model_management.py 29.1 KB
Newer Older
1
import psutil
2
import logging
3
from enum import Enum
comfyanonymous's avatar
comfyanonymous committed
4
from comfy.cli_args import args
5
import torch
comfyanonymous's avatar
comfyanonymous committed
6
import sys
7
import platform
8

9
class VRAMState(Enum):
10
11
    DISABLED = 0    #No vram present: no need to move models to vram
    NO_VRAM = 1     #Very low vram: enable all the options to save vram
12
13
14
    LOW_VRAM = 2
    NORMAL_VRAM = 3
    HIGH_VRAM = 4
15
    SHARED = 5      #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both.
16
17
18
19
20

class CPUState(Enum):
    GPU = 0
    CPU = 1
    MPS = 2
21

22
23
24
# Determine VRAM State
vram_state = VRAMState.NORMAL_VRAM
set_vram_to = VRAMState.NORMAL_VRAM
25
cpu_state = CPUState.GPU
26

27
total_vram = 0
28

29
lowvram_available = True
藍+85CD's avatar
藍+85CD committed
30
xpu_available = False
31

32
if args.deterministic:
comfyanonymous's avatar
comfyanonymous committed
33
    logging.info("Using deterministic algorithms for pytorch")
34
35
    torch.use_deterministic_algorithms(True, warn_only=True)

36
directml_enabled = False
37
if args.directml is not None:
38
39
    import torch_directml
    directml_enabled = True
40
41
42
43
44
    device_index = args.directml
    if device_index < 0:
        directml_device = torch_directml.device()
    else:
        directml_device = torch_directml.device(device_index)
comfyanonymous's avatar
comfyanonymous committed
45
    logging.info("Using directml with device: {}".format(torch_directml.device_name(device_index)))
46
    # torch_directml.disable_tiled_resources(True)
47
    lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
48

49
try:
50
51
52
    import intel_extension_for_pytorch as ipex
    if torch.xpu.is_available():
        xpu_available = True
53
54
55
except:
    pass

56
57
58
try:
    if torch.backends.mps.is_available():
        cpu_state = CPUState.MPS
KarryCharon's avatar
KarryCharon committed
59
        import torch.mps
60
61
62
63
64
65
except:
    pass

if args.cpu:
    cpu_state = CPUState.CPU

66
67
def is_intel_xpu():
    global cpu_state
68
    global xpu_available
69
70
71
72
73
74
    if cpu_state == CPUState.GPU:
        if xpu_available:
            return True
    return False

def get_torch_device():
75
    global directml_enabled
76
    global cpu_state
77
78
79
    if directml_enabled:
        global directml_device
        return directml_device
80
    if cpu_state == CPUState.MPS:
81
        return torch.device("mps")
82
    if cpu_state == CPUState.CPU:
83
84
        return torch.device("cpu")
    else:
85
        if is_intel_xpu():
86
            return torch.device("xpu", torch.xpu.current_device())
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
        else:
            return torch.device(torch.cuda.current_device())

def get_total_memory(dev=None, torch_total_too=False):
    global directml_enabled
    if dev is None:
        dev = get_torch_device()

    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
        mem_total = psutil.virtual_memory().total
        mem_total_torch = mem_total
    else:
        if directml_enabled:
            mem_total = 1024 * 1024 * 1024 #TODO
            mem_total_torch = mem_total
102
        elif is_intel_xpu():
103
104
105
            stats = torch.xpu.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
            mem_total_torch = mem_reserved
106
            mem_total = torch.xpu.get_device_properties(dev).total_memory
107
108
109
110
111
112
113
114
115
116
117
118
119
120
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
            _, mem_total_cuda = torch.cuda.mem_get_info(dev)
            mem_total_torch = mem_reserved
            mem_total = mem_total_cuda

    if torch_total_too:
        return (mem_total, mem_total_torch)
    else:
        return mem_total

total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
comfyanonymous's avatar
comfyanonymous committed
121
logging.info("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
122

comfyanonymous's avatar
comfyanonymous committed
123
124
125
126
127
try:
    logging.info("pytorch version: {}".format(torch.version.__version__))
except:
    pass

128
129
130
131
132
try:
    OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
    OOM_EXCEPTION = Exception

133
134
XFORMERS_VERSION = ""
XFORMERS_ENABLED_VAE = True
135
136
if args.disable_xformers:
    XFORMERS_IS_AVAILABLE = False
137
138
139
140
else:
    try:
        import xformers
        import xformers.ops
141
        XFORMERS_IS_AVAILABLE = True
142
143
144
145
        try:
            XFORMERS_IS_AVAILABLE = xformers._has_cpp_library
        except:
            pass
146
147
        try:
            XFORMERS_VERSION = xformers.version.__version__
comfyanonymous's avatar
comfyanonymous committed
148
            logging.info("xformers version: {}".format(XFORMERS_VERSION))
149
            if XFORMERS_VERSION.startswith("0.0.18"):
150
151
                logging.warning("\nWARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
                logging.warning("Please downgrade or upgrade xformers to a different version.\n")
152
153
154
                XFORMERS_ENABLED_VAE = False
        except:
            pass
155
    except:
156
        XFORMERS_IS_AVAILABLE = False
157

158
159
160
161
162
def is_nvidia():
    global cpu_state
    if cpu_state == CPUState.GPU:
        if torch.version.cuda:
            return True
163
    return False
164

165
166
167
168
169
ENABLE_PYTORCH_ATTENTION = False
if args.use_pytorch_cross_attention:
    ENABLE_PYTORCH_ATTENTION = True
    XFORMERS_IS_AVAILABLE = False

170
VAE_DTYPE = torch.float32
171

172
173
174
175
try:
    if is_nvidia():
        torch_version = torch.version.__version__
        if int(torch_version[0]) >= 2:
176
            if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
177
                ENABLE_PYTORCH_ATTENTION = True
178
            if torch.cuda.is_bf16_supported() and torch.cuda.get_device_properties(torch.cuda.current_device()).major >= 8:
179
                VAE_DTYPE = torch.bfloat16
180
181
182
    if is_intel_xpu():
        if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
            ENABLE_PYTORCH_ATTENTION = True
183
184
185
except:
    pass

186
187
188
if is_intel_xpu():
    VAE_DTYPE = torch.bfloat16

189
190
191
if args.cpu_vae:
    VAE_DTYPE = torch.float32

192
193
194
195
196
197
198
if args.fp16_vae:
    VAE_DTYPE = torch.float16
elif args.bf16_vae:
    VAE_DTYPE = torch.bfloat16
elif args.fp32_vae:
    VAE_DTYPE = torch.float32

199

200
if ENABLE_PYTORCH_ATTENTION:
201
202
203
    torch.backends.cuda.enable_math_sdp(True)
    torch.backends.cuda.enable_flash_sdp(True)
    torch.backends.cuda.enable_mem_efficient_sdp(True)
204

205
206
if args.lowvram:
    set_vram_to = VRAMState.LOW_VRAM
207
    lowvram_available = True
208
209
elif args.novram:
    set_vram_to = VRAMState.NO_VRAM
210
elif args.highvram or args.gpu_only:
211
    vram_state = VRAMState.HIGH_VRAM
212

213
FORCE_FP32 = False
214
FORCE_FP16 = False
215
if args.force_fp32:
comfyanonymous's avatar
comfyanonymous committed
216
    logging.info("Forcing FP32, if this improves things please report it.")
217
218
    FORCE_FP32 = True

219
if args.force_fp16:
comfyanonymous's avatar
comfyanonymous committed
220
    logging.info("Forcing FP16.")
221
222
    FORCE_FP16 = True

223
if lowvram_available:
224
225
    if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
        vram_state = set_vram_to
226

227

228
229
if cpu_state != CPUState.GPU:
    vram_state = VRAMState.DISABLED
230

231
232
if cpu_state == CPUState.MPS:
    vram_state = VRAMState.SHARED
233

comfyanonymous's avatar
comfyanonymous committed
234
logging.info(f"Set vram state to: {vram_state.name}")
235

236
237
238
DISABLE_SMART_MEMORY = args.disable_smart_memory

if DISABLE_SMART_MEMORY:
comfyanonymous's avatar
comfyanonymous committed
239
    logging.info("Disabling smart memory management")
240

241
242
def get_torch_device_name(device):
    if hasattr(device, 'type'):
243
        if device.type == "cuda":
244
245
246
247
248
            try:
                allocator_backend = torch.cuda.get_allocator_backend()
            except:
                allocator_backend = ""
            return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
249
250
        else:
            return "{}".format(device.type)
251
    elif is_intel_xpu():
252
        return "{} {}".format(device, torch.xpu.get_device_name(device))
253
254
    else:
        return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
255
256

try:
comfyanonymous's avatar
comfyanonymous committed
257
    logging.info("Device: {}".format(get_torch_device_name(get_torch_device())))
258
except:
259
    logging.warning("Could not pick default device.")
260

comfyanonymous's avatar
comfyanonymous committed
261
logging.info("VAE dtype: {}".format(VAE_DTYPE))
262

comfyanonymous's avatar
comfyanonymous committed
263
current_loaded_models = []
264

265
266
267
268
269
270
271
272
def module_size(module):
    module_mem = 0
    sd = module.state_dict()
    for k in sd:
        t = sd[k]
        module_mem += t.nelement() * t.element_size()
    return module_mem

comfyanonymous's avatar
comfyanonymous committed
273
274
275
276
class LoadedModel:
    def __init__(self, model):
        self.model = model
        self.device = model.load_device
277
        self.weights_loaded = False
278
        self.real_model = None
279
        self.currently_used = True
280

comfyanonymous's avatar
comfyanonymous committed
281
282
    def model_memory(self):
        return self.model.model_size()
283

comfyanonymous's avatar
comfyanonymous committed
284
285
286
287
288
    def model_memory_required(self, device):
        if device == self.model.current_device:
            return 0
        else:
            return self.model_memory()
289

290
    def model_load(self, lowvram_model_memory=0, force_patch_weights=False):
291
        patch_model_to = self.device
292

comfyanonymous's avatar
comfyanonymous committed
293
294
        self.model.model_patches_to(self.device)
        self.model.model_patches_to(self.model.model_dtype())
295

296
297
        load_weights = not self.weights_loaded

comfyanonymous's avatar
comfyanonymous committed
298
        try:
299
            if lowvram_model_memory > 0 and load_weights:
300
                self.real_model = self.model.patch_model_lowvram(device_to=patch_model_to, lowvram_model_memory=lowvram_model_memory, force_patch_weights=force_patch_weights)
301
            else:
302
                self.real_model = self.model.patch_model(device_to=patch_model_to, patch_weights=load_weights)
comfyanonymous's avatar
comfyanonymous committed
303
304
305
306
        except Exception as e:
            self.model.unpatch_model(self.model.offload_device)
            self.model_unload()
            raise e
307

308
        if is_intel_xpu() and not args.disable_ipex_optimize:
309
            self.real_model = ipex.optimize(self.real_model.eval(), graph_mode=True, concat_linear=True)
310

311
        self.weights_loaded = True
comfyanonymous's avatar
comfyanonymous committed
312
        return self.real_model
313

314
315
316
317
318
    def should_reload_model(self, force_patch_weights=False):
        if force_patch_weights and self.model.lowvram_patch_counter > 0:
            return True
        return False

319
320
    def model_unload(self, unpatch_weights=True):
        self.model.unpatch_model(self.model.offload_device, unpatch_weights=unpatch_weights)
comfyanonymous's avatar
comfyanonymous committed
321
        self.model.model_patches_to(self.model.offload_device)
322
        self.weights_loaded = self.weights_loaded and not unpatch_weights
323
        self.real_model = None
324

comfyanonymous's avatar
comfyanonymous committed
325
326
    def __eq__(self, other):
        return self.model is other.model
comfyanonymous's avatar
comfyanonymous committed
327

comfyanonymous's avatar
comfyanonymous committed
328
329
330
def minimum_inference_memory():
    return (1024 * 1024 * 1024)

331
def unload_model_clones(model, unload_weights_only=True, force_unload=True):
comfyanonymous's avatar
comfyanonymous committed
332
333
334
335
336
    to_unload = []
    for i in range(len(current_loaded_models)):
        if model.is_clone(current_loaded_models[i].model):
            to_unload = [i] + to_unload

337
    if len(to_unload) == 0:
338
        return True
339
340

    same_weights = 0
comfyanonymous's avatar
comfyanonymous committed
341
    for i in to_unload:
342
343
344
345
346
347
348
349
        if model.clone_has_same_weights(current_loaded_models[i].model):
            same_weights += 1

    if same_weights == len(to_unload):
        unload_weight = False
    else:
        unload_weight = True

350
351
352
    if not force_unload:
        if unload_weights_only and unload_weight == False:
            return None
353
354
355
356
357

    for i in to_unload:
        logging.debug("unload clone {} {}".format(i, unload_weight))
        current_loaded_models.pop(i).model_unload(unpatch_weights=unload_weight)

358
    return unload_weight
comfyanonymous's avatar
comfyanonymous committed
359
360

def free_memory(memory_required, device, keep_loaded=[]):
361
362
363
    unloaded_model = []
    can_unload = []

comfyanonymous's avatar
comfyanonymous committed
364
365
366
367
    for i in range(len(current_loaded_models) -1, -1, -1):
        shift_model = current_loaded_models[i]
        if shift_model.device == device:
            if shift_model not in keep_loaded:
368
                can_unload.append((sys.getrefcount(shift_model.model), shift_model.model_memory(), i))
369
                shift_model.currently_used = False
370
371
372
373
374
375
376
377
378
379
380

    for x in sorted(can_unload):
        i = x[-1]
        if not DISABLE_SMART_MEMORY:
            if get_free_memory(device) > memory_required:
                break
        current_loaded_models[i].model_unload()
        unloaded_model.append(i)

    for i in sorted(unloaded_model, reverse=True):
        current_loaded_models.pop(i)
comfyanonymous's avatar
comfyanonymous committed
381

382
    if len(unloaded_model) > 0:
comfyanonymous's avatar
comfyanonymous committed
383
        soft_empty_cache()
384
385
386
387
388
    else:
        if vram_state != VRAMState.HIGH_VRAM:
            mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True)
            if mem_free_torch > mem_free_total * 0.25:
                soft_empty_cache()
comfyanonymous's avatar
comfyanonymous committed
389

390
def load_models_gpu(models, memory_required=0, force_patch_weights=False):
391
392
    global vram_state

comfyanonymous's avatar
comfyanonymous committed
393
394
395
    inference_memory = minimum_inference_memory()
    extra_mem = max(inference_memory, memory_required)

396
397
    models = set(models)

comfyanonymous's avatar
comfyanonymous committed
398
399
400
401
    models_to_load = []
    models_already_loaded = []
    for x in models:
        loaded_model = LoadedModel(x)
402
        loaded = None
comfyanonymous's avatar
comfyanonymous committed
403

404
405
406
407
408
409
410
411
412
413
414
        try:
            loaded_model_index = current_loaded_models.index(loaded_model)
        except:
            loaded_model_index = None

        if loaded_model_index is not None:
            loaded = current_loaded_models[loaded_model_index]
            if loaded.should_reload_model(force_patch_weights=force_patch_weights): #TODO: cleanup this model reload logic
                current_loaded_models.pop(loaded_model_index).model_unload(unpatch_weights=True)
                loaded = None
            else:
415
                loaded.currently_used = True
416
417
418
                models_already_loaded.append(loaded)

        if loaded is None:
419
            if hasattr(x, "model"):
comfyanonymous's avatar
comfyanonymous committed
420
                logging.info(f"Requested to load {x.model.__class__.__name__}")
comfyanonymous's avatar
comfyanonymous committed
421
422
423
424
425
426
427
            models_to_load.append(loaded_model)

    if len(models_to_load) == 0:
        devs = set(map(lambda a: a.device, models_already_loaded))
        for d in devs:
            if d != torch.device("cpu"):
                free_memory(extra_mem, d, models_already_loaded)
428
429
        return

comfyanonymous's avatar
comfyanonymous committed
430
    logging.info(f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}")
431

comfyanonymous's avatar
comfyanonymous committed
432
433
    total_memory_required = {}
    for loaded_model in models_to_load:
434
435
        if unload_model_clones(loaded_model.model, unload_weights_only=True, force_unload=False) == True:#unload clones where the weights are different
            total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
comfyanonymous's avatar
comfyanonymous committed
436

comfyanonymous's avatar
comfyanonymous committed
437
438
439
    for device in total_memory_required:
        if device != torch.device("cpu"):
            free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded)
comfyanonymous's avatar
comfyanonymous committed
440

441
    for loaded_model in models_to_load:
442
443
444
        weights_unloaded = unload_model_clones(loaded_model.model, unload_weights_only=False, force_unload=False) #unload the rest of the clones where the weights can stay loaded
        if weights_unloaded is not None:
            loaded_model.weights_loaded = not weights_unloaded
445

comfyanonymous's avatar
comfyanonymous committed
446
447
448
449
450
451
452
453
454
455
456
    for loaded_model in models_to_load:
        model = loaded_model.model
        torch_dev = model.load_device
        if is_device_cpu(torch_dev):
            vram_set_state = VRAMState.DISABLED
        else:
            vram_set_state = vram_state
        lowvram_model_memory = 0
        if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
            model_size = loaded_model.model_memory_required(torch_dev)
            current_free_mem = get_free_memory(torch_dev)
457
            lowvram_model_memory = int(max(64 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
458
            if model_size <= (current_free_mem - inference_memory): #only switch to lowvram if really necessary
comfyanonymous's avatar
comfyanonymous committed
459
                lowvram_model_memory = 0
460

comfyanonymous's avatar
comfyanonymous committed
461
        if vram_set_state == VRAMState.NO_VRAM:
462
            lowvram_model_memory = 64 * 1024 * 1024
463

464
        cur_loaded_model = loaded_model.model_load(lowvram_model_memory, force_patch_weights=force_patch_weights)
comfyanonymous's avatar
comfyanonymous committed
465
466
467
468
469
470
471
        current_loaded_models.insert(0, loaded_model)
    return


def load_model_gpu(model):
    return load_models_gpu([model])

472
473
474
475
476
477
478
479
480
481
def loaded_models(only_currently_used=False):
    output = []
    for m in current_loaded_models:
        if only_currently_used:
            if not m.currently_used:
                continue

        output.append(m.model)
    return output

482
def cleanup_models(keep_clone_weights_loaded=False):
comfyanonymous's avatar
comfyanonymous committed
483
484
485
    to_delete = []
    for i in range(len(current_loaded_models)):
        if sys.getrefcount(current_loaded_models[i].model) <= 2:
486
487
488
489
490
            if not keep_clone_weights_loaded:
                to_delete = [i] + to_delete
            #TODO: find a less fragile way to do this.
            elif sys.getrefcount(current_loaded_models[i].real_model) <= 3: #references from .real_model + the .model
                to_delete = [i] + to_delete
comfyanonymous's avatar
comfyanonymous committed
491
492
493
494
495

    for i in to_delete:
        x = current_loaded_models.pop(i)
        x.model_unload()
        del x
496

497
498
499
500
def dtype_size(dtype):
    dtype_size = 4
    if dtype == torch.float16 or dtype == torch.bfloat16:
        dtype_size = 2
501
502
503
504
505
506
507
    elif dtype == torch.float32:
        dtype_size = 4
    else:
        try:
            dtype_size = dtype.itemsize
        except: #Old pytorch doesn't have .itemsize
            pass
508
509
    return dtype_size

510
def unet_offload_device():
comfyanonymous's avatar
comfyanonymous committed
511
    if vram_state == VRAMState.HIGH_VRAM:
512
513
514
515
        return get_torch_device()
    else:
        return torch.device("cpu")

comfyanonymous's avatar
comfyanonymous committed
516
517
518
519
520
521
def unet_inital_load_device(parameters, dtype):
    torch_dev = get_torch_device()
    if vram_state == VRAMState.HIGH_VRAM:
        return torch_dev

    cpu_dev = torch.device("cpu")
522
523
524
    if DISABLE_SMART_MEMORY:
        return cpu_dev

525
    model_size = dtype_size(dtype) * parameters
comfyanonymous's avatar
comfyanonymous committed
526
527
528
529
530
531
532
533

    mem_dev = get_free_memory(torch_dev)
    mem_cpu = get_free_memory(cpu_dev)
    if mem_dev > mem_cpu and model_size < mem_dev:
        return torch_dev
    else:
        return cpu_dev

comfyanonymous's avatar
comfyanonymous committed
534
def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]):
535
536
    if args.bf16_unet:
        return torch.bfloat16
537
538
    if args.fp16_unet:
        return torch.float16
539
540
541
542
    if args.fp8_e4m3fn_unet:
        return torch.float8_e4m3fn
    if args.fp8_e5m2_unet:
        return torch.float8_e5m2
543
    if should_use_fp16(device=device, model_params=model_params, manual_cast=True):
comfyanonymous's avatar
comfyanonymous committed
544
545
        if torch.float16 in supported_dtypes:
            return torch.float16
546
    if should_use_bf16(device, model_params=model_params, manual_cast=True):
comfyanonymous's avatar
comfyanonymous committed
547
548
        if torch.bfloat16 in supported_dtypes:
            return torch.bfloat16
549
550
    return torch.float32

551
# None means no manual cast
comfyanonymous's avatar
comfyanonymous committed
552
def unet_manual_cast(weight_dtype, inference_device, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]):
553
554
555
    if weight_dtype == torch.float32:
        return None

comfyanonymous's avatar
comfyanonymous committed
556
    fp16_supported = should_use_fp16(inference_device, prioritize_performance=False)
557
558
559
    if fp16_supported and weight_dtype == torch.float16:
        return None

comfyanonymous's avatar
comfyanonymous committed
560
561
562
563
564
    bf16_supported = should_use_bf16(inference_device)
    if bf16_supported and weight_dtype == torch.bfloat16:
        return None

    if fp16_supported and torch.float16 in supported_dtypes:
565
        return torch.float16
comfyanonymous's avatar
comfyanonymous committed
566
567
568

    elif bf16_supported and torch.bfloat16 in supported_dtypes:
        return torch.bfloat16
569
570
571
    else:
        return torch.float32

572
def text_encoder_offload_device():
comfyanonymous's avatar
comfyanonymous committed
573
    if args.gpu_only:
574
575
576
577
        return get_torch_device()
    else:
        return torch.device("cpu")

578
def text_encoder_device():
comfyanonymous's avatar
comfyanonymous committed
579
    if args.gpu_only:
580
        return get_torch_device()
581
    elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
582
        if should_use_fp16(prioritize_performance=False):
583
584
585
            return get_torch_device()
        else:
            return torch.device("cpu")
586
587
588
    else:
        return torch.device("cpu")

589
590
591
592
593
594
595
596
597
598
def text_encoder_dtype(device=None):
    if args.fp8_e4m3fn_text_enc:
        return torch.float8_e4m3fn
    elif args.fp8_e5m2_text_enc:
        return torch.float8_e5m2
    elif args.fp16_text_enc:
        return torch.float16
    elif args.fp32_text_enc:
        return torch.float32

599
600
601
    if is_device_cpu(device):
        return torch.float16

602
603
    return torch.float16

604

605
606
607
608
609
610
def intermediate_device():
    if args.gpu_only:
        return get_torch_device()
    else:
        return torch.device("cpu")

611
def vae_device():
612
613
    if args.cpu_vae:
        return torch.device("cpu")
614
615
616
    return get_torch_device()

def vae_offload_device():
comfyanonymous's avatar
comfyanonymous committed
617
    if args.gpu_only:
618
619
620
621
        return get_torch_device()
    else:
        return torch.device("cpu")

622
def vae_dtype():
623
624
    global VAE_DTYPE
    return VAE_DTYPE
625

626
627
628
629
def get_autocast_device(dev):
    if hasattr(dev, 'type'):
        return dev.type
    return "cuda"
630

631
632
633
def supports_dtype(device, dtype): #TODO
    if dtype == torch.float32:
        return True
634
    if is_device_cpu(device):
635
636
637
638
639
640
641
        return False
    if dtype == torch.float16:
        return True
    if dtype == torch.bfloat16:
        return True
    return False

642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
def supports_cast(device, dtype): #TODO
    if dtype == torch.float32:
        return True
    if dtype == torch.float16:
        return True
    if is_device_mps(device):
        return False
    if directml_enabled: #TODO: test this
        return False
    if dtype == torch.bfloat16:
        return True
    if dtype == torch.float8_e4m3fn:
        return True
    if dtype == torch.float8_e5m2:
        return True
    return False

659
660
661
def device_supports_non_blocking(device):
    if is_device_mps(device):
        return False #pytorch bug? mps doesn't support non blocking
662
663
    if is_intel_xpu():
        return False
664
665
666
667
    if args.deterministic: #TODO: figure out why deterministic breaks non blocking from gpu to cpu (previews)
        return False
    if directml_enabled:
        return False
comfyanonymous's avatar
comfyanonymous committed
668
669
670
671
672
    return True

def device_should_use_non_blocking(device):
    if not device_supports_non_blocking(device):
        return False
673
    return False
comfyanonymous's avatar
comfyanonymous committed
674
675
    # return True #TODO: figure out why this causes memory issues on Nvidia and possibly others

676

677
678
679
680
681
682
683
def cast_to_device(tensor, device, dtype, copy=False):
    device_supports_cast = False
    if tensor.dtype == torch.float32 or tensor.dtype == torch.float16:
        device_supports_cast = True
    elif tensor.dtype == torch.bfloat16:
        if hasattr(device, 'type') and device.type.startswith("cuda"):
            device_supports_cast = True
684
685
        elif is_intel_xpu():
            device_supports_cast = True
686

comfyanonymous's avatar
comfyanonymous committed
687
    non_blocking = device_should_use_non_blocking(device)
comfyanonymous's avatar
comfyanonymous committed
688

689
690
691
    if device_supports_cast:
        if copy:
            if tensor.device == device:
comfyanonymous's avatar
comfyanonymous committed
692
693
                return tensor.to(dtype, copy=copy, non_blocking=non_blocking)
            return tensor.to(device, copy=copy, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
694
        else:
comfyanonymous's avatar
comfyanonymous committed
695
            return tensor.to(device, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
696
    else:
comfyanonymous's avatar
comfyanonymous committed
697
        return tensor.to(device, dtype, copy=copy, non_blocking=non_blocking)
698

699
def xformers_enabled():
700
    global directml_enabled
701
702
    global cpu_state
    if cpu_state != CPUState.GPU:
703
        return False
704
    if is_intel_xpu():
705
706
707
        return False
    if directml_enabled:
        return False
708
    return XFORMERS_IS_AVAILABLE
709

710
711
712
713
714

def xformers_enabled_vae():
    enabled = xformers_enabled()
    if not enabled:
        return False
715
716

    return XFORMERS_ENABLED_VAE
717

718
def pytorch_attention_enabled():
719
    global ENABLE_PYTORCH_ATTENTION
720
721
    return ENABLE_PYTORCH_ATTENTION

722
723
724
725
def pytorch_attention_flash_attention():
    global ENABLE_PYTORCH_ATTENTION
    if ENABLE_PYTORCH_ATTENTION:
        #TODO: more reliable way of checking for flash attention?
726
        if is_nvidia(): #pytorch flash attention only works on Nvidia
727
            return True
728
729
        if is_intel_xpu():
            return True
730
731
    return False

732
733
734
735
736
737
738
739
740
741
742
743
def force_upcast_attention_dtype():
    upcast = args.force_upcast_attention
    try:
        if platform.mac_ver()[0] in ['14.5']: #black image bug on OSX Sonoma 14.5
            upcast = True
    except:
        pass
    if upcast:
        return torch.float32
    else:
        return None

744
def get_free_memory(dev=None, torch_free_too=False):
745
    global directml_enabled
746
    if dev is None:
747
        dev = get_torch_device()
748

Yurii Mazurevich's avatar
Yurii Mazurevich committed
749
    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
750
751
752
        mem_free_total = psutil.virtual_memory().available
        mem_free_torch = mem_free_total
    else:
753
754
755
        if directml_enabled:
            mem_free_total = 1024 * 1024 * 1024 #TODO
            mem_free_torch = mem_free_total
756
        elif is_intel_xpu():
757
758
759
760
            stats = torch.xpu.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_torch = mem_reserved - mem_active
761
762
            mem_free_xpu = torch.xpu.get_device_properties(dev).total_memory - mem_reserved
            mem_free_total = mem_free_xpu + mem_free_torch
763
764
765
766
767
768
769
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
            mem_free_torch = mem_reserved - mem_active
            mem_free_total = mem_free_cuda + mem_free_torch
770
771
772
773
774

    if torch_free_too:
        return (mem_free_total, mem_free_torch)
    else:
        return mem_free_total
775

776
def cpu_mode():
777
778
    global cpu_state
    return cpu_state == CPUState.CPU
779

Yurii Mazurevich's avatar
Yurii Mazurevich committed
780
def mps_mode():
781
782
    global cpu_state
    return cpu_state == CPUState.MPS
Yurii Mazurevich's avatar
Yurii Mazurevich committed
783

784
def is_device_type(device, type):
785
    if hasattr(device, 'type'):
786
        if (device.type == type):
comfyanonymous's avatar
comfyanonymous committed
787
788
789
            return True
    return False

790
791
792
def is_device_cpu(device):
    return is_device_type(device, 'cpu')

comfyanonymous's avatar
comfyanonymous committed
793
def is_device_mps(device):
794
795
796
797
    return is_device_type(device, 'mps')

def is_device_cuda(device):
    return is_device_type(device, 'cuda')
798

799
def should_use_fp16(device=None, model_params=0, prioritize_performance=True, manual_cast=False):
800
801
    global directml_enabled

802
803
804
805
    if device is not None:
        if is_device_cpu(device):
            return False

806
807
808
    if FORCE_FP16:
        return True

809
    if device is not None:
810
        if is_device_mps(device):
811
            return True
812

813
814
815
    if FORCE_FP32:
        return False

816
817
818
    if directml_enabled:
        return False

819
820
821
822
823
    if mps_mode():
        return True

    if cpu_mode():
        return False
824

825
    if is_intel_xpu():
comfyanonymous's avatar
comfyanonymous committed
826
827
        return True

828
    if torch.version.hip:
829
830
        return True

comfyanonymous's avatar
comfyanonymous committed
831
    props = torch.cuda.get_device_properties("cuda")
832
833
834
    if props.major >= 8:
        return True

835
836
837
838
839
840
841
    if props.major < 6:
        return False

    fp16_works = False
    #FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled
    #when the model doesn't actually fit on the card
    #TODO: actually test if GP106 and others have the same type of behavior
842
    nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050", "p40", "p100", "p6", "p4"]
843
844
845
846
    for x in nvidia_10_series:
        if x in props.name.lower():
            fp16_works = True

847
    if fp16_works or manual_cast:
848
        free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
849
        if (not prioritize_performance) or model_params * 4 > free_model_memory:
850
851
            return True

852
853
854
    if props.major < 7:
        return False

855
    #FP16 is just broken on these cards
856
    nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX", "T2000", "T1000", "T1200"]
857
858
859
860
861
862
    for x in nvidia_16_series:
        if x in props.name:
            return False

    return True

863
864
865
866
867
868
869
870
871
def should_use_bf16(device=None, model_params=0, prioritize_performance=True, manual_cast=False):
    if device is not None:
        if is_device_cpu(device): #TODO ? bf16 works on CPU but is extremely slow
            return False

    if device is not None: #TODO not sure about mps bf16 support
        if is_device_mps(device):
            return False

872
873
874
    if FORCE_FP32:
        return False

875
876
877
878
879
880
    if directml_enabled:
        return False

    if cpu_mode() or mps_mode():
        return False

comfyanonymous's avatar
comfyanonymous committed
881
882
883
884
885
886
887
888
889
890
    if is_intel_xpu():
        return True

    if device is None:
        device = torch.device("cuda")

    props = torch.cuda.get_device_properties(device)
    if props.major >= 8:
        return True

891
892
893
894
895
896
897
    bf16_works = torch.cuda.is_bf16_supported()

    if bf16_works or manual_cast:
        free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
        if (not prioritize_performance) or model_params * 4 > free_model_memory:
            return True

comfyanonymous's avatar
comfyanonymous committed
898
899
    return False

900
def soft_empty_cache(force=False):
901
902
    global cpu_state
    if cpu_state == CPUState.MPS:
comfyanonymous's avatar
comfyanonymous committed
903
        torch.mps.empty_cache()
904
    elif is_intel_xpu():
905
906
        torch.xpu.empty_cache()
    elif torch.cuda.is_available():
907
        if force or is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda
908
909
910
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()

911
912
913
914
def unload_all_models():
    free_memory(1e30, get_torch_device())


915
def resolve_lowvram_weight(weight, model, key): #TODO: remove
916
    print("WARNING: The comfy.model_management.resolve_lowvram_weight function will be removed soon, please stop using it.")
comfyanonymous's avatar
comfyanonymous committed
917
918
    return weight

919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
#TODO: might be cleaner to put this somewhere else
import threading

class InterruptProcessingException(Exception):
    pass

interrupt_processing_mutex = threading.RLock()

interrupt_processing = False
def interrupt_current_processing(value=True):
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        interrupt_processing = value

def processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        return interrupt_processing

def throw_exception_if_processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        if interrupt_processing:
            interrupt_processing = False
            raise InterruptProcessingException()