model_management.py 28.3 KB
Newer Older
1
import psutil
2
import logging
3
from enum import Enum
comfyanonymous's avatar
comfyanonymous committed
4
from comfy.cli_args import args
5
import torch
comfyanonymous's avatar
comfyanonymous committed
6
import sys
7
import platform
8

9
class VRAMState(Enum):
10
11
    DISABLED = 0    #No vram present: no need to move models to vram
    NO_VRAM = 1     #Very low vram: enable all the options to save vram
12
13
14
    LOW_VRAM = 2
    NORMAL_VRAM = 3
    HIGH_VRAM = 4
15
    SHARED = 5      #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both.
16
17
18
19
20

class CPUState(Enum):
    GPU = 0
    CPU = 1
    MPS = 2
21

22
23
24
# Determine VRAM State
vram_state = VRAMState.NORMAL_VRAM
set_vram_to = VRAMState.NORMAL_VRAM
25
cpu_state = CPUState.GPU
26

27
total_vram = 0
28

29
lowvram_available = True
藍+85CD's avatar
藍+85CD committed
30
xpu_available = False
31

32
if args.deterministic:
comfyanonymous's avatar
comfyanonymous committed
33
    logging.info("Using deterministic algorithms for pytorch")
34
35
    torch.use_deterministic_algorithms(True, warn_only=True)

36
directml_enabled = False
37
if args.directml is not None:
38
39
    import torch_directml
    directml_enabled = True
40
41
42
43
44
    device_index = args.directml
    if device_index < 0:
        directml_device = torch_directml.device()
    else:
        directml_device = torch_directml.device(device_index)
comfyanonymous's avatar
comfyanonymous committed
45
    logging.info("Using directml with device: {}".format(torch_directml.device_name(device_index)))
46
    # torch_directml.disable_tiled_resources(True)
47
    lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
48

49
try:
50
51
52
    import intel_extension_for_pytorch as ipex
    if torch.xpu.is_available():
        xpu_available = True
53
54
55
except:
    pass

56
57
58
try:
    if torch.backends.mps.is_available():
        cpu_state = CPUState.MPS
KarryCharon's avatar
KarryCharon committed
59
        import torch.mps
60
61
62
63
64
65
except:
    pass

if args.cpu:
    cpu_state = CPUState.CPU

66
67
def is_intel_xpu():
    global cpu_state
68
    global xpu_available
69
70
71
72
73
74
    if cpu_state == CPUState.GPU:
        if xpu_available:
            return True
    return False

def get_torch_device():
75
    global directml_enabled
76
    global cpu_state
77
78
79
    if directml_enabled:
        global directml_device
        return directml_device
80
    if cpu_state == CPUState.MPS:
81
        return torch.device("mps")
82
    if cpu_state == CPUState.CPU:
83
84
        return torch.device("cpu")
    else:
85
        if is_intel_xpu():
86
            return torch.device("xpu", torch.xpu.current_device())
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
        else:
            return torch.device(torch.cuda.current_device())

def get_total_memory(dev=None, torch_total_too=False):
    global directml_enabled
    if dev is None:
        dev = get_torch_device()

    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
        mem_total = psutil.virtual_memory().total
        mem_total_torch = mem_total
    else:
        if directml_enabled:
            mem_total = 1024 * 1024 * 1024 #TODO
            mem_total_torch = mem_total
102
        elif is_intel_xpu():
103
104
105
            stats = torch.xpu.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
            mem_total_torch = mem_reserved
106
            mem_total = torch.xpu.get_device_properties(dev).total_memory
107
108
109
110
111
112
113
114
115
116
117
118
119
120
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
            _, mem_total_cuda = torch.cuda.mem_get_info(dev)
            mem_total_torch = mem_reserved
            mem_total = mem_total_cuda

    if torch_total_too:
        return (mem_total, mem_total_torch)
    else:
        return mem_total

total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
comfyanonymous's avatar
comfyanonymous committed
121
logging.info("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
122

comfyanonymous's avatar
comfyanonymous committed
123
124
125
126
127
try:
    logging.info("pytorch version: {}".format(torch.version.__version__))
except:
    pass

128
129
130
131
132
try:
    OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
    OOM_EXCEPTION = Exception

133
134
XFORMERS_VERSION = ""
XFORMERS_ENABLED_VAE = True
135
136
if args.disable_xformers:
    XFORMERS_IS_AVAILABLE = False
137
138
139
140
else:
    try:
        import xformers
        import xformers.ops
141
        XFORMERS_IS_AVAILABLE = True
142
143
144
145
        try:
            XFORMERS_IS_AVAILABLE = xformers._has_cpp_library
        except:
            pass
146
147
        try:
            XFORMERS_VERSION = xformers.version.__version__
comfyanonymous's avatar
comfyanonymous committed
148
            logging.info("xformers version: {}".format(XFORMERS_VERSION))
149
            if XFORMERS_VERSION.startswith("0.0.18"):
150
151
                logging.warning("\nWARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
                logging.warning("Please downgrade or upgrade xformers to a different version.\n")
152
153
154
                XFORMERS_ENABLED_VAE = False
        except:
            pass
155
    except:
156
        XFORMERS_IS_AVAILABLE = False
157

158
159
160
161
162
def is_nvidia():
    global cpu_state
    if cpu_state == CPUState.GPU:
        if torch.version.cuda:
            return True
163
    return False
164

165
166
167
168
169
ENABLE_PYTORCH_ATTENTION = False
if args.use_pytorch_cross_attention:
    ENABLE_PYTORCH_ATTENTION = True
    XFORMERS_IS_AVAILABLE = False

170
VAE_DTYPE = torch.float32
171

172
173
174
175
try:
    if is_nvidia():
        torch_version = torch.version.__version__
        if int(torch_version[0]) >= 2:
176
            if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
177
                ENABLE_PYTORCH_ATTENTION = True
178
            if torch.cuda.is_bf16_supported() and torch.cuda.get_device_properties(torch.cuda.current_device()).major >= 8:
179
                VAE_DTYPE = torch.bfloat16
180
181
182
    if is_intel_xpu():
        if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
            ENABLE_PYTORCH_ATTENTION = True
183
184
185
except:
    pass

186
187
188
if is_intel_xpu():
    VAE_DTYPE = torch.bfloat16

189
190
191
if args.cpu_vae:
    VAE_DTYPE = torch.float32

192
193
194
195
196
197
198
if args.fp16_vae:
    VAE_DTYPE = torch.float16
elif args.bf16_vae:
    VAE_DTYPE = torch.bfloat16
elif args.fp32_vae:
    VAE_DTYPE = torch.float32

199

200
if ENABLE_PYTORCH_ATTENTION:
201
202
203
    torch.backends.cuda.enable_math_sdp(True)
    torch.backends.cuda.enable_flash_sdp(True)
    torch.backends.cuda.enable_mem_efficient_sdp(True)
204

205
206
if args.lowvram:
    set_vram_to = VRAMState.LOW_VRAM
207
    lowvram_available = True
208
209
elif args.novram:
    set_vram_to = VRAMState.NO_VRAM
210
elif args.highvram or args.gpu_only:
211
    vram_state = VRAMState.HIGH_VRAM
212

213
FORCE_FP32 = False
214
FORCE_FP16 = False
215
if args.force_fp32:
comfyanonymous's avatar
comfyanonymous committed
216
    logging.info("Forcing FP32, if this improves things please report it.")
217
218
    FORCE_FP32 = True

219
if args.force_fp16:
comfyanonymous's avatar
comfyanonymous committed
220
    logging.info("Forcing FP16.")
221
222
    FORCE_FP16 = True

223
if lowvram_available:
224
225
    if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
        vram_state = set_vram_to
226

227

228
229
if cpu_state != CPUState.GPU:
    vram_state = VRAMState.DISABLED
230

231
232
if cpu_state == CPUState.MPS:
    vram_state = VRAMState.SHARED
233

comfyanonymous's avatar
comfyanonymous committed
234
logging.info(f"Set vram state to: {vram_state.name}")
235

236
237
238
DISABLE_SMART_MEMORY = args.disable_smart_memory

if DISABLE_SMART_MEMORY:
comfyanonymous's avatar
comfyanonymous committed
239
    logging.info("Disabling smart memory management")
240

241
242
def get_torch_device_name(device):
    if hasattr(device, 'type'):
243
        if device.type == "cuda":
244
245
246
247
248
            try:
                allocator_backend = torch.cuda.get_allocator_backend()
            except:
                allocator_backend = ""
            return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
249
250
        else:
            return "{}".format(device.type)
251
    elif is_intel_xpu():
252
        return "{} {}".format(device, torch.xpu.get_device_name(device))
253
254
    else:
        return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
255
256

try:
comfyanonymous's avatar
comfyanonymous committed
257
    logging.info("Device: {}".format(get_torch_device_name(get_torch_device())))
258
except:
259
    logging.warning("Could not pick default device.")
260

comfyanonymous's avatar
comfyanonymous committed
261
logging.info("VAE dtype: {}".format(VAE_DTYPE))
262

comfyanonymous's avatar
comfyanonymous committed
263
current_loaded_models = []
264

265
266
267
268
269
270
271
272
def module_size(module):
    module_mem = 0
    sd = module.state_dict()
    for k in sd:
        t = sd[k]
        module_mem += t.nelement() * t.element_size()
    return module_mem

comfyanonymous's avatar
comfyanonymous committed
273
274
275
276
class LoadedModel:
    def __init__(self, model):
        self.model = model
        self.device = model.load_device
277
        self.weights_loaded = False
278
        self.real_model = None
279

comfyanonymous's avatar
comfyanonymous committed
280
281
    def model_memory(self):
        return self.model.model_size()
282

comfyanonymous's avatar
comfyanonymous committed
283
284
285
286
287
    def model_memory_required(self, device):
        if device == self.model.current_device:
            return 0
        else:
            return self.model_memory()
288

289
    def model_load(self, lowvram_model_memory=0, force_patch_weights=False):
290
        patch_model_to = self.device
291

comfyanonymous's avatar
comfyanonymous committed
292
293
        self.model.model_patches_to(self.device)
        self.model.model_patches_to(self.model.model_dtype())
294

295
296
        load_weights = not self.weights_loaded

comfyanonymous's avatar
comfyanonymous committed
297
        try:
298
            if lowvram_model_memory > 0 and load_weights:
299
                self.real_model = self.model.patch_model_lowvram(device_to=patch_model_to, lowvram_model_memory=lowvram_model_memory, force_patch_weights=force_patch_weights)
300
            else:
301
                self.real_model = self.model.patch_model(device_to=patch_model_to, patch_weights=load_weights)
comfyanonymous's avatar
comfyanonymous committed
302
303
304
305
        except Exception as e:
            self.model.unpatch_model(self.model.offload_device)
            self.model_unload()
            raise e
306

307
        if is_intel_xpu() and not args.disable_ipex_optimize:
308
            self.real_model = ipex.optimize(self.real_model.eval(), graph_mode=True, concat_linear=True)
309

310
        self.weights_loaded = True
comfyanonymous's avatar
comfyanonymous committed
311
        return self.real_model
312

313
314
315
316
317
    def should_reload_model(self, force_patch_weights=False):
        if force_patch_weights and self.model.lowvram_patch_counter > 0:
            return True
        return False

318
319
    def model_unload(self, unpatch_weights=True):
        self.model.unpatch_model(self.model.offload_device, unpatch_weights=unpatch_weights)
comfyanonymous's avatar
comfyanonymous committed
320
        self.model.model_patches_to(self.model.offload_device)
321
        self.weights_loaded = self.weights_loaded and not unpatch_weights
322
        self.real_model = None
323

comfyanonymous's avatar
comfyanonymous committed
324
325
    def __eq__(self, other):
        return self.model is other.model
comfyanonymous's avatar
comfyanonymous committed
326

comfyanonymous's avatar
comfyanonymous committed
327
328
329
def minimum_inference_memory():
    return (1024 * 1024 * 1024)

330
def unload_model_clones(model, unload_weights_only=True, force_unload=True):
comfyanonymous's avatar
comfyanonymous committed
331
332
333
334
335
    to_unload = []
    for i in range(len(current_loaded_models)):
        if model.is_clone(current_loaded_models[i].model):
            to_unload = [i] + to_unload

336
    if len(to_unload) == 0:
337
        return True
338
339

    same_weights = 0
comfyanonymous's avatar
comfyanonymous committed
340
    for i in to_unload:
341
342
343
344
345
346
347
348
        if model.clone_has_same_weights(current_loaded_models[i].model):
            same_weights += 1

    if same_weights == len(to_unload):
        unload_weight = False
    else:
        unload_weight = True

349
350
351
    if not force_unload:
        if unload_weights_only and unload_weight == False:
            return None
352
353
354
355
356

    for i in to_unload:
        logging.debug("unload clone {} {}".format(i, unload_weight))
        current_loaded_models.pop(i).model_unload(unpatch_weights=unload_weight)

357
    return unload_weight
comfyanonymous's avatar
comfyanonymous committed
358
359

def free_memory(memory_required, device, keep_loaded=[]):
360
361
362
    unloaded_model = []
    can_unload = []

comfyanonymous's avatar
comfyanonymous committed
363
364
365
366
    for i in range(len(current_loaded_models) -1, -1, -1):
        shift_model = current_loaded_models[i]
        if shift_model.device == device:
            if shift_model not in keep_loaded:
367
368
369
370
371
372
373
374
375
376
377
378
                can_unload.append((sys.getrefcount(shift_model.model), shift_model.model_memory(), i))

    for x in sorted(can_unload):
        i = x[-1]
        if not DISABLE_SMART_MEMORY:
            if get_free_memory(device) > memory_required:
                break
        current_loaded_models[i].model_unload()
        unloaded_model.append(i)

    for i in sorted(unloaded_model, reverse=True):
        current_loaded_models.pop(i)
comfyanonymous's avatar
comfyanonymous committed
379

380
    if len(unloaded_model) > 0:
comfyanonymous's avatar
comfyanonymous committed
381
        soft_empty_cache()
382
383
384
385
386
    else:
        if vram_state != VRAMState.HIGH_VRAM:
            mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True)
            if mem_free_torch > mem_free_total * 0.25:
                soft_empty_cache()
comfyanonymous's avatar
comfyanonymous committed
387

388
def load_models_gpu(models, memory_required=0, force_patch_weights=False):
389
390
    global vram_state

comfyanonymous's avatar
comfyanonymous committed
391
392
393
    inference_memory = minimum_inference_memory()
    extra_mem = max(inference_memory, memory_required)

394
395
    models = set(models)

comfyanonymous's avatar
comfyanonymous committed
396
397
398
399
    models_to_load = []
    models_already_loaded = []
    for x in models:
        loaded_model = LoadedModel(x)
400
        loaded = None
comfyanonymous's avatar
comfyanonymous committed
401

402
403
404
405
406
407
408
409
410
411
412
413
414
415
        try:
            loaded_model_index = current_loaded_models.index(loaded_model)
        except:
            loaded_model_index = None

        if loaded_model_index is not None:
            loaded = current_loaded_models[loaded_model_index]
            if loaded.should_reload_model(force_patch_weights=force_patch_weights): #TODO: cleanup this model reload logic
                current_loaded_models.pop(loaded_model_index).model_unload(unpatch_weights=True)
                loaded = None
            else:
                models_already_loaded.append(loaded)

        if loaded is None:
416
            if hasattr(x, "model"):
comfyanonymous's avatar
comfyanonymous committed
417
                logging.info(f"Requested to load {x.model.__class__.__name__}")
comfyanonymous's avatar
comfyanonymous committed
418
419
420
421
422
423
424
            models_to_load.append(loaded_model)

    if len(models_to_load) == 0:
        devs = set(map(lambda a: a.device, models_already_loaded))
        for d in devs:
            if d != torch.device("cpu"):
                free_memory(extra_mem, d, models_already_loaded)
425
426
        return

comfyanonymous's avatar
comfyanonymous committed
427
    logging.info(f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}")
428

comfyanonymous's avatar
comfyanonymous committed
429
430
    total_memory_required = {}
    for loaded_model in models_to_load:
431
432
        if unload_model_clones(loaded_model.model, unload_weights_only=True, force_unload=False) == True:#unload clones where the weights are different
            total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
comfyanonymous's avatar
comfyanonymous committed
433

comfyanonymous's avatar
comfyanonymous committed
434
435
436
    for device in total_memory_required:
        if device != torch.device("cpu"):
            free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded)
comfyanonymous's avatar
comfyanonymous committed
437

438
    for loaded_model in models_to_load:
439
440
441
        weights_unloaded = unload_model_clones(loaded_model.model, unload_weights_only=False, force_unload=False) #unload the rest of the clones where the weights can stay loaded
        if weights_unloaded is not None:
            loaded_model.weights_loaded = not weights_unloaded
442

comfyanonymous's avatar
comfyanonymous committed
443
444
445
446
447
448
449
450
451
452
453
    for loaded_model in models_to_load:
        model = loaded_model.model
        torch_dev = model.load_device
        if is_device_cpu(torch_dev):
            vram_set_state = VRAMState.DISABLED
        else:
            vram_set_state = vram_state
        lowvram_model_memory = 0
        if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
            model_size = loaded_model.model_memory_required(torch_dev)
            current_free_mem = get_free_memory(torch_dev)
454
            lowvram_model_memory = int(max(64 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
455
            if model_size <= (current_free_mem - inference_memory): #only switch to lowvram if really necessary
comfyanonymous's avatar
comfyanonymous committed
456
                lowvram_model_memory = 0
457

comfyanonymous's avatar
comfyanonymous committed
458
        if vram_set_state == VRAMState.NO_VRAM:
459
            lowvram_model_memory = 64 * 1024 * 1024
460

461
        cur_loaded_model = loaded_model.model_load(lowvram_model_memory, force_patch_weights=force_patch_weights)
comfyanonymous's avatar
comfyanonymous committed
462
463
464
465
466
467
468
        current_loaded_models.insert(0, loaded_model)
    return


def load_model_gpu(model):
    return load_models_gpu([model])

469
def cleanup_models(keep_clone_weights_loaded=False):
comfyanonymous's avatar
comfyanonymous committed
470
471
472
    to_delete = []
    for i in range(len(current_loaded_models)):
        if sys.getrefcount(current_loaded_models[i].model) <= 2:
473
474
475
476
477
            if not keep_clone_weights_loaded:
                to_delete = [i] + to_delete
            #TODO: find a less fragile way to do this.
            elif sys.getrefcount(current_loaded_models[i].real_model) <= 3: #references from .real_model + the .model
                to_delete = [i] + to_delete
comfyanonymous's avatar
comfyanonymous committed
478
479
480
481
482

    for i in to_delete:
        x = current_loaded_models.pop(i)
        x.model_unload()
        del x
483

484
485
486
487
def dtype_size(dtype):
    dtype_size = 4
    if dtype == torch.float16 or dtype == torch.bfloat16:
        dtype_size = 2
488
489
490
491
492
493
494
    elif dtype == torch.float32:
        dtype_size = 4
    else:
        try:
            dtype_size = dtype.itemsize
        except: #Old pytorch doesn't have .itemsize
            pass
495
496
    return dtype_size

497
def unet_offload_device():
comfyanonymous's avatar
comfyanonymous committed
498
    if vram_state == VRAMState.HIGH_VRAM:
499
500
501
502
        return get_torch_device()
    else:
        return torch.device("cpu")

comfyanonymous's avatar
comfyanonymous committed
503
504
505
506
507
508
def unet_inital_load_device(parameters, dtype):
    torch_dev = get_torch_device()
    if vram_state == VRAMState.HIGH_VRAM:
        return torch_dev

    cpu_dev = torch.device("cpu")
509
510
511
    if DISABLE_SMART_MEMORY:
        return cpu_dev

512
    model_size = dtype_size(dtype) * parameters
comfyanonymous's avatar
comfyanonymous committed
513
514
515
516
517
518
519
520

    mem_dev = get_free_memory(torch_dev)
    mem_cpu = get_free_memory(cpu_dev)
    if mem_dev > mem_cpu and model_size < mem_dev:
        return torch_dev
    else:
        return cpu_dev

comfyanonymous's avatar
comfyanonymous committed
521
def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]):
522
523
    if args.bf16_unet:
        return torch.bfloat16
524
525
    if args.fp16_unet:
        return torch.float16
526
527
528
529
    if args.fp8_e4m3fn_unet:
        return torch.float8_e4m3fn
    if args.fp8_e5m2_unet:
        return torch.float8_e5m2
530
    if should_use_fp16(device=device, model_params=model_params, manual_cast=True):
comfyanonymous's avatar
comfyanonymous committed
531
532
        if torch.float16 in supported_dtypes:
            return torch.float16
533
    if should_use_bf16(device, model_params=model_params, manual_cast=True):
comfyanonymous's avatar
comfyanonymous committed
534
535
        if torch.bfloat16 in supported_dtypes:
            return torch.bfloat16
536
537
    return torch.float32

538
# None means no manual cast
comfyanonymous's avatar
comfyanonymous committed
539
def unet_manual_cast(weight_dtype, inference_device, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]):
540
541
542
    if weight_dtype == torch.float32:
        return None

comfyanonymous's avatar
comfyanonymous committed
543
    fp16_supported = should_use_fp16(inference_device, prioritize_performance=False)
544
545
546
    if fp16_supported and weight_dtype == torch.float16:
        return None

comfyanonymous's avatar
comfyanonymous committed
547
548
549
550
551
    bf16_supported = should_use_bf16(inference_device)
    if bf16_supported and weight_dtype == torch.bfloat16:
        return None

    if fp16_supported and torch.float16 in supported_dtypes:
552
        return torch.float16
comfyanonymous's avatar
comfyanonymous committed
553
554
555

    elif bf16_supported and torch.bfloat16 in supported_dtypes:
        return torch.bfloat16
556
557
558
    else:
        return torch.float32

559
def text_encoder_offload_device():
comfyanonymous's avatar
comfyanonymous committed
560
    if args.gpu_only:
561
562
563
564
        return get_torch_device()
    else:
        return torch.device("cpu")

565
def text_encoder_device():
comfyanonymous's avatar
comfyanonymous committed
566
    if args.gpu_only:
567
        return get_torch_device()
568
    elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
569
        if should_use_fp16(prioritize_performance=False):
570
571
572
            return get_torch_device()
        else:
            return torch.device("cpu")
573
574
575
    else:
        return torch.device("cpu")

576
577
578
579
580
581
582
583
584
585
def text_encoder_dtype(device=None):
    if args.fp8_e4m3fn_text_enc:
        return torch.float8_e4m3fn
    elif args.fp8_e5m2_text_enc:
        return torch.float8_e5m2
    elif args.fp16_text_enc:
        return torch.float16
    elif args.fp32_text_enc:
        return torch.float32

586
587
588
    if is_device_cpu(device):
        return torch.float16

589
590
    return torch.float16

591

592
593
594
595
596
597
def intermediate_device():
    if args.gpu_only:
        return get_torch_device()
    else:
        return torch.device("cpu")

598
def vae_device():
599
600
    if args.cpu_vae:
        return torch.device("cpu")
601
602
603
    return get_torch_device()

def vae_offload_device():
comfyanonymous's avatar
comfyanonymous committed
604
    if args.gpu_only:
605
606
607
608
        return get_torch_device()
    else:
        return torch.device("cpu")

609
def vae_dtype():
610
611
    global VAE_DTYPE
    return VAE_DTYPE
612

613
614
615
616
def get_autocast_device(dev):
    if hasattr(dev, 'type'):
        return dev.type
    return "cuda"
617

618
619
620
def supports_dtype(device, dtype): #TODO
    if dtype == torch.float32:
        return True
621
    if is_device_cpu(device):
622
623
624
625
626
627
628
        return False
    if dtype == torch.float16:
        return True
    if dtype == torch.bfloat16:
        return True
    return False

629
630
631
def device_supports_non_blocking(device):
    if is_device_mps(device):
        return False #pytorch bug? mps doesn't support non blocking
632
633
634
635
    if args.deterministic: #TODO: figure out why deterministic breaks non blocking from gpu to cpu (previews)
        return False
    if directml_enabled:
        return False
comfyanonymous's avatar
comfyanonymous committed
636
637
638
639
640
    return True

def device_should_use_non_blocking(device):
    if not device_supports_non_blocking(device):
        return False
641
    return False
comfyanonymous's avatar
comfyanonymous committed
642
643
    # return True #TODO: figure out why this causes memory issues on Nvidia and possibly others

644

645
646
647
648
649
650
651
def cast_to_device(tensor, device, dtype, copy=False):
    device_supports_cast = False
    if tensor.dtype == torch.float32 or tensor.dtype == torch.float16:
        device_supports_cast = True
    elif tensor.dtype == torch.bfloat16:
        if hasattr(device, 'type') and device.type.startswith("cuda"):
            device_supports_cast = True
652
653
        elif is_intel_xpu():
            device_supports_cast = True
654

comfyanonymous's avatar
comfyanonymous committed
655
    non_blocking = device_should_use_non_blocking(device)
comfyanonymous's avatar
comfyanonymous committed
656

657
658
659
    if device_supports_cast:
        if copy:
            if tensor.device == device:
comfyanonymous's avatar
comfyanonymous committed
660
661
                return tensor.to(dtype, copy=copy, non_blocking=non_blocking)
            return tensor.to(device, copy=copy, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
662
        else:
comfyanonymous's avatar
comfyanonymous committed
663
            return tensor.to(device, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
664
    else:
comfyanonymous's avatar
comfyanonymous committed
665
        return tensor.to(device, dtype, copy=copy, non_blocking=non_blocking)
666

667
def xformers_enabled():
668
    global directml_enabled
669
670
    global cpu_state
    if cpu_state != CPUState.GPU:
671
        return False
672
    if is_intel_xpu():
673
674
675
        return False
    if directml_enabled:
        return False
676
    return XFORMERS_IS_AVAILABLE
677

678
679
680
681
682

def xformers_enabled_vae():
    enabled = xformers_enabled()
    if not enabled:
        return False
683
684

    return XFORMERS_ENABLED_VAE
685

686
def pytorch_attention_enabled():
687
    global ENABLE_PYTORCH_ATTENTION
688
689
    return ENABLE_PYTORCH_ATTENTION

690
691
692
693
def pytorch_attention_flash_attention():
    global ENABLE_PYTORCH_ATTENTION
    if ENABLE_PYTORCH_ATTENTION:
        #TODO: more reliable way of checking for flash attention?
694
        if is_nvidia(): #pytorch flash attention only works on Nvidia
695
            return True
696
697
        if is_intel_xpu():
            return True
698
699
    return False

700
701
702
703
704
705
706
707
708
709
710
711
def force_upcast_attention_dtype():
    upcast = args.force_upcast_attention
    try:
        if platform.mac_ver()[0] in ['14.5']: #black image bug on OSX Sonoma 14.5
            upcast = True
    except:
        pass
    if upcast:
        return torch.float32
    else:
        return None

712
def get_free_memory(dev=None, torch_free_too=False):
713
    global directml_enabled
714
    if dev is None:
715
        dev = get_torch_device()
716

Yurii Mazurevich's avatar
Yurii Mazurevich committed
717
    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
718
719
720
        mem_free_total = psutil.virtual_memory().available
        mem_free_torch = mem_free_total
    else:
721
722
723
        if directml_enabled:
            mem_free_total = 1024 * 1024 * 1024 #TODO
            mem_free_torch = mem_free_total
724
        elif is_intel_xpu():
725
726
727
728
            stats = torch.xpu.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_torch = mem_reserved - mem_active
729
730
            mem_free_xpu = torch.xpu.get_device_properties(dev).total_memory - mem_reserved
            mem_free_total = mem_free_xpu + mem_free_torch
731
732
733
734
735
736
737
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
            mem_free_torch = mem_reserved - mem_active
            mem_free_total = mem_free_cuda + mem_free_torch
738
739
740
741
742

    if torch_free_too:
        return (mem_free_total, mem_free_torch)
    else:
        return mem_free_total
743

744
def cpu_mode():
745
746
    global cpu_state
    return cpu_state == CPUState.CPU
747

Yurii Mazurevich's avatar
Yurii Mazurevich committed
748
def mps_mode():
749
750
    global cpu_state
    return cpu_state == CPUState.MPS
Yurii Mazurevich's avatar
Yurii Mazurevich committed
751

752
def is_device_type(device, type):
753
    if hasattr(device, 'type'):
754
        if (device.type == type):
comfyanonymous's avatar
comfyanonymous committed
755
756
757
            return True
    return False

758
759
760
def is_device_cpu(device):
    return is_device_type(device, 'cpu')

comfyanonymous's avatar
comfyanonymous committed
761
def is_device_mps(device):
762
763
764
765
    return is_device_type(device, 'mps')

def is_device_cuda(device):
    return is_device_type(device, 'cuda')
766

767
def should_use_fp16(device=None, model_params=0, prioritize_performance=True, manual_cast=False):
768
769
    global directml_enabled

770
771
772
773
    if device is not None:
        if is_device_cpu(device):
            return False

774
775
776
    if FORCE_FP16:
        return True

777
    if device is not None:
778
        if is_device_mps(device):
779
            return True
780

781
782
783
    if FORCE_FP32:
        return False

784
785
786
    if directml_enabled:
        return False

787
788
789
790
791
    if mps_mode():
        return True

    if cpu_mode():
        return False
792

793
    if is_intel_xpu():
comfyanonymous's avatar
comfyanonymous committed
794
795
        return True

796
    if torch.version.hip:
797
798
        return True

comfyanonymous's avatar
comfyanonymous committed
799
    props = torch.cuda.get_device_properties("cuda")
800
801
802
    if props.major >= 8:
        return True

803
804
805
806
807
808
809
    if props.major < 6:
        return False

    fp16_works = False
    #FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled
    #when the model doesn't actually fit on the card
    #TODO: actually test if GP106 and others have the same type of behavior
810
    nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050", "p40", "p100", "p6", "p4"]
811
812
813
814
    for x in nvidia_10_series:
        if x in props.name.lower():
            fp16_works = True

815
    if fp16_works or manual_cast:
816
        free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
817
        if (not prioritize_performance) or model_params * 4 > free_model_memory:
818
819
            return True

820
821
822
    if props.major < 7:
        return False

823
    #FP16 is just broken on these cards
824
    nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX", "T2000", "T1000", "T1200"]
825
826
827
828
829
830
    for x in nvidia_16_series:
        if x in props.name:
            return False

    return True

831
832
833
834
835
836
837
838
839
def should_use_bf16(device=None, model_params=0, prioritize_performance=True, manual_cast=False):
    if device is not None:
        if is_device_cpu(device): #TODO ? bf16 works on CPU but is extremely slow
            return False

    if device is not None: #TODO not sure about mps bf16 support
        if is_device_mps(device):
            return False

840
841
842
    if FORCE_FP32:
        return False

843
844
845
846
847
848
    if directml_enabled:
        return False

    if cpu_mode() or mps_mode():
        return False

comfyanonymous's avatar
comfyanonymous committed
849
850
851
852
853
854
855
856
857
858
    if is_intel_xpu():
        return True

    if device is None:
        device = torch.device("cuda")

    props = torch.cuda.get_device_properties(device)
    if props.major >= 8:
        return True

859
860
861
862
863
864
865
    bf16_works = torch.cuda.is_bf16_supported()

    if bf16_works or manual_cast:
        free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
        if (not prioritize_performance) or model_params * 4 > free_model_memory:
            return True

comfyanonymous's avatar
comfyanonymous committed
866
867
    return False

868
def soft_empty_cache(force=False):
869
870
    global cpu_state
    if cpu_state == CPUState.MPS:
comfyanonymous's avatar
comfyanonymous committed
871
        torch.mps.empty_cache()
872
    elif is_intel_xpu():
873
874
        torch.xpu.empty_cache()
    elif torch.cuda.is_available():
875
        if force or is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda
876
877
878
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()

879
880
881
882
def unload_all_models():
    free_memory(1e30, get_torch_device())


883
def resolve_lowvram_weight(weight, model, key): #TODO: remove
884
    print("WARNING: The comfy.model_management.resolve_lowvram_weight function will be removed soon, please stop using it.")
comfyanonymous's avatar
comfyanonymous committed
885
886
    return weight

887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
#TODO: might be cleaner to put this somewhere else
import threading

class InterruptProcessingException(Exception):
    pass

interrupt_processing_mutex = threading.RLock()

interrupt_processing = False
def interrupt_current_processing(value=True):
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        interrupt_processing = value

def processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        return interrupt_processing

def throw_exception_if_processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        if interrupt_processing:
            interrupt_processing = False
            raise InterruptProcessingException()