model_management.py 22.2 KB
Newer Older
1
2
import psutil
from enum import Enum
comfyanonymous's avatar
comfyanonymous committed
3
from comfy.cli_args import args
comfyanonymous's avatar
comfyanonymous committed
4
import comfy.utils
5
import torch
comfyanonymous's avatar
comfyanonymous committed
6
import sys
7

8
class VRAMState(Enum):
9
10
    DISABLED = 0    #No vram present: no need to move models to vram
    NO_VRAM = 1     #Very low vram: enable all the options to save vram
11
12
13
    LOW_VRAM = 2
    NORMAL_VRAM = 3
    HIGH_VRAM = 4
14
    SHARED = 5      #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both.
15
16
17
18
19

class CPUState(Enum):
    GPU = 0
    CPU = 1
    MPS = 2
20

21
22
23
# Determine VRAM State
vram_state = VRAMState.NORMAL_VRAM
set_vram_to = VRAMState.NORMAL_VRAM
24
cpu_state = CPUState.GPU
25

26
total_vram = 0
27

28
lowvram_available = True
藍+85CD's avatar
藍+85CD committed
29
xpu_available = False
30

31
directml_enabled = False
32
if args.directml is not None:
33
34
    import torch_directml
    directml_enabled = True
35
36
37
38
39
40
    device_index = args.directml
    if device_index < 0:
        directml_device = torch_directml.device()
    else:
        directml_device = torch_directml.device(device_index)
    print("Using directml with device:", torch_directml.device_name(device_index))
41
    # torch_directml.disable_tiled_resources(True)
42
    lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
43

44
try:
45
46
47
    import intel_extension_for_pytorch as ipex
    if torch.xpu.is_available():
        xpu_available = True
48
49
50
except:
    pass

51
52
53
try:
    if torch.backends.mps.is_available():
        cpu_state = CPUState.MPS
KarryCharon's avatar
KarryCharon committed
54
        import torch.mps
55
56
57
58
59
60
except:
    pass

if args.cpu:
    cpu_state = CPUState.CPU

61
62
def is_intel_xpu():
    global cpu_state
63
    global xpu_available
64
65
66
67
68
69
    if cpu_state == CPUState.GPU:
        if xpu_available:
            return True
    return False

def get_torch_device():
70
    global directml_enabled
71
    global cpu_state
72
73
74
    if directml_enabled:
        global directml_device
        return directml_device
75
    if cpu_state == CPUState.MPS:
76
        return torch.device("mps")
77
    if cpu_state == CPUState.CPU:
78
79
        return torch.device("cpu")
    else:
80
        if is_intel_xpu():
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
            return torch.device("xpu")
        else:
            return torch.device(torch.cuda.current_device())

def get_total_memory(dev=None, torch_total_too=False):
    global directml_enabled
    if dev is None:
        dev = get_torch_device()

    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
        mem_total = psutil.virtual_memory().total
        mem_total_torch = mem_total
    else:
        if directml_enabled:
            mem_total = 1024 * 1024 * 1024 #TODO
            mem_total_torch = mem_total
97
        elif is_intel_xpu():
98
99
            stats = torch.xpu.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
100
            mem_total = torch.xpu.get_device_properties(dev).total_memory
101
            mem_total_torch = mem_reserved
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
            _, mem_total_cuda = torch.cuda.mem_get_info(dev)
            mem_total_torch = mem_reserved
            mem_total = mem_total_cuda

    if torch_total_too:
        return (mem_total, mem_total_torch)
    else:
        return mem_total

total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
print("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
if not args.normalvram and not args.cpu:
    if lowvram_available and total_vram <= 4096:
        print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
        set_vram_to = VRAMState.LOW_VRAM

122
123
124
125
126
try:
    OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
    OOM_EXCEPTION = Exception

127
128
XFORMERS_VERSION = ""
XFORMERS_ENABLED_VAE = True
129
130
if args.disable_xformers:
    XFORMERS_IS_AVAILABLE = False
131
132
133
134
else:
    try:
        import xformers
        import xformers.ops
135
        XFORMERS_IS_AVAILABLE = True
136
137
138
139
140
141
142
143
144
145
146
        try:
            XFORMERS_VERSION = xformers.version.__version__
            print("xformers version:", XFORMERS_VERSION)
            if XFORMERS_VERSION.startswith("0.0.18"):
                print()
                print("WARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
                print("Please downgrade or upgrade xformers to a different version.")
                print()
                XFORMERS_ENABLED_VAE = False
        except:
            pass
147
    except:
148
        XFORMERS_IS_AVAILABLE = False
149

150
151
152
153
154
def is_nvidia():
    global cpu_state
    if cpu_state == CPUState.GPU:
        if torch.version.cuda:
            return True
155
    return False
156

157
ENABLE_PYTORCH_ATTENTION = args.use_pytorch_cross_attention
158
VAE_DTYPE = torch.float32
159

160
161
162
163
164
try:
    if is_nvidia():
        torch_version = torch.version.__version__
        if int(torch_version[0]) >= 2:
            if ENABLE_PYTORCH_ATTENTION == False and XFORMERS_IS_AVAILABLE == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
165
                ENABLE_PYTORCH_ATTENTION = True
166
167
            if torch.cuda.is_bf16_supported():
                VAE_DTYPE = torch.bfloat16
168
169
170
    if is_intel_xpu():
        if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
            ENABLE_PYTORCH_ATTENTION = True
171
172
173
except:
    pass

174
175
176
if is_intel_xpu():
    VAE_DTYPE = torch.bfloat16

177
178
179
180
181
182
183
if args.fp16_vae:
    VAE_DTYPE = torch.float16
elif args.bf16_vae:
    VAE_DTYPE = torch.bfloat16
elif args.fp32_vae:
    VAE_DTYPE = torch.float32

184

185
if ENABLE_PYTORCH_ATTENTION:
186
187
188
    torch.backends.cuda.enable_math_sdp(True)
    torch.backends.cuda.enable_flash_sdp(True)
    torch.backends.cuda.enable_mem_efficient_sdp(True)
189
    XFORMERS_IS_AVAILABLE = False
190

191
192
if args.lowvram:
    set_vram_to = VRAMState.LOW_VRAM
193
    lowvram_available = True
194
195
elif args.novram:
    set_vram_to = VRAMState.NO_VRAM
196
elif args.highvram or args.gpu_only:
197
    vram_state = VRAMState.HIGH_VRAM
198

199
FORCE_FP32 = False
200
FORCE_FP16 = False
201
202
203
204
if args.force_fp32:
    print("Forcing FP32, if this improves things please report it.")
    FORCE_FP32 = True

205
206
207
208
if args.force_fp16:
    print("Forcing FP16.")
    FORCE_FP16 = True

209
if lowvram_available:
210
211
    try:
        import accelerate
212
213
        if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
            vram_state = set_vram_to
214
215
216
    except Exception as e:
        import traceback
        print(traceback.format_exc())
217
218
        print("ERROR: LOW VRAM MODE NEEDS accelerate.")
        lowvram_available = False
219

220

221
222
if cpu_state != CPUState.GPU:
    vram_state = VRAMState.DISABLED
223

224
225
if cpu_state == CPUState.MPS:
    vram_state = VRAMState.SHARED
226

227
print(f"Set vram state to: {vram_state.name}")
228

229
230
231
232
DISABLE_SMART_MEMORY = args.disable_smart_memory

if DISABLE_SMART_MEMORY:
    print("Disabling smart memory management")
233

234
235
def get_torch_device_name(device):
    if hasattr(device, 'type'):
236
        if device.type == "cuda":
237
238
239
240
241
            try:
                allocator_backend = torch.cuda.get_allocator_backend()
            except:
                allocator_backend = ""
            return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
242
243
        else:
            return "{}".format(device.type)
244
    elif is_intel_xpu():
245
        return "{} {}".format(device, torch.xpu.get_device_name(device))
246
247
    else:
        return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
248
249

try:
250
    print("Device:", get_torch_device_name(get_torch_device()))
251
252
253
except:
    print("Could not pick default device.")

254
print("VAE dtype:", VAE_DTYPE)
255

comfyanonymous's avatar
comfyanonymous committed
256
current_loaded_models = []
257

comfyanonymous's avatar
comfyanonymous committed
258
259
260
261
262
class LoadedModel:
    def __init__(self, model):
        self.model = model
        self.model_accelerated = False
        self.device = model.load_device
263

comfyanonymous's avatar
comfyanonymous committed
264
265
    def model_memory(self):
        return self.model.model_size()
266

comfyanonymous's avatar
comfyanonymous committed
267
268
269
270
271
    def model_memory_required(self, device):
        if device == self.model.current_device:
            return 0
        else:
            return self.model_memory()
272

comfyanonymous's avatar
comfyanonymous committed
273
274
275
276
    def model_load(self, lowvram_model_memory=0):
        patch_model_to = None
        if lowvram_model_memory == 0:
            patch_model_to = self.device
277

comfyanonymous's avatar
comfyanonymous committed
278
279
        self.model.model_patches_to(self.device)
        self.model.model_patches_to(self.model.model_dtype())
280

comfyanonymous's avatar
comfyanonymous committed
281
282
283
284
285
286
        try:
            self.real_model = self.model.patch_model(device_to=patch_model_to) #TODO: do something with loras and offloading to CPU
        except Exception as e:
            self.model.unpatch_model(self.model.offload_device)
            self.model_unload()
            raise e
287

comfyanonymous's avatar
comfyanonymous committed
288
289
290
291
292
        if lowvram_model_memory > 0:
            print("loading in lowvram mode", lowvram_model_memory/(1024 * 1024))
            device_map = accelerate.infer_auto_device_map(self.real_model, max_memory={0: "{}MiB".format(lowvram_model_memory // (1024 * 1024)), "cpu": "16GiB"})
            accelerate.dispatch_model(self.real_model, device_map=device_map, main_device=self.device)
            self.model_accelerated = True
293

294
        if is_intel_xpu() and not args.disable_ipex_optimize:
295
            self.real_model = torch.xpu.optimize(self.real_model.eval(), inplace=True, auto_kernel_selection=True, graph_mode=True)
296

comfyanonymous's avatar
comfyanonymous committed
297
        return self.real_model
298

comfyanonymous's avatar
comfyanonymous committed
299
300
301
302
    def model_unload(self):
        if self.model_accelerated:
            accelerate.hooks.remove_hook_from_submodules(self.real_model)
            self.model_accelerated = False
303

comfyanonymous's avatar
comfyanonymous committed
304
305
        self.model.unpatch_model(self.model.offload_device)
        self.model.model_patches_to(self.model.offload_device)
306

comfyanonymous's avatar
comfyanonymous committed
307
308
    def __eq__(self, other):
        return self.model is other.model
comfyanonymous's avatar
comfyanonymous committed
309

comfyanonymous's avatar
comfyanonymous committed
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
def minimum_inference_memory():
    return (1024 * 1024 * 1024)

def unload_model_clones(model):
    to_unload = []
    for i in range(len(current_loaded_models)):
        if model.is_clone(current_loaded_models[i].model):
            to_unload = [i] + to_unload

    for i in to_unload:
        print("unload clone", i)
        current_loaded_models.pop(i).model_unload()

def free_memory(memory_required, device, keep_loaded=[]):
    unloaded_model = False
    for i in range(len(current_loaded_models) -1, -1, -1):
comfyanonymous's avatar
comfyanonymous committed
326
327
328
        if not DISABLE_SMART_MEMORY:
            if get_free_memory(device) > memory_required:
                break
comfyanonymous's avatar
comfyanonymous committed
329
330
331
        shift_model = current_loaded_models[i]
        if shift_model.device == device:
            if shift_model not in keep_loaded:
comfyanonymous's avatar
comfyanonymous committed
332
333
334
                m = current_loaded_models.pop(i)
                m.model_unload()
                del m
comfyanonymous's avatar
comfyanonymous committed
335
336
337
338
339
340
341
                unloaded_model = True

    if unloaded_model:
        soft_empty_cache()


def load_models_gpu(models, memory_required=0):
342
343
    global vram_state

comfyanonymous's avatar
comfyanonymous committed
344
345
346
347
348
349
350
351
352
353
354
355
356
    inference_memory = minimum_inference_memory()
    extra_mem = max(inference_memory, memory_required)

    models_to_load = []
    models_already_loaded = []
    for x in models:
        loaded_model = LoadedModel(x)

        if loaded_model in current_loaded_models:
            index = current_loaded_models.index(loaded_model)
            current_loaded_models.insert(0, current_loaded_models.pop(index))
            models_already_loaded.append(loaded_model)
        else:
357
358
            if hasattr(x, "model"):
                print(f"Requested to load {x.model.__class__.__name__}")
comfyanonymous's avatar
comfyanonymous committed
359
360
361
362
363
364
365
            models_to_load.append(loaded_model)

    if len(models_to_load) == 0:
        devs = set(map(lambda a: a.device, models_already_loaded))
        for d in devs:
            if d != torch.device("cpu"):
                free_memory(extra_mem, d, models_already_loaded)
366
367
        return

368
    print(f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}")
369

comfyanonymous's avatar
comfyanonymous committed
370
371
372
373
    total_memory_required = {}
    for loaded_model in models_to_load:
        unload_model_clones(loaded_model.model)
        total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
comfyanonymous's avatar
comfyanonymous committed
374

comfyanonymous's avatar
comfyanonymous committed
375
376
377
    for device in total_memory_required:
        if device != torch.device("cpu"):
            free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded)
comfyanonymous's avatar
comfyanonymous committed
378

comfyanonymous's avatar
comfyanonymous committed
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
    for loaded_model in models_to_load:
        model = loaded_model.model
        torch_dev = model.load_device
        if is_device_cpu(torch_dev):
            vram_set_state = VRAMState.DISABLED
        else:
            vram_set_state = vram_state
        lowvram_model_memory = 0
        if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
            model_size = loaded_model.model_memory_required(torch_dev)
            current_free_mem = get_free_memory(torch_dev)
            lowvram_model_memory = int(max(256 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
            if model_size > (current_free_mem - inference_memory): #only switch to lowvram if really necessary
                vram_set_state = VRAMState.LOW_VRAM
            else:
                lowvram_model_memory = 0
395

comfyanonymous's avatar
comfyanonymous committed
396
397
        if vram_set_state == VRAMState.NO_VRAM:
            lowvram_model_memory = 256 * 1024 * 1024
398

comfyanonymous's avatar
comfyanonymous committed
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
        cur_loaded_model = loaded_model.model_load(lowvram_model_memory)
        current_loaded_models.insert(0, loaded_model)
    return


def load_model_gpu(model):
    return load_models_gpu([model])

def cleanup_models():
    to_delete = []
    for i in range(len(current_loaded_models)):
        if sys.getrefcount(current_loaded_models[i].model) <= 2:
            to_delete = [i] + to_delete

    for i in to_delete:
        x = current_loaded_models.pop(i)
        x.model_unload()
        del x
417

418
419
420
421
422
423
def dtype_size(dtype):
    dtype_size = 4
    if dtype == torch.float16 or dtype == torch.bfloat16:
        dtype_size = 2
    return dtype_size

424
def unet_offload_device():
comfyanonymous's avatar
comfyanonymous committed
425
    if vram_state == VRAMState.HIGH_VRAM:
426
427
428
429
        return get_torch_device()
    else:
        return torch.device("cpu")

comfyanonymous's avatar
comfyanonymous committed
430
431
432
433
434
435
def unet_inital_load_device(parameters, dtype):
    torch_dev = get_torch_device()
    if vram_state == VRAMState.HIGH_VRAM:
        return torch_dev

    cpu_dev = torch.device("cpu")
436
437
438
    if DISABLE_SMART_MEMORY:
        return cpu_dev

439
    model_size = dtype_size(dtype) * parameters
comfyanonymous's avatar
comfyanonymous committed
440
441
442
443
444
445
446
447

    mem_dev = get_free_memory(torch_dev)
    mem_cpu = get_free_memory(cpu_dev)
    if mem_dev > mem_cpu and model_size < mem_dev:
        return torch_dev
    else:
        return cpu_dev

448
def text_encoder_offload_device():
comfyanonymous's avatar
comfyanonymous committed
449
    if args.gpu_only:
450
451
452
453
        return get_torch_device()
    else:
        return torch.device("cpu")

454
def text_encoder_device():
comfyanonymous's avatar
comfyanonymous committed
455
    if args.gpu_only:
456
        return get_torch_device()
457
    elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
458
459
        if is_intel_xpu():
            return torch.device("cpu")
460
        if should_use_fp16(prioritize_performance=False):
461
462
463
            return get_torch_device()
        else:
            return torch.device("cpu")
464
465
466
    else:
        return torch.device("cpu")

467
468
469
470
def vae_device():
    return get_torch_device()

def vae_offload_device():
comfyanonymous's avatar
comfyanonymous committed
471
    if args.gpu_only:
472
473
474
475
        return get_torch_device()
    else:
        return torch.device("cpu")

476
def vae_dtype():
477
478
    global VAE_DTYPE
    return VAE_DTYPE
479

480
481
482
483
def get_autocast_device(dev):
    if hasattr(dev, 'type'):
        return dev.type
    return "cuda"
484

485
486
487
488
489
490
491
def cast_to_device(tensor, device, dtype, copy=False):
    device_supports_cast = False
    if tensor.dtype == torch.float32 or tensor.dtype == torch.float16:
        device_supports_cast = True
    elif tensor.dtype == torch.bfloat16:
        if hasattr(device, 'type') and device.type.startswith("cuda"):
            device_supports_cast = True
492
493
        elif is_intel_xpu():
            device_supports_cast = True
494
495
496
497
498
499
500
501
502
503

    if device_supports_cast:
        if copy:
            if tensor.device == device:
                return tensor.to(dtype, copy=copy)
            return tensor.to(device, copy=copy).to(dtype)
        else:
            return tensor.to(device).to(dtype)
    else:
        return tensor.to(dtype).to(device, copy=copy)
504

505
def xformers_enabled():
506
    global directml_enabled
507
508
    global cpu_state
    if cpu_state != CPUState.GPU:
509
        return False
510
    if is_intel_xpu():
511
512
513
        return False
    if directml_enabled:
        return False
514
    return XFORMERS_IS_AVAILABLE
515

516
517
518
519
520

def xformers_enabled_vae():
    enabled = xformers_enabled()
    if not enabled:
        return False
521
522

    return XFORMERS_ENABLED_VAE
523

524
def pytorch_attention_enabled():
525
    global ENABLE_PYTORCH_ATTENTION
526
527
    return ENABLE_PYTORCH_ATTENTION

528
529
530
531
def pytorch_attention_flash_attention():
    global ENABLE_PYTORCH_ATTENTION
    if ENABLE_PYTORCH_ATTENTION:
        #TODO: more reliable way of checking for flash attention?
532
        if is_nvidia(): #pytorch flash attention only works on Nvidia
533
534
535
            return True
    return False

536
def get_free_memory(dev=None, torch_free_too=False):
537
    global directml_enabled
538
    if dev is None:
539
        dev = get_torch_device()
540

Yurii Mazurevich's avatar
Yurii Mazurevich committed
541
    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
542
543
544
        mem_free_total = psutil.virtual_memory().available
        mem_free_torch = mem_free_total
    else:
545
546
547
        if directml_enabled:
            mem_free_total = 1024 * 1024 * 1024 #TODO
            mem_free_torch = mem_free_total
548
        elif is_intel_xpu():
549
550
551
552
553
            stats = torch.xpu.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_allocated = stats['allocated_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_torch = mem_reserved - mem_active
554
            mem_free_total = torch.xpu.get_device_properties(dev).total_memory - mem_allocated
555
556
557
558
559
560
561
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
            mem_free_torch = mem_reserved - mem_active
            mem_free_total = mem_free_cuda + mem_free_torch
562
563
564
565
566

    if torch_free_too:
        return (mem_free_total, mem_free_torch)
    else:
        return mem_free_total
567

comfyanonymous's avatar
comfyanonymous committed
568
569
570
571
572
573
574
def batch_area_memory(area):
    if xformers_enabled() or pytorch_attention_flash_attention():
        #TODO: these formulas are copied from maximum_batch_area below
        return (area / 20) * (1024 * 1024)
    else:
        return (((area * 0.6) / 0.9) + 1024) * (1024 * 1024)

575
576
def maximum_batch_area():
    global vram_state
577
    if vram_state == VRAMState.NO_VRAM:
578
579
580
        return 0

    memory_free = get_free_memory() / (1024 * 1024)
581
    if xformers_enabled() or pytorch_attention_flash_attention():
582
        #TODO: this needs to be tweaked
583
        area = 20 * memory_free
584
585
586
    else:
        #TODO: this formula is because AMD sucks and has memory management issues which might be fixed in the future
        area = ((memory_free - 1024) * 0.9) / (0.6)
587
    return int(max(area, 0))
588
589

def cpu_mode():
590
591
    global cpu_state
    return cpu_state == CPUState.CPU
592

Yurii Mazurevich's avatar
Yurii Mazurevich committed
593
def mps_mode():
594
595
    global cpu_state
    return cpu_state == CPUState.MPS
Yurii Mazurevich's avatar
Yurii Mazurevich committed
596

597
598
def is_device_cpu(device):
    if hasattr(device, 'type'):
comfyanonymous's avatar
comfyanonymous committed
599
600
601
602
603
604
605
        if (device.type == 'cpu'):
            return True
    return False

def is_device_mps(device):
    if hasattr(device, 'type'):
        if (device.type == 'mps'):
606
607
608
            return True
    return False

609
def should_use_fp16(device=None, model_params=0, prioritize_performance=True):
610
611
    global directml_enabled

612
613
614
615
    if device is not None:
        if is_device_cpu(device):
            return False

616
617
618
    if FORCE_FP16:
        return True

619
    if device is not None: #TODO
620
        if is_device_mps(device):
621
            return False
622

623
624
625
    if FORCE_FP32:
        return False

626
627
628
    if directml_enabled:
        return False

629
    if cpu_mode() or mps_mode():
630
631
        return False #TODO ?

632
    if is_intel_xpu():
comfyanonymous's avatar
comfyanonymous committed
633
634
635
        return True

    if torch.cuda.is_bf16_supported():
636
637
        return True

comfyanonymous's avatar
comfyanonymous committed
638
    props = torch.cuda.get_device_properties("cuda")
639
640
641
642
643
644
645
646
647
648
649
650
651
652
    if props.major < 6:
        return False

    fp16_works = False
    #FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled
    #when the model doesn't actually fit on the card
    #TODO: actually test if GP106 and others have the same type of behavior
    nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050"]
    for x in nvidia_10_series:
        if x in props.name.lower():
            fp16_works = True

    if fp16_works:
        free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
653
        if (not prioritize_performance) or model_params * 4 > free_model_memory:
654
655
            return True

656
657
658
    if props.major < 7:
        return False

659
    #FP16 is just broken on these cards
660
    nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX"]
661
662
663
664
665
666
    for x in nvidia_16_series:
        if x in props.name:
            return False

    return True

667
def soft_empty_cache(force=False):
668
669
    global cpu_state
    if cpu_state == CPUState.MPS:
comfyanonymous's avatar
comfyanonymous committed
670
        torch.mps.empty_cache()
671
    elif is_intel_xpu():
672
673
        torch.xpu.empty_cache()
    elif torch.cuda.is_available():
674
        if force or is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda
675
676
677
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()

comfyanonymous's avatar
comfyanonymous committed
678
679
680
681
682
683
684
def resolve_lowvram_weight(weight, model, key):
    if weight.device == torch.device("meta"): #lowvram NOTE: this depends on the inner working of the accelerate library so it might break.
        key_split = key.split('.')              # I have no idea why they don't just leave the weight there instead of using the meta device.
        op = comfy.utils.get_attr(model, '.'.join(key_split[:-1]))
        weight = op._hf_hook.weights_map[key_split[-1]]
    return weight

685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
#TODO: might be cleaner to put this somewhere else
import threading

class InterruptProcessingException(Exception):
    pass

interrupt_processing_mutex = threading.RLock()

interrupt_processing = False
def interrupt_current_processing(value=True):
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        interrupt_processing = value

def processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        return interrupt_processing

def throw_exception_if_processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        if interrupt_processing:
            interrupt_processing = False
            raise InterruptProcessingException()