transforms.py 77.1 KB
Newer Older
1
import math
vfdev's avatar
vfdev committed
2
import numbers
3
import random
vfdev's avatar
vfdev committed
4
import warnings
vfdev's avatar
vfdev committed
5
from collections.abc import Sequence
6
from typing import Tuple, List, Optional
vfdev's avatar
vfdev committed
7
8
9
10

import torch
from torch import Tensor

11
12
13
14
15
16
try:
    import accimage
except ImportError:
    accimage = None

from . import functional as F
17
from .functional import InterpolationMode, _interpolation_modes_from_int
18

19

20
21
22
23
__all__ = ["Compose", "ToTensor", "PILToTensor", "ConvertImageDtype", "ToPILImage", "Normalize", "Resize", "Scale",
           "CenterCrop", "Pad", "Lambda", "RandomApply", "RandomChoice", "RandomOrder", "RandomCrop",
           "RandomHorizontalFlip", "RandomVerticalFlip", "RandomResizedCrop", "RandomSizedCrop", "FiveCrop", "TenCrop",
           "LinearTransformation", "ColorJitter", "RandomRotation", "RandomAffine", "Grayscale", "RandomGrayscale",
24
25
           "RandomPerspective", "RandomErasing", "GaussianBlur", "InterpolationMode", "RandomInvert", "RandomPosterize",
           "RandomSolarize", "RandomAdjustSharpness", "RandomAutocontrast", "RandomEqualize"]
26

27

28
class Compose:
29
30
    """Composes several transforms together. This transform does not support torchscript.
    Please, see the note below.
31
32
33
34
35
36
37
38
39

    Args:
        transforms (list of ``Transform`` objects): list of transforms to compose.

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
        >>>     transforms.ToTensor(),
        >>> ])
40
41
42
43
44
45
46
47
48
49
50
51
52

    .. note::
        In order to script the transformations, please use ``torch.nn.Sequential`` as below.

        >>> transforms = torch.nn.Sequential(
        >>>     transforms.CenterCrop(10),
        >>>     transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>> )
        >>> scripted_transforms = torch.jit.script(transforms)

        Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
        `lambda` functions or ``PIL.Image``.

53
54
55
56
57
58
59
60
61
62
    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img

63
64
65
66
67
68
69
70
    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string

71

72
class ToTensor:
73
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor. This transform does not support torchscript.
74
75

    Converts a PIL Image or numpy.ndarray (H x W x C) in the range
surgan12's avatar
surgan12 committed
76
77
78
79
80
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
    if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
    or if the numpy.ndarray has dtype = np.uint8

    In the other cases, tensors are returned without scaling.
81
82
83
84
85
86

    .. note::
        Because the input image is scaled to [0.0, 1.0], this transformation should not be used when
        transforming target image masks. See the `references`_ for implementing the transforms for image masks.

    .. _references: https://github.com/pytorch/vision/tree/master/references/segmentation
87
88
89
90
91
92
93
94
95
96
97
98
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(pic)

99
100
101
    def __repr__(self):
        return self.__class__.__name__ + '()'

102

103
class PILToTensor:
104
    """Convert a ``PIL Image`` to a tensor of the same type. This transform does not support torchscript.
105

vfdev's avatar
vfdev committed
106
    Converts a PIL Image (H x W x C) to a Tensor of shape (C x H x W).
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.pil_to_tensor(pic)

    def __repr__(self):
        return self.__class__.__name__ + '()'


123
class ConvertImageDtype(torch.nn.Module):
124
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly
125
    This function does not support PIL Image.
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

    Args:
        dtype (torch.dtype): Desired data type of the output

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """

    def __init__(self, dtype: torch.dtype) -> None:
143
        super().__init__()
144
145
        self.dtype = dtype

vfdev's avatar
vfdev committed
146
    def forward(self, image):
147
148
149
        return F.convert_image_dtype(image, self.dtype)


150
class ToPILImage:
151
    """Convert a tensor or an ndarray to PIL Image. This transform does not support torchscript.
152
153
154
155
156
157
158

    Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape
    H x W x C to a PIL Image while preserving the value range.

    Args:
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).
            If ``mode`` is ``None`` (default) there are some assumptions made about the input data:
vfdev's avatar
vfdev committed
159
160
161
162
163
            - If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``.
            - If the input has 3 channels, the ``mode`` is assumed to be ``RGB``.
            - If the input has 2 channels, the ``mode`` is assumed to be ``LA``.
            - If the input has 1 channel, the ``mode`` is determined by the data type (i.e ``int``, ``float``,
            ``short``).
164

csukuangfj's avatar
csukuangfj committed
165
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
    """
    def __init__(self, mode=None):
        self.mode = mode

    def __call__(self, pic):
        """
        Args:
            pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.

        Returns:
            PIL Image: Image converted to PIL Image.

        """
        return F.to_pil_image(pic, self.mode)

181
    def __repr__(self):
182
183
184
185
186
        format_string = self.__class__.__name__ + '('
        if self.mode is not None:
            format_string += 'mode={0}'.format(self.mode)
        format_string += ')'
        return format_string
187

188

189
class Normalize(torch.nn.Module):
Fang Gao's avatar
Fang Gao committed
190
    """Normalize a tensor image with mean and standard deviation.
191
    This transform does not support PIL Image.
192
193
194
    Given mean: ``(mean[1],...,mean[n])`` and std: ``(std[1],..,std[n])`` for ``n``
    channels, this transform will normalize each channel of the input
    ``torch.*Tensor`` i.e.,
abdjava's avatar
abdjava committed
195
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``
196

197
    .. note::
198
        This transform acts out of place, i.e., it does not mutate the input tensor.
199

200
201
202
    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.
203
204
        inplace(bool,optional): Bool to make this operation in-place.

205
206
    """

surgan12's avatar
surgan12 committed
207
    def __init__(self, mean, std, inplace=False):
208
        super().__init__()
209
210
        self.mean = mean
        self.std = std
surgan12's avatar
surgan12 committed
211
        self.inplace = inplace
212

213
    def forward(self, tensor: Tensor) -> Tensor:
214
215
        """
        Args:
vfdev's avatar
vfdev committed
216
            tensor (Tensor): Tensor image to be normalized.
217
218
219
220

        Returns:
            Tensor: Normalized Tensor image.
        """
surgan12's avatar
surgan12 committed
221
        return F.normalize(tensor, self.mean, self.std, self.inplace)
222

223
224
225
    def __repr__(self):
        return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)

226

vfdev's avatar
vfdev committed
227
228
class Resize(torch.nn.Module):
    """Resize the input image to the given size.
229
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
230
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
231

232
233
234
235
236
237
    .. warning::
        The output image might be different depending on its type: when downsampling, the interpolation of PIL images
        and tensors is slightly different, because PIL applies antialiasing. This may lead to significant differences
        in the performance of a network. Therefore, it is preferable to train and serve a model with the same input
        types.

238
239
240
241
242
    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
243
            (size * height / width, size).
244
245
246

            .. note::
                In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
247
248
249
250
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` and
            ``InterpolationMode.BICUBIC`` are supported.
251
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
252
253
254
255
256
257
258
259
        max_size (int, optional): The maximum allowed for the longer edge of
            the resized image: if the longer edge of the image is greater
            than ``max_size`` after being resized according to ``size``, then
            the image is resized again so that the longer edge is equal to
            ``max_size``. As a result, ```size` might be overruled, i.e the
            smaller edge may be shorter than ``size``. This is only supported
            if ``size`` is an int (or a sequence of length 1 in torchscript
            mode).
260

261
262
    """

263
    def __init__(self, size, interpolation=InterpolationMode.BILINEAR, max_size=None):
vfdev's avatar
vfdev committed
264
        super().__init__()
265
266
267
268
269
        if not isinstance(size, (int, Sequence)):
            raise TypeError("Size should be int or sequence. Got {}".format(type(size)))
        if isinstance(size, Sequence) and len(size) not in (1, 2):
            raise ValueError("If size is a sequence, it should have 1 or 2 values")
        self.size = size
270
        self.max_size = max_size
271
272
273
274

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
275
276
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
277
278
279
            )
            interpolation = _interpolation_modes_from_int(interpolation)

280
281
        self.interpolation = interpolation

vfdev's avatar
vfdev committed
282
    def forward(self, img):
283
284
        """
        Args:
vfdev's avatar
vfdev committed
285
            img (PIL Image or Tensor): Image to be scaled.
286
287

        Returns:
vfdev's avatar
vfdev committed
288
            PIL Image or Tensor: Rescaled image.
289
        """
290
        return F.resize(img, self.size, self.interpolation, self.max_size)
291

292
    def __repr__(self):
293
        interpolate_str = self.interpolation.value
294
295
        return self.__class__.__name__ + '(size={0}, interpolation={1}, max_size={2})'.format(
            self.size, interpolate_str, self.max_size)
296

297
298
299
300
301
302
303
304
305
306
307

class Scale(Resize):
    """
    Note: This transform is deprecated in favor of Resize.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                      "please use transforms.Resize instead.")
        super(Scale, self).__init__(*args, **kwargs)


vfdev's avatar
vfdev committed
308
309
class CenterCrop(torch.nn.Module):
    """Crops the given image at the center.
310
    If the image is torch Tensor, it is expected
311
312
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
    If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
313
314
315
316

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
317
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
318
319
320
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
321
        super().__init__()
322
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
323

vfdev's avatar
vfdev committed
324
    def forward(self, img):
325
326
        """
        Args:
vfdev's avatar
vfdev committed
327
            img (PIL Image or Tensor): Image to be cropped.
328
329

        Returns:
vfdev's avatar
vfdev committed
330
            PIL Image or Tensor: Cropped image.
331
332
333
        """
        return F.center_crop(img, self.size)

334
335
336
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

337

338
339
class Pad(torch.nn.Module):
    """Pad the given image on all sides with the given "pad" value.
340
    If the image is torch Tensor, it is expected
341
342
343
    to have [..., H, W] shape, where ... means at most 2 leading dimensions for mode reflect and symmetric,
    at most 3 leading dimensions for mode edge,
    and an arbitrary number of leading dimensions for mode constant
344
345

    Args:
346
347
348
        padding (int or sequence): Padding on each border. If a single int is provided this
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
349
            this is the padding for the left, top, right and bottom borders respectively.
350
351
352
353

            .. note::
                In torchscript mode padding as single int is not supported, use a sequence of
                length 1: ``[padding, ]``.
354
        fill (number or str or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
355
            length 3, it is used to fill R, G, B channels respectively.
356
357
358
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
            Only int or str or tuple value is supported for PIL Image.
359
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
360
            Default is constant.
361
362
363

            - constant: pads with a constant value, this value is specified with fill

364
365
            - edge: pads with the last value at the edge of the image,
                    if input a 5D torch Tensor, the last 3 dimensions will be padded instead of the last 2
366
367
368
369

            - reflect: pads with reflection of image without repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
370
                will result in [3, 2, 1, 2, 3, 4, 3, 2]
371
372
373
374

            - symmetric: pads with reflection of image repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
375
                will result in [2, 1, 1, 2, 3, 4, 4, 3]
376
377
    """

378
379
380
381
382
383
384
385
386
387
388
389
390
    def __init__(self, padding, fill=0, padding_mode="constant"):
        super().__init__()
        if not isinstance(padding, (numbers.Number, tuple, list)):
            raise TypeError("Got inappropriate padding arg")

        if not isinstance(fill, (numbers.Number, str, tuple)):
            raise TypeError("Got inappropriate fill arg")

        if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
            raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")

        if isinstance(padding, Sequence) and len(padding) not in [1, 2, 4]:
            raise ValueError("Padding must be an int or a 1, 2, or 4 element tuple, not a " +
391
392
393
394
                             "{} element tuple".format(len(padding)))

        self.padding = padding
        self.fill = fill
395
        self.padding_mode = padding_mode
396

397
    def forward(self, img):
398
399
        """
        Args:
400
            img (PIL Image or Tensor): Image to be padded.
401
402

        Returns:
403
            PIL Image or Tensor: Padded image.
404
        """
405
        return F.pad(img, self.padding, self.fill, self.padding_mode)
406

407
    def __repr__(self):
408
409
        return self.__class__.__name__ + '(padding={0}, fill={1}, padding_mode={2})'.\
            format(self.padding, self.fill, self.padding_mode)
410

411

412
class Lambda:
413
    """Apply a user-defined lambda as a transform. This transform does not support torchscript.
414
415
416
417
418
419

    Args:
        lambd (function): Lambda/function to be used for transform.
    """

    def __init__(self, lambd):
420
421
        if not callable(lambd):
            raise TypeError("Argument lambd should be callable, got {}".format(repr(type(lambd).__name__)))
422
423
424
425
426
        self.lambd = lambd

    def __call__(self, img):
        return self.lambd(img)

427
428
429
    def __repr__(self):
        return self.__class__.__name__ + '()'

430

431
class RandomTransforms:
432
433
434
    """Base class for a list of transformations with randomness

    Args:
435
        transforms (sequence): list of transformations
436
437
438
    """

    def __init__(self, transforms):
439
440
        if not isinstance(transforms, Sequence):
            raise TypeError("Argument transforms should be a sequence")
441
442
443
444
445
446
447
448
449
450
451
452
453
454
        self.transforms = transforms

    def __call__(self, *args, **kwargs):
        raise NotImplementedError()

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


455
class RandomApply(torch.nn.Module):
456
    """Apply randomly a list of transformations with a given probability.
457
458
459
460
461
462
463
464
465
466
467
468

    .. note::
        In order to script the transformation, please use ``torch.nn.ModuleList`` as input instead of list/tuple of
        transforms as shown below:

        >>> transforms = transforms.RandomApply(torch.nn.ModuleList([
        >>>     transforms.ColorJitter(),
        >>> ]), p=0.3)
        >>> scripted_transforms = torch.jit.script(transforms)

        Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
        `lambda` functions or ``PIL.Image``.
469
470

    Args:
471
        transforms (sequence or torch.nn.Module): list of transformations
472
473
474
475
        p (float): probability
    """

    def __init__(self, transforms, p=0.5):
476
477
        super().__init__()
        self.transforms = transforms
478
479
        self.p = p

480
481
    def forward(self, img):
        if self.p < torch.rand(1):
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
            return img
        for t in self.transforms:
            img = t(img)
        return img

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        format_string += '\n    p={}'.format(self.p)
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomOrder(RandomTransforms):
498
    """Apply a list of transformations in a random order. This transform does not support torchscript.
499
500
501
502
503
504
505
506
507
508
    """
    def __call__(self, img):
        order = list(range(len(self.transforms)))
        random.shuffle(order)
        for i in order:
            img = self.transforms[i](img)
        return img


class RandomChoice(RandomTransforms):
509
    """Apply single transformation randomly picked from a list. This transform does not support torchscript.
510
511
512
513
514
515
    """
    def __call__(self, img):
        t = random.choice(self.transforms)
        return t(img)


vfdev's avatar
vfdev committed
516
517
class RandomCrop(torch.nn.Module):
    """Crop the given image at a random location.
518
    If the image is torch Tensor, it is expected
519
520
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions,
    but if non-constant padding is used, the input is expected to have at most 2 leading dimensions
521
522
523
524

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
525
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
526
        padding (int or sequence, optional): Optional padding on each border
vfdev's avatar
vfdev committed
527
            of the image. Default is None. If a single int is provided this
528
529
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
vfdev's avatar
vfdev committed
530
            this is the padding for the left, top, right and bottom borders respectively.
531
532
533
534

            .. note::
                In torchscript mode padding as single int is not supported, use a sequence of
                length 1: ``[padding, ]``.
535
        pad_if_needed (boolean): It will pad the image if smaller than the
ekka's avatar
ekka committed
536
            desired size to avoid raising an exception. Since cropping is done
537
            after padding, the padding seems to be done at a random offset.
538
        fill (number or str or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
539
            length 3, it is used to fill R, G, B channels respectively.
540
541
542
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
            Only int or str or tuple value is supported for PIL Image.
vfdev's avatar
vfdev committed
543
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558

             - constant: pads with a constant value, this value is specified with fill

             - edge: pads with the last value on the edge of the image

             - reflect: pads with reflection of image (without repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                will result in [3, 2, 1, 2, 3, 4, 3, 2]

             - symmetric: pads with reflection of image (repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                will result in [2, 1, 1, 2, 3, 4, 4, 3]

559
560
561
    """

    @staticmethod
vfdev's avatar
vfdev committed
562
    def get_params(img: Tensor, output_size: Tuple[int, int]) -> Tuple[int, int, int, int]:
563
564
565
        """Get parameters for ``crop`` for a random crop.

        Args:
vfdev's avatar
vfdev committed
566
            img (PIL Image or Tensor): Image to be cropped.
567
568
569
570
571
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
vfdev's avatar
vfdev committed
572
        w, h = F._get_image_size(img)
573
        th, tw = output_size
vfdev's avatar
vfdev committed
574
575
576
577
578
579

        if h + 1 < th or w + 1 < tw:
            raise ValueError(
                "Required crop size {} is larger then input image size {}".format((th, tw), (h, w))
            )

580
581
582
        if w == tw and h == th:
            return 0, 0, h, w

583
584
        i = torch.randint(0, h - th + 1, size=(1, )).item()
        j = torch.randint(0, w - tw + 1, size=(1, )).item()
585
586
        return i, j, th, tw

vfdev's avatar
vfdev committed
587
588
589
    def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode="constant"):
        super().__init__()

590
591
592
593
        self.size = tuple(_setup_size(
            size, error_msg="Please provide only two dimensions (h, w) for size."
        ))

vfdev's avatar
vfdev committed
594
595
596
597
598
599
        self.padding = padding
        self.pad_if_needed = pad_if_needed
        self.fill = fill
        self.padding_mode = padding_mode

    def forward(self, img):
600
601
        """
        Args:
vfdev's avatar
vfdev committed
602
            img (PIL Image or Tensor): Image to be cropped.
603
604

        Returns:
vfdev's avatar
vfdev committed
605
            PIL Image or Tensor: Cropped image.
606
        """
607
608
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)
609

vfdev's avatar
vfdev committed
610
        width, height = F._get_image_size(img)
611
        # pad the width if needed
vfdev's avatar
vfdev committed
612
613
614
        if self.pad_if_needed and width < self.size[1]:
            padding = [self.size[1] - width, 0]
            img = F.pad(img, padding, self.fill, self.padding_mode)
615
        # pad the height if needed
vfdev's avatar
vfdev committed
616
617
618
        if self.pad_if_needed and height < self.size[0]:
            padding = [0, self.size[0] - height]
            img = F.pad(img, padding, self.fill, self.padding_mode)
619

620
621
622
623
        i, j, h, w = self.get_params(img, self.size)

        return F.crop(img, i, j, h, w)

624
    def __repr__(self):
vfdev's avatar
vfdev committed
625
        return self.__class__.__name__ + "(size={0}, padding={1})".format(self.size, self.padding)
626

627

628
629
class RandomHorizontalFlip(torch.nn.Module):
    """Horizontally flip the given image randomly with a given probability.
630
    If the image is torch Tensor, it is expected
631
632
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
633
634
635
636
637
638

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
639
        super().__init__()
640
        self.p = p
641

642
    def forward(self, img):
643
644
        """
        Args:
645
            img (PIL Image or Tensor): Image to be flipped.
646
647

        Returns:
648
            PIL Image or Tensor: Randomly flipped image.
649
        """
650
        if torch.rand(1) < self.p:
651
652
653
            return F.hflip(img)
        return img

654
    def __repr__(self):
655
        return self.__class__.__name__ + '(p={})'.format(self.p)
656

657

658
class RandomVerticalFlip(torch.nn.Module):
vfdev's avatar
vfdev committed
659
    """Vertically flip the given image randomly with a given probability.
660
    If the image is torch Tensor, it is expected
661
662
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
663
664
665
666
667
668

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
669
        super().__init__()
670
        self.p = p
671

672
    def forward(self, img):
673
674
        """
        Args:
675
            img (PIL Image or Tensor): Image to be flipped.
676
677

        Returns:
678
            PIL Image or Tensor: Randomly flipped image.
679
        """
680
        if torch.rand(1) < self.p:
681
682
683
            return F.vflip(img)
        return img

684
    def __repr__(self):
685
        return self.__class__.__name__ + '(p={})'.format(self.p)
686

687

688
689
class RandomPerspective(torch.nn.Module):
    """Performs a random perspective transformation of the given image with a given probability.
690
    If the image is torch Tensor, it is expected
691
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
692
693

    Args:
694
695
696
        distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
            Default is 0.5.
        p (float): probability of the image being transformed. Default is 0.5.
697
698
699
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
700
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
701
702
        fill (sequence or number): Pixel fill value for the area outside the transformed
            image. Default is ``0``. If given a number, the value is used for all bands respectively.
703
            If input is PIL Image, the options is only available for ``Pillow>=5.0.0``.
704
705
    """

706
    def __init__(self, distortion_scale=0.5, p=0.5, interpolation=InterpolationMode.BILINEAR, fill=0):
707
        super().__init__()
708
        self.p = p
709
710
711
712

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
713
714
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
715
716
717
            )
            interpolation = _interpolation_modes_from_int(interpolation)

718
719
        self.interpolation = interpolation
        self.distortion_scale = distortion_scale
720
721
722
723
724
725

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")

726
        self.fill = fill
727

728
    def forward(self, img):
729
730
        """
        Args:
731
            img (PIL Image or Tensor): Image to be Perspectively transformed.
732
733

        Returns:
734
            PIL Image or Tensor: Randomly transformed image.
735
        """
736
737
738
739
740
741
742
743

        fill = self.fill
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
                fill = [float(fill)] * F._get_image_num_channels(img)
            else:
                fill = [float(f) for f in fill]

744
745
        if torch.rand(1) < self.p:
            width, height = F._get_image_size(img)
746
            startpoints, endpoints = self.get_params(width, height, self.distortion_scale)
747
            return F.perspective(img, startpoints, endpoints, self.interpolation, fill)
748
749
750
        return img

    @staticmethod
751
    def get_params(width: int, height: int, distortion_scale: float) -> Tuple[List[List[int]], List[List[int]]]:
752
753
754
        """Get parameters for ``perspective`` for a random perspective transform.

        Args:
755
756
757
            width (int): width of the image.
            height (int): height of the image.
            distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
758
759

        Returns:
760
            List containing [top-left, top-right, bottom-right, bottom-left] of the original image,
761
762
            List containing [top-left, top-right, bottom-right, bottom-left] of the transformed image.
        """
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
        half_height = height // 2
        half_width = width // 2
        topleft = [
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1, )).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1, )).item())
        ]
        topright = [
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1, )).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1, )).item())
        ]
        botright = [
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1, )).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1, )).item())
        ]
        botleft = [
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1, )).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1, )).item())
        ]
        startpoints = [[0, 0], [width - 1, 0], [width - 1, height - 1], [0, height - 1]]
782
783
784
785
786
787
788
        endpoints = [topleft, topright, botright, botleft]
        return startpoints, endpoints

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


789
class RandomResizedCrop(torch.nn.Module):
790
791
    """Crop a random portion of image and resize it to a given size.

792
    If the image is torch Tensor, it is expected
793
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
794

795
796
797
    A crop of the original image is made: the crop has a random area (H * W)
    and a random aspect ratio. This crop is finally resized to the given
    size. This is popularly used to train the Inception networks.
798
799

    Args:
800
        size (int or sequence): expected output size of the crop, for each edge. If size is an
801
            int instead of sequence like (h, w), a square output size ``(size, size)`` is
802
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
803
804
805

            .. note::
                In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
Nicolas Hug's avatar
Nicolas Hug committed
806
807
        scale (tuple of float): Specifies the lower and upper bounds for the random area of the crop,
            before resizing. The scale is defined with respect to the area of the original image.
808
809
        ratio (tuple of float): lower and upper bounds for the random aspect ratio of the crop, before
            resizing.
810
811
812
813
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` and
            ``InterpolationMode.BICUBIC`` are supported.
814
815
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.

816
817
    """

818
    def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=InterpolationMode.BILINEAR):
819
        super().__init__()
820
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
821

822
        if not isinstance(scale, Sequence):
823
            raise TypeError("Scale should be a sequence")
824
        if not isinstance(ratio, Sequence):
825
            raise TypeError("Ratio should be a sequence")
826
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
827
            warnings.warn("Scale and ratio should be of kind (min, max)")
828

829
830
831
        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
832
833
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
834
835
836
            )
            interpolation = _interpolation_modes_from_int(interpolation)

837
        self.interpolation = interpolation
838
839
        self.scale = scale
        self.ratio = ratio
840
841

    @staticmethod
842
    def get_params(
843
            img: Tensor, scale: List[float], ratio: List[float]
844
    ) -> Tuple[int, int, int, int]:
845
846
847
        """Get parameters for ``crop`` for a random sized crop.

        Args:
848
            img (PIL Image or Tensor): Input image.
849
850
            scale (list): range of scale of the origin size cropped
            ratio (list): range of aspect ratio of the origin aspect ratio cropped
851
852
853

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for a random
854
            sized crop.
855
        """
vfdev's avatar
vfdev committed
856
        width, height = F._get_image_size(img)
Zhicheng Yan's avatar
Zhicheng Yan committed
857
        area = height * width
858

859
        log_ratio = torch.log(torch.tensor(ratio))
860
        for _ in range(10):
861
            target_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
862
863
864
            aspect_ratio = torch.exp(
                torch.empty(1).uniform_(log_ratio[0], log_ratio[1])
            ).item()
865
866
867
868

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

Zhicheng Yan's avatar
Zhicheng Yan committed
869
            if 0 < w <= width and 0 < h <= height:
870
871
                i = torch.randint(0, height - h + 1, size=(1,)).item()
                j = torch.randint(0, width - w + 1, size=(1,)).item()
872
873
                return i, j, h, w

874
        # Fallback to central crop
Zhicheng Yan's avatar
Zhicheng Yan committed
875
        in_ratio = float(width) / float(height)
876
        if in_ratio < min(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
877
            w = width
878
            h = int(round(w / min(ratio)))
879
        elif in_ratio > max(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
880
            h = height
881
            w = int(round(h * max(ratio)))
882
        else:  # whole image
Zhicheng Yan's avatar
Zhicheng Yan committed
883
884
885
886
            w = width
            h = height
        i = (height - h) // 2
        j = (width - w) // 2
887
        return i, j, h, w
888

889
    def forward(self, img):
890
891
        """
        Args:
892
            img (PIL Image or Tensor): Image to be cropped and resized.
893
894

        Returns:
895
            PIL Image or Tensor: Randomly cropped and resized image.
896
        """
897
        i, j, h, w = self.get_params(img, self.scale, self.ratio)
898
899
        return F.resized_crop(img, i, j, h, w, self.size, self.interpolation)

900
    def __repr__(self):
901
        interpolate_str = self.interpolation.value
902
        format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
903
904
        format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale))
        format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio))
905
906
        format_string += ', interpolation={0})'.format(interpolate_str)
        return format_string
907

908
909
910
911
912
913
914
915
916
917
918

class RandomSizedCrop(RandomResizedCrop):
    """
    Note: This transform is deprecated in favor of RandomResizedCrop.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.RandomSizedCrop transform is deprecated, " +
                      "please use transforms.RandomResizedCrop instead.")
        super(RandomSizedCrop, self).__init__(*args, **kwargs)


vfdev's avatar
vfdev committed
919
920
class FiveCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop.
921
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
922
923
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
924
925
926
927
928
929
930
931
932

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
         size (sequence or int): Desired output size of the crop. If size is an ``int``
            instead of sequence like (h, w), a square crop of size (size, size) is made.
933
            If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
934
935
936
937
938
939
940
941
942
943
944
945
946
947

    Example:
         >>> transform = Compose([
         >>>    FiveCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
948
        super().__init__()
949
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
950

vfdev's avatar
vfdev committed
951
952
953
954
955
956
957
958
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 5 images. Image can be PIL Image or Tensor
        """
959
960
        return F.five_crop(img, self.size)

961
962
963
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

964

vfdev's avatar
vfdev committed
965
966
967
class TenCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop plus the flipped version of
    these (horizontal flipping is used by default).
968
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
969
970
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
971
972
973
974
975
976
977
978
979

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
980
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
981
        vertical_flip (bool): Use vertical flipping instead of horizontal
982
983
984
985
986
987
988
989
990
991
992
993
994
995

    Example:
         >>> transform = Compose([
         >>>    TenCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size, vertical_flip=False):
vfdev's avatar
vfdev committed
996
        super().__init__()
997
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
998
999
        self.vertical_flip = vertical_flip

vfdev's avatar
vfdev committed
1000
1001
1002
1003
1004
1005
1006
1007
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 10 images. Image can be PIL Image or Tensor
        """
1008
1009
        return F.ten_crop(img, self.size, self.vertical_flip)

1010
    def __repr__(self):
1011
        return self.__class__.__name__ + '(size={0}, vertical_flip={1})'.format(self.size, self.vertical_flip)
1012

1013

1014
class LinearTransformation(torch.nn.Module):
ekka's avatar
ekka committed
1015
    """Transform a tensor image with a square transformation matrix and a mean_vector computed
1016
    offline.
1017
    This transform does not support PIL Image.
ekka's avatar
ekka committed
1018
1019
1020
    Given transformation_matrix and mean_vector, will flatten the torch.*Tensor and
    subtract mean_vector from it which is then followed by computing the dot
    product with the transformation matrix and then reshaping the tensor to its
1021
    original shape.
1022

1023
    Applications:
1024
        whitening transformation: Suppose X is a column vector zero-centered data.
1025
1026
1027
        Then compute the data covariance matrix [D x D] with torch.mm(X.t(), X),
        perform SVD on this matrix and pass it as transformation_matrix.

1028
1029
    Args:
        transformation_matrix (Tensor): tensor [D x D], D = C x H x W
ekka's avatar
ekka committed
1030
        mean_vector (Tensor): tensor [D], D = C x H x W
1031
1032
    """

ekka's avatar
ekka committed
1033
    def __init__(self, transformation_matrix, mean_vector):
1034
        super().__init__()
1035
1036
1037
        if transformation_matrix.size(0) != transformation_matrix.size(1):
            raise ValueError("transformation_matrix should be square. Got " +
                             "[{} x {}] rectangular matrix.".format(*transformation_matrix.size()))
ekka's avatar
ekka committed
1038
1039
1040

        if mean_vector.size(0) != transformation_matrix.size(0):
            raise ValueError("mean_vector should have the same length {}".format(mean_vector.size(0)) +
Francisco Massa's avatar
Francisco Massa committed
1041
1042
                             " as any one of the dimensions of the transformation_matrix [{}]"
                             .format(tuple(transformation_matrix.size())))
ekka's avatar
ekka committed
1043

1044
1045
1046
1047
        if transformation_matrix.device != mean_vector.device:
            raise ValueError("Input tensors should be on the same device. Got {} and {}"
                             .format(transformation_matrix.device, mean_vector.device))

1048
        self.transformation_matrix = transformation_matrix
ekka's avatar
ekka committed
1049
        self.mean_vector = mean_vector
1050

1051
    def forward(self, tensor: Tensor) -> Tensor:
1052
1053
        """
        Args:
vfdev's avatar
vfdev committed
1054
            tensor (Tensor): Tensor image to be whitened.
1055
1056
1057
1058

        Returns:
            Tensor: Transformed image.
        """
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
        shape = tensor.shape
        n = shape[-3] * shape[-2] * shape[-1]
        if n != self.transformation_matrix.shape[0]:
            raise ValueError("Input tensor and transformation matrix have incompatible shape." +
                             "[{} x {} x {}] != ".format(shape[-3], shape[-2], shape[-1]) +
                             "{}".format(self.transformation_matrix.shape[0]))

        if tensor.device.type != self.mean_vector.device.type:
            raise ValueError("Input tensor should be on the same device as transformation matrix and mean vector. "
                             "Got {} vs {}".format(tensor.device, self.mean_vector.device))

        flat_tensor = tensor.view(-1, n) - self.mean_vector
1071
        transformed_tensor = torch.mm(flat_tensor, self.transformation_matrix)
1072
        tensor = transformed_tensor.view(shape)
1073
1074
        return tensor

1075
    def __repr__(self):
ekka's avatar
ekka committed
1076
1077
1078
        format_string = self.__class__.__name__ + '(transformation_matrix='
        format_string += (str(self.transformation_matrix.tolist()) + ')')
        format_string += (", (mean_vector=" + str(self.mean_vector.tolist()) + ')')
1079
1080
        return format_string

1081

1082
class ColorJitter(torch.nn.Module):
1083
    """Randomly change the brightness, contrast, saturation and hue of an image.
1084
    If the image is torch Tensor, it is expected
1085
1086
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, mode "1", "L", "I", "F" and modes with transparency (alpha channel) are not supported.
1087
1088

    Args:
yaox12's avatar
yaox12 committed
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
        brightness (float or tuple of float (min, max)): How much to jitter brightness.
            brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
            or the given [min, max]. Should be non negative numbers.
        contrast (float or tuple of float (min, max)): How much to jitter contrast.
            contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
            or the given [min, max]. Should be non negative numbers.
        saturation (float or tuple of float (min, max)): How much to jitter saturation.
            saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
            or the given [min, max]. Should be non negative numbers.
        hue (float or tuple of float (min, max)): How much to jitter hue.
            hue_factor is chosen uniformly from [-hue, hue] or the given [min, max].
            Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
1101
    """
1102

1103
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
1104
        super().__init__()
yaox12's avatar
yaox12 committed
1105
1106
1107
1108
1109
1110
        self.brightness = self._check_input(brightness, 'brightness')
        self.contrast = self._check_input(contrast, 'contrast')
        self.saturation = self._check_input(saturation, 'saturation')
        self.hue = self._check_input(hue, 'hue', center=0, bound=(-0.5, 0.5),
                                     clip_first_on_zero=False)

1111
    @torch.jit.unused
yaox12's avatar
yaox12 committed
1112
1113
1114
1115
    def _check_input(self, value, name, center=1, bound=(0, float('inf')), clip_first_on_zero=True):
        if isinstance(value, numbers.Number):
            if value < 0:
                raise ValueError("If {} is a single number, it must be non negative.".format(name))
1116
            value = [center - float(value), center + float(value)]
yaox12's avatar
yaox12 committed
1117
            if clip_first_on_zero:
1118
                value[0] = max(value[0], 0.0)
yaox12's avatar
yaox12 committed
1119
1120
1121
1122
        elif isinstance(value, (tuple, list)) and len(value) == 2:
            if not bound[0] <= value[0] <= value[1] <= bound[1]:
                raise ValueError("{} values should be between {}".format(name, bound))
        else:
1123
            raise TypeError("{} should be a single number or a list/tuple with length 2.".format(name))
yaox12's avatar
yaox12 committed
1124
1125
1126
1127
1128
1129

        # if value is 0 or (1., 1.) for brightness/contrast/saturation
        # or (0., 0.) for hue, do nothing
        if value[0] == value[1] == center:
            value = None
        return value
1130
1131

    @staticmethod
1132
1133
1134
1135
1136
1137
    def get_params(brightness: Optional[List[float]],
                   contrast: Optional[List[float]],
                   saturation: Optional[List[float]],
                   hue: Optional[List[float]]
                   ) -> Tuple[Tensor, Optional[float], Optional[float], Optional[float], Optional[float]]:
        """Get the parameters for the randomized transform to be applied on image.
1138

1139
1140
1141
1142
1143
1144
1145
1146
1147
        Args:
            brightness (tuple of float (min, max), optional): The range from which the brightness_factor is chosen
                uniformly. Pass None to turn off the transformation.
            contrast (tuple of float (min, max), optional): The range from which the contrast_factor is chosen
                uniformly. Pass None to turn off the transformation.
            saturation (tuple of float (min, max), optional): The range from which the saturation_factor is chosen
                uniformly. Pass None to turn off the transformation.
            hue (tuple of float (min, max), optional): The range from which the hue_factor is chosen uniformly.
                Pass None to turn off the transformation.
1148
1149

        Returns:
1150
1151
            tuple: The parameters used to apply the randomized transform
            along with their random order.
1152
        """
1153
        fn_idx = torch.randperm(4)
1154

1155
1156
1157
1158
        b = None if brightness is None else float(torch.empty(1).uniform_(brightness[0], brightness[1]))
        c = None if contrast is None else float(torch.empty(1).uniform_(contrast[0], contrast[1]))
        s = None if saturation is None else float(torch.empty(1).uniform_(saturation[0], saturation[1]))
        h = None if hue is None else float(torch.empty(1).uniform_(hue[0], hue[1]))
1159

1160
        return fn_idx, b, c, s, h
1161

1162
    def forward(self, img):
1163
1164
        """
        Args:
1165
            img (PIL Image or Tensor): Input image.
1166
1167

        Returns:
1168
1169
            PIL Image or Tensor: Color jittered image.
        """
1170
1171
1172
        fn_idx, brightness_factor, contrast_factor, saturation_factor, hue_factor = \
            self.get_params(self.brightness, self.contrast, self.saturation, self.hue)

1173
        for fn_id in fn_idx:
1174
            if fn_id == 0 and brightness_factor is not None:
1175
                img = F.adjust_brightness(img, brightness_factor)
1176
            elif fn_id == 1 and contrast_factor is not None:
1177
                img = F.adjust_contrast(img, contrast_factor)
1178
            elif fn_id == 2 and saturation_factor is not None:
1179
                img = F.adjust_saturation(img, saturation_factor)
1180
            elif fn_id == 3 and hue_factor is not None:
1181
1182
1183
                img = F.adjust_hue(img, hue_factor)

        return img
1184

1185
    def __repr__(self):
1186
1187
1188
1189
1190
1191
        format_string = self.__class__.__name__ + '('
        format_string += 'brightness={0}'.format(self.brightness)
        format_string += ', contrast={0}'.format(self.contrast)
        format_string += ', saturation={0}'.format(self.saturation)
        format_string += ', hue={0})'.format(self.hue)
        return format_string
1192

1193

1194
class RandomRotation(torch.nn.Module):
1195
    """Rotate the image by angle.
1196
    If the image is torch Tensor, it is expected
1197
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1198
1199

    Args:
1200
        degrees (sequence or number): Range of degrees to select from.
1201
1202
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees).
1203
1204
1205
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1206
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
1207
1208
1209
1210
        expand (bool, optional): Optional expansion flag.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
1211
        center (sequence, optional): Optional center of rotation, (x, y). Origin is the upper left corner.
1212
            Default is the center of the image.
1213
1214
        fill (sequence or number): Pixel fill value for the area outside the rotated
            image. Default is ``0``. If given a number, the value is used for all bands respectively.
1215
            If input is PIL Image, the options is only available for ``Pillow>=5.2.0``.
1216
        resample (int, optional): deprecated argument and will be removed since v0.10.0.
1217
            Please use the ``interpolation`` parameter instead.
1218
1219
1220

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1221
1222
    """

1223
    def __init__(
1224
        self, degrees, interpolation=InterpolationMode.NEAREST, expand=False, center=None, fill=0, resample=None
1225
    ):
1226
        super().__init__()
1227
1228
1229
1230
1231
1232
1233
1234
1235
        if resample is not None:
            warnings.warn(
                "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
            )
            interpolation = _interpolation_modes_from_int(resample)

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
1236
1237
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
1238
1239
1240
            )
            interpolation = _interpolation_modes_from_int(interpolation)

1241
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2, ))
1242
1243

        if center is not None:
1244
            _check_sequence_input(center, "center", req_sizes=(2, ))
1245
1246

        self.center = center
1247

1248
        self.resample = self.interpolation = interpolation
1249
        self.expand = expand
1250
1251
1252
1253
1254
1255

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")

1256
        self.fill = fill
1257
1258

    @staticmethod
1259
    def get_params(degrees: List[float]) -> float:
1260
1261
1262
        """Get parameters for ``rotate`` for a random rotation.

        Returns:
1263
            float: angle parameter to be passed to ``rotate`` for random rotation.
1264
        """
1265
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1266
1267
        return angle

1268
    def forward(self, img):
1269
        """
1270
        Args:
1271
            img (PIL Image or Tensor): Image to be rotated.
1272
1273

        Returns:
1274
            PIL Image or Tensor: Rotated image.
1275
        """
1276
1277
1278
1279
1280
1281
        fill = self.fill
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
                fill = [float(fill)] * F._get_image_num_channels(img)
            else:
                fill = [float(f) for f in fill]
1282
        angle = self.get_params(self.degrees)
1283
1284

        return F.rotate(img, angle, self.resample, self.expand, self.center, fill)
1285

1286
    def __repr__(self):
1287
        interpolate_str = self.interpolation.value
1288
        format_string = self.__class__.__name__ + '(degrees={0}'.format(self.degrees)
1289
        format_string += ', interpolation={0}'.format(interpolate_str)
1290
1291
1292
        format_string += ', expand={0}'.format(self.expand)
        if self.center is not None:
            format_string += ', center={0}'.format(self.center)
1293
1294
        if self.fill is not None:
            format_string += ', fill={0}'.format(self.fill)
1295
1296
        format_string += ')'
        return format_string
1297

1298

1299
1300
class RandomAffine(torch.nn.Module):
    """Random affine transformation of the image keeping center invariant.
1301
    If the image is torch Tensor, it is expected
1302
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1303
1304

    Args:
1305
        degrees (sequence or number): Range of degrees to select from.
1306
            If degrees is a number instead of sequence like (min, max), the range of degrees
1307
            will be (-degrees, +degrees). Set to 0 to deactivate rotations.
1308
1309
1310
1311
1312
1313
        translate (tuple, optional): tuple of maximum absolute fraction for horizontal
            and vertical translations. For example translate=(a, b), then horizontal shift
            is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
            randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
        scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
            randomly sampled from the range a <= scale <= b. Will keep original scale by default.
1314
        shear (sequence or number, optional): Range of degrees to select from.
ptrblck's avatar
ptrblck committed
1315
            If shear is a number, a shear parallel to the x axis in the range (-shear, +shear)
1316
1317
            will be applied. Else if shear is a sequence of 2 values a shear parallel to the x axis in the
            range (shear[0], shear[1]) will be applied. Else if shear is a sequence of 4 values,
ptrblck's avatar
ptrblck committed
1318
            a x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
1319
            Will not apply shear by default.
1320
1321
1322
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1323
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
1324
1325
        fill (sequence or number): Pixel fill value for the area outside the transformed
            image. Default is ``0``. If given a number, the value is used for all bands respectively.
1326
            If input is PIL Image, the options is only available for ``Pillow>=5.0.0``.
1327
        fillcolor (sequence or number, optional): deprecated argument and will be removed since v0.10.0.
1328
            Please use the ``fill`` parameter instead.
1329
        resample (int, optional): deprecated argument and will be removed since v0.10.0.
1330
            Please use the ``interpolation`` parameter instead.
1331
1332
1333

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1334
1335
    """

1336
    def __init__(
1337
        self, degrees, translate=None, scale=None, shear=None, interpolation=InterpolationMode.NEAREST, fill=0,
1338
1339
        fillcolor=None, resample=None
    ):
1340
        super().__init__()
1341
1342
1343
1344
1345
1346
1347
1348
1349
        if resample is not None:
            warnings.warn(
                "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
            )
            interpolation = _interpolation_modes_from_int(resample)

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
1350
1351
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
1352
1353
1354
1355
1356
1357
1358
1359
1360
            )
            interpolation = _interpolation_modes_from_int(interpolation)

        if fillcolor is not None:
            warnings.warn(
                "Argument fillcolor is deprecated and will be removed since v0.10.0. Please, use fill instead"
            )
            fill = fillcolor

1361
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2, ))
1362
1363

        if translate is not None:
1364
            _check_sequence_input(translate, "translate", req_sizes=(2, ))
1365
1366
1367
1368
1369
1370
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError("translation values should be between 0 and 1")
        self.translate = translate

        if scale is not None:
1371
            _check_sequence_input(scale, "scale", req_sizes=(2, ))
1372
1373
1374
1375
1376
1377
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
1378
            self.shear = _setup_angle(shear, name="shear", req_sizes=(2, 4))
1379
1380
1381
        else:
            self.shear = shear

1382
        self.resample = self.interpolation = interpolation
1383
1384
1385
1386
1387
1388

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")

1389
        self.fillcolor = self.fill = fill
1390
1391

    @staticmethod
1392
1393
1394
1395
1396
1397
1398
    def get_params(
            degrees: List[float],
            translate: Optional[List[float]],
            scale_ranges: Optional[List[float]],
            shears: Optional[List[float]],
            img_size: List[int]
    ) -> Tuple[float, Tuple[int, int], float, Tuple[float, float]]:
1399
1400
1401
        """Get parameters for affine transformation

        Returns:
1402
            params to be passed to the affine transformation
1403
        """
1404
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1405
        if translate is not None:
1406
1407
1408
1409
1410
            max_dx = float(translate[0] * img_size[0])
            max_dy = float(translate[1] * img_size[1])
            tx = int(round(torch.empty(1).uniform_(-max_dx, max_dx).item()))
            ty = int(round(torch.empty(1).uniform_(-max_dy, max_dy).item()))
            translations = (tx, ty)
1411
1412
1413
1414
        else:
            translations = (0, 0)

        if scale_ranges is not None:
1415
            scale = float(torch.empty(1).uniform_(scale_ranges[0], scale_ranges[1]).item())
1416
1417
1418
        else:
            scale = 1.0

1419
        shear_x = shear_y = 0.0
1420
        if shears is not None:
1421
1422
1423
1424
1425
            shear_x = float(torch.empty(1).uniform_(shears[0], shears[1]).item())
            if len(shears) == 4:
                shear_y = float(torch.empty(1).uniform_(shears[2], shears[3]).item())

        shear = (shear_x, shear_y)
1426
1427
1428

        return angle, translations, scale, shear

1429
    def forward(self, img):
1430
        """
1431
            img (PIL Image or Tensor): Image to be transformed.
1432
1433

        Returns:
1434
            PIL Image or Tensor: Affine transformed image.
1435
        """
1436
1437
1438
1439
1440
1441
        fill = self.fill
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
                fill = [float(fill)] * F._get_image_num_channels(img)
            else:
                fill = [float(f) for f in fill]
1442
1443
1444
1445

        img_size = F._get_image_size(img)

        ret = self.get_params(self.degrees, self.translate, self.scale, self.shear, img_size)
1446
1447

        return F.affine(img, *ret, interpolation=self.interpolation, fill=fill)
1448
1449
1450
1451
1452
1453
1454
1455
1456

    def __repr__(self):
        s = '{name}(degrees={degrees}'
        if self.translate is not None:
            s += ', translate={translate}'
        if self.scale is not None:
            s += ', scale={scale}'
        if self.shear is not None:
            s += ', shear={shear}'
1457
        if self.interpolation != InterpolationMode.NEAREST:
1458
1459
1460
            s += ', interpolation={interpolation}'
        if self.fill != 0:
            s += ', fill={fill}'
1461
1462
        s += ')'
        d = dict(self.__dict__)
1463
        d['interpolation'] = self.interpolation.value
1464
1465
1466
        return s.format(name=self.__class__.__name__, **d)


1467
class Grayscale(torch.nn.Module):
1468
    """Convert image to grayscale.
1469
1470
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1471

1472
1473
1474
1475
    Args:
        num_output_channels (int): (1 or 3) number of channels desired for output image

    Returns:
1476
        PIL Image: Grayscale version of the input.
1477
1478
1479

        - If ``num_output_channels == 1`` : returned image is single channel
        - If ``num_output_channels == 3`` : returned image is 3 channel with r == g == b
1480
1481
1482
1483

    """

    def __init__(self, num_output_channels=1):
1484
        super().__init__()
1485
1486
        self.num_output_channels = num_output_channels

vfdev's avatar
vfdev committed
1487
    def forward(self, img):
1488
1489
        """
        Args:
1490
            img (PIL Image or Tensor): Image to be converted to grayscale.
1491
1492

        Returns:
1493
            PIL Image or Tensor: Grayscaled image.
1494
        """
1495
        return F.rgb_to_grayscale(img, num_output_channels=self.num_output_channels)
1496

1497
    def __repr__(self):
1498
        return self.__class__.__name__ + '(num_output_channels={0})'.format(self.num_output_channels)
1499

1500

1501
class RandomGrayscale(torch.nn.Module):
1502
    """Randomly convert image to grayscale with a probability of p (default 0.1).
1503
1504
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1505

1506
1507
1508
1509
    Args:
        p (float): probability that image should be converted to grayscale.

    Returns:
1510
        PIL Image or Tensor: Grayscale version of the input image with probability p and unchanged
1511
1512
1513
        with probability (1-p).
        - If input image is 1 channel: grayscale version is 1 channel
        - If input image is 3 channel: grayscale version is 3 channel with r == g == b
1514
1515
1516
1517

    """

    def __init__(self, p=0.1):
1518
        super().__init__()
1519
1520
        self.p = p

vfdev's avatar
vfdev committed
1521
    def forward(self, img):
1522
1523
        """
        Args:
1524
            img (PIL Image or Tensor): Image to be converted to grayscale.
1525
1526

        Returns:
1527
            PIL Image or Tensor: Randomly grayscaled image.
1528
        """
1529
1530
1531
        num_output_channels = F._get_image_num_channels(img)
        if torch.rand(1) < self.p:
            return F.rgb_to_grayscale(img, num_output_channels=num_output_channels)
1532
        return img
1533
1534

    def __repr__(self):
1535
        return self.__class__.__name__ + '(p={0})'.format(self.p)
1536
1537


1538
class RandomErasing(torch.nn.Module):
1539
1540
    """ Randomly selects a rectangle region in an torch Tensor image and erases its pixels.
    This transform does not support PIL Image.
vfdev's avatar
vfdev committed
1541
    'Random Erasing Data Augmentation' by Zhong et al. See https://arxiv.org/abs/1708.04896
1542

1543
1544
1545
1546
1547
1548
1549
1550
    Args:
         p: probability that the random erasing operation will be performed.
         scale: range of proportion of erased area against input image.
         ratio: range of aspect ratio of erased area.
         value: erasing value. Default is 0. If a single int, it is used to
            erase all pixels. If a tuple of length 3, it is used to erase
            R, G, B channels respectively.
            If a str of 'random', erasing each pixel with random values.
Zhun Zhong's avatar
Zhun Zhong committed
1551
         inplace: boolean to make this transform inplace. Default set to False.
1552

1553
1554
    Returns:
        Erased Image.
1555

vfdev's avatar
vfdev committed
1556
    Example:
1557
        >>> transform = transforms.Compose([
1558
1559
1560
1561
        >>>   transforms.RandomHorizontalFlip(),
        >>>   transforms.ToTensor(),
        >>>   transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>>   transforms.RandomErasing(),
1562
1563
1564
        >>> ])
    """

Zhun Zhong's avatar
Zhun Zhong committed
1565
    def __init__(self, p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False):
1566
1567
1568
1569
1570
1571
1572
1573
1574
        super().__init__()
        if not isinstance(value, (numbers.Number, str, tuple, list)):
            raise TypeError("Argument value should be either a number or str or a sequence")
        if isinstance(value, str) and value != "random":
            raise ValueError("If value is str, it should be 'random'")
        if not isinstance(scale, (tuple, list)):
            raise TypeError("Scale should be a sequence")
        if not isinstance(ratio, (tuple, list)):
            raise TypeError("Ratio should be a sequence")
1575
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
1576
            warnings.warn("Scale and ratio should be of kind (min, max)")
1577
        if scale[0] < 0 or scale[1] > 1:
1578
            raise ValueError("Scale should be between 0 and 1")
1579
        if p < 0 or p > 1:
1580
            raise ValueError("Random erasing probability should be between 0 and 1")
1581
1582
1583
1584
1585

        self.p = p
        self.scale = scale
        self.ratio = ratio
        self.value = value
1586
        self.inplace = inplace
1587
1588

    @staticmethod
1589
1590
1591
    def get_params(
            img: Tensor, scale: Tuple[float, float], ratio: Tuple[float, float], value: Optional[List[float]] = None
    ) -> Tuple[int, int, int, int, Tensor]:
1592
1593
1594
        """Get parameters for ``erase`` for a random erasing.

        Args:
vfdev's avatar
vfdev committed
1595
            img (Tensor): Tensor image to be erased.
1596
1597
            scale (sequence): range of proportion of erased area against input image.
            ratio (sequence): range of aspect ratio of erased area.
1598
1599
1600
            value (list, optional): erasing value. If None, it is interpreted as "random"
                (erasing each pixel with random values). If ``len(value)`` is 1, it is interpreted as a number,
                i.e. ``value[0]``.
1601
1602
1603
1604

        Returns:
            tuple: params (i, j, h, w, v) to be passed to ``erase`` for random erasing.
        """
vfdev's avatar
vfdev committed
1605
        img_c, img_h, img_w = img.shape[-3], img.shape[-2], img.shape[-1]
1606
        area = img_h * img_w
1607

1608
        log_ratio = torch.log(torch.tensor(ratio))
1609
        for _ in range(10):
1610
            erase_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
1611
1612
1613
            aspect_ratio = torch.exp(
                torch.empty(1).uniform_(log_ratio[0], log_ratio[1])
            ).item()
1614
1615
1616

            h = int(round(math.sqrt(erase_area * aspect_ratio)))
            w = int(round(math.sqrt(erase_area / aspect_ratio)))
1617
1618
1619
1620
1621
1622
1623
            if not (h < img_h and w < img_w):
                continue

            if value is None:
                v = torch.empty([img_c, h, w], dtype=torch.float32).normal_()
            else:
                v = torch.tensor(value)[:, None, None]
1624

1625
1626
            i = torch.randint(0, img_h - h + 1, size=(1, )).item()
            j = torch.randint(0, img_w - w + 1, size=(1, )).item()
1627
            return i, j, h, w, v
1628

Zhun Zhong's avatar
Zhun Zhong committed
1629
1630
1631
        # Return original image
        return 0, 0, img_h, img_w, img

1632
    def forward(self, img):
1633
1634
        """
        Args:
vfdev's avatar
vfdev committed
1635
            img (Tensor): Tensor image to be erased.
1636
1637
1638
1639

        Returns:
            img (Tensor): Erased Tensor image.
        """
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
        if torch.rand(1) < self.p:

            # cast self.value to script acceptable type
            if isinstance(self.value, (int, float)):
                value = [self.value, ]
            elif isinstance(self.value, str):
                value = None
            elif isinstance(self.value, tuple):
                value = list(self.value)
            else:
                value = self.value

            if value is not None and not (len(value) in (1, img.shape[-3])):
                raise ValueError(
                    "If value is a sequence, it should have either a single value or "
                    "{} (number of input channels)".format(img.shape[-3])
                )

            x, y, h, w, v = self.get_params(img, scale=self.scale, ratio=self.ratio, value=value)
1659
            return F.erase(img, x, y, h, w, v, self.inplace)
1660
        return img
1661

1662
1663
1664
1665
1666
1667
1668
1669
    def __repr__(self):
        s = '(p={}, '.format(self.p)
        s += 'scale={}, '.format(self.scale)
        s += 'ratio={}, '.format(self.ratio)
        s += 'value={}, '.format(self.value)
        s += 'inplace={})'.format(self.inplace)
        return self.__class__.__name__ + s

1670

1671
1672
class GaussianBlur(torch.nn.Module):
    """Blurs image with randomly chosen Gaussian blur.
1673
1674
    If the image is torch Tensor, it is expected
    to have [..., C, H, W] shape, where ... means an arbitrary number of leading dimensions.
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708

    Args:
        kernel_size (int or sequence): Size of the Gaussian kernel.
        sigma (float or tuple of float (min, max)): Standard deviation to be used for
            creating kernel to perform blurring. If float, sigma is fixed. If it is tuple
            of float (min, max), sigma is chosen uniformly at random to lie in the
            given range.

    Returns:
        PIL Image or Tensor: Gaussian blurred version of the input image.

    """

    def __init__(self, kernel_size, sigma=(0.1, 2.0)):
        super().__init__()
        self.kernel_size = _setup_size(kernel_size, "Kernel size should be a tuple/list of two integers")
        for ks in self.kernel_size:
            if ks <= 0 or ks % 2 == 0:
                raise ValueError("Kernel size value should be an odd and positive number.")

        if isinstance(sigma, numbers.Number):
            if sigma <= 0:
                raise ValueError("If sigma is a single number, it must be positive.")
            sigma = (sigma, sigma)
        elif isinstance(sigma, Sequence) and len(sigma) == 2:
            if not 0. < sigma[0] <= sigma[1]:
                raise ValueError("sigma values should be positive and of the form (min, max).")
        else:
            raise ValueError("sigma should be a single number or a list/tuple with length 2.")

        self.sigma = sigma

    @staticmethod
    def get_params(sigma_min: float, sigma_max: float) -> float:
vfdev's avatar
vfdev committed
1709
        """Choose sigma for random gaussian blurring.
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722

        Args:
            sigma_min (float): Minimum standard deviation that can be chosen for blurring kernel.
            sigma_max (float): Maximum standard deviation that can be chosen for blurring kernel.

        Returns:
            float: Standard deviation to be passed to calculate kernel for gaussian blurring.
        """
        return torch.empty(1).uniform_(sigma_min, sigma_max).item()

    def forward(self, img: Tensor) -> Tensor:
        """
        Args:
vfdev's avatar
vfdev committed
1723
            img (PIL Image or Tensor): image to be blurred.
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736

        Returns:
            PIL Image or Tensor: Gaussian blurred image
        """
        sigma = self.get_params(self.sigma[0], self.sigma[1])
        return F.gaussian_blur(img, self.kernel_size, [sigma, sigma])

    def __repr__(self):
        s = '(kernel_size={}, '.format(self.kernel_size)
        s += 'sigma={})'.format(self.sigma)
        return self.__class__.__name__ + s


1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
def _setup_size(size, error_msg):
    if isinstance(size, numbers.Number):
        return int(size), int(size)

    if isinstance(size, Sequence) and len(size) == 1:
        return size[0], size[0]

    if len(size) != 2:
        raise ValueError(error_msg)

    return size


def _check_sequence_input(x, name, req_sizes):
    msg = req_sizes[0] if len(req_sizes) < 2 else " or ".join([str(s) for s in req_sizes])
    if not isinstance(x, Sequence):
        raise TypeError("{} should be a sequence of length {}.".format(name, msg))
    if len(x) not in req_sizes:
        raise ValueError("{} should be sequence of length {}.".format(name, msg))


def _setup_angle(x, name, req_sizes=(2, )):
    if isinstance(x, numbers.Number):
        if x < 0:
            raise ValueError("If {} is a single number, it must be positive.".format(name))
        x = [-x, x]
    else:
        _check_sequence_input(x, name, req_sizes)

    return [float(d) for d in x]
1767
1768
1769
1770


class RandomInvert(torch.nn.Module):
    """Inverts the colors of the given image randomly with a given probability.
1771
1772
1773
    If img is a Tensor, it is expected to be in [..., 1 or 3, H, W] format,
    where ... means it can have an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800

    Args:
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be inverted.

        Returns:
            PIL Image or Tensor: Randomly color inverted image.
        """
        if torch.rand(1).item() < self.p:
            return F.invert(img)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


class RandomPosterize(torch.nn.Module):
    """Posterize the image randomly with a given probability by reducing the
1801
1802
1803
    number of bits for each color channel. If the image is torch Tensor, it should be of type torch.uint8,
    and it is expected to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832

    Args:
        bits (int): number of bits to keep for each channel (0-8)
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, bits, p=0.5):
        super().__init__()
        self.bits = bits
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be posterized.

        Returns:
            PIL Image or Tensor: Randomly posterized image.
        """
        if torch.rand(1).item() < self.p:
            return F.posterize(img, self.bits)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(bits={},p={})'.format(self.bits, self.p)


class RandomSolarize(torch.nn.Module):
    """Solarize the image randomly with a given probability by inverting all pixel
1833
1834
1835
    values above a threshold. If img is a Tensor, it is expected to be in [..., 1 or 3, H, W] format,
    where ... means it can have an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863

    Args:
        threshold (float): all pixels equal or above this value are inverted.
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, threshold, p=0.5):
        super().__init__()
        self.threshold = threshold
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be solarized.

        Returns:
            PIL Image or Tensor: Randomly solarized image.
        """
        if torch.rand(1).item() < self.p:
            return F.solarize(img, self.threshold)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(threshold={},p={})'.format(self.threshold, self.p)


class RandomAdjustSharpness(torch.nn.Module):
1864
1865
    """Adjust the sharpness of the image randomly with a given probability. If the image is torch Tensor,
    it is expected to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896

    Args:
        sharpness_factor (float):  How much to adjust the sharpness. Can be
            any non negative number. 0 gives a blurred image, 1 gives the
            original image while 2 increases the sharpness by a factor of 2.
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, sharpness_factor, p=0.5):
        super().__init__()
        self.sharpness_factor = sharpness_factor
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be sharpened.

        Returns:
            PIL Image or Tensor: Randomly sharpened image.
        """
        if torch.rand(1).item() < self.p:
            return F.adjust_sharpness(img, self.sharpness_factor)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(sharpness_factor={},p={})'.format(self.sharpness_factor, self.p)


class RandomAutocontrast(torch.nn.Module):
    """Autocontrast the pixels of the given image randomly with a given probability.
1897
1898
1899
    If the image is torch Tensor, it is expected
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926

    Args:
        p (float): probability of the image being autocontrasted. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be autocontrasted.

        Returns:
            PIL Image or Tensor: Randomly autocontrasted image.
        """
        if torch.rand(1).item() < self.p:
            return F.autocontrast(img)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


class RandomEqualize(torch.nn.Module):
    """Equalize the histogram of the given image randomly with a given probability.
1927
1928
1929
    If the image is torch Tensor, it is expected
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "P", "L" or "RGB".
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952

    Args:
        p (float): probability of the image being equalized. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be equalized.

        Returns:
            PIL Image or Tensor: Randomly equalized image.
        """
        if torch.rand(1).item() < self.p:
            return F.equalize(img)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)