comfyanonymous's avatar
comfyanonymous committed
45
    logging.info("Using directml with device: {}".format(torch_directml.device_name(device_index)))
46
    # torch_directml.disable_tiled_resources(True)
47
    lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
48

49
try:
50
51
52
    import intel_extension_for_pytorch as ipex
    if torch.xpu.is_available():
        xpu_available = True
53
54
55
except:
    pass

56
57
58
try:
    if torch.backends.mps.is_available():
        cpu_state = CPUState.MPS
KarryCharon's avatar
KarryCharon committed
59
        import torch.mps
60
61
62
63
64
65
except:
    pass

if args.cpu:
    cpu_state = CPUState.CPU

66
67
def is_intel_xpu():
    global cpu_state
68
    global xpu_available
69
70
71
72
73
74
    if cpu_state == CPUState.GPU:
        if xpu_available:
            return True
    return False

def get_torch_device():
75
    global directml_enabled
76
    global cpu_state
77
78
79
    if directml_enabled:
        global directml_device
        return directml_device
80
    if cpu_state == CPUState.MPS:
81
        return torch.device("mps")
82
    if cpu_state == CPUState.CPU:
83
84
        return torch.device("cpu")
    else:
85
        if is_intel_xpu():
86
            return torch.device("xpu", torch.xpu.current_device())
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
        else:
            return torch.device(torch.cuda.current_device())

def get_total_memory(dev=None, torch_total_too=False):
    global directml_enabled
    if dev is None:
        dev = get_torch_device()

    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
        mem_total = psutil.virtual_memory().total
        mem_total_torch = mem_total
    else:
        if directml_enabled:
            mem_total = 1024 * 1024 * 1024 #TODO
            mem_total_torch = mem_total
102
        elif is_intel_xpu():
103
104
105
            stats = torch.xpu.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
            mem_total_torch = mem_reserved
106
            mem_total = torch.xpu.get_device_properties(dev).total_memory
107
108
109
110
111
112
113
114
115
116
117
118
119
120
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
            _, mem_total_cuda = torch.cuda.mem_get_info(dev)
            mem_total_torch = mem_reserved
            mem_total = mem_total_cuda

    if torch_total_too:
        return (mem_total, mem_total_torch)
    else:
        return mem_total

total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
comfyanonymous's avatar
comfyanonymous committed
121
logging.info("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
122
123
if not args.normalvram and not args.cpu:
    if lowvram_available and total_vram <= 4096:
124
        logging.warning("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
125
126
        set_vram_to = VRAMState.LOW_VRAM

127
128
129
130
131
try:
    OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
    OOM_EXCEPTION = Exception

132
133
XFORMERS_VERSION = ""
XFORMERS_ENABLED_VAE = True
134
135
if args.disable_xformers:
    XFORMERS_IS_AVAILABLE = False
136
137
138
139
else:
    try:
        import xformers
        import xformers.ops
140
        XFORMERS_IS_AVAILABLE = True
141
142
143
144
        try:
            XFORMERS_IS_AVAILABLE = xformers._has_cpp_library
        except:
            pass
145
146
        try:
            XFORMERS_VERSION = xformers.version.__version__
comfyanonymous's avatar
comfyanonymous committed
147
            logging.info("xformers version: {}".format(XFORMERS_VERSION))
148
            if XFORMERS_VERSION.startswith("0.0.18"):
149
150
                logging.warning("\nWARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
                logging.warning("Please downgrade or upgrade xformers to a different version.\n")
151
152
153
                XFORMERS_ENABLED_VAE = False
        except:
            pass
154
    except:
155
        XFORMERS_IS_AVAILABLE = False
156

157
158
159
160
161
def is_nvidia():
    global cpu_state
    if cpu_state == CPUState.GPU:
        if torch.version.cuda:
            return True
162
    return False
163

164
165
166
167
168
ENABLE_PYTORCH_ATTENTION = False
if args.use_pytorch_cross_attention:
    ENABLE_PYTORCH_ATTENTION = True
    XFORMERS_IS_AVAILABLE = False

169
VAE_DTYPE = torch.float32
170

171
172
173
174
try:
    if is_nvidia():
        torch_version = torch.version.__version__
        if int(torch_version[0]) >= 2:
175
            if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
176
                ENABLE_PYTORCH_ATTENTION = True
177
            if torch.cuda.is_bf16_supported() and torch.cuda.get_device_properties(torch.cuda.current_device()).major >= 8:
178
                VAE_DTYPE = torch.bfloat16
179
180
181
    if is_intel_xpu():
        if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
            ENABLE_PYTORCH_ATTENTION = True
182
183
184
except:
    pass

185
186
187
if is_intel_xpu():
    VAE_DTYPE = torch.bfloat16

188
189
190
if args.cpu_vae:
    VAE_DTYPE = torch.float32

191
192
193
194
195
196
197
if args.fp16_vae:
    VAE_DTYPE = torch.float16
elif args.bf16_vae:
    VAE_DTYPE = torch.bfloat16
elif args.fp32_vae:
    VAE_DTYPE = torch.float32

198

199
if ENABLE_PYTORCH_ATTENTION:
200
201
202
    torch.backends.cuda.enable_math_sdp(True)
    torch.backends.cuda.enable_flash_sdp(True)
    torch.backends.cuda.enable_mem_efficient_sdp(True)
203

204
205
if args.lowvram:
    set_vram_to = VRAMState.LOW_VRAM
206
    lowvram_available = True
207
208
elif args.novram:
    set_vram_to = VRAMState.NO_VRAM
209
elif args.highvram or args.gpu_only:
210
    vram_state = VRAMState.HIGH_VRAM
211

212
FORCE_FP32 = False
213
FORCE_FP16 = False
214
if args.force_fp32:
comfyanonymous's avatar
comfyanonymous committed
215
    logging.info("Forcing FP32, if this improves things please report it.")
216
217
    FORCE_FP32 = True

218
if args.force_fp16:
comfyanonymous's avatar
comfyanonymous committed
219
    logging.info("Forcing FP16.")
220
221
    FORCE_FP16 = True

222
if lowvram_available:
223
224
    if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
        vram_state = set_vram_to
225

226

227
228
if cpu_state != CPUState.GPU:
    vram_state = VRAMState.DISABLED
229

230
231
if cpu_state == CPUState.MPS:
    vram_state = VRAMState.SHARED
232

comfyanonymous's avatar
comfyanonymous committed
233
logging.info(f"Set vram state to: {vram_state.name}")
234

235
236
237
DISABLE_SMART_MEMORY = args.disable_smart_memory

if DISABLE_SMART_MEMORY:
comfyanonymous's avatar
comfyanonymous committed
238
    logging.info("Disabling smart memory management")
239

240
241
def get_torch_device_name(device):
    if hasattr(device, 'type'):
242
        if device.type == "cuda":
243
244
245
246
247
            try:
                allocator_backend = torch.cuda.get_allocator_backend()
            except:
                allocator_backend = ""
            return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
248
249
        else:
            return "{}".format(device.type)
250
    elif is_intel_xpu():
251
        return "{} {}".format(device, torch.xpu.get_device_name(device))
252
253
    else:
        return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
254
255

try:
comfyanonymous's avatar
comfyanonymous committed
256
    logging.info("Device: {}".format(get_torch_device_name(get_torch_device())))
257
except:
258
    logging.warning("Could not pick default device.")
259

comfyanonymous's avatar
comfyanonymous committed
260
logging.info("VAE dtype: {}".format(VAE_DTYPE))
261

comfyanonymous's avatar
comfyanonymous committed
262
current_loaded_models = []
263

264
265
266
267
268
269
270
271
def module_size(module):
    module_mem = 0
    sd = module.state_dict()
    for k in sd:
        t = sd[k]
        module_mem += t.nelement() * t.element_size()
    return module_mem

comfyanonymous's avatar
comfyanonymous committed
272
273
274
275
class LoadedModel:
    def __init__(self, model):
        self.model = model
        self.device = model.load_device
276
        self.weights_loaded = False
277
        self.real_model = None
278

comfyanonymous's avatar
comfyanonymous committed
279
280
    def model_memory(self):
        return self.model.model_size()
281

comfyanonymous's avatar
comfyanonymous committed
282
283
284
285
286
    def model_memory_required(self, device):
        if device == self.model.current_device:
            return 0
        else:
            return self.model_memory()
287

288
    def model_load(self, lowvram_model_memory=0, force_patch_weights=False):
289
        patch_model_to = self.device
290

comfyanonymous's avatar
comfyanonymous committed
291
292
        self.model.model_patches_to(self.device)
        self.model.model_patches_to(self.model.model_dtype())
293

294
295
        load_weights = not self.weights_loaded

comfyanonymous's avatar
comfyanonymous committed
296
        try:
297
            if lowvram_model_memory > 0 and load_weights:
298
                self.real_model = self.model.patch_model_lowvram(device_to=patch_model_to, lowvram_model_memory=lowvram_model_memory, force_patch_weights=force_patch_weights)
299
            else:
300
                self.real_model = self.model.patch_model(device_to=patch_model_to, patch_weights=load_weights)
comfyanonymous's avatar
comfyanonymous committed
301
302
303
304
        except Exception as e:
            self.model.unpatch_model(self.model.offload_device)
            self.model_unload()
            raise e
305

306
        if is_intel_xpu() and not args.disable_ipex_optimize:
307
            self.real_model = ipex.optimize(self.real_model.eval(), graph_mode=True, concat_linear=True)
308

309
        self.weights_loaded = True
comfyanonymous's avatar
comfyanonymous committed
310
        return self.real_model
311

312
313
314
315
316
    def should_reload_model(self, force_patch_weights=False):
        if force_patch_weights and self.model.lowvram_patch_counter > 0:
            return True
        return False

317
318
    def model_unload(self, unpatch_weights=True):
        self.model.unpatch_model(self.model.offload_device, unpatch_weights=unpatch_weights)
comfyanonymous's avatar
comfyanonymous committed
319
        self.model.model_patches_to(self.model.offload_device)
320
        self.weights_loaded = self.weights_loaded and not unpatch_weights
321
        self.real_model = None
322

comfyanonymous's avatar
comfyanonymous committed
323
324
    def __eq__(self, other):
        return self.model is other.model
comfyanonymous's avatar
comfyanonymous committed
325

comfyanonymous's avatar
comfyanonymous committed
326
327
328
def minimum_inference_memory():
    return (1024 * 1024 * 1024)

329
def unload_model_clones(model, unload_weights_only=True, force_unload=True):
comfyanonymous's avatar
comfyanonymous committed
330
331
332
333
334
    to_unload = []
    for i in range(len(current_loaded_models)):
        if model.is_clone(current_loaded_models[i].model):
            to_unload = [i] + to_unload

335
    if len(to_unload) == 0:
336
        return True
337
338

    same_weights = 0
comfyanonymous's avatar
comfyanonymous committed
339
    for i in to_unload:
340
341
342
343
344
345
346
347
        if model.clone_has_same_weights(current_loaded_models[i].model):
            same_weights += 1

    if same_weights == len(to_unload):
        unload_weight = False
    else:
        unload_weight = True

348
349
350
    if not force_unload:
        if unload_weights_only and unload_weight == False:
            return None
351
352
353
354
355

    for i in to_unload:
        logging.debug("unload clone {} {}".format(i, unload_weight))
        current_loaded_models.pop(i).model_unload(unpatch_weights=unload_weight)

356
    return unload_weight
comfyanonymous's avatar
comfyanonymous committed
357
358

def free_memory(memory_required, device, keep_loaded=[]):
359
360
361
    unloaded_model = []
    can_unload = []

comfyanonymous's avatar
comfyanonymous committed
362
363
364
365
    for i in range(len(current_loaded_models) -1, -1, -1):
        shift_model = current_loaded_models[i]
        if shift_model.device == device:
            if shift_model not in keep_loaded:
366
367
368
369
370
371
372
373
374
375
376
377
                can_unload.append((sys.getrefcount(shift_model.model), shift_model.model_memory(), i))

    for x in sorted(can_unload):
        i = x[-1]
        if not DISABLE_SMART_MEMORY:
            if get_free_memory(device) > memory_required:
                break
        current_loaded_models[i].model_unload()
        unloaded_model.append(i)

    for i in sorted(unloaded_model, reverse=True):
        current_loaded_models.pop(i)
comfyanonymous's avatar
comfyanonymous committed
378

379
    if len(unloaded_model) > 0:
comfyanonymous's avatar
comfyanonymous committed
380
        soft_empty_cache()
381
382
383
384
385
    else:
        if vram_state != VRAMState.HIGH_VRAM:
            mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True)
            if mem_free_torch > mem_free_total * 0.25:
                soft_empty_cache()
comfyanonymous's avatar
comfyanonymous committed
386

387
def load_models_gpu(models, memory_required=0, force_patch_weights=False):
388
389
    global vram_state

comfyanonymous's avatar
comfyanonymous committed
390
391
392
    inference_memory = minimum_inference_memory()
    extra_mem = max(inference_memory, memory_required)

393
394
    models = set(models)

comfyanonymous's avatar
comfyanonymous committed
395
396
397
398
    models_to_load = []
    models_already_loaded = []
    for x in models:
        loaded_model = LoadedModel(x)
399
        loaded = None
comfyanonymous's avatar
comfyanonymous committed
400

401
402
403
404
405
406
407
408
409
410
411
412
413
414
        try:
            loaded_model_index = current_loaded_models.index(loaded_model)
        except:
            loaded_model_index = None

        if loaded_model_index is not None:
            loaded = current_loaded_models[loaded_model_index]
            if loaded.should_reload_model(force_patch_weights=force_patch_weights): #TODO: cleanup this model reload logic
                current_loaded_models.pop(loaded_model_index).model_unload(unpatch_weights=True)
                loaded = None
            else:
                models_already_loaded.append(loaded)

        if loaded is None:
415
            if hasattr(x, "model"):
comfyanonymous's avatar
comfyanonymous committed
416
                logging.info(f"Requested to load {x.model.__class__.__name__}")
comfyanonymous's avatar
comfyanonymous committed
417
418
419
420
421
422
423
            models_to_load.append(loaded_model)

    if len(models_to_load) == 0:
        devs = set(map(lambda a: a.device, models_already_loaded))
        for d in devs:
            if d != torch.device("cpu"):
                free_memory(extra_mem, d, models_already_loaded)
424
425
        return

comfyanonymous's avatar
comfyanonymous committed
426
    logging.info(f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}")
427

comfyanonymous's avatar
comfyanonymous committed
428
429
    total_memory_required = {}
    for loaded_model in models_to_load:
430
431
        if unload_model_clones(loaded_model.model, unload_weights_only=True, force_unload=False) == True:#unload clones where the weights are different
            total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
comfyanonymous's avatar
comfyanonymous committed
432

comfyanonymous's avatar
comfyanonymous committed
433
434
435
    for device in total_memory_required:
        if device != torch.device("cpu"):
            free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded)
comfyanonymous's avatar
comfyanonymous committed
436

437
    for loaded_model in models_to_load:
438
439
440
        weights_unloaded = unload_model_clones(loaded_model.model, unload_weights_only=False, force_unload=False) #unload the rest of the clones where the weights can stay loaded
        if weights_unloaded is not None:
            loaded_model.weights_loaded = not weights_unloaded
441

comfyanonymous's avatar
comfyanonymous committed
442
443
444
445
446
447
448
449
450
451
452
    for loaded_model in models_to_load:
        model = loaded_model.model
        torch_dev = model.load_device
        if is_device_cpu(torch_dev):
            vram_set_state = VRAMState.DISABLED
        else:
            vram_set_state = vram_state
        lowvram_model_memory = 0
        if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
            model_size = loaded_model.model_memory_required(torch_dev)
            current_free_mem = get_free_memory(torch_dev)
453
            lowvram_model_memory = int(max(64 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
comfyanonymous's avatar
comfyanonymous committed
454
455
456
457
            if model_size > (current_free_mem - inference_memory): #only switch to lowvram if really necessary
                vram_set_state = VRAMState.LOW_VRAM
            else:
                lowvram_model_memory = 0
458

comfyanonymous's avatar
comfyanonymous committed
459
        if vram_set_state == VRAMState.NO_VRAM:
460
            lowvram_model_memory = 64 * 1024 * 1024
461

462
        cur_loaded_model = loaded_model.model_load(lowvram_model_memory, force_patch_weights=force_patch_weights)
comfyanonymous's avatar
comfyanonymous committed
463
464
465
466
467
468
469
        current_loaded_models.insert(0, loaded_model)
    return


def load_model_gpu(model):
    return load_models_gpu([model])

470
def cleanup_models(keep_clone_weights_loaded=False):
comfyanonymous's avatar
comfyanonymous committed
471
472
473
    to_delete = []
    for i in range(len(current_loaded_models)):
        if sys.getrefcount(current_loaded_models[i].model) <= 2:
474
475
476
477
478
            if not keep_clone_weights_loaded:
                to_delete = [i] + to_delete
            #TODO: find a less fragile way to do this.
            elif sys.getrefcount(current_loaded_models[i].real_model) <= 3: #references from .real_model + the .model
                to_delete = [i] + to_delete
comfyanonymous's avatar
comfyanonymous committed
479
480
481
482
483

    for i in to_delete:
        x = current_loaded_models.pop(i)
        x.model_unload()
        del x
484

485
486
487
488
def dtype_size(dtype):
    dtype_size = 4
    if dtype == torch.float16 or dtype == torch.bfloat16:
        dtype_size = 2
489
490
491
492
493
494
495
    elif dtype == torch.float32:
        dtype_size = 4
    else:
        try:
            dtype_size = dtype.itemsize
        except: #Old pytorch doesn't have .itemsize
            pass
496
497
    return dtype_size

498
def unet_offload_device():
comfyanonymous's avatar
comfyanonymous committed
499
    if vram_state == VRAMState.HIGH_VRAM:
500
501
502
503
        return get_torch_device()
    else:
        return torch.device("cpu")

comfyanonymous's avatar
comfyanonymous committed
504
505
506
507
508
509
def unet_inital_load_device(parameters, dtype):
    torch_dev = get_torch_device()
    if vram_state == VRAMState.HIGH_VRAM:
        return torch_dev

    cpu_dev = torch.device("cpu")
510
511
512
    if DISABLE_SMART_MEMORY:
        return cpu_dev

513
    model_size = dtype_size(dtype) * parameters
comfyanonymous's avatar
comfyanonymous committed
514
515
516
517
518
519
520
521

    mem_dev = get_free_memory(torch_dev)
    mem_cpu = get_free_memory(cpu_dev)
    if mem_dev > mem_cpu and model_size < mem_dev:
        return torch_dev
    else:
        return cpu_dev

comfyanonymous's avatar
comfyanonymous committed
522
def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]):
523
524
    if args.bf16_unet:
        return torch.bfloat16
525
526
    if args.fp16_unet:
        return torch.float16
527
528
529
530
    if args.fp8_e4m3fn_unet:
        return torch.float8_e4m3fn
    if args.fp8_e5m2_unet:
        return torch.float8_e5m2
531
    if should_use_fp16(device=device, model_params=model_params, manual_cast=True):
comfyanonymous's avatar
comfyanonymous committed
532
533
        if torch.float16 in supported_dtypes:
            return torch.float16
534
    if should_use_bf16(device, model_params=model_params, manual_cast=True):
comfyanonymous's avatar
comfyanonymous committed
535
536
        if torch.bfloat16 in supported_dtypes:
            return torch.bfloat16
537
538
    return torch.float32

539
# None means no manual cast
comfyanonymous's avatar
comfyanonymous committed
540
def unet_manual_cast(weight_dtype, inference_device, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]):
541
542
543
    if weight_dtype == torch.float32:
        return None

comfyanonymous's avatar
comfyanonymous committed
544
    fp16_supported = should_use_fp16(inference_device, prioritize_performance=False)
545
546
547
    if fp16_supported and weight_dtype == torch.float16:
        return None

comfyanonymous's avatar
comfyanonymous committed
548
549
550
551
552
    bf16_supported = should_use_bf16(inference_device)
    if bf16_supported and weight_dtype == torch.bfloat16:
        return None

    if fp16_supported and torch.float16 in supported_dtypes:
553
        return torch.float16
comfyanonymous's avatar
comfyanonymous committed
554
555
556

    elif bf16_supported and torch.bfloat16 in supported_dtypes:
        return torch.bfloat16
557
558
559
    else:
        return torch.float32

560
def text_encoder_offload_device():
comfyanonymous's avatar
comfyanonymous committed
561
    if args.gpu_only:
562
563
564
565
        return get_torch_device()
    else:
        return torch.device("cpu")

566
def text_encoder_device():
comfyanonymous's avatar
comfyanonymous committed
567
    if args.gpu_only:
568
        return get_torch_device()
569
    elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
570
        if should_use_fp16(prioritize_performance=False):
571
572
573
            return get_torch_device()
        else:
            return torch.device("cpu")
574
575
576
    else:
        return torch.device("cpu")

577
578
579
580
581
582
583
584
585
586
def text_encoder_dtype(device=None):
    if args.fp8_e4m3fn_text_enc:
        return torch.float8_e4m3fn
    elif args.fp8_e5m2_text_enc:
        return torch.float8_e5m2
    elif args.fp16_text_enc:
        return torch.float16
    elif args.fp32_text_enc:
        return torch.float32

587
588
589
    if is_device_cpu(device):
        return torch.float16

590
591
    return torch.float16

592

593
594
595
596
597
598
def intermediate_device():
    if args.gpu_only:
        return get_torch_device()
    else:
        return torch.device("cpu")

599
def vae_device():
600
601
    if args.cpu_vae:
        return torch.device("cpu")
602
603
604
    return get_torch_device()

def vae_offload_device():
comfyanonymous's avatar
comfyanonymous committed
605
    if args.gpu_only:
606
607
608
609
        return get_torch_device()
    else:
        return torch.device("cpu")

610
def vae_dtype():
611
612
    global VAE_DTYPE
    return VAE_DTYPE
613

614
615
616
617
def get_autocast_device(dev):
    if hasattr(dev, 'type'):
        return dev.type
    return "cuda"
618

619
620
621
def supports_dtype(device, dtype): #TODO
    if dtype == torch.float32:
        return True
622
    if is_device_cpu(device):
623
624
625
626
627
628
629
        return False
    if dtype == torch.float16:
        return True
    if dtype == torch.bfloat16:
        return True
    return False

630
631
632
def device_supports_non_blocking(device):
    if is_device_mps(device):
        return False #pytorch bug? mps doesn't support non blocking
633
634
    return False
    # return True #TODO: figure out why this causes issues
635

636
637
638
639
640
641
642
def cast_to_device(tensor, device, dtype, copy=False):
    device_supports_cast = False
    if tensor.dtype == torch.float32 or tensor.dtype == torch.float16:
        device_supports_cast = True
    elif tensor.dtype == torch.bfloat16:
        if hasattr(device, 'type') and device.type.startswith("cuda"):
            device_supports_cast = True
643
644
        elif is_intel_xpu():
            device_supports_cast = True
645

646
    non_blocking = device_supports_non_blocking(device)
comfyanonymous's avatar
comfyanonymous committed
647

648
649
650
    if device_supports_cast:
        if copy:
            if tensor.device == device:
comfyanonymous's avatar
comfyanonymous committed
651
652
                return tensor.to(dtype, copy=copy, non_blocking=non_blocking)
            return tensor.to(device, copy=copy, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
653
        else:
comfyanonymous's avatar
comfyanonymous committed
654
            return tensor.to(device, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
655
    else:
comfyanonymous's avatar
comfyanonymous committed
656
        return tensor.to(device, dtype, copy=copy, non_blocking=non_blocking)
657

658
def xformers_enabled():
659
    global directml_enabled
660
661
    global cpu_state
    if cpu_state != CPUState.GPU:
662
        return False
663
    if is_intel_xpu():
664
665
666
        return False
    if directml_enabled:
        return False
667
    return XFORMERS_IS_AVAILABLE
668

669
670
671
672
673

def xformers_enabled_vae():
    enabled = xformers_enabled()
    if not enabled:
        return False
674
675

    return XFORMERS_ENABLED_VAE
676

677
def pytorch_attention_enabled():
678
    global ENABLE_PYTORCH_ATTENTION
679
680
    return ENABLE_PYTORCH_ATTENTION

681
682
683
684
def pytorch_attention_flash_attention():
    global ENABLE_PYTORCH_ATTENTION
    if ENABLE_PYTORCH_ATTENTION:
        #TODO: more reliable way of checking for flash attention?
685
        if is_nvidia(): #pytorch flash attention only works on Nvidia
686
687
688
            return True
    return False

689
def get_free_memory(dev=None, torch_free_too=False):
690
    global directml_enabled
691
    if dev is None:
692
        dev = get_torch_device()
693

Yurii Mazurevich's avatar
Yurii Mazurevich committed
694
    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
695
696
697
        mem_free_total = psutil.virtual_memory().available
        mem_free_torch = mem_free_total
    else:
698
699
700
        if directml_enabled:
            mem_free_total = 1024 * 1024 * 1024 #TODO
            mem_free_torch = mem_free_total
701
        elif is_intel_xpu():
702
703
704
705
            stats = torch.xpu.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_torch = mem_reserved - mem_active
706
707
            mem_free_xpu = torch.xpu.get_device_properties(dev).total_memory - mem_reserved
            mem_free_total = mem_free_xpu + mem_free_torch
708
709
710
711
712
713
714
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
            mem_free_torch = mem_reserved - mem_active
            mem_free_total = mem_free_cuda + mem_free_torch
715
716
717
718
719

    if torch_free_too:
        return (mem_free_total, mem_free_torch)
    else:
        return mem_free_total
720

721
def cpu_mode():
722
723
    global cpu_state
    return cpu_state == CPUState.CPU
724

Yurii Mazurevich's avatar
Yurii Mazurevich committed
725
def mps_mode():
726
727
    global cpu_state
    return cpu_state == CPUState.MPS
Yurii Mazurevich's avatar
Yurii Mazurevich committed
728

729
def is_device_type(device, type):
730
    if hasattr(device, 'type'):
731
        if (device.type == type):
comfyanonymous's avatar
comfyanonymous committed
732
733
734
            return True
    return False

735
736
737
def is_device_cpu(device):
    return is_device_type(device, 'cpu')

comfyanonymous's avatar
comfyanonymous committed
738
def is_device_mps(device):
739
740
741
742
    return is_device_type(device, 'mps')

def is_device_cuda(device):
    return is_device_type(device, 'cuda')
743

744
def should_use_fp16(device=None, model_params=0, prioritize_performance=True, manual_cast=False):
745
746
    global directml_enabled

747
748
749
750
    if device is not None:
        if is_device_cpu(device):
            return False

751
752
753
    if FORCE_FP16:
        return True

754
    if device is not None:
755
        if is_device_mps(device):
756
            return True
757

758
759
760
    if FORCE_FP32:
        return False

761
762
763
    if directml_enabled:
        return False

764
765
766
767
768
    if mps_mode():
        return True

    if cpu_mode():
        return False
769

770
    if is_intel_xpu():
comfyanonymous's avatar
comfyanonymous committed
771
772
        return True

773
    if torch.version.hip:
774
775
        return True

comfyanonymous's avatar
comfyanonymous committed
776
    props = torch.cuda.get_device_properties("cuda")
777
778
779
    if props.major >= 8:
        return True

780
781
782
783
784
785
786
    if props.major < 6:
        return False

    fp16_works = False
    #FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled
    #when the model doesn't actually fit on the card
    #TODO: actually test if GP106 and others have the same type of behavior
787
    nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050", "p40", "p100", "p6", "p4"]
788
789
790
791
    for x in nvidia_10_series:
        if x in props.name.lower():
            fp16_works = True

792
    if fp16_works or manual_cast:
793
        free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
794
        if (not prioritize_performance) or model_params * 4 > free_model_memory:
795
796
            return True

797
798
799
    if props.major < 7:
        return False

800
    #FP16 is just broken on these cards
801
    nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX", "T2000", "T1000", "T1200"]
802
803
804
805
806
807
    for x in nvidia_16_series:
        if x in props.name:
            return False

    return True

808
809
810
811
812
813
814
815
816
def should_use_bf16(device=None, model_params=0, prioritize_performance=True, manual_cast=False):
    if device is not None:
        if is_device_cpu(device): #TODO ? bf16 works on CPU but is extremely slow
            return False

    if device is not None: #TODO not sure about mps bf16 support
        if is_device_mps(device):
            return False

817
818
819
    if FORCE_FP32:
        return False

820
821
822
823
824
825
    if directml_enabled:
        return False

    if cpu_mode() or mps_mode():
        return False

comfyanonymous's avatar
comfyanonymous committed
826
827
828
829
830
831
832
833
834
835
    if is_intel_xpu():
        return True

    if device is None:
        device = torch.device("cuda")

    props = torch.cuda.get_device_properties(device)
    if props.major >= 8:
        return True

836
837
838
839
840
841
842
    bf16_works = torch.cuda.is_bf16_supported()

    if bf16_works or manual_cast:
        free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
        if (not prioritize_performance) or model_params * 4 > free_model_memory:
            return True

comfyanonymous's avatar
comfyanonymous committed
843
844
    return False

845
def soft_empty_cache(force=False):
846
847
    global cpu_state
    if cpu_state == CPUState.MPS:
comfyanonymous's avatar
comfyanonymous committed
848
        torch.mps.empty_cache()
849
    elif is_intel_xpu():
850
851
        torch.xpu.empty_cache()
    elif torch.cuda.is_available():
852
        if force or is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda
853
854
855
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()

856
857
858
859
def unload_all_models():
    free_memory(1e30, get_torch_device())


860
def resolve_lowvram_weight(weight, model, key): #TODO: remove
comfyanonymous's avatar
comfyanonymous committed
861
862
    return weight

863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
#TODO: might be cleaner to put this somewhere else
import threading

class InterruptProcessingException(Exception):
    pass

interrupt_processing_mutex = threading.RLock()

interrupt_processing = False
def interrupt_current_processing(value=True):
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        interrupt_processing = value

def processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        return interrupt_processing

def throw_exception_if_processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        if interrupt_processing:
            interrupt_processing = False
            raise InterruptProcessingException()