model_management.py 7.46 KB
Newer Older
1

2
3
4
5
CPU = 0
NO_VRAM = 1
LOW_VRAM = 2
NORMAL_VRAM = 3
6
HIGH_VRAM = 4
7
8
9
10

accelerate_enabled = False
vram_state = NORMAL_VRAM

11
total_vram = 0
12
13
total_vram_available_mb = -1

14
import sys
15
import psutil
16
17
18

set_vram_to = NORMAL_VRAM

19
20
21
try:
    import torch
    total_vram = torch.cuda.mem_get_info(torch.cuda.current_device())[1] / (1024 * 1024)
22
23
24
25
26
27
    total_ram = psutil.virtual_memory().total / (1024 * 1024)
    forced_normal_vram = "--normalvram" in sys.argv
    if not forced_normal_vram:
        if total_vram <= 4096:
            print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
            set_vram_to = LOW_VRAM
comfyanonymous's avatar
comfyanonymous committed
28
        elif total_vram > total_ram * 1.1 and total_vram > 14336:
29
30
            print("Enabling highvram mode because your GPU has more vram than your computer has ram. If you don't want this use: --normalvram")
            vram_state = HIGH_VRAM
31
32
33
except:
    pass

34
35
36
37
38
try:
    OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
    OOM_EXCEPTION = Exception

39
40
if "--disable-xformers" in sys.argv:
    XFORMERS_IS_AVAILBLE = False
41
42
43
44
45
46
47
48
else:
    try:
        import xformers
        import xformers.ops
        XFORMERS_IS_AVAILBLE = True
    except:
        XFORMERS_IS_AVAILBLE = False

49
50
51
52
53
54
55
56
ENABLE_PYTORCH_ATTENTION = False
if "--use-pytorch-cross-attention" in sys.argv:
    torch.backends.cuda.enable_math_sdp(True)
    torch.backends.cuda.enable_flash_sdp(True)
    torch.backends.cuda.enable_mem_efficient_sdp(True)
    ENABLE_PYTORCH_ATTENTION = True
    XFORMERS_IS_AVAILBLE = False

57

58
59
60
61
if "--lowvram" in sys.argv:
    set_vram_to = LOW_VRAM
if "--novram" in sys.argv:
    set_vram_to = NO_VRAM
62
63
if "--highvram" in sys.argv:
    vram_state = HIGH_VRAM
64
65


66
if set_vram_to == LOW_VRAM or set_vram_to == NO_VRAM:
67
68
69
70
71
72
73
74
    try:
        import accelerate
        accelerate_enabled = True
        vram_state = set_vram_to
    except Exception as e:
        import traceback
        print(traceback.format_exc())
        print("ERROR: COULD NOT ENABLE LOW VRAM MODE.")
75
76

    total_vram_available_mb = (total_vram - 1024) // 2
77
    total_vram_available_mb = int(max(256, total_vram_available_mb))
78

79
80
if "--cpu" in sys.argv:
    vram_state = CPU
81

82
print("Set vram state to:", ["CPU", "NO VRAM", "LOW VRAM", "NORMAL VRAM", "HIGH VRAM"][vram_state])
83

84
85

current_loaded_model = None
comfyanonymous's avatar
comfyanonymous committed
86
current_gpu_controlnets = []
87

88
89
90
model_accelerated = False


91
92
def unload_model():
    global current_loaded_model
93
    global model_accelerated
comfyanonymous's avatar
comfyanonymous committed
94
    global current_gpu_controlnets
95
96
    global vram_state

97
    if current_loaded_model is not None:
98
99
100
101
        if model_accelerated:
            accelerate.hooks.remove_hook_from_submodules(current_loaded_model.model)
            model_accelerated = False

102
103
104
        #never unload models from GPU on high vram
        if vram_state != HIGH_VRAM:
            current_loaded_model.model.cpu()
105
106
        current_loaded_model.unpatch_model()
        current_loaded_model = None
107
108
109
110
111
112

    if vram_state != HIGH_VRAM:
        if len(current_gpu_controlnets) > 0:
            for n in current_gpu_controlnets:
                n.cpu()
            current_gpu_controlnets = []
113
114
115
116


def load_model_gpu(model):
    global current_loaded_model
117
118
119
    global vram_state
    global model_accelerated

120
121
122
123
124
125
126
127
128
    if model is current_loaded_model:
        return
    unload_model()
    try:
        real_model = model.patch_model()
    except Exception as e:
        model.unpatch_model()
        raise e
    current_loaded_model = model
129
130
    if vram_state == CPU:
        pass
131
    elif vram_state == NORMAL_VRAM or vram_state == HIGH_VRAM:
132
133
134
135
136
137
        model_accelerated = False
        real_model.cuda()
    else:
        if vram_state == NO_VRAM:
            device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "256MiB", "cpu": "16GiB"})
        elif vram_state == LOW_VRAM:
138
            device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "{}MiB".format(total_vram_available_mb), "cpu": "16GiB"})
comfyanonymous's avatar
comfyanonymous committed
139

140
141
        accelerate.dispatch_model(real_model, device_map=device_map, main_device="cuda")
        model_accelerated = True
142
    return current_loaded_model
143

comfyanonymous's avatar
comfyanonymous committed
144
145
def load_controlnet_gpu(models):
    global current_gpu_controlnets
146
    global vram_state
147
148
    if vram_state == CPU:
        return
149
150
151
152
153

    if vram_state == LOW_VRAM or vram_state == NO_VRAM:
        #don't load controlnets like this if low vram because they will be loaded right before running and unloaded right after
        return

comfyanonymous's avatar
comfyanonymous committed
154
155
156
157
158
159
160
161
    for m in current_gpu_controlnets:
        if m not in models:
            m.cpu()

    current_gpu_controlnets = []
    for m in models:
        current_gpu_controlnets.append(m.cuda())

162

163
164
165
166
167
168
169
170
171
172
173
174
def load_if_low_vram(model):
    global vram_state
    if vram_state == LOW_VRAM or vram_state == NO_VRAM:
        return model.cuda()
    return model

def unload_if_low_vram(model):
    global vram_state
    if vram_state == LOW_VRAM or vram_state == NO_VRAM:
        return model.cpu()
    return model

175
176
177
178
179
180
181
182
183
184
def get_torch_device():
    if vram_state == CPU:
        return torch.device("cpu")
    else:
        return torch.cuda.current_device()

def get_autocast_device(dev):
    if hasattr(dev, 'type'):
        return dev.type
    return "cuda"
185

186
187
188
189
190
def xformers_enabled():
    if vram_state == CPU:
        return False
    return XFORMERS_IS_AVAILBLE

191
192
193
def pytorch_attention_enabled():
    return ENABLE_PYTORCH_ATTENTION

194
195
def get_free_memory(dev=None, torch_free_too=False):
    if dev is None:
196
        dev = get_torch_device()
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

    if hasattr(dev, 'type') and dev.type == 'cpu':
        mem_free_total = psutil.virtual_memory().available
        mem_free_torch = mem_free_total
    else:
        stats = torch.cuda.memory_stats(dev)
        mem_active = stats['active_bytes.all.current']
        mem_reserved = stats['reserved_bytes.all.current']
        mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
        mem_free_torch = mem_reserved - mem_active
        mem_free_total = mem_free_cuda + mem_free_torch

    if torch_free_too:
        return (mem_free_total, mem_free_torch)
    else:
        return mem_free_total
213
214
215
216
217
218
219
220
221

def maximum_batch_area():
    global vram_state
    if vram_state == NO_VRAM:
        return 0

    memory_free = get_free_memory() / (1024 * 1024)
    area = ((memory_free - 1024) * 0.9) / (0.6)
    return int(max(area, 0))
222
223
224
225
226
227
228
229
230
231
232
233

def cpu_mode():
    global vram_state
    return vram_state == CPU

def should_use_fp16():
    if cpu_mode():
        return False #TODO ?

    if torch.cuda.is_bf16_supported():
        return True

comfyanonymous's avatar
comfyanonymous committed
234
    props = torch.cuda.get_device_properties("cuda")
235
236
237
238
    if props.major < 7:
        return False

    #FP32 is faster on those cards?
239
    nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600"]
240
241
242
243
244
245
    for x in nvidia_16_series:
        if x in props.name:
            return False

    return True

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#TODO: might be cleaner to put this somewhere else
import threading

class InterruptProcessingException(Exception):
    pass

interrupt_processing_mutex = threading.RLock()

interrupt_processing = False
def interrupt_current_processing(value=True):
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        interrupt_processing = value

def processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        return interrupt_processing

def throw_exception_if_processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        if interrupt_processing:
            interrupt_processing = False
            raise InterruptProcessingException()