model_management.py 24.1 KB
Newer Older
1
2
import psutil
from enum import Enum
comfyanonymous's avatar
comfyanonymous committed
3
from comfy.cli_args import args
comfyanonymous's avatar
comfyanonymous committed
4
import comfy.utils
5
import torch
comfyanonymous's avatar
comfyanonymous committed
6
import sys
7

8
class VRAMState(Enum):
9
10
    DISABLED = 0    #No vram present: no need to move models to vram
    NO_VRAM = 1     #Very low vram: enable all the options to save vram
11
12
13
    LOW_VRAM = 2
    NORMAL_VRAM = 3
    HIGH_VRAM = 4
14
    SHARED = 5      #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both.
15
16
17
18
19

class CPUState(Enum):
    GPU = 0
    CPU = 1
    MPS = 2
20

21
22
23
# Determine VRAM State
vram_state = VRAMState.NORMAL_VRAM
set_vram_to = VRAMState.NORMAL_VRAM
24
cpu_state = CPUState.GPU
25

26
total_vram = 0
27

28
lowvram_available = True
藍+85CD's avatar
藍+85CD committed
29
xpu_available = False
30

31
32
33
34
if args.deterministic:
    print("Using deterministic algorithms for pytorch")
    torch.use_deterministic_algorithms(True, warn_only=True)

35
directml_enabled = False
36
if args.directml is not None:
37
38
    import torch_directml
    directml_enabled = True
39
40
41
42
43
44
    device_index = args.directml
    if device_index < 0:
        directml_device = torch_directml.device()
    else:
        directml_device = torch_directml.device(device_index)
    print("Using directml with device:", torch_directml.device_name(device_index))
45
    # torch_directml.disable_tiled_resources(True)
46
    lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
47

48
try:
49
50
51
    import intel_extension_for_pytorch as ipex
    if torch.xpu.is_available():
        xpu_available = True
52
53
54
except:
    pass

55
56
57
try:
    if torch.backends.mps.is_available():
        cpu_state = CPUState.MPS
KarryCharon's avatar
KarryCharon committed
58
        import torch.mps
59
60
61
62
63
64
except:
    pass

if args.cpu:
    cpu_state = CPUState.CPU

65
66
def is_intel_xpu():
    global cpu_state
67
    global xpu_available
68
69
70
71
72
73
    if cpu_state == CPUState.GPU:
        if xpu_available:
            return True
    return False

def get_torch_device():
74
    global directml_enabled
75
    global cpu_state
76
77
78
    if directml_enabled:
        global directml_device
        return directml_device
79
    if cpu_state == CPUState.MPS:
80
        return torch.device("mps")
81
    if cpu_state == CPUState.CPU:
82
83
        return torch.device("cpu")
    else:
84
        if is_intel_xpu():
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
            return torch.device("xpu")
        else:
            return torch.device(torch.cuda.current_device())

def get_total_memory(dev=None, torch_total_too=False):
    global directml_enabled
    if dev is None:
        dev = get_torch_device()

    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
        mem_total = psutil.virtual_memory().total
        mem_total_torch = mem_total
    else:
        if directml_enabled:
            mem_total = 1024 * 1024 * 1024 #TODO
            mem_total_torch = mem_total
101
        elif is_intel_xpu():
102
103
            stats = torch.xpu.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
104
            mem_total = torch.xpu.get_device_properties(dev).total_memory
105
            mem_total_torch = mem_reserved
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
            _, mem_total_cuda = torch.cuda.mem_get_info(dev)
            mem_total_torch = mem_reserved
            mem_total = mem_total_cuda

    if torch_total_too:
        return (mem_total, mem_total_torch)
    else:
        return mem_total

total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
print("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
if not args.normalvram and not args.cpu:
    if lowvram_available and total_vram <= 4096:
        print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
        set_vram_to = VRAMState.LOW_VRAM

126
127
128
129
130
try:
    OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
    OOM_EXCEPTION = Exception

131
132
XFORMERS_VERSION = ""
XFORMERS_ENABLED_VAE = True
133
134
if args.disable_xformers:
    XFORMERS_IS_AVAILABLE = False
135
136
137
138
else:
    try:
        import xformers
        import xformers.ops
139
        XFORMERS_IS_AVAILABLE = True
140
141
142
143
        try:
            XFORMERS_IS_AVAILABLE = xformers._has_cpp_library
        except:
            pass
144
145
146
147
148
149
150
151
152
153
154
        try:
            XFORMERS_VERSION = xformers.version.__version__
            print("xformers version:", XFORMERS_VERSION)
            if XFORMERS_VERSION.startswith("0.0.18"):
                print()
                print("WARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
                print("Please downgrade or upgrade xformers to a different version.")
                print()
                XFORMERS_ENABLED_VAE = False
        except:
            pass
155
    except:
156
        XFORMERS_IS_AVAILABLE = False
157

158
159
160
161
162
def is_nvidia():
    global cpu_state
    if cpu_state == CPUState.GPU:
        if torch.version.cuda:
            return True
163
    return False
164

165
166
167
168
169
ENABLE_PYTORCH_ATTENTION = False
if args.use_pytorch_cross_attention:
    ENABLE_PYTORCH_ATTENTION = True
    XFORMERS_IS_AVAILABLE = False

170
VAE_DTYPE = torch.float32
171

172
173
174
175
try:
    if is_nvidia():
        torch_version = torch.version.__version__
        if int(torch_version[0]) >= 2:
176
            if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
177
                ENABLE_PYTORCH_ATTENTION = True
178
179
            if torch.cuda.is_bf16_supported():
                VAE_DTYPE = torch.bfloat16
180
181
182
    if is_intel_xpu():
        if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
            ENABLE_PYTORCH_ATTENTION = True
183
184
185
except:
    pass

186
187
188
if is_intel_xpu():
    VAE_DTYPE = torch.bfloat16

189
190
191
192
193
194
195
if args.fp16_vae:
    VAE_DTYPE = torch.float16
elif args.bf16_vae:
    VAE_DTYPE = torch.bfloat16
elif args.fp32_vae:
    VAE_DTYPE = torch.float32

196

197
if ENABLE_PYTORCH_ATTENTION:
198
199
200
    torch.backends.cuda.enable_math_sdp(True)
    torch.backends.cuda.enable_flash_sdp(True)
    torch.backends.cuda.enable_mem_efficient_sdp(True)
201

202
203
if args.lowvram:
    set_vram_to = VRAMState.LOW_VRAM
204
    lowvram_available = True
205
206
elif args.novram:
    set_vram_to = VRAMState.NO_VRAM
207
elif args.highvram or args.gpu_only:
208
    vram_state = VRAMState.HIGH_VRAM
209

210
FORCE_FP32 = False
211
FORCE_FP16 = False
212
213
214
215
if args.force_fp32:
    print("Forcing FP32, if this improves things please report it.")
    FORCE_FP32 = True

216
217
218
219
if args.force_fp16:
    print("Forcing FP16.")
    FORCE_FP16 = True

220
if lowvram_available:
221
222
    try:
        import accelerate
223
224
        if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
            vram_state = set_vram_to
225
226
227
    except Exception as e:
        import traceback
        print(traceback.format_exc())
228
229
        print("ERROR: LOW VRAM MODE NEEDS accelerate.")
        lowvram_available = False
230

231

232
233
if cpu_state != CPUState.GPU:
    vram_state = VRAMState.DISABLED
234

235
236
if cpu_state == CPUState.MPS:
    vram_state = VRAMState.SHARED
237

238
print(f"Set vram state to: {vram_state.name}")
239

240
241
242
243
DISABLE_SMART_MEMORY = args.disable_smart_memory

if DISABLE_SMART_MEMORY:
    print("Disabling smart memory management")
244

245
246
def get_torch_device_name(device):
    if hasattr(device, 'type'):
247
        if device.type == "cuda":
248
249
250
251
252
            try:
                allocator_backend = torch.cuda.get_allocator_backend()
            except:
                allocator_backend = ""
            return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
253
254
        else:
            return "{}".format(device.type)
255
    elif is_intel_xpu():
256
        return "{} {}".format(device, torch.xpu.get_device_name(device))
257
258
    else:
        return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
259
260

try:
261
    print("Device:", get_torch_device_name(get_torch_device()))
262
263
264
except:
    print("Could not pick default device.")

265
print("VAE dtype:", VAE_DTYPE)
266

comfyanonymous's avatar
comfyanonymous committed
267
current_loaded_models = []
268

comfyanonymous's avatar
comfyanonymous committed
269
270
271
272
273
class LoadedModel:
    def __init__(self, model):
        self.model = model
        self.model_accelerated = False
        self.device = model.load_device
274

comfyanonymous's avatar
comfyanonymous committed
275
276
    def model_memory(self):
        return self.model.model_size()
277

comfyanonymous's avatar
comfyanonymous committed
278
279
280
281
282
    def model_memory_required(self, device):
        if device == self.model.current_device:
            return 0
        else:
            return self.model_memory()
283

comfyanonymous's avatar
comfyanonymous committed
284
285
286
287
    def model_load(self, lowvram_model_memory=0):
        patch_model_to = None
        if lowvram_model_memory == 0:
            patch_model_to = self.device
288

comfyanonymous's avatar
comfyanonymous committed
289
290
        self.model.model_patches_to(self.device)
        self.model.model_patches_to(self.model.model_dtype())
291

comfyanonymous's avatar
comfyanonymous committed
292
293
294
295
296
297
        try:
            self.real_model = self.model.patch_model(device_to=patch_model_to) #TODO: do something with loras and offloading to CPU
        except Exception as e:
            self.model.unpatch_model(self.model.offload_device)
            self.model_unload()
            raise e
298

comfyanonymous's avatar
comfyanonymous committed
299
300
301
302
303
        if lowvram_model_memory > 0:
            print("loading in lowvram mode", lowvram_model_memory/(1024 * 1024))
            device_map = accelerate.infer_auto_device_map(self.real_model, max_memory={0: "{}MiB".format(lowvram_model_memory // (1024 * 1024)), "cpu": "16GiB"})
            accelerate.dispatch_model(self.real_model, device_map=device_map, main_device=self.device)
            self.model_accelerated = True
304

305
        if is_intel_xpu() and not args.disable_ipex_optimize:
306
            self.real_model = torch.xpu.optimize(self.real_model.eval(), inplace=True, auto_kernel_selection=True, graph_mode=True)
307

comfyanonymous's avatar
comfyanonymous committed
308
        return self.real_model
309

comfyanonymous's avatar
comfyanonymous committed
310
311
312
313
    def model_unload(self):
        if self.model_accelerated:
            accelerate.hooks.remove_hook_from_submodules(self.real_model)
            self.model_accelerated = False
314

comfyanonymous's avatar
comfyanonymous committed
315
316
        self.model.unpatch_model(self.model.offload_device)
        self.model.model_patches_to(self.model.offload_device)
317

comfyanonymous's avatar
comfyanonymous committed
318
319
    def __eq__(self, other):
        return self.model is other.model
comfyanonymous's avatar
comfyanonymous committed
320

comfyanonymous's avatar
comfyanonymous committed
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
def minimum_inference_memory():
    return (1024 * 1024 * 1024)

def unload_model_clones(model):
    to_unload = []
    for i in range(len(current_loaded_models)):
        if model.is_clone(current_loaded_models[i].model):
            to_unload = [i] + to_unload

    for i in to_unload:
        print("unload clone", i)
        current_loaded_models.pop(i).model_unload()

def free_memory(memory_required, device, keep_loaded=[]):
    unloaded_model = False
    for i in range(len(current_loaded_models) -1, -1, -1):
comfyanonymous's avatar
comfyanonymous committed
337
338
339
        if not DISABLE_SMART_MEMORY:
            if get_free_memory(device) > memory_required:
                break
comfyanonymous's avatar
comfyanonymous committed
340
341
342
        shift_model = current_loaded_models[i]
        if shift_model.device == device:
            if shift_model not in keep_loaded:
comfyanonymous's avatar
comfyanonymous committed
343
344
345
                m = current_loaded_models.pop(i)
                m.model_unload()
                del m
comfyanonymous's avatar
comfyanonymous committed
346
347
348
349
                unloaded_model = True

    if unloaded_model:
        soft_empty_cache()
350
351
352
353
354
    else:
        if vram_state != VRAMState.HIGH_VRAM:
            mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True)
            if mem_free_torch > mem_free_total * 0.25:
                soft_empty_cache()
comfyanonymous's avatar
comfyanonymous committed
355
356

def load_models_gpu(models, memory_required=0):
357
358
    global vram_state

comfyanonymous's avatar
comfyanonymous committed
359
360
361
362
363
364
365
366
367
368
369
370
371
    inference_memory = minimum_inference_memory()
    extra_mem = max(inference_memory, memory_required)

    models_to_load = []
    models_already_loaded = []
    for x in models:
        loaded_model = LoadedModel(x)

        if loaded_model in current_loaded_models:
            index = current_loaded_models.index(loaded_model)
            current_loaded_models.insert(0, current_loaded_models.pop(index))
            models_already_loaded.append(loaded_model)
        else:
372
373
            if hasattr(x, "model"):
                print(f"Requested to load {x.model.__class__.__name__}")
comfyanonymous's avatar
comfyanonymous committed
374
375
376
377
378
379
380
            models_to_load.append(loaded_model)

    if len(models_to_load) == 0:
        devs = set(map(lambda a: a.device, models_already_loaded))
        for d in devs:
            if d != torch.device("cpu"):
                free_memory(extra_mem, d, models_already_loaded)
381
382
        return

383
    print(f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}")
384

comfyanonymous's avatar
comfyanonymous committed
385
386
387
388
    total_memory_required = {}
    for loaded_model in models_to_load:
        unload_model_clones(loaded_model.model)
        total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
comfyanonymous's avatar
comfyanonymous committed
389

comfyanonymous's avatar
comfyanonymous committed
390
391
392
    for device in total_memory_required:
        if device != torch.device("cpu"):
            free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded)
comfyanonymous's avatar
comfyanonymous committed
393

comfyanonymous's avatar
comfyanonymous committed
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
    for loaded_model in models_to_load:
        model = loaded_model.model
        torch_dev = model.load_device
        if is_device_cpu(torch_dev):
            vram_set_state = VRAMState.DISABLED
        else:
            vram_set_state = vram_state
        lowvram_model_memory = 0
        if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
            model_size = loaded_model.model_memory_required(torch_dev)
            current_free_mem = get_free_memory(torch_dev)
            lowvram_model_memory = int(max(256 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
            if model_size > (current_free_mem - inference_memory): #only switch to lowvram if really necessary
                vram_set_state = VRAMState.LOW_VRAM
            else:
                lowvram_model_memory = 0
410

comfyanonymous's avatar
comfyanonymous committed
411
412
        if vram_set_state == VRAMState.NO_VRAM:
            lowvram_model_memory = 256 * 1024 * 1024
413

comfyanonymous's avatar
comfyanonymous committed
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
        cur_loaded_model = loaded_model.model_load(lowvram_model_memory)
        current_loaded_models.insert(0, loaded_model)
    return


def load_model_gpu(model):
    return load_models_gpu([model])

def cleanup_models():
    to_delete = []
    for i in range(len(current_loaded_models)):
        if sys.getrefcount(current_loaded_models[i].model) <= 2:
            to_delete = [i] + to_delete

    for i in to_delete:
        x = current_loaded_models.pop(i)
        x.model_unload()
        del x
432

433
434
435
436
def dtype_size(dtype):
    dtype_size = 4
    if dtype == torch.float16 or dtype == torch.bfloat16:
        dtype_size = 2
437
438
439
440
441
442
443
    elif dtype == torch.float32:
        dtype_size = 4
    else:
        try:
            dtype_size = dtype.itemsize
        except: #Old pytorch doesn't have .itemsize
            pass
444
445
    return dtype_size

446
def unet_offload_device():
comfyanonymous's avatar
comfyanonymous committed
447
    if vram_state == VRAMState.HIGH_VRAM:
448
449
450
451
        return get_torch_device()
    else:
        return torch.device("cpu")

comfyanonymous's avatar
comfyanonymous committed
452
453
454
455
456
457
def unet_inital_load_device(parameters, dtype):
    torch_dev = get_torch_device()
    if vram_state == VRAMState.HIGH_VRAM:
        return torch_dev

    cpu_dev = torch.device("cpu")
458
459
460
    if DISABLE_SMART_MEMORY:
        return cpu_dev

461
    model_size = dtype_size(dtype) * parameters
comfyanonymous's avatar
comfyanonymous committed
462
463
464
465
466
467
468
469

    mem_dev = get_free_memory(torch_dev)
    mem_cpu = get_free_memory(cpu_dev)
    if mem_dev > mem_cpu and model_size < mem_dev:
        return torch_dev
    else:
        return cpu_dev

470
def unet_dtype(device=None, model_params=0):
471
472
    if args.bf16_unet:
        return torch.bfloat16
473
474
    if args.fp16_unet:
        return torch.float16
475
476
477
478
    if args.fp8_e4m3fn_unet:
        return torch.float8_e4m3fn
    if args.fp8_e5m2_unet:
        return torch.float8_e5m2
479
480
481
482
    if should_use_fp16(device=device, model_params=model_params):
        return torch.float16
    return torch.float32

483
484
485
486
487
488
489
490
491
492
493
494
495
496
# None means no manual cast
def unet_manual_cast(weight_dtype, inference_device):
    if weight_dtype == torch.float32:
        return None

    fp16_supported = comfy.model_management.should_use_fp16(inference_device, prioritize_performance=False)
    if fp16_supported and weight_dtype == torch.float16:
        return None

    if fp16_supported:
        return torch.float16
    else:
        return torch.float32

497
def text_encoder_offload_device():
comfyanonymous's avatar
comfyanonymous committed
498
    if args.gpu_only:
499
500
501
502
        return get_torch_device()
    else:
        return torch.device("cpu")

503
def text_encoder_device():
comfyanonymous's avatar
comfyanonymous committed
504
    if args.gpu_only:
505
        return get_torch_device()
506
    elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
507
508
        if is_intel_xpu():
            return torch.device("cpu")
509
        if should_use_fp16(prioritize_performance=False):
510
511
512
            return get_torch_device()
        else:
            return torch.device("cpu")
513
514
515
    else:
        return torch.device("cpu")

516
517
518
519
520
521
522
523
524
525
def text_encoder_dtype(device=None):
    if args.fp8_e4m3fn_text_enc:
        return torch.float8_e4m3fn
    elif args.fp8_e5m2_text_enc:
        return torch.float8_e5m2
    elif args.fp16_text_enc:
        return torch.float16
    elif args.fp32_text_enc:
        return torch.float32

526
527
528
    if is_device_cpu(device):
        return torch.float16

529
530
531
532
533
    if should_use_fp16(device, prioritize_performance=False):
        return torch.float16
    else:
        return torch.float32

534
535
536
537
538
539
def intermediate_device():
    if args.gpu_only:
        return get_torch_device()
    else:
        return torch.device("cpu")

540
541
542
543
def vae_device():
    return get_torch_device()

def vae_offload_device():
comfyanonymous's avatar
comfyanonymous committed
544
    if args.gpu_only:
545
546
547
548
        return get_torch_device()
    else:
        return torch.device("cpu")

549
def vae_dtype():
550
551
    global VAE_DTYPE
    return VAE_DTYPE
552

553
554
555
556
def get_autocast_device(dev):
    if hasattr(dev, 'type'):
        return dev.type
    return "cuda"
557

558
559
560
def supports_dtype(device, dtype): #TODO
    if dtype == torch.float32:
        return True
561
    if is_device_cpu(device):
562
563
564
565
566
567
568
        return False
    if dtype == torch.float16:
        return True
    if dtype == torch.bfloat16:
        return True
    return False

569
570
571
572
573
574
575
def cast_to_device(tensor, device, dtype, copy=False):
    device_supports_cast = False
    if tensor.dtype == torch.float32 or tensor.dtype == torch.float16:
        device_supports_cast = True
    elif tensor.dtype == torch.bfloat16:
        if hasattr(device, 'type') and device.type.startswith("cuda"):
            device_supports_cast = True
576
577
        elif is_intel_xpu():
            device_supports_cast = True
578

comfyanonymous's avatar
comfyanonymous committed
579
580
581
582
    non_blocking = True
    if is_device_mps(device):
        non_blocking = False #pytorch bug? mps doesn't support non blocking

583
584
585
    if device_supports_cast:
        if copy:
            if tensor.device == device:
comfyanonymous's avatar
comfyanonymous committed
586
587
                return tensor.to(dtype, copy=copy, non_blocking=non_blocking)
            return tensor.to(device, copy=copy, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
588
        else:
comfyanonymous's avatar
comfyanonymous committed
589
            return tensor.to(device, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
590
    else:
comfyanonymous's avatar
comfyanonymous committed
591
        return tensor.to(device, dtype, copy=copy, non_blocking=non_blocking)
592

593
def xformers_enabled():
594
    global directml_enabled
595
596
    global cpu_state
    if cpu_state != CPUState.GPU:
597
        return False
598
    if is_intel_xpu():
599
600
601
        return False
    if directml_enabled:
        return False
602
    return XFORMERS_IS_AVAILABLE
603

604
605
606
607
608

def xformers_enabled_vae():
    enabled = xformers_enabled()
    if not enabled:
        return False
609
610

    return XFORMERS_ENABLED_VAE
611

612
def pytorch_attention_enabled():
613
    global ENABLE_PYTORCH_ATTENTION
614
615
    return ENABLE_PYTORCH_ATTENTION

616
617
618
619
def pytorch_attention_flash_attention():
    global ENABLE_PYTORCH_ATTENTION
    if ENABLE_PYTORCH_ATTENTION:
        #TODO: more reliable way of checking for flash attention?
620
        if is_nvidia(): #pytorch flash attention only works on Nvidia
621
622
623
            return True
    return False

624
def get_free_memory(dev=None, torch_free_too=False):
625
    global directml_enabled
626
    if dev is None:
627
        dev = get_torch_device()
628

Yurii Mazurevich's avatar
Yurii Mazurevich committed
629
    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
630
631
632
        mem_free_total = psutil.virtual_memory().available
        mem_free_torch = mem_free_total
    else:
633
634
635
        if directml_enabled:
            mem_free_total = 1024 * 1024 * 1024 #TODO
            mem_free_torch = mem_free_total
636
        elif is_intel_xpu():
637
638
639
640
641
            stats = torch.xpu.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_allocated = stats['allocated_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_torch = mem_reserved - mem_active
642
            mem_free_total = torch.xpu.get_device_properties(dev).total_memory - mem_allocated
643
644
645
646
647
648
649
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
            mem_free_torch = mem_reserved - mem_active
            mem_free_total = mem_free_cuda + mem_free_torch
650
651
652
653
654

    if torch_free_too:
        return (mem_free_total, mem_free_torch)
    else:
        return mem_free_total
655

656
def cpu_mode():
657
658
    global cpu_state
    return cpu_state == CPUState.CPU
659

Yurii Mazurevich's avatar
Yurii Mazurevich committed
660
def mps_mode():
661
662
    global cpu_state
    return cpu_state == CPUState.MPS
Yurii Mazurevich's avatar
Yurii Mazurevich committed
663

664
665
def is_device_cpu(device):
    if hasattr(device, 'type'):
comfyanonymous's avatar
comfyanonymous committed
666
667
668
669
670
671
672
        if (device.type == 'cpu'):
            return True
    return False

def is_device_mps(device):
    if hasattr(device, 'type'):
        if (device.type == 'mps'):
673
674
675
            return True
    return False

676
def should_use_fp16(device=None, model_params=0, prioritize_performance=True):
677
678
    global directml_enabled

679
680
681
682
    if device is not None:
        if is_device_cpu(device):
            return False

683
684
685
    if FORCE_FP16:
        return True

686
    if device is not None: #TODO
687
        if is_device_mps(device):
688
            return False
689

690
691
692
    if FORCE_FP32:
        return False

693
694
695
    if directml_enabled:
        return False

696
    if cpu_mode() or mps_mode():
697
698
        return False #TODO ?

699
    if is_intel_xpu():
comfyanonymous's avatar
comfyanonymous committed
700
701
702
        return True

    if torch.cuda.is_bf16_supported():
703
704
        return True

comfyanonymous's avatar
comfyanonymous committed
705
    props = torch.cuda.get_device_properties("cuda")
706
707
708
709
710
711
712
713
714
715
716
717
718
719
    if props.major < 6:
        return False

    fp16_works = False
    #FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled
    #when the model doesn't actually fit on the card
    #TODO: actually test if GP106 and others have the same type of behavior
    nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050"]
    for x in nvidia_10_series:
        if x in props.name.lower():
            fp16_works = True

    if fp16_works:
        free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
720
        if (not prioritize_performance) or model_params * 4 > free_model_memory:
721
722
            return True

723
724
725
    if props.major < 7:
        return False

726
    #FP16 is just broken on these cards
727
    nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX", "T2000", "T1000", "T1200"]
728
729
730
731
732
733
    for x in nvidia_16_series:
        if x in props.name:
            return False

    return True

734
def soft_empty_cache(force=False):
735
736
    global cpu_state
    if cpu_state == CPUState.MPS:
comfyanonymous's avatar
comfyanonymous committed
737
        torch.mps.empty_cache()
738
    elif is_intel_xpu():
739
740
        torch.xpu.empty_cache()
    elif torch.cuda.is_available():
741
        if force or is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda
742
743
744
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()

comfyanonymous's avatar
comfyanonymous committed
745
746
747
748
749
750
751
def resolve_lowvram_weight(weight, model, key):
    if weight.device == torch.device("meta"): #lowvram NOTE: this depends on the inner working of the accelerate library so it might break.
        key_split = key.split('.')              # I have no idea why they don't just leave the weight there instead of using the meta device.
        op = comfy.utils.get_attr(model, '.'.join(key_split[:-1]))
        weight = op._hf_hook.weights_map[key_split[-1]]
    return weight

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
#TODO: might be cleaner to put this somewhere else
import threading

class InterruptProcessingException(Exception):
    pass

interrupt_processing_mutex = threading.RLock()

interrupt_processing = False
def interrupt_current_processing(value=True):
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        interrupt_processing = value

def processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        return interrupt_processing

def throw_exception_if_processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        if interrupt_processing:
            interrupt_processing = False
            raise InterruptProcessingException()