transforms.py 79.2 KB
Newer Older
1
import math
vfdev's avatar
vfdev committed
2
import numbers
3
import random
vfdev's avatar
vfdev committed
4
import warnings
vfdev's avatar
vfdev committed
5
from collections.abc import Sequence
6
from typing import Tuple, List, Optional
vfdev's avatar
vfdev committed
7
8
9
10

import torch
from torch import Tensor

11
12
13
14
15
try:
    import accimage
except ImportError:
    accimage = None

16
from ..utils import _log_api_usage_once
17
from . import functional as F
18
from .functional import InterpolationMode, _interpolation_modes_from_int
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
__all__ = [
    "Compose",
    "ToTensor",
    "PILToTensor",
    "ConvertImageDtype",
    "ToPILImage",
    "Normalize",
    "Resize",
    "CenterCrop",
    "Pad",
    "Lambda",
    "RandomApply",
    "RandomChoice",
    "RandomOrder",
    "RandomCrop",
    "RandomHorizontalFlip",
    "RandomVerticalFlip",
    "RandomResizedCrop",
    "FiveCrop",
    "TenCrop",
    "LinearTransformation",
    "ColorJitter",
    "RandomRotation",
    "RandomAffine",
    "Grayscale",
    "RandomGrayscale",
    "RandomPerspective",
    "RandomErasing",
    "GaussianBlur",
    "InterpolationMode",
    "RandomInvert",
    "RandomPosterize",
    "RandomSolarize",
    "RandomAdjustSharpness",
    "RandomAutocontrast",
    "RandomEqualize",
]
57

58

59
class Compose:
60
61
    """Composes several transforms together. This transform does not support torchscript.
    Please, see the note below.
62
63
64
65
66
67
68

    Args:
        transforms (list of ``Transform`` objects): list of transforms to compose.

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
69
70
        >>>     transforms.PILToTensor(),
        >>>     transforms.ConvertImageDtype(torch.float),
71
        >>> ])
72
73
74
75
76
77
78
79
80
81
82
83
84

    .. note::
        In order to script the transformations, please use ``torch.nn.Sequential`` as below.

        >>> transforms = torch.nn.Sequential(
        >>>     transforms.CenterCrop(10),
        >>>     transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>> )
        >>> scripted_transforms = torch.jit.script(transforms)

        Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
        `lambda` functions or ``PIL.Image``.

85
86
87
    """

    def __init__(self, transforms):
88
89
        if not torch.jit.is_scripting() and not torch.jit.is_tracing():
            _log_api_usage_once(self)
90
91
92
93
94
95
96
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img

Joao Gomes's avatar
Joao Gomes committed
97
    def __repr__(self) -> str:
98
        format_string = self.__class__.__name__ + "("
99
        for t in self.transforms:
100
            format_string += "\n"
101
            format_string += f"    {t}"
102
        format_string += "\n)"
103
104
        return format_string

105

106
class ToTensor:
107
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor. This transform does not support torchscript.
108
109

    Converts a PIL Image or numpy.ndarray (H x W x C) in the range
surgan12's avatar
surgan12 committed
110
111
112
113
114
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
    if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
    or if the numpy.ndarray has dtype = np.uint8

    In the other cases, tensors are returned without scaling.
115
116
117
118
119

    .. note::
        Because the input image is scaled to [0.0, 1.0], this transformation should not be used when
        transforming target image masks. See the `references`_ for implementing the transforms for image masks.

120
    .. _references: https://github.com/pytorch/vision/tree/main/references/segmentation
121
122
    """

123
124
125
    def __init__(self) -> None:
        _log_api_usage_once(self)

126
127
128
129
130
131
132
133
134
135
    def __call__(self, pic):
        """
        Args:
            pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(pic)

Joao Gomes's avatar
Joao Gomes committed
136
137
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}()"
138

139

140
class PILToTensor:
141
    """Convert a ``PIL Image`` to a tensor of the same type. This transform does not support torchscript.
142

vfdev's avatar
vfdev committed
143
    Converts a PIL Image (H x W x C) to a Tensor of shape (C x H x W).
144
145
    """

146
147
148
    def __init__(self) -> None:
        _log_api_usage_once(self)

149
150
    def __call__(self, pic):
        """
151
152
153
154
        .. note::

            A deep copy of the underlying array is performed.

155
156
157
158
159
160
161
162
        Args:
            pic (PIL Image): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.pil_to_tensor(pic)

Joao Gomes's avatar
Joao Gomes committed
163
164
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}()"
165
166


167
class ConvertImageDtype(torch.nn.Module):
168
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly
169
    This function does not support PIL Image.
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

    Args:
        dtype (torch.dtype): Desired data type of the output

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """

    def __init__(self, dtype: torch.dtype) -> None:
187
        super().__init__()
188
        _log_api_usage_once(self)
189
190
        self.dtype = dtype

vfdev's avatar
vfdev committed
191
    def forward(self, image):
192
193
194
        return F.convert_image_dtype(image, self.dtype)


195
class ToPILImage:
196
    """Convert a tensor or an ndarray to PIL Image. This transform does not support torchscript.
197
198
199
200
201
202
203

    Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape
    H x W x C to a PIL Image while preserving the value range.

    Args:
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).
            If ``mode`` is ``None`` (default) there are some assumptions made about the input data:
vfdev's avatar
vfdev committed
204
205
206
207
208
            - If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``.
            - If the input has 3 channels, the ``mode`` is assumed to be ``RGB``.
            - If the input has 2 channels, the ``mode`` is assumed to be ``LA``.
            - If the input has 1 channel, the ``mode`` is determined by the data type (i.e ``int``, ``float``,
            ``short``).
209

csukuangfj's avatar
csukuangfj committed
210
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
211
    """
212

213
    def __init__(self, mode=None):
214
        _log_api_usage_once(self)
215
216
217
218
219
220
221
222
223
224
225
226
227
        self.mode = mode

    def __call__(self, pic):
        """
        Args:
            pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.

        Returns:
            PIL Image: Image converted to PIL Image.

        """
        return F.to_pil_image(pic, self.mode)

Joao Gomes's avatar
Joao Gomes committed
228
    def __repr__(self) -> str:
229
        format_string = self.__class__.__name__ + "("
230
        if self.mode is not None:
231
            format_string += f"mode={self.mode}"
232
        format_string += ")"
233
        return format_string
234

235

236
class Normalize(torch.nn.Module):
Fang Gao's avatar
Fang Gao committed
237
    """Normalize a tensor image with mean and standard deviation.
238
    This transform does not support PIL Image.
239
240
241
    Given mean: ``(mean[1],...,mean[n])`` and std: ``(std[1],..,std[n])`` for ``n``
    channels, this transform will normalize each channel of the input
    ``torch.*Tensor`` i.e.,
abdjava's avatar
abdjava committed
242
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``
243

244
    .. note::
245
        This transform acts out of place, i.e., it does not mutate the input tensor.
246

247
248
249
    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.
250
251
        inplace(bool,optional): Bool to make this operation in-place.

252
253
    """

surgan12's avatar
surgan12 committed
254
    def __init__(self, mean, std, inplace=False):
255
        super().__init__()
256
        _log_api_usage_once(self)
257
258
        self.mean = mean
        self.std = std
surgan12's avatar
surgan12 committed
259
        self.inplace = inplace
260

261
    def forward(self, tensor: Tensor) -> Tensor:
262
263
        """
        Args:
vfdev's avatar
vfdev committed
264
            tensor (Tensor): Tensor image to be normalized.
265
266
267
268

        Returns:
            Tensor: Normalized Tensor image.
        """
surgan12's avatar
surgan12 committed
269
        return F.normalize(tensor, self.mean, self.std, self.inplace)
270

Joao Gomes's avatar
Joao Gomes committed
271
272
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(mean={self.mean}, std={self.std})"
273

274

vfdev's avatar
vfdev committed
275
276
class Resize(torch.nn.Module):
    """Resize the input image to the given size.
277
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
278
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
279

280
281
282
283
    .. warning::
        The output image might be different depending on its type: when downsampling, the interpolation of PIL images
        and tensors is slightly different, because PIL applies antialiasing. This may lead to significant differences
        in the performance of a network. Therefore, it is preferable to train and serve a model with the same input
284
285
        types. See also below the ``antialias`` parameter, which can help making the output of PIL images and tensors
        closer.
286

287
288
289
290
291
    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
292
            (size * height / width, size).
293
294
295

            .. note::
                In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
296
297
298
299
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` and
            ``InterpolationMode.BICUBIC`` are supported.
300
            For backward compatibility integer values (e.g. ``PIL.Image[.Resampling].NEAREST``) are still acceptable.
301
302
303
304
        max_size (int, optional): The maximum allowed for the longer edge of
            the resized image: if the longer edge of the image is greater
            than ``max_size`` after being resized according to ``size``, then
            the image is resized again so that the longer edge is equal to
305
            ``max_size``. As a result, ``size`` might be overruled, i.e the
306
307
308
            smaller edge may be shorter than ``size``. This is only supported
            if ``size`` is an int (or a sequence of length 1 in torchscript
            mode).
309
        antialias (bool, optional): antialias flag. If ``img`` is PIL Image, the flag is ignored and anti-alias
310
311
312
            is always used. If ``img`` is Tensor, the flag is False by default and can be set to True for
            ``InterpolationMode.BILINEAR`` only mode. This can help making the output for PIL images and tensors
            closer.
313
314
315

            .. warning::
                There is no autodiff support for ``antialias=True`` option with input ``img`` as Tensor.
316

317
318
    """

319
    def __init__(self, size, interpolation=InterpolationMode.BILINEAR, max_size=None, antialias=None):
vfdev's avatar
vfdev committed
320
        super().__init__()
321
        _log_api_usage_once(self)
322
        if not isinstance(size, (int, Sequence)):
323
            raise TypeError(f"Size should be int or sequence. Got {type(size)}")
324
325
326
        if isinstance(size, Sequence) and len(size) not in (1, 2):
            raise ValueError("If size is a sequence, it should have 1 or 2 values")
        self.size = size
327
        self.max_size = max_size
328
329
330
331

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
332
333
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
334
335
336
            )
            interpolation = _interpolation_modes_from_int(interpolation)

337
        self.interpolation = interpolation
338
        self.antialias = antialias
339

vfdev's avatar
vfdev committed
340
    def forward(self, img):
341
342
        """
        Args:
vfdev's avatar
vfdev committed
343
            img (PIL Image or Tensor): Image to be scaled.
344
345

        Returns:
vfdev's avatar
vfdev committed
346
            PIL Image or Tensor: Rescaled image.
347
        """
348
        return F.resize(img, self.size, self.interpolation, self.max_size, self.antialias)
349

Joao Gomes's avatar
Joao Gomes committed
350
    def __repr__(self) -> str:
351
        detail = f"(size={self.size}, interpolation={self.interpolation.value}, max_size={self.max_size}, antialias={self.antialias})"
Joao Gomes's avatar
Joao Gomes committed
352
        return f"{self.__class__.__name__}{detail}"
353

354

vfdev's avatar
vfdev committed
355
356
class CenterCrop(torch.nn.Module):
    """Crops the given image at the center.
357
    If the image is torch Tensor, it is expected
358
359
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
    If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
360
361
362
363

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
364
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
365
366
367
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
368
        super().__init__()
369
        _log_api_usage_once(self)
370
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
371

vfdev's avatar
vfdev committed
372
    def forward(self, img):
373
374
        """
        Args:
vfdev's avatar
vfdev committed
375
            img (PIL Image or Tensor): Image to be cropped.
376
377

        Returns:
vfdev's avatar
vfdev committed
378
            PIL Image or Tensor: Cropped image.
379
380
381
        """
        return F.center_crop(img, self.size)

Joao Gomes's avatar
Joao Gomes committed
382
383
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(size={self.size})"
384

385

386
387
class Pad(torch.nn.Module):
    """Pad the given image on all sides with the given "pad" value.
388
    If the image is torch Tensor, it is expected
389
390
391
    to have [..., H, W] shape, where ... means at most 2 leading dimensions for mode reflect and symmetric,
    at most 3 leading dimensions for mode edge,
    and an arbitrary number of leading dimensions for mode constant
392
393

    Args:
394
395
396
        padding (int or sequence): Padding on each border. If a single int is provided this
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
397
            this is the padding for the left, top, right and bottom borders respectively.
398
399
400
401

            .. note::
                In torchscript mode padding as single int is not supported, use a sequence of
                length 1: ``[padding, ]``.
402
        fill (number or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
403
            length 3, it is used to fill R, G, B channels respectively.
404
405
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
406
            Only int or tuple value is supported for PIL Image.
407
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
408
            Default is constant.
409
410
411

            - constant: pads with a constant value, this value is specified with fill

412
413
            - edge: pads with the last value at the edge of the image.
              If input a 5D torch Tensor, the last 3 dimensions will be padded instead of the last 2
414

415
416
417
            - reflect: pads with reflection of image without repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
              will result in [3, 2, 1, 2, 3, 4, 3, 2]
418

419
420
421
            - symmetric: pads with reflection of image repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
              will result in [2, 1, 1, 2, 3, 4, 4, 3]
422
423
    """

424
425
    def __init__(self, padding, fill=0, padding_mode="constant"):
        super().__init__()
426
        _log_api_usage_once(self)
427
428
429
        if not isinstance(padding, (numbers.Number, tuple, list)):
            raise TypeError("Got inappropriate padding arg")

430
        if not isinstance(fill, (numbers.Number, tuple, list)):
431
432
433
434
435
436
            raise TypeError("Got inappropriate fill arg")

        if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
            raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")

        if isinstance(padding, Sequence) and len(padding) not in [1, 2, 4]:
437
            raise ValueError(
438
                f"Padding must be an int or a 1, 2, or 4 element tuple, not a {len(padding)} element tuple"
439
            )
440
441
442

        self.padding = padding
        self.fill = fill
443
        self.padding_mode = padding_mode
444

445
    def forward(self, img):
446
447
        """
        Args:
448
            img (PIL Image or Tensor): Image to be padded.
449
450

        Returns:
451
            PIL Image or Tensor: Padded image.
452
        """
453
        return F.pad(img, self.padding, self.fill, self.padding_mode)
454

Joao Gomes's avatar
Joao Gomes committed
455
456
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(padding={self.padding}, fill={self.fill}, padding_mode={self.padding_mode})"
457

458

459
class Lambda:
460
    """Apply a user-defined lambda as a transform. This transform does not support torchscript.
461
462
463
464
465
466

    Args:
        lambd (function): Lambda/function to be used for transform.
    """

    def __init__(self, lambd):
467
        _log_api_usage_once(self)
468
        if not callable(lambd):
469
            raise TypeError(f"Argument lambd should be callable, got {repr(type(lambd).__name__)}")
470
471
472
473
474
        self.lambd = lambd

    def __call__(self, img):
        return self.lambd(img)

Joao Gomes's avatar
Joao Gomes committed
475
476
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}()"
477

478

479
class RandomTransforms:
480
481
482
    """Base class for a list of transformations with randomness

    Args:
483
        transforms (sequence): list of transformations
484
485
486
    """

    def __init__(self, transforms):
487
        _log_api_usage_once(self)
488
489
        if not isinstance(transforms, Sequence):
            raise TypeError("Argument transforms should be a sequence")
490
491
492
493
494
        self.transforms = transforms

    def __call__(self, *args, **kwargs):
        raise NotImplementedError()

Joao Gomes's avatar
Joao Gomes committed
495
    def __repr__(self) -> str:
496
        format_string = self.__class__.__name__ + "("
497
        for t in self.transforms:
498
            format_string += "\n"
499
            format_string += f"    {t}"
500
        format_string += "\n)"
501
502
503
        return format_string


504
class RandomApply(torch.nn.Module):
505
    """Apply randomly a list of transformations with a given probability.
506
507
508
509
510
511
512
513
514
515
516
517

    .. note::
        In order to script the transformation, please use ``torch.nn.ModuleList`` as input instead of list/tuple of
        transforms as shown below:

        >>> transforms = transforms.RandomApply(torch.nn.ModuleList([
        >>>     transforms.ColorJitter(),
        >>> ]), p=0.3)
        >>> scripted_transforms = torch.jit.script(transforms)

        Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
        `lambda` functions or ``PIL.Image``.
518
519

    Args:
520
        transforms (sequence or torch.nn.Module): list of transformations
521
522
523
524
        p (float): probability
    """

    def __init__(self, transforms, p=0.5):
525
        super().__init__()
526
        _log_api_usage_once(self)
527
        self.transforms = transforms
528
529
        self.p = p

530
531
    def forward(self, img):
        if self.p < torch.rand(1):
532
533
534
535
536
            return img
        for t in self.transforms:
            img = t(img)
        return img

Joao Gomes's avatar
Joao Gomes committed
537
    def __repr__(self) -> str:
538
        format_string = self.__class__.__name__ + "("
539
        format_string += f"\n    p={self.p}"
540
        for t in self.transforms:
541
            format_string += "\n"
542
            format_string += f"    {t}"
543
        format_string += "\n)"
544
545
546
547
        return format_string


class RandomOrder(RandomTransforms):
548
549
    """Apply a list of transformations in a random order. This transform does not support torchscript."""

550
551
552
553
554
555
556
557
558
    def __call__(self, img):
        order = list(range(len(self.transforms)))
        random.shuffle(order)
        for i in order:
            img = self.transforms[i](img)
        return img


class RandomChoice(RandomTransforms):
559
560
    """Apply single transformation randomly picked from a list. This transform does not support torchscript."""

561
562
563
    def __init__(self, transforms, p=None):
        super().__init__(transforms)
        if p is not None and not isinstance(p, Sequence):
564
            raise TypeError("Argument p should be a sequence")
565
566
567
568
569
570
        self.p = p

    def __call__(self, *args):
        t = random.choices(self.transforms, weights=self.p)[0]
        return t(*args)

Joao Gomes's avatar
Joao Gomes committed
571
572
    def __repr__(self) -> str:
        return f"{super().__repr__()}(p={self.p})"
573
574


vfdev's avatar
vfdev committed
575
576
class RandomCrop(torch.nn.Module):
    """Crop the given image at a random location.
577
    If the image is torch Tensor, it is expected
578
579
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions,
    but if non-constant padding is used, the input is expected to have at most 2 leading dimensions
580
581
582
583

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
584
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
585
        padding (int or sequence, optional): Optional padding on each border
vfdev's avatar
vfdev committed
586
            of the image. Default is None. If a single int is provided this
587
588
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
vfdev's avatar
vfdev committed
589
            this is the padding for the left, top, right and bottom borders respectively.
590
591
592
593

            .. note::
                In torchscript mode padding as single int is not supported, use a sequence of
                length 1: ``[padding, ]``.
594
        pad_if_needed (boolean): It will pad the image if smaller than the
ekka's avatar
ekka committed
595
            desired size to avoid raising an exception. Since cropping is done
596
            after padding, the padding seems to be done at a random offset.
597
        fill (number or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
598
            length 3, it is used to fill R, G, B channels respectively.
599
600
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
601
            Only int or tuple value is supported for PIL Image.
602
603
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
            Default is constant.
604

605
            - constant: pads with a constant value, this value is specified with fill
606

607
608
            - edge: pads with the last value at the edge of the image.
              If input a 5D torch Tensor, the last 3 dimensions will be padded instead of the last 2
609

610
611
612
            - reflect: pads with reflection of image without repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
              will result in [3, 2, 1, 2, 3, 4, 3, 2]
613

614
615
616
            - symmetric: pads with reflection of image repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
              will result in [2, 1, 1, 2, 3, 4, 4, 3]
617
618
619
    """

    @staticmethod
vfdev's avatar
vfdev committed
620
    def get_params(img: Tensor, output_size: Tuple[int, int]) -> Tuple[int, int, int, int]:
621
622
623
        """Get parameters for ``crop`` for a random crop.

        Args:
vfdev's avatar
vfdev committed
624
            img (PIL Image or Tensor): Image to be cropped.
625
626
627
628
629
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
630
        _, h, w = F.get_dimensions(img)
631
        th, tw = output_size
vfdev's avatar
vfdev committed
632
633

        if h + 1 < th or w + 1 < tw:
634
            raise ValueError(f"Required crop size {(th, tw)} is larger then input image size {(h, w)}")
vfdev's avatar
vfdev committed
635

636
637
638
        if w == tw and h == th:
            return 0, 0, h, w

639
640
        i = torch.randint(0, h - th + 1, size=(1,)).item()
        j = torch.randint(0, w - tw + 1, size=(1,)).item()
641
642
        return i, j, th, tw

vfdev's avatar
vfdev committed
643
644
    def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode="constant"):
        super().__init__()
645
        _log_api_usage_once(self)
vfdev's avatar
vfdev committed
646

647
        self.size = tuple(_setup_size(size, error_msg="Please provide only two dimensions (h, w) for size."))
648

vfdev's avatar
vfdev committed
649
650
651
652
653
654
        self.padding = padding
        self.pad_if_needed = pad_if_needed
        self.fill = fill
        self.padding_mode = padding_mode

    def forward(self, img):
655
656
        """
        Args:
vfdev's avatar
vfdev committed
657
            img (PIL Image or Tensor): Image to be cropped.
658
659

        Returns:
vfdev's avatar
vfdev committed
660
            PIL Image or Tensor: Cropped image.
661
        """
662
663
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)
664

665
        _, height, width = F.get_dimensions(img)
666
        # pad the width if needed
vfdev's avatar
vfdev committed
667
668
669
        if self.pad_if_needed and width < self.size[1]:
            padding = [self.size[1] - width, 0]
            img = F.pad(img, padding, self.fill, self.padding_mode)
670
        # pad the height if needed
vfdev's avatar
vfdev committed
671
672
673
        if self.pad_if_needed and height < self.size[0]:
            padding = [0, self.size[0] - height]
            img = F.pad(img, padding, self.fill, self.padding_mode)
674

675
676
677
678
        i, j, h, w = self.get_params(img, self.size)

        return F.crop(img, i, j, h, w)

Joao Gomes's avatar
Joao Gomes committed
679
680
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(size={self.size}, padding={self.padding})"
681

682

683
684
class RandomHorizontalFlip(torch.nn.Module):
    """Horizontally flip the given image randomly with a given probability.
685
    If the image is torch Tensor, it is expected
686
687
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
688
689
690
691
692
693

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
694
        super().__init__()
695
        _log_api_usage_once(self)
696
        self.p = p
697

698
    def forward(self, img):
699
700
        """
        Args:
701
            img (PIL Image or Tensor): Image to be flipped.
702
703

        Returns:
704
            PIL Image or Tensor: Randomly flipped image.
705
        """
706
        if torch.rand(1) < self.p:
707
708
709
            return F.hflip(img)
        return img

Joao Gomes's avatar
Joao Gomes committed
710
711
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(p={self.p})"
712

713

714
class RandomVerticalFlip(torch.nn.Module):
vfdev's avatar
vfdev committed
715
    """Vertically flip the given image randomly with a given probability.
716
    If the image is torch Tensor, it is expected
717
718
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
719
720
721
722
723
724

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
725
        super().__init__()
726
        _log_api_usage_once(self)
727
        self.p = p
728

729
    def forward(self, img):
730
731
        """
        Args:
732
            img (PIL Image or Tensor): Image to be flipped.
733
734

        Returns:
735
            PIL Image or Tensor: Randomly flipped image.
736
        """
737
        if torch.rand(1) < self.p:
738
739
740
            return F.vflip(img)
        return img

Joao Gomes's avatar
Joao Gomes committed
741
742
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(p={self.p})"
743

744

745
746
class RandomPerspective(torch.nn.Module):
    """Performs a random perspective transformation of the given image with a given probability.
747
    If the image is torch Tensor, it is expected
748
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
749
750

    Args:
751
752
753
        distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
            Default is 0.5.
        p (float): probability of the image being transformed. Default is 0.5.
754
755
756
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
757
            For backward compatibility integer values (e.g. ``PIL.Image[.Resampling].NEAREST``) are still acceptable.
758
759
        fill (sequence or number): Pixel fill value for the area outside the transformed
            image. Default is ``0``. If given a number, the value is used for all bands respectively.
760
761
    """

762
    def __init__(self, distortion_scale=0.5, p=0.5, interpolation=InterpolationMode.BILINEAR, fill=0):
763
        super().__init__()
764
        _log_api_usage_once(self)
765
        self.p = p
766
767
768
769

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
770
771
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
772
773
774
            )
            interpolation = _interpolation_modes_from_int(interpolation)

775
776
        self.interpolation = interpolation
        self.distortion_scale = distortion_scale
777
778
779
780
781
782

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")

783
        self.fill = fill
784

785
    def forward(self, img):
786
787
        """
        Args:
788
            img (PIL Image or Tensor): Image to be Perspectively transformed.
789
790

        Returns:
791
            PIL Image or Tensor: Randomly transformed image.
792
        """
793
794

        fill = self.fill
795
        channels, height, width = F.get_dimensions(img)
796
797
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
798
                fill = [float(fill)] * channels
799
800
801
            else:
                fill = [float(f) for f in fill]

802
        if torch.rand(1) < self.p:
803
            startpoints, endpoints = self.get_params(width, height, self.distortion_scale)
804
            return F.perspective(img, startpoints, endpoints, self.interpolation, fill)
805
806
807
        return img

    @staticmethod
808
    def get_params(width: int, height: int, distortion_scale: float) -> Tuple[List[List[int]], List[List[int]]]:
809
810
811
        """Get parameters for ``perspective`` for a random perspective transform.

        Args:
812
813
814
            width (int): width of the image.
            height (int): height of the image.
            distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
815
816

        Returns:
817
            List containing [top-left, top-right, bottom-right, bottom-left] of the original image,
818
819
            List containing [top-left, top-right, bottom-right, bottom-left] of the transformed image.
        """
820
821
822
        half_height = height // 2
        half_width = width // 2
        topleft = [
823
824
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1,)).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1,)).item()),
825
826
        ]
        topright = [
827
828
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1,)).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1,)).item()),
829
830
        ]
        botright = [
831
832
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1,)).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1,)).item()),
833
834
        ]
        botleft = [
835
836
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1,)).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1,)).item()),
837
838
        ]
        startpoints = [[0, 0], [width - 1, 0], [width - 1, height - 1], [0, height - 1]]
839
840
841
        endpoints = [topleft, topright, botright, botleft]
        return startpoints, endpoints

Joao Gomes's avatar
Joao Gomes committed
842
843
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(p={self.p})"
844
845


846
class RandomResizedCrop(torch.nn.Module):
847
848
    """Crop a random portion of image and resize it to a given size.

849
    If the image is torch Tensor, it is expected
850
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
851

852
853
854
    A crop of the original image is made: the crop has a random area (H * W)
    and a random aspect ratio. This crop is finally resized to the given
    size. This is popularly used to train the Inception networks.
855
856

    Args:
857
        size (int or sequence): expected output size of the crop, for each edge. If size is an
858
            int instead of sequence like (h, w), a square output size ``(size, size)`` is
859
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
860
861
862

            .. note::
                In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
Nicolas Hug's avatar
Nicolas Hug committed
863
864
        scale (tuple of float): Specifies the lower and upper bounds for the random area of the crop,
            before resizing. The scale is defined with respect to the area of the original image.
865
866
        ratio (tuple of float): lower and upper bounds for the random aspect ratio of the crop, before
            resizing.
867
868
869
870
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` and
            ``InterpolationMode.BICUBIC`` are supported.
871
            For backward compatibility integer values (e.g. ``PIL.Image[.Resampling].NEAREST``) are still acceptable.
872

873
874
    """

875
    def __init__(self, size, scale=(0.08, 1.0), ratio=(3.0 / 4.0, 4.0 / 3.0), interpolation=InterpolationMode.BILINEAR):
876
        super().__init__()
877
        _log_api_usage_once(self)
878
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
879

880
        if not isinstance(scale, Sequence):
881
            raise TypeError("Scale should be a sequence")
882
        if not isinstance(ratio, Sequence):
883
            raise TypeError("Ratio should be a sequence")
884
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
885
            warnings.warn("Scale and ratio should be of kind (min, max)")
886

887
888
889
        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
890
891
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
892
893
894
            )
            interpolation = _interpolation_modes_from_int(interpolation)

895
        self.interpolation = interpolation
896
897
        self.scale = scale
        self.ratio = ratio
898
899

    @staticmethod
900
    def get_params(img: Tensor, scale: List[float], ratio: List[float]) -> Tuple[int, int, int, int]:
901
902
903
        """Get parameters for ``crop`` for a random sized crop.

        Args:
904
            img (PIL Image or Tensor): Input image.
905
906
            scale (list): range of scale of the origin size cropped
            ratio (list): range of aspect ratio of the origin aspect ratio cropped
907
908
909

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for a random
910
            sized crop.
911
        """
912
        _, height, width = F.get_dimensions(img)
Zhicheng Yan's avatar
Zhicheng Yan committed
913
        area = height * width
914

915
        log_ratio = torch.log(torch.tensor(ratio))
916
        for _ in range(10):
917
            target_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
918
            aspect_ratio = torch.exp(torch.empty(1).uniform_(log_ratio[0], log_ratio[1])).item()
919
920
921
922

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

Zhicheng Yan's avatar
Zhicheng Yan committed
923
            if 0 < w <= width and 0 < h <= height:
924
925
                i = torch.randint(0, height - h + 1, size=(1,)).item()
                j = torch.randint(0, width - w + 1, size=(1,)).item()
926
927
                return i, j, h, w

928
        # Fallback to central crop
Zhicheng Yan's avatar
Zhicheng Yan committed
929
        in_ratio = float(width) / float(height)
930
        if in_ratio < min(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
931
            w = width
932
            h = int(round(w / min(ratio)))
933
        elif in_ratio > max(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
934
            h = height
935
            w = int(round(h * max(ratio)))
936
        else:  # whole image
Zhicheng Yan's avatar
Zhicheng Yan committed
937
938
939
940
            w = width
            h = height
        i = (height - h) // 2
        j = (width - w) // 2
941
        return i, j, h, w
942

943
    def forward(self, img):
944
945
        """
        Args:
946
            img (PIL Image or Tensor): Image to be cropped and resized.
947
948

        Returns:
949
            PIL Image or Tensor: Randomly cropped and resized image.
950
        """
951
        i, j, h, w = self.get_params(img, self.scale, self.ratio)
952
953
        return F.resized_crop(img, i, j, h, w, self.size, self.interpolation)

Joao Gomes's avatar
Joao Gomes committed
954
    def __repr__(self) -> str:
955
        interpolate_str = self.interpolation.value
956
957
958
959
        format_string = self.__class__.__name__ + f"(size={self.size}"
        format_string += f", scale={tuple(round(s, 4) for s in self.scale)}"
        format_string += f", ratio={tuple(round(r, 4) for r in self.ratio)}"
        format_string += f", interpolation={interpolate_str})"
960
        return format_string
961

962

vfdev's avatar
vfdev committed
963
964
class FiveCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop.
965
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
966
967
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
968
969
970
971
972
973
974
975
976

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
         size (sequence or int): Desired output size of the crop. If size is an ``int``
            instead of sequence like (h, w), a square crop of size (size, size) is made.
977
            If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
978
979
980
981

    Example:
         >>> transform = Compose([
         >>>    FiveCrop(size), # this is a list of PIL Images
982
         >>>    Lambda(lambda crops: torch.stack([PILToTensor()(crop) for crop in crops])) # returns a 4D tensor
983
984
985
986
987
988
989
990
991
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
992
        super().__init__()
993
        _log_api_usage_once(self)
994
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
995

vfdev's avatar
vfdev committed
996
997
998
999
1000
1001
1002
1003
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 5 images. Image can be PIL Image or Tensor
        """
1004
1005
        return F.five_crop(img, self.size)

Joao Gomes's avatar
Joao Gomes committed
1006
1007
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(size={self.size})"
1008

1009

vfdev's avatar
vfdev committed
1010
1011
1012
class TenCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop plus the flipped version of
    these (horizontal flipping is used by default).
1013
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
1014
1015
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
1016
1017
1018
1019
1020
1021
1022
1023
1024

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
1025
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
1026
        vertical_flip (bool): Use vertical flipping instead of horizontal
1027
1028
1029
1030

    Example:
         >>> transform = Compose([
         >>>    TenCrop(size), # this is a list of PIL Images
1031
         >>>    Lambda(lambda crops: torch.stack([PILToTensor()(crop) for crop in crops])) # returns a 4D tensor
1032
1033
1034
1035
1036
1037
1038
1039
1040
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size, vertical_flip=False):
vfdev's avatar
vfdev committed
1041
        super().__init__()
1042
        _log_api_usage_once(self)
1043
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
1044
1045
        self.vertical_flip = vertical_flip

vfdev's avatar
vfdev committed
1046
1047
1048
1049
1050
1051
1052
1053
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 10 images. Image can be PIL Image or Tensor
        """
1054
1055
        return F.ten_crop(img, self.size, self.vertical_flip)

Joao Gomes's avatar
Joao Gomes committed
1056
1057
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(size={self.size}, vertical_flip={self.vertical_flip})"
1058

1059

1060
class LinearTransformation(torch.nn.Module):
ekka's avatar
ekka committed
1061
    """Transform a tensor image with a square transformation matrix and a mean_vector computed
1062
    offline.
1063
    This transform does not support PIL Image.
ekka's avatar
ekka committed
1064
1065
1066
    Given transformation_matrix and mean_vector, will flatten the torch.*Tensor and
    subtract mean_vector from it which is then followed by computing the dot
    product with the transformation matrix and then reshaping the tensor to its
1067
    original shape.
1068

1069
    Applications:
1070
        whitening transformation: Suppose X is a column vector zero-centered data.
1071
1072
1073
        Then compute the data covariance matrix [D x D] with torch.mm(X.t(), X),
        perform SVD on this matrix and pass it as transformation_matrix.

1074
1075
    Args:
        transformation_matrix (Tensor): tensor [D x D], D = C x H x W
ekka's avatar
ekka committed
1076
        mean_vector (Tensor): tensor [D], D = C x H x W
1077
1078
    """

ekka's avatar
ekka committed
1079
    def __init__(self, transformation_matrix, mean_vector):
1080
        super().__init__()
1081
        _log_api_usage_once(self)
1082
        if transformation_matrix.size(0) != transformation_matrix.size(1):
1083
1084
            raise ValueError(
                "transformation_matrix should be square. Got "
1085
                f"{tuple(transformation_matrix.size())} rectangular matrix."
1086
            )
ekka's avatar
ekka committed
1087
1088

        if mean_vector.size(0) != transformation_matrix.size(0):
1089
            raise ValueError(
1090
1091
                f"mean_vector should have the same length {mean_vector.size(0)}"
                f" as any one of the dimensions of the transformation_matrix [{tuple(transformation_matrix.size())}]"
1092
            )
ekka's avatar
ekka committed
1093

1094
        if transformation_matrix.device != mean_vector.device:
1095
            raise ValueError(
1096
                f"Input tensors should be on the same device. Got {transformation_matrix.device} and {mean_vector.device}"
1097
            )
1098

1099
        self.transformation_matrix = transformation_matrix
ekka's avatar
ekka committed
1100
        self.mean_vector = mean_vector
1101

1102
    def forward(self, tensor: Tensor) -> Tensor:
1103
1104
        """
        Args:
vfdev's avatar
vfdev committed
1105
            tensor (Tensor): Tensor image to be whitened.
1106
1107
1108
1109

        Returns:
            Tensor: Transformed image.
        """
1110
1111
1112
        shape = tensor.shape
        n = shape[-3] * shape[-2] * shape[-1]
        if n != self.transformation_matrix.shape[0]:
1113
1114
            raise ValueError(
                "Input tensor and transformation matrix have incompatible shape."
1115
1116
                + f"[{shape[-3]} x {shape[-2]} x {shape[-1]}] != "
                + f"{self.transformation_matrix.shape[0]}"
1117
            )
1118
1119

        if tensor.device.type != self.mean_vector.device.type:
1120
1121
            raise ValueError(
                "Input tensor should be on the same device as transformation matrix and mean vector. "
1122
                f"Got {tensor.device} vs {self.mean_vector.device}"
1123
            )
1124
1125

        flat_tensor = tensor.view(-1, n) - self.mean_vector
1126
        transformed_tensor = torch.mm(flat_tensor, self.transformation_matrix)
1127
        tensor = transformed_tensor.view(shape)
1128
1129
        return tensor

Joao Gomes's avatar
Joao Gomes committed
1130
1131
1132
1133
1134
1135
1136
    def __repr__(self) -> str:
        s = (
            f"{self.__class__.__name__}(transformation_matrix="
            f"{self.transformation_matrix.tolist()}"
            f", mean_vector={self.mean_vector.tolist()})"
        )
        return s
1137

1138

1139
class ColorJitter(torch.nn.Module):
1140
    """Randomly change the brightness, contrast, saturation and hue of an image.
1141
    If the image is torch Tensor, it is expected
1142
1143
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, mode "1", "I", "F" and modes with transparency (alpha channel) are not supported.
1144
1145

    Args:
yaox12's avatar
yaox12 committed
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
        brightness (float or tuple of float (min, max)): How much to jitter brightness.
            brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
            or the given [min, max]. Should be non negative numbers.
        contrast (float or tuple of float (min, max)): How much to jitter contrast.
            contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
            or the given [min, max]. Should be non negative numbers.
        saturation (float or tuple of float (min, max)): How much to jitter saturation.
            saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
            or the given [min, max]. Should be non negative numbers.
        hue (float or tuple of float (min, max)): How much to jitter hue.
            hue_factor is chosen uniformly from [-hue, hue] or the given [min, max].
            Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
1158
1159
1160
            To jitter hue, the pixel values of the input image has to be non-negative for conversion to HSV space;
            thus it does not work if you normalize your image to an interval with negative values,
            or use an interpolation that generates negative values before using this function.
1161
    """
1162

1163
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
1164
        super().__init__()
1165
        _log_api_usage_once(self)
1166
1167
1168
1169
        self.brightness = self._check_input(brightness, "brightness")
        self.contrast = self._check_input(contrast, "contrast")
        self.saturation = self._check_input(saturation, "saturation")
        self.hue = self._check_input(hue, "hue", center=0, bound=(-0.5, 0.5), clip_first_on_zero=False)
yaox12's avatar
yaox12 committed
1170

1171
    @torch.jit.unused
1172
    def _check_input(self, value, name, center=1, bound=(0, float("inf")), clip_first_on_zero=True):
yaox12's avatar
yaox12 committed
1173
1174
        if isinstance(value, numbers.Number):
            if value < 0:
1175
                raise ValueError(f"If {name} is a single number, it must be non negative.")
1176
            value = [center - float(value), center + float(value)]
yaox12's avatar
yaox12 committed
1177
            if clip_first_on_zero:
1178
                value[0] = max(value[0], 0.0)
yaox12's avatar
yaox12 committed
1179
1180
        elif isinstance(value, (tuple, list)) and len(value) == 2:
            if not bound[0] <= value[0] <= value[1] <= bound[1]:
1181
                raise ValueError(f"{name} values should be between {bound}")
yaox12's avatar
yaox12 committed
1182
        else:
1183
            raise TypeError(f"{name} should be a single number or a list/tuple with length 2.")
yaox12's avatar
yaox12 committed
1184
1185
1186
1187
1188
1189

        # if value is 0 or (1., 1.) for brightness/contrast/saturation
        # or (0., 0.) for hue, do nothing
        if value[0] == value[1] == center:
            value = None
        return value
1190
1191

    @staticmethod
1192
1193
1194
1195
1196
1197
    def get_params(
        brightness: Optional[List[float]],
        contrast: Optional[List[float]],
        saturation: Optional[List[float]],
        hue: Optional[List[float]],
    ) -> Tuple[Tensor, Optional[float], Optional[float], Optional[float], Optional[float]]:
1198
        """Get the parameters for the randomized transform to be applied on image.
1199

1200
1201
1202
1203
1204
1205
1206
1207
1208
        Args:
            brightness (tuple of float (min, max), optional): The range from which the brightness_factor is chosen
                uniformly. Pass None to turn off the transformation.
            contrast (tuple of float (min, max), optional): The range from which the contrast_factor is chosen
                uniformly. Pass None to turn off the transformation.
            saturation (tuple of float (min, max), optional): The range from which the saturation_factor is chosen
                uniformly. Pass None to turn off the transformation.
            hue (tuple of float (min, max), optional): The range from which the hue_factor is chosen uniformly.
                Pass None to turn off the transformation.
1209
1210

        Returns:
1211
1212
            tuple: The parameters used to apply the randomized transform
            along with their random order.
1213
        """
1214
        fn_idx = torch.randperm(4)
1215

1216
1217
1218
1219
        b = None if brightness is None else float(torch.empty(1).uniform_(brightness[0], brightness[1]))
        c = None if contrast is None else float(torch.empty(1).uniform_(contrast[0], contrast[1]))
        s = None if saturation is None else float(torch.empty(1).uniform_(saturation[0], saturation[1]))
        h = None if hue is None else float(torch.empty(1).uniform_(hue[0], hue[1]))
1220

1221
        return fn_idx, b, c, s, h
1222

1223
    def forward(self, img):
1224
1225
        """
        Args:
1226
            img (PIL Image or Tensor): Input image.
1227
1228

        Returns:
1229
1230
            PIL Image or Tensor: Color jittered image.
        """
1231
1232
1233
        fn_idx, brightness_factor, contrast_factor, saturation_factor, hue_factor = self.get_params(
            self.brightness, self.contrast, self.saturation, self.hue
        )
1234

1235
        for fn_id in fn_idx:
1236
            if fn_id == 0 and brightness_factor is not None:
1237
                img = F.adjust_brightness(img, brightness_factor)
1238
            elif fn_id == 1 and contrast_factor is not None:
1239
                img = F.adjust_contrast(img, contrast_factor)
1240
            elif fn_id == 2 and saturation_factor is not None:
1241
                img = F.adjust_saturation(img, saturation_factor)
1242
            elif fn_id == 3 and hue_factor is not None:
1243
1244
1245
                img = F.adjust_hue(img, hue_factor)

        return img
1246

Joao Gomes's avatar
Joao Gomes committed
1247
1248
1249
1250
1251
1252
1253
1254
1255
    def __repr__(self) -> str:
        s = (
            f"{self.__class__.__name__}("
            f"brightness={self.brightness}"
            f", contrast={self.contrast}"
            f", saturation={self.saturation}"
            f", hue={self.hue})"
        )
        return s
1256

1257

1258
class RandomRotation(torch.nn.Module):
1259
    """Rotate the image by angle.
1260
    If the image is torch Tensor, it is expected
1261
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1262
1263

    Args:
1264
        degrees (sequence or number): Range of degrees to select from.
1265
1266
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees).
1267
1268
1269
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1270
            For backward compatibility integer values (e.g. ``PIL.Image[.Resampling].NEAREST``) are still acceptable.
1271
1272
1273
1274
        expand (bool, optional): Optional expansion flag.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
1275
        center (sequence, optional): Optional center of rotation, (x, y). Origin is the upper left corner.
1276
            Default is the center of the image.
1277
1278
        fill (sequence or number): Pixel fill value for the area outside the rotated
            image. Default is ``0``. If given a number, the value is used for all bands respectively.
1279
1280
1281
1282
        resample (int, optional):
            .. warning::
                This parameter was deprecated in ``0.12`` and will be removed in ``0.14``. Please use ``interpolation``
                instead.
1283
1284
1285

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1286
1287
    """

1288
    def __init__(
1289
        self, degrees, interpolation=InterpolationMode.NEAREST, expand=False, center=None, fill=0, resample=None
1290
    ):
1291
        super().__init__()
1292
        _log_api_usage_once(self)
1293
1294
        if resample is not None:
            warnings.warn(
1295
1296
                "The parameter 'resample' is deprecated since 0.12 and will be removed 0.14. "
                "Please use 'interpolation' instead."
1297
1298
1299
1300
1301
1302
            )
            interpolation = _interpolation_modes_from_int(resample)

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
1303
1304
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
1305
1306
1307
            )
            interpolation = _interpolation_modes_from_int(interpolation)

1308
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2,))
1309
1310

        if center is not None:
1311
            _check_sequence_input(center, "center", req_sizes=(2,))
1312
1313

        self.center = center
1314

1315
        self.resample = self.interpolation = interpolation
1316
        self.expand = expand
1317
1318
1319
1320
1321
1322

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")

1323
        self.fill = fill
1324
1325

    @staticmethod
1326
    def get_params(degrees: List[float]) -> float:
1327
1328
1329
        """Get parameters for ``rotate`` for a random rotation.

        Returns:
1330
            float: angle parameter to be passed to ``rotate`` for random rotation.
1331
        """
1332
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1333
1334
        return angle

1335
    def forward(self, img):
1336
        """
1337
        Args:
1338
            img (PIL Image or Tensor): Image to be rotated.
1339
1340

        Returns:
1341
            PIL Image or Tensor: Rotated image.
1342
        """
1343
        fill = self.fill
1344
        channels, _, _ = F.get_dimensions(img)
1345
1346
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
1347
                fill = [float(fill)] * channels
1348
1349
            else:
                fill = [float(f) for f in fill]
1350
        angle = self.get_params(self.degrees)
1351
1352

        return F.rotate(img, angle, self.resample, self.expand, self.center, fill)
1353

Joao Gomes's avatar
Joao Gomes committed
1354
    def __repr__(self) -> str:
1355
        interpolate_str = self.interpolation.value
1356
1357
1358
        format_string = self.__class__.__name__ + f"(degrees={self.degrees}"
        format_string += f", interpolation={interpolate_str}"
        format_string += f", expand={self.expand}"
1359
        if self.center is not None:
1360
            format_string += f", center={self.center}"
1361
        if self.fill is not None:
1362
            format_string += f", fill={self.fill}"
1363
        format_string += ")"
1364
        return format_string
1365

1366

1367
1368
class RandomAffine(torch.nn.Module):
    """Random affine transformation of the image keeping center invariant.
1369
    If the image is torch Tensor, it is expected
1370
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1371
1372

    Args:
1373
        degrees (sequence or number): Range of degrees to select from.
1374
            If degrees is a number instead of sequence like (min, max), the range of degrees
1375
            will be (-degrees, +degrees). Set to 0 to deactivate rotations.
1376
1377
1378
1379
1380
1381
        translate (tuple, optional): tuple of maximum absolute fraction for horizontal
            and vertical translations. For example translate=(a, b), then horizontal shift
            is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
            randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
        scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
            randomly sampled from the range a <= scale <= b. Will keep original scale by default.
1382
        shear (sequence or number, optional): Range of degrees to select from.
ptrblck's avatar
ptrblck committed
1383
            If shear is a number, a shear parallel to the x axis in the range (-shear, +shear)
1384
1385
            will be applied. Else if shear is a sequence of 2 values a shear parallel to the x axis in the
            range (shear[0], shear[1]) will be applied. Else if shear is a sequence of 4 values,
ptrblck's avatar
ptrblck committed
1386
            a x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
1387
            Will not apply shear by default.
1388
1389
1390
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1391
            For backward compatibility integer values (e.g. ``PIL.Image[.Resampling].NEAREST``) are still acceptable.
1392
1393
        fill (sequence or number): Pixel fill value for the area outside the transformed
            image. Default is ``0``. If given a number, the value is used for all bands respectively.
1394
1395
1396
1397
1398
1399
1400
        fillcolor (sequence or number, optional):
            .. warning::
                This parameter was deprecated in ``0.12`` and will be removed in ``0.14``. Please use ``fill`` instead.
        resample (int, optional):
            .. warning::
                This parameter was deprecated in ``0.12`` and will be removed in ``0.14``. Please use ``interpolation``
                instead.
1401
1402
        center (sequence, optional): Optional center of rotation, (x, y). Origin is the upper left corner.
            Default is the center of the image.
1403
1404
1405

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1406
1407
    """

1408
    def __init__(
1409
1410
1411
1412
1413
1414
1415
1416
1417
        self,
        degrees,
        translate=None,
        scale=None,
        shear=None,
        interpolation=InterpolationMode.NEAREST,
        fill=0,
        fillcolor=None,
        resample=None,
1418
        center=None,
1419
    ):
1420
        super().__init__()
1421
        _log_api_usage_once(self)
1422
1423
        if resample is not None:
            warnings.warn(
1424
1425
                "The parameter 'resample' is deprecated since 0.12 and will be removed in 0.14. "
                "Please use 'interpolation' instead."
1426
1427
1428
1429
1430
1431
            )
            interpolation = _interpolation_modes_from_int(resample)

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
1432
1433
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
1434
1435
1436
1437
1438
            )
            interpolation = _interpolation_modes_from_int(interpolation)

        if fillcolor is not None:
            warnings.warn(
1439
1440
                "The parameter 'fillcolor' is deprecated since 0.12 and will be removed in 0.14. "
                "Please use 'fill' instead."
1441
1442
1443
            )
            fill = fillcolor

1444
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2,))
1445
1446

        if translate is not None:
1447
            _check_sequence_input(translate, "translate", req_sizes=(2,))
1448
1449
1450
1451
1452
1453
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError("translation values should be between 0 and 1")
        self.translate = translate

        if scale is not None:
1454
            _check_sequence_input(scale, "scale", req_sizes=(2,))
1455
1456
1457
1458
1459
1460
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
1461
            self.shear = _setup_angle(shear, name="shear", req_sizes=(2, 4))
1462
1463
1464
        else:
            self.shear = shear

1465
        self.resample = self.interpolation = interpolation
1466
1467
1468
1469
1470
1471

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")

1472
        self.fillcolor = self.fill = fill
1473

1474
1475
1476
1477
1478
        if center is not None:
            _check_sequence_input(center, "center", req_sizes=(2,))

        self.center = center

1479
    @staticmethod
1480
    def get_params(
1481
1482
1483
1484
1485
        degrees: List[float],
        translate: Optional[List[float]],
        scale_ranges: Optional[List[float]],
        shears: Optional[List[float]],
        img_size: List[int],
1486
    ) -> Tuple[float, Tuple[int, int], float, Tuple[float, float]]:
1487
1488
1489
        """Get parameters for affine transformation

        Returns:
1490
            params to be passed to the affine transformation
1491
        """
1492
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1493
        if translate is not None:
1494
1495
1496
1497
1498
            max_dx = float(translate[0] * img_size[0])
            max_dy = float(translate[1] * img_size[1])
            tx = int(round(torch.empty(1).uniform_(-max_dx, max_dx).item()))
            ty = int(round(torch.empty(1).uniform_(-max_dy, max_dy).item()))
            translations = (tx, ty)
1499
1500
1501
1502
        else:
            translations = (0, 0)

        if scale_ranges is not None:
1503
            scale = float(torch.empty(1).uniform_(scale_ranges[0], scale_ranges[1]).item())
1504
1505
1506
        else:
            scale = 1.0

1507
        shear_x = shear_y = 0.0
1508
        if shears is not None:
1509
1510
1511
1512
1513
            shear_x = float(torch.empty(1).uniform_(shears[0], shears[1]).item())
            if len(shears) == 4:
                shear_y = float(torch.empty(1).uniform_(shears[2], shears[3]).item())

        shear = (shear_x, shear_y)
1514
1515
1516

        return angle, translations, scale, shear

1517
    def forward(self, img):
1518
        """
1519
            img (PIL Image or Tensor): Image to be transformed.
1520
1521

        Returns:
1522
            PIL Image or Tensor: Affine transformed image.
1523
        """
1524
        fill = self.fill
1525
        channels, height, width = F.get_dimensions(img)
1526
1527
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
1528
                fill = [float(fill)] * channels
1529
1530
            else:
                fill = [float(f) for f in fill]
1531

1532
        img_size = [width, height]  # flip for keeping BC on get_params call
1533
1534

        ret = self.get_params(self.degrees, self.translate, self.scale, self.shear, img_size)
1535

1536
        return F.affine(img, *ret, interpolation=self.interpolation, fill=fill, center=self.center)
1537

Joao Gomes's avatar
Joao Gomes committed
1538
1539
1540
1541
1542
1543
1544
1545
    def __repr__(self) -> str:
        s = f"{self.__class__.__name__}(degrees={self.degrees}"
        s += f", translate={self.translate}" if self.translate is not None else ""
        s += f", scale={self.scale}" if self.scale is not None else ""
        s += f", shear={self.shear}" if self.shear is not None else ""
        s += f", interpolation={self.interpolation.value}" if self.interpolation != InterpolationMode.NEAREST else ""
        s += f", fill={self.fill}" if self.fill != 0 else ""
        s += f", center={self.center}" if self.center is not None else ""
1546
        s += ")"
Joao Gomes's avatar
Joao Gomes committed
1547
1548

        return s
1549
1550


1551
class Grayscale(torch.nn.Module):
1552
    """Convert image to grayscale.
1553
1554
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1555

1556
1557
1558
1559
    Args:
        num_output_channels (int): (1 or 3) number of channels desired for output image

    Returns:
1560
        PIL Image: Grayscale version of the input.
1561
1562
1563

        - If ``num_output_channels == 1`` : returned image is single channel
        - If ``num_output_channels == 3`` : returned image is 3 channel with r == g == b
1564
1565
1566
1567

    """

    def __init__(self, num_output_channels=1):
1568
        super().__init__()
1569
        _log_api_usage_once(self)
1570
1571
        self.num_output_channels = num_output_channels

vfdev's avatar
vfdev committed
1572
    def forward(self, img):
1573
1574
        """
        Args:
1575
            img (PIL Image or Tensor): Image to be converted to grayscale.
1576
1577

        Returns:
1578
            PIL Image or Tensor: Grayscaled image.
1579
        """
1580
        return F.rgb_to_grayscale(img, num_output_channels=self.num_output_channels)
1581

Joao Gomes's avatar
Joao Gomes committed
1582
1583
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(num_output_channels={self.num_output_channels})"
1584

1585

1586
class RandomGrayscale(torch.nn.Module):
1587
    """Randomly convert image to grayscale with a probability of p (default 0.1).
1588
1589
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1590

1591
1592
1593
1594
    Args:
        p (float): probability that image should be converted to grayscale.

    Returns:
1595
        PIL Image or Tensor: Grayscale version of the input image with probability p and unchanged
1596
1597
1598
        with probability (1-p).
        - If input image is 1 channel: grayscale version is 1 channel
        - If input image is 3 channel: grayscale version is 3 channel with r == g == b
1599
1600
1601
1602

    """

    def __init__(self, p=0.1):
1603
        super().__init__()
1604
        _log_api_usage_once(self)
1605
1606
        self.p = p

vfdev's avatar
vfdev committed
1607
    def forward(self, img):
1608
1609
        """
        Args:
1610
            img (PIL Image or Tensor): Image to be converted to grayscale.
1611
1612

        Returns:
1613
            PIL Image or Tensor: Randomly grayscaled image.
1614
        """
1615
        num_output_channels, _, _ = F.get_dimensions(img)
1616
1617
        if torch.rand(1) < self.p:
            return F.rgb_to_grayscale(img, num_output_channels=num_output_channels)
1618
        return img
1619

Joao Gomes's avatar
Joao Gomes committed
1620
1621
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(p={self.p})"
1622
1623


1624
class RandomErasing(torch.nn.Module):
1625
    """Randomly selects a rectangle region in an torch Tensor image and erases its pixels.
1626
    This transform does not support PIL Image.
vfdev's avatar
vfdev committed
1627
    'Random Erasing Data Augmentation' by Zhong et al. See https://arxiv.org/abs/1708.04896
1628

1629
1630
1631
1632
1633
1634
1635
1636
    Args:
         p: probability that the random erasing operation will be performed.
         scale: range of proportion of erased area against input image.
         ratio: range of aspect ratio of erased area.
         value: erasing value. Default is 0. If a single int, it is used to
            erase all pixels. If a tuple of length 3, it is used to erase
            R, G, B channels respectively.
            If a str of 'random', erasing each pixel with random values.
Zhun Zhong's avatar
Zhun Zhong committed
1637
         inplace: boolean to make this transform inplace. Default set to False.
1638

1639
1640
    Returns:
        Erased Image.
1641

vfdev's avatar
vfdev committed
1642
    Example:
1643
        >>> transform = transforms.Compose([
1644
        >>>   transforms.RandomHorizontalFlip(),
1645
1646
        >>>   transforms.PILToTensor(),
        >>>   transforms.ConvertImageDtype(torch.float),
1647
1648
        >>>   transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>>   transforms.RandomErasing(),
1649
1650
1651
        >>> ])
    """

Zhun Zhong's avatar
Zhun Zhong committed
1652
    def __init__(self, p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False):
1653
        super().__init__()
1654
        _log_api_usage_once(self)
1655
1656
1657
1658
1659
1660
1661
1662
        if not isinstance(value, (numbers.Number, str, tuple, list)):
            raise TypeError("Argument value should be either a number or str or a sequence")
        if isinstance(value, str) and value != "random":
            raise ValueError("If value is str, it should be 'random'")
        if not isinstance(scale, (tuple, list)):
            raise TypeError("Scale should be a sequence")
        if not isinstance(ratio, (tuple, list)):
            raise TypeError("Ratio should be a sequence")
1663
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
1664
            warnings.warn("Scale and ratio should be of kind (min, max)")
1665
        if scale[0] < 0 or scale[1] > 1:
1666
            raise ValueError("Scale should be between 0 and 1")
1667
        if p < 0 or p > 1:
1668
            raise ValueError("Random erasing probability should be between 0 and 1")
1669
1670
1671
1672
1673

        self.p = p
        self.scale = scale
        self.ratio = ratio
        self.value = value
1674
        self.inplace = inplace
1675
1676

    @staticmethod
1677
    def get_params(
1678
        img: Tensor, scale: Tuple[float, float], ratio: Tuple[float, float], value: Optional[List[float]] = None
1679
    ) -> Tuple[int, int, int, int, Tensor]:
1680
1681
1682
        """Get parameters for ``erase`` for a random erasing.

        Args:
vfdev's avatar
vfdev committed
1683
            img (Tensor): Tensor image to be erased.
1684
1685
            scale (sequence): range of proportion of erased area against input image.
            ratio (sequence): range of aspect ratio of erased area.
1686
1687
1688
            value (list, optional): erasing value. If None, it is interpreted as "random"
                (erasing each pixel with random values). If ``len(value)`` is 1, it is interpreted as a number,
                i.e. ``value[0]``.
1689
1690
1691
1692

        Returns:
            tuple: params (i, j, h, w, v) to be passed to ``erase`` for random erasing.
        """
vfdev's avatar
vfdev committed
1693
        img_c, img_h, img_w = img.shape[-3], img.shape[-2], img.shape[-1]
1694
        area = img_h * img_w
1695

1696
        log_ratio = torch.log(torch.tensor(ratio))
1697
        for _ in range(10):
1698
            erase_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
1699
            aspect_ratio = torch.exp(torch.empty(1).uniform_(log_ratio[0], log_ratio[1])).item()
1700
1701
1702

            h = int(round(math.sqrt(erase_area * aspect_ratio)))
            w = int(round(math.sqrt(erase_area / aspect_ratio)))
1703
1704
1705
1706
1707
1708
1709
            if not (h < img_h and w < img_w):
                continue

            if value is None:
                v = torch.empty([img_c, h, w], dtype=torch.float32).normal_()
            else:
                v = torch.tensor(value)[:, None, None]
1710

1711
1712
            i = torch.randint(0, img_h - h + 1, size=(1,)).item()
            j = torch.randint(0, img_w - w + 1, size=(1,)).item()
1713
            return i, j, h, w, v
1714

Zhun Zhong's avatar
Zhun Zhong committed
1715
1716
1717
        # Return original image
        return 0, 0, img_h, img_w, img

1718
    def forward(self, img):
1719
1720
        """
        Args:
vfdev's avatar
vfdev committed
1721
            img (Tensor): Tensor image to be erased.
1722
1723
1724
1725

        Returns:
            img (Tensor): Erased Tensor image.
        """
1726
1727
1728
1729
        if torch.rand(1) < self.p:

            # cast self.value to script acceptable type
            if isinstance(self.value, (int, float)):
1730
1731
1732
                value = [
                    self.value,
                ]
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
            elif isinstance(self.value, str):
                value = None
            elif isinstance(self.value, tuple):
                value = list(self.value)
            else:
                value = self.value

            if value is not None and not (len(value) in (1, img.shape[-3])):
                raise ValueError(
                    "If value is a sequence, it should have either a single value or "
1743
                    f"{img.shape[-3]} (number of input channels)"
1744
1745
1746
                )

            x, y, h, w, v = self.get_params(img, scale=self.scale, ratio=self.ratio, value=value)
1747
            return F.erase(img, x, y, h, w, v, self.inplace)
1748
        return img
1749

Joao Gomes's avatar
Joao Gomes committed
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
    def __repr__(self) -> str:
        s = (
            f"{self.__class__.__name__}"
            f"(p={self.p}, "
            f"scale={self.scale}, "
            f"ratio={self.ratio}, "
            f"value={self.value}, "
            f"inplace={self.inplace})"
        )
        return s
1760

1761

1762
1763
class GaussianBlur(torch.nn.Module):
    """Blurs image with randomly chosen Gaussian blur.
1764
1765
    If the image is torch Tensor, it is expected
    to have [..., C, H, W] shape, where ... means an arbitrary number of leading dimensions.
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780

    Args:
        kernel_size (int or sequence): Size of the Gaussian kernel.
        sigma (float or tuple of float (min, max)): Standard deviation to be used for
            creating kernel to perform blurring. If float, sigma is fixed. If it is tuple
            of float (min, max), sigma is chosen uniformly at random to lie in the
            given range.

    Returns:
        PIL Image or Tensor: Gaussian blurred version of the input image.

    """

    def __init__(self, kernel_size, sigma=(0.1, 2.0)):
        super().__init__()
1781
        _log_api_usage_once(self)
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
        self.kernel_size = _setup_size(kernel_size, "Kernel size should be a tuple/list of two integers")
        for ks in self.kernel_size:
            if ks <= 0 or ks % 2 == 0:
                raise ValueError("Kernel size value should be an odd and positive number.")

        if isinstance(sigma, numbers.Number):
            if sigma <= 0:
                raise ValueError("If sigma is a single number, it must be positive.")
            sigma = (sigma, sigma)
        elif isinstance(sigma, Sequence) and len(sigma) == 2:
1792
            if not 0.0 < sigma[0] <= sigma[1]:
1793
1794
1795
1796
1797
1798
1799
1800
                raise ValueError("sigma values should be positive and of the form (min, max).")
        else:
            raise ValueError("sigma should be a single number or a list/tuple with length 2.")

        self.sigma = sigma

    @staticmethod
    def get_params(sigma_min: float, sigma_max: float) -> float:
vfdev's avatar
vfdev committed
1801
        """Choose sigma for random gaussian blurring.
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814

        Args:
            sigma_min (float): Minimum standard deviation that can be chosen for blurring kernel.
            sigma_max (float): Maximum standard deviation that can be chosen for blurring kernel.

        Returns:
            float: Standard deviation to be passed to calculate kernel for gaussian blurring.
        """
        return torch.empty(1).uniform_(sigma_min, sigma_max).item()

    def forward(self, img: Tensor) -> Tensor:
        """
        Args:
vfdev's avatar
vfdev committed
1815
            img (PIL Image or Tensor): image to be blurred.
1816
1817
1818
1819
1820
1821
1822

        Returns:
            PIL Image or Tensor: Gaussian blurred image
        """
        sigma = self.get_params(self.sigma[0], self.sigma[1])
        return F.gaussian_blur(img, self.kernel_size, [sigma, sigma])

Joao Gomes's avatar
Joao Gomes committed
1823
1824
1825
    def __repr__(self) -> str:
        s = f"{self.__class__.__name__}(kernel_size={self.kernel_size}, sigma={self.sigma})"
        return s
1826
1827


1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
def _setup_size(size, error_msg):
    if isinstance(size, numbers.Number):
        return int(size), int(size)

    if isinstance(size, Sequence) and len(size) == 1:
        return size[0], size[0]

    if len(size) != 2:
        raise ValueError(error_msg)

    return size


def _check_sequence_input(x, name, req_sizes):
    msg = req_sizes[0] if len(req_sizes) < 2 else " or ".join([str(s) for s in req_sizes])
    if not isinstance(x, Sequence):
1844
        raise TypeError(f"{name} should be a sequence of length {msg}.")
1845
    if len(x) not in req_sizes:
1846
        raise ValueError(f"{name} should be sequence of length {msg}.")
1847
1848


1849
def _setup_angle(x, name, req_sizes=(2,)):
1850
1851
    if isinstance(x, numbers.Number):
        if x < 0:
1852
            raise ValueError(f"If {name} is a single number, it must be positive.")
1853
1854
1855
1856
1857
        x = [-x, x]
    else:
        _check_sequence_input(x, name, req_sizes)

    return [float(d) for d in x]
1858
1859
1860
1861


class RandomInvert(torch.nn.Module):
    """Inverts the colors of the given image randomly with a given probability.
1862
1863
1864
    If img is a Tensor, it is expected to be in [..., 1 or 3, H, W] format,
    where ... means it can have an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1865
1866
1867
1868
1869
1870
1871

    Args:
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
1872
        _log_api_usage_once(self)
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be inverted.

        Returns:
            PIL Image or Tensor: Randomly color inverted image.
        """
        if torch.rand(1).item() < self.p:
            return F.invert(img)
        return img

Joao Gomes's avatar
Joao Gomes committed
1887
1888
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(p={self.p})"
1889
1890
1891
1892


class RandomPosterize(torch.nn.Module):
    """Posterize the image randomly with a given probability by reducing the
1893
1894
1895
    number of bits for each color channel. If the image is torch Tensor, it should be of type torch.uint8,
    and it is expected to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1896
1897
1898

    Args:
        bits (int): number of bits to keep for each channel (0-8)
1899
        p (float): probability of the image being posterized. Default value is 0.5
1900
1901
1902
1903
    """

    def __init__(self, bits, p=0.5):
        super().__init__()
1904
        _log_api_usage_once(self)
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
        self.bits = bits
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be posterized.

        Returns:
            PIL Image or Tensor: Randomly posterized image.
        """
        if torch.rand(1).item() < self.p:
            return F.posterize(img, self.bits)
        return img

Joao Gomes's avatar
Joao Gomes committed
1920
1921
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(bits={self.bits},p={self.p})"
1922
1923
1924
1925


class RandomSolarize(torch.nn.Module):
    """Solarize the image randomly with a given probability by inverting all pixel
1926
1927
1928
    values above a threshold. If img is a Tensor, it is expected to be in [..., 1 or 3, H, W] format,
    where ... means it can have an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1929
1930
1931

    Args:
        threshold (float): all pixels equal or above this value are inverted.
1932
        p (float): probability of the image being solarized. Default value is 0.5
1933
1934
1935
1936
    """

    def __init__(self, threshold, p=0.5):
        super().__init__()
1937
        _log_api_usage_once(self)
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
        self.threshold = threshold
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be solarized.

        Returns:
            PIL Image or Tensor: Randomly solarized image.
        """
        if torch.rand(1).item() < self.p:
            return F.solarize(img, self.threshold)
        return img

Joao Gomes's avatar
Joao Gomes committed
1953
1954
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(threshold={self.threshold},p={self.p})"
1955
1956
1957


class RandomAdjustSharpness(torch.nn.Module):
1958
1959
    """Adjust the sharpness of the image randomly with a given probability. If the image is torch Tensor,
    it is expected to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
1960
1961
1962
1963
1964

    Args:
        sharpness_factor (float):  How much to adjust the sharpness. Can be
            any non negative number. 0 gives a blurred image, 1 gives the
            original image while 2 increases the sharpness by a factor of 2.
1965
        p (float): probability of the image being sharpened. Default value is 0.5
1966
1967
1968
1969
    """

    def __init__(self, sharpness_factor, p=0.5):
        super().__init__()
1970
        _log_api_usage_once(self)
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
        self.sharpness_factor = sharpness_factor
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be sharpened.

        Returns:
            PIL Image or Tensor: Randomly sharpened image.
        """
        if torch.rand(1).item() < self.p:
            return F.adjust_sharpness(img, self.sharpness_factor)
        return img

Joao Gomes's avatar
Joao Gomes committed
1986
1987
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(sharpness_factor={self.sharpness_factor},p={self.p})"
1988
1989
1990
1991


class RandomAutocontrast(torch.nn.Module):
    """Autocontrast the pixels of the given image randomly with a given probability.
1992
1993
1994
    If the image is torch Tensor, it is expected
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1995
1996
1997
1998
1999
2000
2001

    Args:
        p (float): probability of the image being autocontrasted. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
2002
        _log_api_usage_once(self)
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be autocontrasted.

        Returns:
            PIL Image or Tensor: Randomly autocontrasted image.
        """
        if torch.rand(1).item() < self.p:
            return F.autocontrast(img)
        return img

Joao Gomes's avatar
Joao Gomes committed
2017
2018
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(p={self.p})"
2019
2020
2021
2022


class RandomEqualize(torch.nn.Module):
    """Equalize the histogram of the given image randomly with a given probability.
2023
2024
2025
    If the image is torch Tensor, it is expected
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "P", "L" or "RGB".
2026
2027
2028
2029
2030
2031
2032

    Args:
        p (float): probability of the image being equalized. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
2033
        _log_api_usage_once(self)
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be equalized.

        Returns:
            PIL Image or Tensor: Randomly equalized image.
        """
        if torch.rand(1).item() < self.p:
            return F.equalize(img)
        return img

Joao Gomes's avatar
Joao Gomes committed
2048
2049
    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(p={self.p})"