model_management.py 9.14 KB
Newer Older
1

2
3
4
5
CPU = 0
NO_VRAM = 1
LOW_VRAM = 2
NORMAL_VRAM = 3
6
HIGH_VRAM = 4
Yurii Mazurevich's avatar
Yurii Mazurevich committed
7
MPS = 5
8
9

accelerate_enabled = False
10
xpu_available = False
11
12
vram_state = NORMAL_VRAM

13
total_vram = 0
14
15
total_vram_available_mb = -1

16
import sys
17
import psutil
18

Francesco Yoshi Gobbo's avatar
Francesco Yoshi Gobbo committed
19
20
forced_cpu = "--cpu" in sys.argv

21
22
set_vram_to = NORMAL_VRAM

23
24
try:
    import torch
藍+85CD's avatar
藍+85CD committed
25
26
27
28
29
30
    try:
        import intel_extension_for_pytorch as ipex
        if torch.xpu.is_available():
            xpu_available = True
            total_vram = torch.xpu.get_device_properties(torch.xpu.current_device()).total_memory / (1024 * 1024)
    except:
31
        total_vram = torch.cuda.mem_get_info(torch.cuda.current_device())[1] / (1024 * 1024)
32
33
    total_ram = psutil.virtual_memory().total / (1024 * 1024)
    forced_normal_vram = "--normalvram" in sys.argv
34
    if not forced_normal_vram and not forced_cpu:
35
36
37
        if total_vram <= 4096:
            print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
            set_vram_to = LOW_VRAM
comfyanonymous's avatar
comfyanonymous committed
38
        elif total_vram > total_ram * 1.1 and total_vram > 14336:
39
40
            print("Enabling highvram mode because your GPU has more vram than your computer has ram. If you don't want this use: --normalvram")
            vram_state = HIGH_VRAM
41
42
43
except:
    pass

44
45
46
47
48
try:
    OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
    OOM_EXCEPTION = Exception

49
50
if "--disable-xformers" in sys.argv:
    XFORMERS_IS_AVAILBLE = False
51
52
53
54
55
56
57
58
else:
    try:
        import xformers
        import xformers.ops
        XFORMERS_IS_AVAILBLE = True
    except:
        XFORMERS_IS_AVAILBLE = False

59
60
61
62
63
64
65
66
ENABLE_PYTORCH_ATTENTION = False
if "--use-pytorch-cross-attention" in sys.argv:
    torch.backends.cuda.enable_math_sdp(True)
    torch.backends.cuda.enable_flash_sdp(True)
    torch.backends.cuda.enable_mem_efficient_sdp(True)
    ENABLE_PYTORCH_ATTENTION = True
    XFORMERS_IS_AVAILBLE = False

67

68
69
70
71
if "--lowvram" in sys.argv:
    set_vram_to = LOW_VRAM
if "--novram" in sys.argv:
    set_vram_to = NO_VRAM
72
73
if "--highvram" in sys.argv:
    vram_state = HIGH_VRAM
74

75

76
if set_vram_to == LOW_VRAM or set_vram_to == NO_VRAM:
77
78
79
80
81
82
83
84
    try:
        import accelerate
        accelerate_enabled = True
        vram_state = set_vram_to
    except Exception as e:
        import traceback
        print(traceback.format_exc())
        print("ERROR: COULD NOT ENABLE LOW VRAM MODE.")
85
86

    total_vram_available_mb = (total_vram - 1024) // 2
87
    total_vram_available_mb = int(max(256, total_vram_available_mb))
88

89
90
91
92
93
94
try:
    if torch.backends.mps.is_available():
        vram_state = MPS
except:
    pass

Francesco Yoshi Gobbo's avatar
Francesco Yoshi Gobbo committed
95
if forced_cpu:
96
    vram_state = CPU
97

98
print("Set vram state to:", ["CPU", "NO VRAM", "LOW VRAM", "NORMAL VRAM", "HIGH VRAM", "MPS"][vram_state])
99

100
101

current_loaded_model = None
comfyanonymous's avatar
comfyanonymous committed
102
current_gpu_controlnets = []
103

104
105
106
model_accelerated = False


107
108
def unload_model():
    global current_loaded_model
109
    global model_accelerated
comfyanonymous's avatar
comfyanonymous committed
110
    global current_gpu_controlnets
111
112
    global vram_state

113
    if current_loaded_model is not None:
114
115
116
117
        if model_accelerated:
            accelerate.hooks.remove_hook_from_submodules(current_loaded_model.model)
            model_accelerated = False

118
119
120
        #never unload models from GPU on high vram
        if vram_state != HIGH_VRAM:
            current_loaded_model.model.cpu()
121
122
        current_loaded_model.unpatch_model()
        current_loaded_model = None
123
124
125
126
127
128

    if vram_state != HIGH_VRAM:
        if len(current_gpu_controlnets) > 0:
            for n in current_gpu_controlnets:
                n.cpu()
            current_gpu_controlnets = []
129
130
131
132


def load_model_gpu(model):
    global current_loaded_model
133
134
    global vram_state
    global model_accelerated
135
    global xpu_available
136

137
138
139
140
141
142
143
144
145
    if model is current_loaded_model:
        return
    unload_model()
    try:
        real_model = model.patch_model()
    except Exception as e:
        model.unpatch_model()
        raise e
    current_loaded_model = model
146
147
    if vram_state == CPU:
        pass
Yurii Mazurevich's avatar
Yurii Mazurevich committed
148
149
150
151
    elif vram_state == MPS:
        mps_device = torch.device("mps")
        real_model.to(mps_device)
        pass
152
    elif vram_state == NORMAL_VRAM or vram_state == HIGH_VRAM:
153
        model_accelerated = False
154
155
156
157
        if xpu_available:
            real_model.to("xpu")
        else:
            real_model.cuda()
158
159
160
161
    else:
        if vram_state == NO_VRAM:
            device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "256MiB", "cpu": "16GiB"})
        elif vram_state == LOW_VRAM:
162
            device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "{}MiB".format(total_vram_available_mb), "cpu": "16GiB"})
comfyanonymous's avatar
comfyanonymous committed
163

164
        accelerate.dispatch_model(real_model, device_map=device_map, main_device="xpu" if xpu_available else "cuda")
165
        model_accelerated = True
166
    return current_loaded_model
167

comfyanonymous's avatar
comfyanonymous committed
168
169
def load_controlnet_gpu(models):
    global current_gpu_controlnets
170
    global vram_state
171
172
    if vram_state == CPU:
        return
173
174
175
176
177

    if vram_state == LOW_VRAM or vram_state == NO_VRAM:
        #don't load controlnets like this if low vram because they will be loaded right before running and unloaded right after
        return

comfyanonymous's avatar
comfyanonymous committed
178
179
180
181
    for m in current_gpu_controlnets:
        if m not in models:
            m.cpu()

182
    device = get_torch_device()
comfyanonymous's avatar
comfyanonymous committed
183
184
    current_gpu_controlnets = []
    for m in models:
185
        current_gpu_controlnets.append(m.to(device))
comfyanonymous's avatar
comfyanonymous committed
186

187

188
189
def load_if_low_vram(model):
    global vram_state
190
    global xpu_available
191
    if vram_state == LOW_VRAM or vram_state == NO_VRAM:
192
193
194
195
        if xpu_available:
            return model.to("xpu")
        else:
            return model.cuda()
196
197
198
199
200
201
202
203
    return model

def unload_if_low_vram(model):
    global vram_state
    if vram_state == LOW_VRAM or vram_state == NO_VRAM:
        return model.cpu()
    return model

204
def get_torch_device():
205
    global xpu_available
Yurii Mazurevich's avatar
Yurii Mazurevich committed
206
207
    if vram_state == MPS:
        return torch.device("mps")
208
209
210
    if vram_state == CPU:
        return torch.device("cpu")
    else:
211
212
213
214
        if xpu_available:
            return torch.device("xpu")
        else:
            return torch.cuda.current_device()
215
216
217
218
219

def get_autocast_device(dev):
    if hasattr(dev, 'type'):
        return dev.type
    return "cuda"
220

221

222
223
224
225
226
def xformers_enabled():
    if vram_state == CPU:
        return False
    return XFORMERS_IS_AVAILBLE

227
228
229
230
231
232
233
234
235
236
237
238
239

def xformers_enabled_vae():
    enabled = xformers_enabled()
    if not enabled:
        return False
    try:
        #0.0.18 has a bug where Nan is returned when inputs are too big (1152x1920 res images and above)
        if xformers.version.__version__ == "0.0.18":
            return False
    except:
        pass
    return enabled

240
241
242
def pytorch_attention_enabled():
    return ENABLE_PYTORCH_ATTENTION

243
def get_free_memory(dev=None, torch_free_too=False):
244
    global xpu_available
245
    if dev is None:
246
        dev = get_torch_device()
247

Yurii Mazurevich's avatar
Yurii Mazurevich committed
248
    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
249
250
251
        mem_free_total = psutil.virtual_memory().available
        mem_free_torch = mem_free_total
    else:
252
253
254
255
256
257
258
259
260
261
        if xpu_available:
            mem_free_total = torch.xpu.get_device_properties(dev).total_memory - torch.xpu.memory_allocated(dev)
            mem_free_torch = mem_free_total
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
            mem_free_torch = mem_reserved - mem_active
            mem_free_total = mem_free_cuda + mem_free_torch
262
263
264
265
266

    if torch_free_too:
        return (mem_free_total, mem_free_torch)
    else:
        return mem_free_total
267
268
269
270
271
272
273
274
275

def maximum_batch_area():
    global vram_state
    if vram_state == NO_VRAM:
        return 0

    memory_free = get_free_memory() / (1024 * 1024)
    area = ((memory_free - 1024) * 0.9) / (0.6)
    return int(max(area, 0))
276
277
278
279
280

def cpu_mode():
    global vram_state
    return vram_state == CPU

Yurii Mazurevich's avatar
Yurii Mazurevich committed
281
282
283
284
def mps_mode():
    global vram_state
    return vram_state == MPS

285
def should_use_fp16():
286
287
    global xpu_available
    if cpu_mode() or mps_mode() or xpu_available:
288
289
290
291
292
        return False #TODO ?

    if torch.cuda.is_bf16_supported():
        return True

comfyanonymous's avatar
comfyanonymous committed
293
    props = torch.cuda.get_device_properties("cuda")
294
295
296
297
    if props.major < 7:
        return False

    #FP32 is faster on those cards?
298
    nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600"]
299
300
301
302
303
304
    for x in nvidia_16_series:
        if x in props.name:
            return False

    return True

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
#TODO: might be cleaner to put this somewhere else
import threading

class InterruptProcessingException(Exception):
    pass

interrupt_processing_mutex = threading.RLock()

interrupt_processing = False
def interrupt_current_processing(value=True):
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        interrupt_processing = value

def processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        return interrupt_processing

def throw_exception_if_processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        if interrupt_processing:
            interrupt_processing = False
            raise InterruptProcessingException()