model_management.py 23.1 KB
Newer Older
1
2
import psutil
from enum import Enum
comfyanonymous's avatar
comfyanonymous committed
3
from comfy.cli_args import args
comfyanonymous's avatar
comfyanonymous committed
4
import comfy.utils
5
import torch
comfyanonymous's avatar
comfyanonymous committed
6
import sys
7

8
class VRAMState(Enum):
9
10
    DISABLED = 0    #No vram present: no need to move models to vram
    NO_VRAM = 1     #Very low vram: enable all the options to save vram
11
12
13
    LOW_VRAM = 2
    NORMAL_VRAM = 3
    HIGH_VRAM = 4
14
    SHARED = 5      #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both.
15
16
17
18
19

class CPUState(Enum):
    GPU = 0
    CPU = 1
    MPS = 2
20

21
22
23
# Determine VRAM State
vram_state = VRAMState.NORMAL_VRAM
set_vram_to = VRAMState.NORMAL_VRAM
24
cpu_state = CPUState.GPU
25

26
total_vram = 0
27

28
lowvram_available = True
藍+85CD's avatar
藍+85CD committed
29
xpu_available = False
30

31
directml_enabled = False
32
if args.directml is not None:
33
34
    import torch_directml
    directml_enabled = True
35
36
37
38
39
40
    device_index = args.directml
    if device_index < 0:
        directml_device = torch_directml.device()
    else:
        directml_device = torch_directml.device(device_index)
    print("Using directml with device:", torch_directml.device_name(device_index))
41
    # torch_directml.disable_tiled_resources(True)
42
    lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
43

44
try:
45
46
47
    import intel_extension_for_pytorch as ipex
    if torch.xpu.is_available():
        xpu_available = True
48
49
50
except:
    pass

51
52
53
try:
    if torch.backends.mps.is_available():
        cpu_state = CPUState.MPS
KarryCharon's avatar
KarryCharon committed
54
        import torch.mps
55
56
57
58
59
60
except:
    pass

if args.cpu:
    cpu_state = CPUState.CPU

61
62
def is_intel_xpu():
    global cpu_state
63
    global xpu_available
64
65
66
67
68
69
    if cpu_state == CPUState.GPU:
        if xpu_available:
            return True
    return False

def get_torch_device():
70
    global directml_enabled
71
    global cpu_state
72
73
74
    if directml_enabled:
        global directml_device
        return directml_device
75
    if cpu_state == CPUState.MPS:
76
        return torch.device("mps")
77
    if cpu_state == CPUState.CPU:
78
79
        return torch.device("cpu")
    else:
80
        if is_intel_xpu():
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
            return torch.device("xpu")
        else:
            return torch.device(torch.cuda.current_device())

def get_total_memory(dev=None, torch_total_too=False):
    global directml_enabled
    if dev is None:
        dev = get_torch_device()

    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
        mem_total = psutil.virtual_memory().total
        mem_total_torch = mem_total
    else:
        if directml_enabled:
            mem_total = 1024 * 1024 * 1024 #TODO
            mem_total_torch = mem_total
97
        elif is_intel_xpu():
98
99
            stats = torch.xpu.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
100
            mem_total = torch.xpu.get_device_properties(dev).total_memory
101
            mem_total_torch = mem_reserved
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
            _, mem_total_cuda = torch.cuda.mem_get_info(dev)
            mem_total_torch = mem_reserved
            mem_total = mem_total_cuda

    if torch_total_too:
        return (mem_total, mem_total_torch)
    else:
        return mem_total

total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
print("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
if not args.normalvram and not args.cpu:
    if lowvram_available and total_vram <= 4096:
        print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
        set_vram_to = VRAMState.LOW_VRAM

122
123
124
125
126
try:
    OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
    OOM_EXCEPTION = Exception

127
128
XFORMERS_VERSION = ""
XFORMERS_ENABLED_VAE = True
129
130
if args.disable_xformers:
    XFORMERS_IS_AVAILABLE = False
131
132
133
134
else:
    try:
        import xformers
        import xformers.ops
135
        XFORMERS_IS_AVAILABLE = True
136
137
138
139
        try:
            XFORMERS_IS_AVAILABLE = xformers._has_cpp_library
        except:
            pass
140
141
142
143
144
145
146
147
148
149
150
        try:
            XFORMERS_VERSION = xformers.version.__version__
            print("xformers version:", XFORMERS_VERSION)
            if XFORMERS_VERSION.startswith("0.0.18"):
                print()
                print("WARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
                print("Please downgrade or upgrade xformers to a different version.")
                print()
                XFORMERS_ENABLED_VAE = False
        except:
            pass
151
    except:
152
        XFORMERS_IS_AVAILABLE = False
153

154
155
156
157
158
def is_nvidia():
    global cpu_state
    if cpu_state == CPUState.GPU:
        if torch.version.cuda:
            return True
159
    return False
160

161
162
163
164
165
ENABLE_PYTORCH_ATTENTION = False
if args.use_pytorch_cross_attention:
    ENABLE_PYTORCH_ATTENTION = True
    XFORMERS_IS_AVAILABLE = False

166
VAE_DTYPE = torch.float32
167

168
169
170
171
try:
    if is_nvidia():
        torch_version = torch.version.__version__
        if int(torch_version[0]) >= 2:
172
            if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
173
                ENABLE_PYTORCH_ATTENTION = True
174
175
            if torch.cuda.is_bf16_supported():
                VAE_DTYPE = torch.bfloat16
176
177
178
    if is_intel_xpu():
        if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
            ENABLE_PYTORCH_ATTENTION = True
179
180
181
except:
    pass

182
183
184
if is_intel_xpu():
    VAE_DTYPE = torch.bfloat16

185
186
187
188
189
190
191
if args.fp16_vae:
    VAE_DTYPE = torch.float16
elif args.bf16_vae:
    VAE_DTYPE = torch.bfloat16
elif args.fp32_vae:
    VAE_DTYPE = torch.float32

192

193
if ENABLE_PYTORCH_ATTENTION:
194
195
196
    torch.backends.cuda.enable_math_sdp(True)
    torch.backends.cuda.enable_flash_sdp(True)
    torch.backends.cuda.enable_mem_efficient_sdp(True)
197

198
199
if args.lowvram:
    set_vram_to = VRAMState.LOW_VRAM
200
    lowvram_available = True
201
202
elif args.novram:
    set_vram_to = VRAMState.NO_VRAM
203
elif args.highvram or args.gpu_only:
204
    vram_state = VRAMState.HIGH_VRAM
205

206
FORCE_FP32 = False
207
FORCE_FP16 = False
208
209
210
211
if args.force_fp32:
    print("Forcing FP32, if this improves things please report it.")
    FORCE_FP32 = True

212
213
214
215
if args.force_fp16:
    print("Forcing FP16.")
    FORCE_FP16 = True

216
if lowvram_available:
217
218
    try:
        import accelerate
219
220
        if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
            vram_state = set_vram_to
221
222
223
    except Exception as e:
        import traceback
        print(traceback.format_exc())
224
225
        print("ERROR: LOW VRAM MODE NEEDS accelerate.")
        lowvram_available = False
226

227

228
229
if cpu_state != CPUState.GPU:
    vram_state = VRAMState.DISABLED
230

231
232
if cpu_state == CPUState.MPS:
    vram_state = VRAMState.SHARED
233

234
print(f"Set vram state to: {vram_state.name}")
235

236
237
238
239
DISABLE_SMART_MEMORY = args.disable_smart_memory

if DISABLE_SMART_MEMORY:
    print("Disabling smart memory management")
240

241
242
def get_torch_device_name(device):
    if hasattr(device, 'type'):
243
        if device.type == "cuda":
244
245
246
247
248
            try:
                allocator_backend = torch.cuda.get_allocator_backend()
            except:
                allocator_backend = ""
            return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
249
250
        else:
            return "{}".format(device.type)
251
    elif is_intel_xpu():
252
        return "{} {}".format(device, torch.xpu.get_device_name(device))
253
254
    else:
        return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
255
256

try:
257
    print("Device:", get_torch_device_name(get_torch_device()))
258
259
260
except:
    print("Could not pick default device.")

261
print("VAE dtype:", VAE_DTYPE)
262

comfyanonymous's avatar
comfyanonymous committed
263
current_loaded_models = []
264

comfyanonymous's avatar
comfyanonymous committed
265
266
267
268
269
class LoadedModel:
    def __init__(self, model):
        self.model = model
        self.model_accelerated = False
        self.device = model.load_device
270

comfyanonymous's avatar
comfyanonymous committed
271
272
    def model_memory(self):
        return self.model.model_size()
273

comfyanonymous's avatar
comfyanonymous committed
274
275
276
277
278
    def model_memory_required(self, device):
        if device == self.model.current_device:
            return 0
        else:
            return self.model_memory()
279

comfyanonymous's avatar
comfyanonymous committed
280
281
282
283
    def model_load(self, lowvram_model_memory=0):
        patch_model_to = None
        if lowvram_model_memory == 0:
            patch_model_to = self.device
284

comfyanonymous's avatar
comfyanonymous committed
285
286
        self.model.model_patches_to(self.device)
        self.model.model_patches_to(self.model.model_dtype())
287

comfyanonymous's avatar
comfyanonymous committed
288
289
290
291
292
293
        try:
            self.real_model = self.model.patch_model(device_to=patch_model_to) #TODO: do something with loras and offloading to CPU
        except Exception as e:
            self.model.unpatch_model(self.model.offload_device)
            self.model_unload()
            raise e
294

comfyanonymous's avatar
comfyanonymous committed
295
296
297
298
299
        if lowvram_model_memory > 0:
            print("loading in lowvram mode", lowvram_model_memory/(1024 * 1024))
            device_map = accelerate.infer_auto_device_map(self.real_model, max_memory={0: "{}MiB".format(lowvram_model_memory // (1024 * 1024)), "cpu": "16GiB"})
            accelerate.dispatch_model(self.real_model, device_map=device_map, main_device=self.device)
            self.model_accelerated = True
300

301
        if is_intel_xpu() and not args.disable_ipex_optimize:
302
            self.real_model = torch.xpu.optimize(self.real_model.eval(), inplace=True, auto_kernel_selection=True, graph_mode=True)
303

comfyanonymous's avatar
comfyanonymous committed
304
        return self.real_model
305

comfyanonymous's avatar
comfyanonymous committed
306
307
308
309
    def model_unload(self):
        if self.model_accelerated:
            accelerate.hooks.remove_hook_from_submodules(self.real_model)
            self.model_accelerated = False
310

comfyanonymous's avatar
comfyanonymous committed
311
312
        self.model.unpatch_model(self.model.offload_device)
        self.model.model_patches_to(self.model.offload_device)
313

comfyanonymous's avatar
comfyanonymous committed
314
315
    def __eq__(self, other):
        return self.model is other.model
comfyanonymous's avatar
comfyanonymous committed
316

comfyanonymous's avatar
comfyanonymous committed
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
def minimum_inference_memory():
    return (1024 * 1024 * 1024)

def unload_model_clones(model):
    to_unload = []
    for i in range(len(current_loaded_models)):
        if model.is_clone(current_loaded_models[i].model):
            to_unload = [i] + to_unload

    for i in to_unload:
        print("unload clone", i)
        current_loaded_models.pop(i).model_unload()

def free_memory(memory_required, device, keep_loaded=[]):
    unloaded_model = False
    for i in range(len(current_loaded_models) -1, -1, -1):
comfyanonymous's avatar
comfyanonymous committed
333
334
335
        if not DISABLE_SMART_MEMORY:
            if get_free_memory(device) > memory_required:
                break
comfyanonymous's avatar
comfyanonymous committed
336
337
338
        shift_model = current_loaded_models[i]
        if shift_model.device == device:
            if shift_model not in keep_loaded:
comfyanonymous's avatar
comfyanonymous committed
339
340
341
                m = current_loaded_models.pop(i)
                m.model_unload()
                del m
comfyanonymous's avatar
comfyanonymous committed
342
343
344
345
                unloaded_model = True

    if unloaded_model:
        soft_empty_cache()
346
347
348
349
350
    else:
        if vram_state != VRAMState.HIGH_VRAM:
            mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True)
            if mem_free_torch > mem_free_total * 0.25:
                soft_empty_cache()
comfyanonymous's avatar
comfyanonymous committed
351
352

def load_models_gpu(models, memory_required=0):
353
354
    global vram_state

comfyanonymous's avatar
comfyanonymous committed
355
356
357
358
359
360
361
362
363
364
365
366
367
    inference_memory = minimum_inference_memory()
    extra_mem = max(inference_memory, memory_required)

    models_to_load = []
    models_already_loaded = []
    for x in models:
        loaded_model = LoadedModel(x)

        if loaded_model in current_loaded_models:
            index = current_loaded_models.index(loaded_model)
            current_loaded_models.insert(0, current_loaded_models.pop(index))
            models_already_loaded.append(loaded_model)
        else:
368
369
            if hasattr(x, "model"):
                print(f"Requested to load {x.model.__class__.__name__}")
comfyanonymous's avatar
comfyanonymous committed
370
371
372
373
374
375
376
            models_to_load.append(loaded_model)

    if len(models_to_load) == 0:
        devs = set(map(lambda a: a.device, models_already_loaded))
        for d in devs:
            if d != torch.device("cpu"):
                free_memory(extra_mem, d, models_already_loaded)
377
378
        return

379
    print(f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}")
380

comfyanonymous's avatar
comfyanonymous committed
381
382
383
384
    total_memory_required = {}
    for loaded_model in models_to_load:
        unload_model_clones(loaded_model.model)
        total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
comfyanonymous's avatar
comfyanonymous committed
385

comfyanonymous's avatar
comfyanonymous committed
386
387
388
    for device in total_memory_required:
        if device != torch.device("cpu"):
            free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded)
comfyanonymous's avatar
comfyanonymous committed
389

comfyanonymous's avatar
comfyanonymous committed
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
    for loaded_model in models_to_load:
        model = loaded_model.model
        torch_dev = model.load_device
        if is_device_cpu(torch_dev):
            vram_set_state = VRAMState.DISABLED
        else:
            vram_set_state = vram_state
        lowvram_model_memory = 0
        if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
            model_size = loaded_model.model_memory_required(torch_dev)
            current_free_mem = get_free_memory(torch_dev)
            lowvram_model_memory = int(max(256 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
            if model_size > (current_free_mem - inference_memory): #only switch to lowvram if really necessary
                vram_set_state = VRAMState.LOW_VRAM
            else:
                lowvram_model_memory = 0
406

comfyanonymous's avatar
comfyanonymous committed
407
408
        if vram_set_state == VRAMState.NO_VRAM:
            lowvram_model_memory = 256 * 1024 * 1024
409

comfyanonymous's avatar
comfyanonymous committed
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
        cur_loaded_model = loaded_model.model_load(lowvram_model_memory)
        current_loaded_models.insert(0, loaded_model)
    return


def load_model_gpu(model):
    return load_models_gpu([model])

def cleanup_models():
    to_delete = []
    for i in range(len(current_loaded_models)):
        if sys.getrefcount(current_loaded_models[i].model) <= 2:
            to_delete = [i] + to_delete

    for i in to_delete:
        x = current_loaded_models.pop(i)
        x.model_unload()
        del x
428

429
430
431
432
def dtype_size(dtype):
    dtype_size = 4
    if dtype == torch.float16 or dtype == torch.bfloat16:
        dtype_size = 2
433
434
435
436
437
438
439
    elif dtype == torch.float32:
        dtype_size = 4
    else:
        try:
            dtype_size = dtype.itemsize
        except: #Old pytorch doesn't have .itemsize
            pass
440
441
    return dtype_size

442
def unet_offload_device():
comfyanonymous's avatar
comfyanonymous committed
443
    if vram_state == VRAMState.HIGH_VRAM:
444
445
446
447
        return get_torch_device()
    else:
        return torch.device("cpu")

comfyanonymous's avatar
comfyanonymous committed
448
449
450
451
452
453
def unet_inital_load_device(parameters, dtype):
    torch_dev = get_torch_device()
    if vram_state == VRAMState.HIGH_VRAM:
        return torch_dev

    cpu_dev = torch.device("cpu")
454
455
456
    if DISABLE_SMART_MEMORY:
        return cpu_dev

457
    model_size = dtype_size(dtype) * parameters
comfyanonymous's avatar
comfyanonymous committed
458
459
460
461
462
463
464
465

    mem_dev = get_free_memory(torch_dev)
    mem_cpu = get_free_memory(cpu_dev)
    if mem_dev > mem_cpu and model_size < mem_dev:
        return torch_dev
    else:
        return cpu_dev

466
def unet_dtype(device=None, model_params=0):
467
468
    if args.bf16_unet:
        return torch.bfloat16
469
470
471
472
    if args.fp8_e4m3fn_unet:
        return torch.float8_e4m3fn
    if args.fp8_e5m2_unet:
        return torch.float8_e5m2
473
474
475
476
    if should_use_fp16(device=device, model_params=model_params):
        return torch.float16
    return torch.float32

477
def text_encoder_offload_device():
comfyanonymous's avatar
comfyanonymous committed
478
    if args.gpu_only:
479
480
481
482
        return get_torch_device()
    else:
        return torch.device("cpu")

483
def text_encoder_device():
comfyanonymous's avatar
comfyanonymous committed
484
    if args.gpu_only:
485
        return get_torch_device()
486
    elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
487
488
        if is_intel_xpu():
            return torch.device("cpu")
489
        if should_use_fp16(prioritize_performance=False):
490
491
492
            return get_torch_device()
        else:
            return torch.device("cpu")
493
494
495
    else:
        return torch.device("cpu")

496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
def text_encoder_dtype(device=None):
    if args.fp8_e4m3fn_text_enc:
        return torch.float8_e4m3fn
    elif args.fp8_e5m2_text_enc:
        return torch.float8_e5m2
    elif args.fp16_text_enc:
        return torch.float16
    elif args.fp32_text_enc:
        return torch.float32

    if should_use_fp16(device, prioritize_performance=False):
        return torch.float16
    else:
        return torch.float32

511
512
513
514
def vae_device():
    return get_torch_device()

def vae_offload_device():
comfyanonymous's avatar
comfyanonymous committed
515
    if args.gpu_only:
516
517
518
519
        return get_torch_device()
    else:
        return torch.device("cpu")

520
def vae_dtype():
521
522
    global VAE_DTYPE
    return VAE_DTYPE
523

524
525
526
527
def get_autocast_device(dev):
    if hasattr(dev, 'type'):
        return dev.type
    return "cuda"
528

529
530
531
532
533
534
535
536
537
538
539
def supports_dtype(device, dtype): #TODO
    if dtype == torch.float32:
        return True
    if torch.device("cpu") == device:
        return False
    if dtype == torch.float16:
        return True
    if dtype == torch.bfloat16:
        return True
    return False

540
541
542
543
544
545
546
def cast_to_device(tensor, device, dtype, copy=False):
    device_supports_cast = False
    if tensor.dtype == torch.float32 or tensor.dtype == torch.float16:
        device_supports_cast = True
    elif tensor.dtype == torch.bfloat16:
        if hasattr(device, 'type') and device.type.startswith("cuda"):
            device_supports_cast = True
547
548
        elif is_intel_xpu():
            device_supports_cast = True
549
550
551
552

    if device_supports_cast:
        if copy:
            if tensor.device == device:
553
554
                return tensor.to(dtype, copy=copy, non_blocking=True)
            return tensor.to(device, copy=copy, non_blocking=True).to(dtype, non_blocking=True)
555
        else:
556
            return tensor.to(device, non_blocking=True).to(dtype, non_blocking=True)
557
    else:
558
        return tensor.to(device, dtype, copy=copy, non_blocking=True)
559

560
def xformers_enabled():
561
    global directml_enabled
562
563
    global cpu_state
    if cpu_state != CPUState.GPU:
564
        return False
565
    if is_intel_xpu():
566
567
568
        return False
    if directml_enabled:
        return False
569
    return XFORMERS_IS_AVAILABLE
570

571
572
573
574
575

def xformers_enabled_vae():
    enabled = xformers_enabled()
    if not enabled:
        return False
576
577

    return XFORMERS_ENABLED_VAE
578

579
def pytorch_attention_enabled():
580
    global ENABLE_PYTORCH_ATTENTION
581
582
    return ENABLE_PYTORCH_ATTENTION

583
584
585
586
def pytorch_attention_flash_attention():
    global ENABLE_PYTORCH_ATTENTION
    if ENABLE_PYTORCH_ATTENTION:
        #TODO: more reliable way of checking for flash attention?
587
        if is_nvidia(): #pytorch flash attention only works on Nvidia
588
589
590
            return True
    return False

591
def get_free_memory(dev=None, torch_free_too=False):
592
    global directml_enabled
593
    if dev is None:
594
        dev = get_torch_device()
595

Yurii Mazurevich's avatar
Yurii Mazurevich committed
596
    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
597
598
599
        mem_free_total = psutil.virtual_memory().available
        mem_free_torch = mem_free_total
    else:
600
601
602
        if directml_enabled:
            mem_free_total = 1024 * 1024 * 1024 #TODO
            mem_free_torch = mem_free_total
603
        elif is_intel_xpu():
604
605
606
607
608
            stats = torch.xpu.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_allocated = stats['allocated_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_torch = mem_reserved - mem_active
609
            mem_free_total = torch.xpu.get_device_properties(dev).total_memory - mem_allocated
610
611
612
613
614
615
616
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
            mem_free_torch = mem_reserved - mem_active
            mem_free_total = mem_free_cuda + mem_free_torch
617
618
619
620
621

    if torch_free_too:
        return (mem_free_total, mem_free_torch)
    else:
        return mem_free_total
622

623
def cpu_mode():
624
625
    global cpu_state
    return cpu_state == CPUState.CPU
626

Yurii Mazurevich's avatar
Yurii Mazurevich committed
627
def mps_mode():
628
629
    global cpu_state
    return cpu_state == CPUState.MPS
Yurii Mazurevich's avatar
Yurii Mazurevich committed
630

631
632
def is_device_cpu(device):
    if hasattr(device, 'type'):
comfyanonymous's avatar
comfyanonymous committed
633
634
635
636
637
638
639
        if (device.type == 'cpu'):
            return True
    return False

def is_device_mps(device):
    if hasattr(device, 'type'):
        if (device.type == 'mps'):
640
641
642
            return True
    return False

643
def should_use_fp16(device=None, model_params=0, prioritize_performance=True):
644
645
    global directml_enabled

646
647
648
649
    if device is not None:
        if is_device_cpu(device):
            return False

650
651
652
    if FORCE_FP16:
        return True

653
    if device is not None: #TODO
654
        if is_device_mps(device):
655
            return False
656

657
658
659
    if FORCE_FP32:
        return False

660
661
662
    if directml_enabled:
        return False

663
    if cpu_mode() or mps_mode():
664
665
        return False #TODO ?

666
    if is_intel_xpu():
comfyanonymous's avatar
comfyanonymous committed
667
668
669
        return True

    if torch.cuda.is_bf16_supported():
670
671
        return True

comfyanonymous's avatar
comfyanonymous committed
672
    props = torch.cuda.get_device_properties("cuda")
673
674
675
676
677
678
679
680
681
682
683
684
685
686
    if props.major < 6:
        return False

    fp16_works = False
    #FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled
    #when the model doesn't actually fit on the card
    #TODO: actually test if GP106 and others have the same type of behavior
    nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050"]
    for x in nvidia_10_series:
        if x in props.name.lower():
            fp16_works = True

    if fp16_works:
        free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
687
        if (not prioritize_performance) or model_params * 4 > free_model_memory:
688
689
            return True

690
691
692
    if props.major < 7:
        return False

693
    #FP16 is just broken on these cards
694
    nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX", "T2000", "T1000", "T1200"]
695
696
697
698
699
700
    for x in nvidia_16_series:
        if x in props.name:
            return False

    return True

701
def soft_empty_cache(force=False):
702
703
    global cpu_state
    if cpu_state == CPUState.MPS:
comfyanonymous's avatar
comfyanonymous committed
704
        torch.mps.empty_cache()
705
    elif is_intel_xpu():
706
707
        torch.xpu.empty_cache()
    elif torch.cuda.is_available():
708
        if force or is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda
709
710
711
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()

comfyanonymous's avatar
comfyanonymous committed
712
713
714
715
716
717
718
def resolve_lowvram_weight(weight, model, key):
    if weight.device == torch.device("meta"): #lowvram NOTE: this depends on the inner working of the accelerate library so it might break.
        key_split = key.split('.')              # I have no idea why they don't just leave the weight there instead of using the meta device.
        op = comfy.utils.get_attr(model, '.'.join(key_split[:-1]))
        weight = op._hf_hook.weights_map[key_split[-1]]
    return weight

719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
#TODO: might be cleaner to put this somewhere else
import threading

class InterruptProcessingException(Exception):
    pass

interrupt_processing_mutex = threading.RLock()

interrupt_processing = False
def interrupt_current_processing(value=True):
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        interrupt_processing = value

def processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        return interrupt_processing

def throw_exception_if_processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        if interrupt_processing:
            interrupt_processing = False
            raise InterruptProcessingException()