tf.cpp 55.9 KB
Newer Older
Khalique's avatar
Khalique committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <graph.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <unordered_set>
#include <functional>
#include <array>
#include <utility>
#include <vector>

#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
Paul's avatar
Paul committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
#include <migraphx/op/argmax.hpp>
#include <migraphx/op/argmin.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/op/common.hpp>
#include <migraphx/op/concat.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/gather.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/slice.hpp>
#include <migraphx/op/softmax.hpp>
#include <migraphx/op/squeeze.hpp>
#include <migraphx/op/transpose.hpp>
#include <migraphx/op/unknown.hpp>
Khalique's avatar
Khalique committed
30
31
32
33
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
#include <migraphx/tf.hpp>
34
35
#include <migraphx/make_op.hpp>

Khalique's avatar
Khalique committed
36
#include <migraphx/pad_calc.hpp>
Khalique's avatar
Khalique committed
37
38
39
40
41
42
43

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct tf_parser
{
    using attribute_map = std::unordered_map<std::string, tensorflow::AttrValue>;
Paul's avatar
Paul committed
44
    using node_map      = std::map<std::string, tensorflow::NodeDef>;
kahmed10's avatar
kahmed10 committed
45
46
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Khalique's avatar
Khalique committed
47

Khalique's avatar
Khalique committed
48
49
50
    node_map nodes;
    std::vector<tensorflow::NodeDef> input_nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
51
    program prog            = program();
52
    module* mm              = prog.get_main_module();
53
54
    bool is_nhwc            = true;
    unsigned int batch_size = 1;
Shucai Xiao's avatar
Shucai Xiao committed
55
56
    // Specified dims of inputs
    std::unordered_map<std::string, std::vector<std::size_t>> map_input_dims;
Khalique's avatar
Khalique committed
57
58
59

    std::unordered_map<std::string, op_func> ops;

Paul's avatar
Paul committed
60
    bool should_transpose(instruction_ref ins) const
Paul's avatar
Paul committed
61
62
63
64
    {
        return is_nhwc and ins->get_shape().lens().size() == 4;
    }

65
    instruction_ref to_nhwc(instruction_ref ins) const
Paul's avatar
Paul committed
66
    {
Paul's avatar
Paul committed
67
        if(should_transpose(ins))
68
            return mm->add_instruction(make_op("transpose", {{"dims", {0, 2, 3, 1}}}), ins);
Paul's avatar
Paul committed
69
70
71
        return ins;
    }

72
    instruction_ref to_nchw(instruction_ref ins) const
Paul's avatar
Paul committed
73
    {
Paul's avatar
Paul committed
74
        if(should_transpose(ins))
75
            return mm->add_instruction(make_op("transpose", {{"dims", {0, 3, 1, 2}}}), ins);
Paul's avatar
Paul committed
76
77
78
        return ins;
    }

79
    instruction_ref to_kcxy(instruction_ref ins) const
Paul's avatar
Paul committed
80
    {
81
        return mm->add_instruction(make_op("transpose", {{"dims", {3, 2, 0, 1}}}), ins);
Paul's avatar
Paul committed
82
83
    }

84
    instruction_ref make_contiguous(instruction_ref ins) const
Paul's avatar
Paul committed
85
    {
Paul's avatar
Paul committed
86
        if(ins->get_shape().standard())
Paul's avatar
Paul committed
87
88
            return ins;
        else
89
            return mm->add_instruction(make_op("contiguous"), ins);
Paul's avatar
Paul committed
90
91
92
93
94
    }

    std::vector<instruction_ref> to_nchw(const std::vector<instruction_ref>& args)
    {
        std::vector<instruction_ref> result(args.size());
Paul's avatar
Paul committed
95
        std::transform(
Paul's avatar
Paul committed
96
            args.begin(), args.end(), result.begin(), [&](auto ins) { return this->to_nchw(ins); });
Paul's avatar
Paul committed
97
98
99
        return result;
    }

kahmed10's avatar
kahmed10 committed
100
101
102
103
104
105
106
107
    std::vector<instruction_ref> to_nhwc(const std::vector<instruction_ref>& args)
    {
        std::vector<instruction_ref> result(args.size());
        std::transform(
            args.begin(), args.end(), result.begin(), [&](auto ins) { return this->to_nhwc(ins); });
        return result;
    }

Khalique's avatar
Khalique committed
108
    std::vector<size_t>
109
    parse_axes(const attribute_map& attributes, const std::string& s, const size_t num_dims) const
110
    {
111
112
113
        auto attrs = attributes.at(s).list().i();
        std::vector<size_t> axes;
        copy(attrs.begin(), attrs.end(), std::back_inserter(axes));
Khalique's avatar
Khalique committed
114
        if(is_nhwc)
115
        {
Khalique's avatar
Khalique committed
116
            std::transform(axes.begin(), axes.end(), axes.begin(), [&](size_t axis) {
Khalique's avatar
Khalique committed
117
                return parse_axis(axis, num_dims);
Khalique's avatar
Khalique committed
118
            });
119
120
121
122
        }
        return axes;
    }

Khalique's avatar
Khalique committed
123
    template <class T>
124
    std::vector<T> parse_axes(std::vector<T> axes, const size_t num_dims) const
Khalique's avatar
Khalique committed
125
126
127
    {
        if(is_nhwc)
        {
128
            std::vector<T> new_axes;
Khalique's avatar
Khalique committed
129
130
131
            std::transform(axes.begin(),
                           axes.end(),
                           std::back_inserter(new_axes),
Khalique's avatar
Khalique committed
132
                           [&](size_t axis) { return parse_axis(axis, num_dims); });
133
            return new_axes;
Khalique's avatar
Khalique committed
134
        }
135
        return axes;
Khalique's avatar
Khalique committed
136
137
    }

Khalique's avatar
Khalique committed
138
139
140
    // tf stores certain attributes such as strides, dilations, as a 4D input.
    // The first and last dims are equal to 1, and the relevant data is in dims 2 and 3.
    // This helper function reorders the data to store for the respective operator member variables.
141
    template <class T>
142
    void reorder_data(std::vector<T>& prev_data) const
143
144
    {
        std::vector<T> new_data(prev_data.size());
145
        for(size_t i = 0; i < new_data.size(); i++)
146
        {
Khalique's avatar
Khalique committed
147
            auto new_idx         = parse_axis(i, new_data.size());
148
            new_data.at(new_idx) = prev_data.at(i);
149
        }
150
151
152
153
        prev_data = new_data;
    }

    template <class T>
154
    T parse_axis(const T& dim, const size_t num_dims) const
155
    {
Khalique's avatar
Khalique committed
156
        T new_dim = dim;
Khalique's avatar
Khalique committed
157
        if(is_nhwc and num_dims >= 4)
158
159
160
        {
            switch(dim)
            {
Khalique's avatar
Khalique committed
161
162
163
164
165
            case 0: new_dim = 0; break;
            case 1: new_dim = 2; break;
            case 2: new_dim = 3; break;
            case 3: new_dim = 1; break;
            default: break;
166
167
            }
        }
Khalique's avatar
Khalique committed
168
        return new_dim;
169
170
    }

171
172
173
174
175
176
177
    std::vector<int64_t> get_axes(size_t num_axes) const
    {
        std::vector<int64_t> axes(num_axes);
        std::iota(axes.begin(), axes.end(), 0);
        return axes;
    }

Khalique's avatar
Khalique committed
178
    std::vector<int64_t> get_axes_from_mask(const size_t num_axes, const uint32_t mask)
Khalique's avatar
Khalique committed
179
    {
Khalique's avatar
Khalique committed
180
        uint32_t bitwise_compare = 1;
Khalique's avatar
Khalique committed
181
182
183
184
185
186
187
188
189
190
191
192
        std::vector<int64_t> axes;
        for(size_t i = 0; i < num_axes; i++)
        {
            // the LSB corresponds to axis 0 when determining which axes to begin
            if(((mask >> i) & bitwise_compare) == 1)
                axes.push_back(1);
            else
                axes.push_back(0);
        }
        return axes;
    }

Khalique's avatar
Khalique committed
193
194
    tf_parser()
    {
195
196
197
198
199
200
201
202
203
204
205
206
207
208
        add_generic_op("All", make_op("identity"));
        add_generic_op("Identity", make_op("identity"));
        add_generic_op("LessEqual", make_op("identity"));
        add_generic_op("Relu", make_op("relu"));
        add_generic_op("Rsqrt", make_op("rsqrt"));
        add_generic_op("Tanh", make_op("tanh"));
        add_generic_op("StopGradient", make_op("identity"));

        add_binary_op("Add", make_op("add"));
        add_binary_op("AddV2", make_op("add"));
        add_binary_op("Mul", make_op("mul"));
        add_binary_op("Pow", make_op("pow"));
        add_binary_op("SquaredDifference", make_op("sqdiff"));
        add_binary_op("Sub", make_op("sub"));
Khalique's avatar
Khalique committed
209

210
211
        add_mem_op("ArgMax", &tf_parser::parse_arg_op<op::argmax>, false);
        add_mem_op("ArgMin", &tf_parser::parse_arg_op<op::argmin>, false);
212
        add_mem_op("AvgPool", &tf_parser::parse_pooling);
Khalique's avatar
Khalique committed
213
        add_mem_op("BatchMatMul", &tf_parser::parse_matmul, false);
Khalique's avatar
Khalique committed
214
        add_mem_op("BatchMatMulV2", &tf_parser::parse_matmul, false);
215
        add_mem_op("BiasAdd", &tf_parser::parse_biasadd);
Khalique's avatar
Khalique committed
216
        add_mem_op("Cast", &tf_parser::parse_cast, false);
Paul's avatar
Paul committed
217
        add_mem_op("ConcatV2", &tf_parser::parse_concat, false);
Khalique's avatar
Khalique committed
218
        add_mem_op("Const", &tf_parser::parse_constant);
Paul's avatar
Paul committed
219
        add_mem_op("Conv2D", &tf_parser::parse_conv);
Paul's avatar
Paul committed
220
        add_mem_op("DepthwiseConv2dNative", &tf_parser::parse_depthwiseconv);
221
        add_mem_op("ExpandDims", &tf_parser::parse_expanddims, false);
Khalique's avatar
Khalique committed
222
        add_mem_op("FusedBatchNorm", &tf_parser::parse_batchnorm);
kahmed10's avatar
kahmed10 committed
223
        add_mem_op("FusedBatchNormV3", &tf_parser::parse_batchnorm);
Khalique's avatar
Khalique committed
224
        add_mem_op("GatherV2", &tf_parser::parse_gather, false);
Paul's avatar
Paul committed
225
        add_mem_op("MatMul", &tf_parser::parse_matmul, false);
226
        add_mem_op("MaxPool", &tf_parser::parse_pooling);
Khalique's avatar
Khalique committed
227
        add_mem_op("Mean", &tf_parser::parse_mean, false);
Khalique's avatar
Khalique committed
228
        add_mem_op("OneHot", &tf_parser::parse_onehot, false);
Paul's avatar
Paul committed
229
        add_mem_op("Pack", &tf_parser::parse_pack, false);
Paul's avatar
Paul committed
230
        add_mem_op("Pad", &tf_parser::parse_pad);
kahmed10's avatar
kahmed10 committed
231
        add_mem_op("Relu6", &tf_parser::parse_relu6);
Paul's avatar
Paul committed
232
        add_mem_op("Reshape", &tf_parser::parse_reshape, false);
233
        add_mem_op("Shape", &tf_parser::parse_shape, false);
Khalique's avatar
Khalique committed
234
        add_mem_op("Slice", &tf_parser::parse_slice, false);
kahmed10's avatar
kahmed10 committed
235
236
        add_mem_op("Split", &tf_parser::parse_split, false);
        add_mem_op("SplitV", &tf_parser::parse_split, false);
Khalique's avatar
Khalique committed
237
        add_mem_op("Softmax", &tf_parser::parse_softmax<op::softmax>, false);
Paul's avatar
Paul committed
238
        add_mem_op("Squeeze", &tf_parser::parse_squeeze, false);
239
        add_mem_op("StridedSlice", &tf_parser::parse_stridedslice, false);
Khalique's avatar
Khalique committed
240
        add_mem_op("Transpose", &tf_parser::parse_transpose, false);
Khalique's avatar
Khalique committed
241
242
    }

243
    template <class F>
kahmed10's avatar
kahmed10 committed
244
    void add_op(const std::string& name, F f, bool transpose = true)
245
    {
Paul's avatar
Paul committed
246
        if(transpose)
Paul's avatar
Paul committed
247
        {
kahmed10's avatar
kahmed10 committed
248
249
250
251
252
253
            ops.emplace(
                name,
                op_func{
                    [=](const attribute_map& attributes, const std::vector<instruction_ref>& args) {
                        return std::vector<instruction_ref>{to_nhwc(f(attributes, to_nchw(args)))};
                    }});
Paul's avatar
Paul committed
254
255
256
        }
        else
        {
kahmed10's avatar
kahmed10 committed
257
258
259
260
261
            ops.emplace(name,
                        op_func{[=](const attribute_map& attributes,
                                    const std::vector<instruction_ref>& args) {
                            return std::vector<instruction_ref>{f(attributes, args)};
                        }});
Paul's avatar
Paul committed
262
        }
263
264
    }

Khalique's avatar
Khalique committed
265
    template <class F>
Paul's avatar
Paul committed
266
    void add_mem_op(std::string name, F f, bool transpose = true)
Khalique's avatar
Khalique committed
267
    {
Paul's avatar
Paul committed
268
269
270
271
272
        add_op(name,
               [=](auto&&... xs) {
                   return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
               },
               transpose);
Khalique's avatar
Khalique committed
273
274
275
276
277
    }

    template <class T>
    void add_binary_op(std::string name, T x)
    {
Paul's avatar
Paul committed
278
279
280
281
282
283
284
285
286
        add_op(name,
               [this, x](const attribute_map&, std::vector<instruction_ref> args) {
                   if(args.size() != 2)
                       MIGRAPHX_THROW("binary operators should have 2 operands");
                   // TODO
                   // if(contains(attributes, "data_format"))
                   // {
                   //     if(is_nhwc)
                   //     {
287
                   //         l0 = mm->add_instruction(op::transpose{{0, 3, 1, 2}}, args[1]);
Paul's avatar
Paul committed
288
289
290
291
292
                   //     }
                   // }
                   return add_broadcastable_binary_op(args[0], args[1], x);
               },
               false);
Khalique's avatar
Khalique committed
293
294
295
296
297
    }

    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
298
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
        {
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
            // Get lengths for both arguments
314
315
            const std::vector<size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<size_t>* s1 = &arg1->get_shape().lens();
Khalique's avatar
Khalique committed
316
317
318
319
320

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

321
            std::vector<size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
322
323
324
325
326
327
328
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });

329
330
331
332
            auto l0 = mm->add_instruction(make_op("multibroadcast", {{"output_lens", output_lens}}),
                                          arg0);
            auto l1 = mm->add_instruction(make_op("multibroadcast", {{"output_lens", output_lens}}),
                                          arg1);
333
            return to_nhwc(mm->add_instruction(x, to_nchw(l0), to_nchw(l1)));
Khalique's avatar
Khalique committed
334
335
336
        }
        else
        {
337
            return to_nhwc(mm->add_instruction(x, {to_nchw(arg0), to_nchw(arg1)}));
Khalique's avatar
Khalique committed
338
339
340
341
        }
    }

    template <class T>
Paul's avatar
Paul committed
342
    void add_generic_op(std::string name, T x, bool transpose = true)
Khalique's avatar
Khalique committed
343
    {
Paul's avatar
Paul committed
344
345
        add_op(name,
               [this, x](const attribute_map&, std::vector<instruction_ref> args) {
346
                   return mm->add_instruction(x, args);
Paul's avatar
Paul committed
347
348
               },
               transpose);
Khalique's avatar
Khalique committed
349
350
    }

351
352
353
354
355
356
    template <class Op>
    instruction_ref
    parse_arg_op(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        int64_t axis = 0;
        axis         = args[1]->eval().at<int64_t>();
357
        auto ins     = mm->add_instruction(Op{axis}, args.front());
358
        return mm->add_instruction(make_op("squeeze", {{"axes", {axis}}}), ins);
359
360
    }

361
362
363
    instruction_ref parse_batchnorm(const std::string&,
                                    attribute_map attributes,
                                    std::vector<instruction_ref> args) const
Khalique's avatar
Khalique committed
364
    {
Khalique's avatar
Khalique committed
365
366
367
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Khalique's avatar
Khalique committed
368
369
370
371
372
        if(contains(attributes, "epsilon"))
        {
            epsilon = attributes.at("epsilon").f();
        }
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
373
        return mm->add_instruction(op, std::move(args));
Khalique's avatar
Khalique committed
374
375
    }

376
    instruction_ref
377
    parse_biasadd(const std::string&, const attribute_map&, std::vector<instruction_ref> args) const
378
    {
379
        uint64_t axis = 1; // assume output of previous layer is in NCHW (broadcast on channel)
380
381
382
        auto l0       = mm->add_instruction(
            make_op("broadcast", {{"axis", axis}, {"dims", args[0]->get_shape().lens()}}), args[1]);
        return mm->add_instruction(make_op("add"), args[0], l0);
383
384
    }

385
386
387
    instruction_ref parse_cast(const std::string&,
                               attribute_map attributes,
                               std::vector<instruction_ref> args) const
Khalique's avatar
Khalique committed
388
389
    {
        shape::type_t type = parse_type(attributes.at("DstT").type());
390
        return mm->add_instruction(make_op("convert", {{"target_type", type}}), std::move(args));
Khalique's avatar
Khalique committed
391
392
    }

393
394
395
    instruction_ref parse_concat(const std::string&,
                                 attribute_map attributes,
                                 std::vector<instruction_ref> args) const
Khalique's avatar
Khalique committed
396
397
    {
        // get index for axis within args
398
        size_t axis_idx = attributes.at("N").i();
Shucai Xiao's avatar
Shucai Xiao committed
399
        int64_t axis    = args[axis_idx]->eval().at<int64_t>();
Khalique's avatar
Khalique committed
400
        op::concat op{axis};
401
        // return only first N arguments (assuming last index is the axis value)
402
        return mm->add_instruction(
Paul's avatar
Paul committed
403
            op, std::vector<instruction_ref>(args.begin(), args.begin() + args.size() - 1));
Khalique's avatar
Khalique committed
404
405
406
407
    }

    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
408
                                   const std::vector<instruction_ref>&) const
Khalique's avatar
Khalique committed
409
    {
Paul's avatar
Paul committed
410
        literal v = parse_tensor(attributes.at("value").tensor());
411
        return mm->add_literal(v);
Khalique's avatar
Khalique committed
412
413
    }

414
415
416
    instruction_ref parse_conv(const std::string&,
                               attribute_map attributes,
                               std::vector<instruction_ref> args) const
Khalique's avatar
Khalique committed
417
418
419
420
    {
        op::convolution op;
        if(contains(attributes, "strides"))
        {
421
            std::vector<size_t> stride;
422
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
423
            reorder_data(stride);
424
425
            if(stride.size() != 4)
            {
426
                MIGRAPHX_THROW("strides should have 4 values");
427
            }
428
429
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
430
431
432
        }
        if(contains(attributes, "dilations"))
        {
433
            std::vector<size_t> dilation;
434
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
435
            reorder_data(dilation);
436
437
438
439
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
440
441
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
442
        }
Khalique's avatar
Khalique committed
443

Paul's avatar
Paul committed
444
        auto weights = to_kcxy(args[1]);
Paul's avatar
Paul committed
445
        auto l0      = args[0];
Khalique's avatar
Khalique committed
446
447
448
449
450
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
451
                op.padding_mode                 = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
452
453
454
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];
Khalique's avatar
Khalique committed
455
456
457

                auto input_dims = l0->get_shape().lens();
                std::vector<int64_t> pads(input_dims.size());
458
459
                calculate_padding(0, pads, input_dims[2], op.stride[0], op.dilation[0], weight_h);
                calculate_padding(1, pads, input_dims[3], op.stride[1], op.dilation[1], weight_w);
Khalique's avatar
Khalique committed
460
461
462
463

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
464
                    l0 = mm->add_instruction(migraphx::make_op("pad", {{"pads", padding}}), l0);
Khalique's avatar
Khalique committed
465
466
467
                }
                else
                {
Khalique's avatar
Khalique committed
468
469
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
470
                }
471
472
473
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
474
                op.padding_mode = op::padding_mode_t::valid;
Khalique's avatar
Khalique committed
475
            }
Khalique's avatar
Khalique committed
476
            else if(pad_mode.find("EXPLICIT") != std::string::npos)
Khalique's avatar
Khalique committed
477
            {
478
                std::vector<size_t> padding;
479
                copy(attributes.at("explicit_paddings").list().i(), std::back_inserter(padding));
Khalique's avatar
Khalique committed
480
481
482
483
484
485
486
487
488
489
490
491
                if(padding.size() != 4)
                {
                    MIGRAPHX_THROW("padding should have 4 values");
                }
                if(padding[0] != padding[2] || padding[1] != padding[3])
                {
                    MIGRAPHX_THROW("migraphx does not support asymetric padding");
                }
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }
kahmed10's avatar
kahmed10 committed
492
        return mm->add_instruction(op, {l0, weights});
Khalique's avatar
Khalique committed
493
494
    }

Khalique's avatar
Khalique committed
495
496
    instruction_ref parse_depthwiseconv(const std::string&,
                                        attribute_map attributes,
497
                                        std::vector<instruction_ref> args) const
Khalique's avatar
Khalique committed
498
499
500
    {
        op::convolution op;
        size_t num_channels = args[0]->get_shape().lens()[1];
Khalique's avatar
Khalique committed
501
        op.group            = num_channels;
Khalique's avatar
Khalique committed
502

Khalique's avatar
Khalique committed
503
504
        if(contains(attributes, "strides"))
        {
505
            std::vector<size_t> stride;
506
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
507
            reorder_data(stride);
508
509
            if(stride.size() != 4)
            {
510
                MIGRAPHX_THROW("strides should have 4 values");
511
            }
512
513
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
514
        }
Paul's avatar
Paul committed
515
516

        auto weights = to_kcxy(args[1]);
Khalique's avatar
Khalique committed
517
518
        if(contains(attributes, "dilations"))
        {
519
            std::vector<size_t> dilation;
520
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
521
            reorder_data(dilation);
522
523
524
525
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
526
527
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
528
529
        }

Khalique's avatar
Khalique committed
530
        auto l0 = args[0];
Khalique's avatar
Khalique committed
531
532
533
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
Khalique's avatar
Khalique committed
534

Khalique's avatar
Khalique committed
535
536
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
537
                op.padding_mode                 = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
538
539
540
541
542
543
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];

                auto input_dims = l0->get_shape().lens();
                std::vector<int64_t> pads(input_dims.size());
544
545
                calculate_padding(0, pads, input_dims[2], op.stride[0], op.dilation[0], weight_h);
                calculate_padding(1, pads, input_dims[3], op.stride[1], op.dilation[1], weight_w);
Khalique's avatar
Khalique committed
546
547
548
549

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
550
                    l0 = mm->add_instruction(migraphx::make_op("pad", {{"pads", padding}}), l0);
Khalique's avatar
Khalique committed
551
552
553
                }
                else
                {
Khalique's avatar
Khalique committed
554
555
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
556
                }
Khalique's avatar
Khalique committed
557
            }
Khalique's avatar
Khalique committed
558
            else if(pad_mode.find("VALID") != std::string::npos)
Khalique's avatar
Khalique committed
559
            {
Khalique's avatar
Khalique committed
560
                op.padding_mode = op::padding_mode_t::valid;
Khalique's avatar
Khalique committed
561
562
            }
        }
Khalique's avatar
Khalique committed
563

Khalique's avatar
Khalique committed
564
565
        std::vector<int64_t> new_weights_shape;
        copy(weights->get_shape().lens(), std::back_inserter(new_weights_shape));
Khalique's avatar
Khalique committed
566
567
568
569

        // weight format is (out_channels, in_channels, h, w), but in depthwise_conv,
        // out_channels is equal to the multiplier. Adjust by inserting a reshape and
        // setting in_channels to 1
Khalique's avatar
Khalique committed
570
        int64_t multiplier   = new_weights_shape[0];
Khalique's avatar
Khalique committed
571
572
573
        int64_t out_channels = num_channels * multiplier;
        new_weights_shape[0] = out_channels;
        new_weights_shape[1] = 1;
Paul's avatar
Paul committed
574
        // Make sure weights are contiguous before doing reshape
575
576
        auto new_weights = mm->add_instruction(make_op("reshape", {{"dims", new_weights_shape}}),
                                               make_contiguous(weights));
Khalique's avatar
Khalique committed
577

578
        return mm->add_instruction(op, {l0, new_weights});
Khalique's avatar
Khalique committed
579
580
    }

581
582
583
    instruction_ref parse_expanddims(const std::string&,
                                     const attribute_map&,
                                     std::vector<instruction_ref> args) const
Khalique's avatar
Khalique committed
584
585
    {
        std::vector<size_t> input_dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
586
        std::vector<int64_t> new_dims(input_dims.begin(), input_dims.end());
Khalique's avatar
Khalique committed
587
        size_t num_dims = input_dims.size();
588
        int32_t dim     = args[1]->eval().at<int32_t>();
Khalique's avatar
Khalique committed
589
590

        if(dim < 0)
Khalique's avatar
Khalique committed
591
592
593
594
595
596
597
        {
            new_dims.insert(new_dims.begin() + (num_dims + dim + 1), 1);
        }
        else
        {
            new_dims.insert(new_dims.begin() + dim, 1);
        }
598
        return mm->add_instruction(make_op("reshape", {{"dims", new_dims}}), args[0]);
Khalique's avatar
Khalique committed
599
600
    }

Khalique's avatar
Khalique committed
601
    instruction_ref
602
    parse_gather(const std::string&, const attribute_map&, std::vector<instruction_ref> args) const
Khalique's avatar
Khalique committed
603
604
605
    {
        int axis = args[2]->eval().at<int32_t>();
        op::gather op{axis};
606
        return mm->add_instruction(op, {args[0], args[1]});
Khalique's avatar
Khalique committed
607
608
    }

609
610
611
    instruction_ref parse_matmul(const std::string&,
                                 attribute_map attributes,
                                 std::vector<instruction_ref> args) const
612
613
614
    {
        bool transa = false;
        bool transb = false;
Khalique's avatar
Khalique committed
615

616
617
618
619
620
621
        if(contains(attributes, "transpose_a"))
        {
            transa = attributes.at("transpose_a").b();
        }
        if(contains(attributes, "transpose_b"))
        {
Khalique's avatar
Khalique committed
622
            transb = attributes.at("transpose_b").b();
623
624
        }

Khalique's avatar
Khalique committed
625
626
627
628
629
630
631
632
633
        if(contains(attributes, "adj_x"))
        {
            transa = attributes.at("adj_x").b();
        }
        if(contains(attributes, "adj_y"))
        {
            transb = attributes.at("adj_y").b();
        }

634
635
636
        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
Khalique's avatar
Khalique committed
637
        std::iter_swap(perm.end() - 1, perm.end() - 2);
638

639
640
641
642
        auto l1 = (transa) ? mm->add_instruction(make_op("transpose", {{"dims", perm}}), args[0])
                           : args[0];
        auto l2 = (transb) ? mm->add_instruction(make_op("transpose", {{"dims", perm}}), args[1])
                           : args[1];
643

644
        return mm->add_instruction(make_op("dot"), l1, l2);
645
646
    }

647
648
649
    instruction_ref parse_mean(const std::string&,
                               attribute_map attributes,
                               std::vector<instruction_ref> args) const
Khalique's avatar
Khalique committed
650
    {
Khalique's avatar
Khalique committed
651
652
        bool keep_dims = attributes.at("keep_dims").b();
        auto axes      = args[1]->eval().get<int32_t>().to_vector<int64_t>();
Khalique's avatar
Khalique committed
653
654

        if(keep_dims)
Khalique's avatar
Khalique committed
655
        {
656
            return mm->add_instruction(make_op("reduce_mean", {{"axes", axes}}), args[0]);
657
658
659
        }
        else
        {
660
661
            auto ins = mm->add_instruction(make_op("reduce_mean", {{"axes", axes}}), args[0]);
            return mm->add_instruction(make_op("squeeze", {{"axes", axes}}), ins);
Khalique's avatar
Khalique committed
662
663
664
        }
    }

665
666
667
    instruction_ref parse_onehot(const std::string&,
                                 attribute_map attributes,
                                 std::vector<instruction_ref> args) const
Khalique's avatar
Khalique committed
668
    {
Khalique's avatar
Khalique committed
669
670
        size_t depth = static_cast<size_t>(args[1]->eval().at<int32_t>());

Khalique's avatar
Khalique committed
671
        int64_t axis    = -1;
Khalique's avatar
Khalique committed
672
673
        float on_value  = args[2]->eval().at<float>();
        float off_value = args[3]->eval().at<float>();
Khalique's avatar
Khalique committed
674

Khalique's avatar
Khalique committed
675
        std::vector<float> depth_input(depth * depth, off_value);
Khalique's avatar
Khalique committed
676
677
        for(int i = 0; i < depth; i++)
        {
Khalique's avatar
Khalique committed
678
            depth_input[depth * i + i] = on_value;
Khalique's avatar
Khalique committed
679
        }
Khalique's avatar
Khalique committed
680

Khalique's avatar
Khalique committed
681
        if(contains(attributes, "axis"))
Khalique's avatar
Khalique committed
682
683
684
            axis = attributes.at("axis").i();
        if(axis == -1)
        {
Khalique's avatar
Khalique committed
685
            shape s{shape::float_type, {depth, depth}};
686
            auto l0 = mm->add_literal({s, depth_input});
687
            return mm->add_instruction(make_op("gather", {{"axis", 0}}), {l0, args[0]});
Khalique's avatar
Khalique committed
688
689
690
691
        }
        MIGRAPHX_THROW("MIGraphX does not support axis != -1");
    }

Khalique's avatar
Khalique committed
692
693
    instruction_ref parse_pack(const std::string&,
                               const attribute_map& attributes,
694
                               std::vector<instruction_ref> args) const
Khalique's avatar
Khalique committed
695
696
697
698
699
700
    {
        // reinterpret as unsqueeze with concat
        std::vector<instruction_ref> unsqueezed_args;
        int64_t axis = 0;
        if(contains(attributes, "axis"))
            axis = attributes.at("axis").i();
701
702
703
        size_t input_size = args.front()->get_shape().lens().size();
        if(axis > input_size)
        {
Khalique's avatar
Khalique committed
704
705
            MIGRAPHX_THROW("TF_PARSER: axis value of " + to_string(axis) +
                           " must be smaller than input size " + to_string(input_size));
706
707
        }

Khalique's avatar
Khalique committed
708
709
710
711
        std::transform(
            args.begin(),
            args.end(),
            std::back_inserter(unsqueezed_args),
712
713
714
715
            [&](instruction_ref arg) {
                return mm->add_instruction(make_op("unsqueeze", {{"axes", {axis}}}), arg);
            });
        return to_nhwc(mm->add_instruction(make_op("concat", {{"axis", axis}}), unsqueezed_args));
Khalique's avatar
Khalique committed
716
717
    }

Khalique's avatar
Khalique committed
718
    instruction_ref
719
    parse_pad(const std::string&, const attribute_map&, std::vector<instruction_ref> args) const
Khalique's avatar
Khalique committed
720
721
722
    {
        size_t ndims = args.front()->get_shape().lens().size();

Khalique's avatar
Khalique committed
723
724
        // in tf, the paddings are arranged as a 2d shape (ndims, 2),
        // the last dim contains the left padding and right padding respectively
Khalique's avatar
Khalique committed
725
        std::vector<std::pair<int32_t, int32_t>> pad_per_dim(ndims);
Paul's avatar
Paul committed
726
        auto tf_padding = args[1]->eval().get<int32_t>().to_vector();
Khalique's avatar
Khalique committed
727
        for(size_t i = 0; i < 2 * ndims; i += 2)
Khalique's avatar
Khalique committed
728
        {
Khalique's avatar
Khalique committed
729
730
            pad_per_dim[i / 2].first  = tf_padding[i];
            pad_per_dim[i / 2].second = tf_padding[i + 1];
Khalique's avatar
Khalique committed
731
732
733
734
        }
        reorder_data(pad_per_dim);

        op::pad op;
Khalique's avatar
Khalique committed
735
736
        std::vector<int64_t> pads(ndims * 2);
        for(size_t i = 0; i < ndims; i++)
Khalique's avatar
Khalique committed
737
        {
Khalique's avatar
Khalique committed
738
739
            pads[i]         = pad_per_dim[i].first;
            pads[i + ndims] = pad_per_dim[i].second;
Khalique's avatar
Khalique committed
740
741
        }
        op.pads = pads;
742
        return mm->add_instruction(op, args.front());
Khalique's avatar
Khalique committed
743
744
    }

745
746
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
747
                                  std::vector<instruction_ref> args) const
748
749
    {
        op::pooling op{starts_with(name, "Max") ? "max" : "average"};
Khalique's avatar
Khalique committed
750

751
752
        if(contains(attributes, "strides"))
        {
753
            std::vector<size_t> stride;
754
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
755
            reorder_data(stride);
756
757
758
759
            if(stride.size() != 4)
            {
                MIGRAPHX_THROW("strides should have 4 values");
            }
760
761
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
762
763
764
        }
        if(contains(attributes, "ksize"))
        {
765
            std::vector<size_t> ksize;
766
            copy(attributes.at("ksize").list().i(), std::back_inserter(ksize));
767
            reorder_data(ksize);
768
769
770
            if(ksize.size() != 4)
            {
                MIGRAPHX_THROW("ksize should have 4 values");
Khalique's avatar
Khalique committed
771
            }
772
773
            op.lengths[0] = ksize[2];
            op.lengths[1] = ksize[3];
774
        }
Khalique's avatar
Khalique committed
775
776

        auto l0 = args[0];
Khalique's avatar
Khalique committed
777
778
779
780
781
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
782
783
                auto input_dims = l0->get_shape().lens();
                std::vector<int64_t> pads(input_dims.size());
784
785
                calculate_padding(0, pads, input_dims[2], op.stride[0], 1, op.lengths[0]);
                calculate_padding(1, pads, input_dims[3], op.stride[1], 1, op.lengths[1]);
Khalique's avatar
Khalique committed
786
787
788
789

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
790
                    l0                           = mm->add_instruction(
791
792
793
794
                        migraphx::make_op(
                            "pad",
                            {{"pads", padding}, {"value", std::numeric_limits<float>::lowest()}}),
                        l0);
Khalique's avatar
Khalique committed
795
796
797
                }
                else
                {
Khalique's avatar
Khalique committed
798
799
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
800
                }
Khalique's avatar
Khalique committed
801
802
            }
        }
803
        return mm->add_instruction(op, l0);
804
    }
Khalique's avatar
Khalique committed
805

kahmed10's avatar
kahmed10 committed
806
    instruction_ref
807
    parse_relu6(const std::string&, const attribute_map&, std::vector<instruction_ref> args) const
kahmed10's avatar
kahmed10 committed
808
809
    {
        auto input_lens = args[0]->get_shape().lens();
810
811
        auto min_val    = mm->add_literal(0.0f);
        auto max_val    = mm->add_literal(6.0f);
kahmed10's avatar
kahmed10 committed
812

813
814
815
816
817
        min_val =
            mm->add_instruction(make_op("multibroadcast", {{"output_lens", input_lens}}), min_val);
        max_val =
            mm->add_instruction(make_op("multibroadcast", {{"output_lens", input_lens}}), max_val);
        return mm->add_instruction(make_op("clip"), args.front(), min_val, max_val);
kahmed10's avatar
kahmed10 committed
818
819
    }

820
    instruction_ref
821
    parse_reshape(const std::string&, const attribute_map&, std::vector<instruction_ref> args) const
822
823
824
825
    {
        op::reshape op;
        if(args.size() != 2)
            MIGRAPHX_THROW("reshape needs 2 arguments (input, new_shape)");
Khalique's avatar
Khalique committed
826
        auto s = args[1]->eval();
827
        s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
828
        return mm->add_instruction(op, make_contiguous(args[0]));
829
830
    }

831
832
833
    // Use a literal instruction to replace the shape since output of
    // shape operator are literals in migraphx
    instruction_ref
834
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args) const
Khalique's avatar
Khalique committed
835
    {
836
837
838
839
840
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int32_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int32_type, {arg_shape.size()});
        std::transform(
            arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) { return i; });
841
        return mm->add_literal(migraphx::literal{s, vec_shape});
Khalique's avatar
Khalique committed
842
843
    }

844
    instruction_ref
845
    parse_slice(const std::string&, const attribute_map&, std::vector<instruction_ref> args) const
846
    {
Khalique's avatar
Khalique committed
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
        op::slice op;
        auto starts     = args[1]->eval().get<int32_t>().to_vector();
        auto size       = args[2]->eval().get<int32_t>().to_vector();
        auto axes       = args[0]->get_shape().lens();
        size_t num_axes = axes.size();

        op.starts = std::vector<int64_t>(starts.begin(), starts.end());
        op.ends   = std::vector<int64_t>(num_axes);
        op.axes   = std::vector<int64_t>(num_axes);
        std::iota(op.axes.begin(), op.axes.end(), 0);
        for(size_t i = 0; i < num_axes; i++)
        {
            if(size[i] == -1)
                op.ends[i] = axes[i];
            else
                op.ends[i] = starts[i] + size[i];
        }
864
        return mm->add_instruction(op, make_contiguous(args[0]));
Khalique's avatar
Khalique committed
865
866
    }

Khalique's avatar
Khalique committed
867
868
869
870
871
    // template to facilitate the logsoftmax later
    template <class Op>
    instruction_ref parse_softmax(const std::string&,
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
872
    {
Khalique's avatar
Khalique committed
873
        int axis      = -1;
Khalique's avatar
Khalique committed
874
875
876
877
878
879
880
881
882
883
        auto num_dims = args[0]->get_shape().lens().size();
        if(contains(attributes, "axis"))
        {
            axis = static_cast<int>(attributes.at("axis").i());
        }
        if(axis < 0)
        {
            axis += num_dims;
        }

884
        return mm->add_instruction(Op{axis}, make_contiguous(args[0]));
885
886
    }

kahmed10's avatar
kahmed10 committed
887
888
    std::vector<instruction_ref> parse_split(const std::string&,
                                             const attribute_map& attributes,
889
                                             std::vector<instruction_ref> args) const
kahmed10's avatar
kahmed10 committed
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
    {
        bool vector_as_input = args.size() == 3;
        int num_outputs      = 1;
        auto axis_arg        = args[0];
        auto input_arg       = args[1];
        if(vector_as_input)
        {
            input_arg = args[0];
            axis_arg  = args[2];
        }

        if(contains(attributes, "num_split"))
            num_outputs = attributes.at("num_split").i();

        std::vector<int> splits(num_outputs);
        std::vector<int> slice_pos{0};
        if(vector_as_input)
        {
            splits      = args[1]->eval().get<int32_t>().to_vector();
            num_outputs = splits.size();
        }

        assert(num_outputs > 0);

        if(num_outputs == 1)
915
916
            return std::vector<instruction_ref>{
                mm->add_instruction(make_op("identity"), input_arg)};
kahmed10's avatar
kahmed10 committed
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960

        auto lens     = input_arg->get_shape().lens();
        auto num_dims = lens.size();
        int axis      = axis_arg->eval().at<int32_t>();

        // ensure split is made evenly if "num_split" is used
        assert(vector_as_input or lens[axis] % num_outputs == 0);

        auto split_size = lens[axis] / num_outputs;

        // push back first end point of slice
        if(vector_as_input)
        {
            slice_pos.push_back(splits[0]);
        }
        else
        {
            slice_pos.push_back(split_size);
        }

        // calculate remaining end points for each slice
        for(auto i = 1; i < num_outputs; i++)
        {
            if(vector_as_input)
            {
                splits[i] += splits[i - 1];
                slice_pos.push_back(splits[i]);
            }
            else
            {
                slice_pos.push_back((i + 1) * split_size);
            }
        }
        std::vector<instruction_ref> result;
        for(auto i = 0; i < num_outputs; i++)
        {
            op::slice op;
            op.axes = std::vector<int64_t>(num_dims);
            std::iota(op.axes.begin(), op.axes.end(), 0);
            op.starts = std::vector<int64_t>(num_dims, 0);
            op.ends   = std::vector<int64_t>(lens.begin(), lens.end());

            op.starts[axis] = slice_pos[i];
            op.ends[axis]   = slice_pos[i + 1];
961
            result.push_back(mm->add_instruction(op, input_arg));
kahmed10's avatar
kahmed10 committed
962
963
964
965
        }
        return result;
    }

Khalique's avatar
Khalique committed
966
967
    instruction_ref parse_squeeze(const std::string&,
                                  const attribute_map& attributes,
968
                                  std::vector<instruction_ref> args) const
969
970
    {
        op::squeeze op;
Khalique's avatar
Khalique committed
971
        auto input_dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
972
        auto axes       = attributes.at("squeeze_dims").list().i();
973
        copy(axes, std::back_inserter(op.axes));
Khalique's avatar
Khalique committed
974

975
976
        if(op.axes.empty()) // no squeeze_dims provided, remove any dim that equals 1
        {
Khalique's avatar
Khalique committed
977
            for(size_t i = 0; i < input_dims.size(); i++)
978
            {
Khalique's avatar
Khalique committed
979
                if(input_dims.at(i) == 1)
980
981
982
983
                {
                    op.axes.push_back(i);
                }
            }
984
        }
985
        return mm->add_instruction(op, make_contiguous(args[0]));
986
987
    }

Khalique's avatar
Khalique committed
988
989
990
    instruction_ref parse_stridedslice(const std::string&,
                                       const attribute_map& attributes,
                                       std::vector<instruction_ref> args)
991
992
    {
        op::slice op;
Khalique's avatar
Khalique committed
993
994
995
996
        auto starts              = args[1]->eval().get<int32_t>().to_vector();
        auto ends                = args[2]->eval().get<int32_t>().to_vector();
        auto l0                  = args[0];
        size_t num_axes          = l0->get_shape().lens().size();
997
        std::vector<size_t> axes = l0->get_shape().lens();
998

Khalique's avatar
Khalique committed
999
1000
1001
1002
        op.starts = std::vector<int64_t>(starts.begin(), starts.end());
        op.ends   = std::vector<int64_t>(ends.begin(), ends.end());
        op.axes   = std::vector<int64_t>(num_axes);
        std::iota(op.axes.begin(), op.axes.end(), 0);
Khalique's avatar
Khalique committed
1003
1004
        uint32_t begin_mask       = 0;
        uint32_t end_mask         = 0;
1005
        uint32_t shrink_axis_mask = 0;
Khalique's avatar
Khalique committed
1006
        uint32_t bitwise_compare  = 1;
1007
1008
        std::vector<int64_t> squeeze_axes;

Khalique's avatar
Khalique committed
1009
1010
1011
1012
1013
1014
        if(contains(attributes, "begin_mask"))
            begin_mask = static_cast<uint32_t>(attributes.at("begin_mask").i());

        if(contains(attributes, "end_mask"))
            end_mask = static_cast<uint32_t>(attributes.at("end_mask").i());

1015
        if(contains(attributes, "shrink_axis_mask"))
1016
            shrink_axis_mask = static_cast<uint32_t>(attributes.at("shrink_axis_mask").i());
1017

Khalique's avatar
Khalique committed
1018
        std::vector<int64_t> begin_axes = get_axes_from_mask(num_axes, begin_mask);
Khalique's avatar
Khalique committed
1019
        std::vector<int64_t> end_axes   = get_axes_from_mask(num_axes, end_mask);
Khalique's avatar
Khalique committed
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032

        for(size_t i = 0; i < num_axes; i++)
        {
            if(begin_axes.at(i) == 1)
            {
                op.starts.at(i) = 0;
            }
            if(end_axes.at(i) == 1)
            {
                op.ends.at(i) = axes.at(i);
            }
        }

1033
        auto l1 = mm->add_instruction(op, l0);
Khalique's avatar
Khalique committed
1034
        if(shrink_axis_mask == 0)
1035
            return l1;
Khalique's avatar
Khalique committed
1036

Khalique's avatar
Khalique committed
1037
        for(size_t i = 0; i < num_axes; i++)
1038
        {
1039
            // the LSB corresponds to axis 0 when determining which axes to squeeze
Khalique's avatar
Khalique committed
1040
            if(((shrink_axis_mask >> i) & bitwise_compare) == 1)
1041
1042
                squeeze_axes.push_back(i);
        }
Khalique's avatar
Khalique committed
1043

1044
        return mm->add_instruction(make_op("squeeze", {{"axes", squeeze_axes}}), l1);
1045
1046
    }

1047
1048
1049
    instruction_ref parse_transpose(const std::string&,
                                    const attribute_map&,
                                    std::vector<instruction_ref> args) const
Khalique's avatar
Khalique committed
1050
1051
1052
1053
1054
    {
        auto perm = args[1]->eval().get<int32_t>().to_vector();
        op::transpose op;
        op.dims = std::vector<int64_t>(perm.begin(), perm.end());

1055
        return mm->add_instruction(op, args.front());
Khalique's avatar
Khalique committed
1056
1057
    }

Khalique's avatar
Khalique committed
1058
1059
1060
1061
1062
    void parse_graph(const tensorflow::GraphDef& graph)
    {
        nodes = get_nodes(graph, input_nodes);
        for(auto&& input : input_nodes)
        {
Khalique's avatar
Khalique committed
1063
            const std::string& name   = input.name();
Khalique's avatar
Khalique committed
1064
            attribute_map input_attrs = get_attributes(input);
Khalique's avatar
Khalique committed
1065
1066
            shape::type_t shape_type  = parse_type(input_attrs.at("dtype").type());
            std::vector<size_t> dims  = parse_dims(input_attrs.at("shape").shape());
Shucai Xiao's avatar
Shucai Xiao committed
1067
1068

            if(contains(map_input_dims, name))
1069
            {
Shucai Xiao's avatar
Shucai Xiao committed
1070
                dims = map_input_dims.at(name);
1071
            }
Shucai Xiao's avatar
Shucai Xiao committed
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
            else
            {
                if(is_nhwc and dims.size() >= 4)
                {
                    reorder_data(dims);
                }
                std::transform(dims.begin(), dims.end(), dims.begin(), [&](auto dim) {
                    return static_cast<int>(dim) <= 0 ? batch_size : dim;
                });
            }

Khalique's avatar
Khalique committed
1083
            shape s            = shape{shape_type, dims};
1084
            instructions[name] = to_nhwc(mm->add_parameter(name, s));
Khalique's avatar
Khalique committed
1085
1086
1087
        }
        for(auto&& p : nodes)
        {
1088
            this->parse_node(p.first);
Khalique's avatar
Khalique committed
1089
        }
1090
1091
1092

        // Needs to add a ret instruction at the end of
        // the program
Khalique's avatar
Khalique committed
1093
1094
1095
1096
1097
1098
1099
    }

    void parse_node(const std::string& name)
    {
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
Khalique's avatar
Khalique committed
1100
1101
1102
            // assert ops ignored
            if(node.op() == "Assert" or contains(name, "Assert"))
                return;
kahmed10's avatar
kahmed10 committed
1103
1104
1105
            // noOps ignored
            if(node.op() == "NoOp" or contains(name, "NoOp"))
                return;
Khalique's avatar
Khalique committed
1106
1107
1108
1109
            std::vector<instruction_ref> args;

            for(auto&& input : node.input())
            {
Khalique's avatar
Khalique committed
1110
1111
1112
                // control dependencies (signified by ^ before the name) are ignored
                if(contains(input, "^"))
                    continue;
Khalique's avatar
Khalique committed
1113
1114
                if(nodes.count(input) > 0)
                {
kahmed10's avatar
kahmed10 committed
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
                    std::string iname;
                    // input was from a node with multiple outputs
                    if(contains(input, ':'))
                    {
                        iname = input.substr(0, input.find(':'));
                    }
                    else
                    {
                        iname = get_name(nodes.at(input));
                    }
Khalique's avatar
Khalique committed
1125
1126
                    assert(name != iname);
                    this->parse_node(iname);
kahmed10's avatar
kahmed10 committed
1127
                    args.push_back(instructions.at(input));
Khalique's avatar
Khalique committed
1128
1129
1130
1131
1132
1133
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
kahmed10's avatar
kahmed10 committed
1134
1135

            std::vector<instruction_ref> result;
Khalique's avatar
Khalique committed
1136
1137
            if(ops.count(node.op()) == 0)
            {
1138
                result.push_back(mm->add_instruction(op::unknown{node.op()}, args));
Khalique's avatar
Khalique committed
1139
1140
1141
            }
            else
            {
kahmed10's avatar
kahmed10 committed
1142
1143
1144
1145
1146
1147
1148
1149
1150
                result = ops[node.op()](get_attributes(node), args);
            }

            assert(!result.empty());
            // First output has no ":" delimiter
            instructions[name] = result.front();
            for(size_t i = 1; i < result.size(); i++)
            {
                instructions[name + ":" + std::to_string(i)] = result.at(i);
Khalique's avatar
Khalique committed
1151
1152
1153
1154
            }
        }
    }

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
    void parse_from(std::istream& is)
    {
        tensorflow::GraphDef graph;
        if(graph.ParseFromIstream(&is))
        {
            this->parse_graph(graph);
        }
        else
        {
            throw std::runtime_error("Failed reading tf file");
        }
    }

Khalique's avatar
Khalique committed
1168
1169
1170
    static attribute_map get_attributes(const tensorflow::NodeDef& node)
    {
        attribute_map result;
Khalique's avatar
Khalique committed
1171
        for(auto&& attr : node.attr())
Khalique's avatar
Khalique committed
1172
1173
1174
1175
1176
1177
        {
            result[attr.first] = attr.second;
        }
        return result;
    }

Khalique's avatar
Khalique committed
1178
    static std::string get_name(const tensorflow::NodeDef& node) { return node.name(); }
Khalique's avatar
Khalique committed
1179

Khalique's avatar
Khalique committed
1180
1181
    static node_map get_nodes(const tensorflow::GraphDef& graph,
                              std::vector<tensorflow::NodeDef>& input_nodes)
Khalique's avatar
Khalique committed
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
    {
        node_map result;
        for(auto&& node : graph.node())
        {
            auto node_name = get_name(node);
            // assume each node in graph has an associated name
            if(node_name.empty())
                MIGRAPHX_THROW("tf node with no name found");
            result[node_name] = node;
            if(node.op() == "Placeholder")
            {
                input_nodes.push_back(node);
            }
        }
        return result;
    }

    static shape::type_t parse_type(const tensorflow::DataType t)
    {
        shape::type_t shape_type{};
        switch(t)
        {
        case tensorflow::DataType::DT_FLOAT: shape_type = shape::float_type; break;
        case tensorflow::DataType::DT_DOUBLE: shape_type = shape::double_type; break;
        case tensorflow::DataType::DT_INT32: shape_type = shape::int32_type; break;
        case tensorflow::DataType::DT_INT16: shape_type = shape::int16_type; break;
        case tensorflow::DataType::DT_INT8: shape_type = shape::int8_type; break;
Paul's avatar
Paul committed
1209
1210
1211
1212
        case tensorflow::DataType::DT_INT64: shape_type = shape::int64_type; break;
        case tensorflow::DataType::DT_UINT16: shape_type = shape::uint16_type; break;
        case tensorflow::DataType::DT_HALF: shape_type = shape::half_type; break;
        case tensorflow::DataType::DT_UINT32: shape_type = shape::uint32_type; break;
Paul's avatar
Paul committed
1213
        case tensorflow::DataType::DT_UINT64: shape_type = shape::uint64_type; break;
Paul's avatar
Paul committed
1214
1215
1216

        case tensorflow::DataType::DT_INVALID:
        case tensorflow::DataType::DT_UINT8:
Khalique's avatar
Khalique committed
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
        case tensorflow::DataType::DT_STRING:
        case tensorflow::DataType::DT_COMPLEX64:
        case tensorflow::DataType::DT_BOOL:
        case tensorflow::DataType::DT_QINT8:
        case tensorflow::DataType::DT_QUINT8:
        case tensorflow::DataType::DT_QINT32:
        case tensorflow::DataType::DT_BFLOAT16:
        case tensorflow::DataType::DT_QINT16:
        case tensorflow::DataType::DT_QUINT16:
        case tensorflow::DataType::DT_COMPLEX128:
        case tensorflow::DataType::DT_RESOURCE:
        case tensorflow::DataType::DT_VARIANT:
Khalique's avatar
Khalique committed
1229
        // tf pb should not use these types
Paul's avatar
Paul committed
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
        case tensorflow::DataType::DT_FLOAT_REF:
        case tensorflow::DataType::DT_DOUBLE_REF:
        case tensorflow::DataType::DT_INT32_REF:
        case tensorflow::DataType::DT_UINT8_REF:
        case tensorflow::DataType::DT_INT16_REF:
        case tensorflow::DataType::DT_INT8_REF:
        case tensorflow::DataType::DT_STRING_REF:
        case tensorflow::DataType::DT_COMPLEX64_REF:
        case tensorflow::DataType::DT_INT64_REF:
        case tensorflow::DataType::DT_BOOL_REF:
        case tensorflow::DataType::DT_QINT8_REF:
        case tensorflow::DataType::DT_QUINT8_REF:
        case tensorflow::DataType::DT_QINT32_REF:
        case tensorflow::DataType::DT_BFLOAT16_REF:
        case tensorflow::DataType::DT_QINT16_REF:
        case tensorflow::DataType::DT_QUINT16_REF:
        case tensorflow::DataType::DT_UINT16_REF:
        case tensorflow::DataType::DT_COMPLEX128_REF:
        case tensorflow::DataType::DT_HALF_REF:
        case tensorflow::DataType::DT_RESOURCE_REF:
        case tensorflow::DataType::DT_VARIANT_REF:
        case tensorflow::DataType::DT_UINT32_REF:
        case tensorflow::DataType::DT_UINT64_REF:
Paul's avatar
Paul committed
1253
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
Khalique's avatar
Khalique committed
1254
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_: break;
Khalique's avatar
Khalique committed
1255
1256
1257
1258
        }
        return shape_type;
    }

Khalique's avatar
Khalique committed
1259
    static literal parse_tensor(const tensorflow::TensorProto& t)
Khalique's avatar
Khalique committed
1260
1261
    {
        std::vector<size_t> dims = parse_dims(t.tensor_shape());
1262
        size_t shape_size = std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<size_t>());
Khalique's avatar
Khalique committed
1263
1264
        if(!t.tensor_content().empty()) // has raw data
        {
Khalique's avatar
Khalique committed
1265
            const std::string& s = t.tensor_content();
Khalique's avatar
Khalique committed
1266
1267
            switch(t.dtype())
            {
Khalique's avatar
Khalique committed
1268
1269
            case tensorflow::DataType::DT_FLOAT:
                return literal{{shape::float_type, dims}, s.data()};
Paul's avatar
Paul committed
1270
            case tensorflow::DataType::DT_BOOL:
1271
            case tensorflow::DataType::DT_INT8: return literal{{shape::int8_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1272
1273
            case tensorflow::DataType::DT_UINT16:
            case tensorflow::DataType::DT_INT16:
1274
                return literal{{shape::int16_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1275
1276
1277
1278
            case tensorflow::DataType::DT_INT32:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT64:
                return literal{{shape::int64_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1279
            case tensorflow::DataType::DT_HALF: return literal{{shape::half_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1280
1281
            case tensorflow::DataType::DT_DOUBLE:
                return literal{{shape::double_type, dims}, s.data()};
Paul's avatar
Paul committed
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
            case tensorflow::DataType::DT_INVALID:
            case tensorflow::DataType::DT_UINT8:
            case tensorflow::DataType::DT_STRING:
            case tensorflow::DataType::DT_UINT32:
            case tensorflow::DataType::DT_UINT64:
            case tensorflow::DataType::DT_COMPLEX64:
            case tensorflow::DataType::DT_COMPLEX128:
            case tensorflow::DataType::DT_QINT8:
            case tensorflow::DataType::DT_QUINT8:
            case tensorflow::DataType::DT_QINT32:
            case tensorflow::DataType::DT_BFLOAT16:
            case tensorflow::DataType::DT_QINT16:
            case tensorflow::DataType::DT_QUINT16:
            case tensorflow::DataType::DT_RESOURCE:
            case tensorflow::DataType::DT_VARIANT:
            case tensorflow::DataType::DT_FLOAT_REF:
            case tensorflow::DataType::DT_DOUBLE_REF:
            case tensorflow::DataType::DT_INT32_REF:
            case tensorflow::DataType::DT_UINT8_REF:
            case tensorflow::DataType::DT_INT16_REF:
            case tensorflow::DataType::DT_INT8_REF:
            case tensorflow::DataType::DT_STRING_REF:
            case tensorflow::DataType::DT_COMPLEX64_REF:
            case tensorflow::DataType::DT_INT64_REF:
            case tensorflow::DataType::DT_BOOL_REF:
            case tensorflow::DataType::DT_QINT8_REF:
            case tensorflow::DataType::DT_QUINT8_REF:
            case tensorflow::DataType::DT_QINT32_REF:
            case tensorflow::DataType::DT_BFLOAT16_REF:
            case tensorflow::DataType::DT_QINT16_REF:
            case tensorflow::DataType::DT_QUINT16_REF:
            case tensorflow::DataType::DT_UINT16_REF:
            case tensorflow::DataType::DT_COMPLEX128_REF:
            case tensorflow::DataType::DT_HALF_REF:
            case tensorflow::DataType::DT_RESOURCE_REF:
            case tensorflow::DataType::DT_VARIANT_REF:
            case tensorflow::DataType::DT_UINT32_REF:
            case tensorflow::DataType::DT_UINT64_REF:
Khalique's avatar
Khalique committed
1320
1321
1322
            case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
            case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
Khalique's avatar
Khalique committed
1323
1324
1325
1326
1327
1328
            }
            MIGRAPHX_THROW("Invalid tensor type");
        }
        switch(t.dtype())
        {
        case tensorflow::DataType::DT_FLOAT:
Khalique's avatar
Khalique committed
1329
1330
            return create_literal(
                shape::float_type, dims, get_data_vals(t.float_val(), shape_size));
Khalique's avatar
Khalique committed
1331
        case tensorflow::DataType::DT_INT8:
1332
            return create_literal(shape::int8_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1333
        case tensorflow::DataType::DT_UINT16:
1334
            return create_literal(shape::uint16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1335
        case tensorflow::DataType::DT_INT16:
1336
            return create_literal(shape::int16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1337
        case tensorflow::DataType::DT_INT32:
1338
            return create_literal(shape::int32_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1339
        case tensorflow::DataType::DT_INT64:
Khalique's avatar
Khalique committed
1340
1341
            return create_literal(
                shape::int64_type, dims, get_data_vals(t.int64_val(), shape_size));
Khalique's avatar
Khalique committed
1342
        case tensorflow::DataType::DT_BOOL:
1343
            return create_literal(shape::int32_type, dims, get_data_vals(t.bool_val(), shape_size));
Khalique's avatar
Khalique committed
1344
        case tensorflow::DataType::DT_HALF:
Khalique's avatar
Khalique committed
1345
        {
1346
1347
            std::vector<int> data_int32 = get_data_vals(t.half_val(), shape_size);
            std::vector<uint16_t> data_uint16(data_int32.begin(), data_int32.end());
Khalique's avatar
Khalique committed
1348
1349
1350
1351
1352
            std::vector<half> data_half;
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1353
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1354
        }
Khalique's avatar
Khalique committed
1355
        case tensorflow::DataType::DT_DOUBLE:
Khalique's avatar
Khalique committed
1356
            return literal{{shape::double_type, dims}, get_data_vals(t.double_val(), shape_size)};
Paul's avatar
Paul committed
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
        case tensorflow::DataType::DT_INVALID:
        case tensorflow::DataType::DT_UINT8:
        case tensorflow::DataType::DT_STRING:
        case tensorflow::DataType::DT_UINT32:
        case tensorflow::DataType::DT_UINT64:
        case tensorflow::DataType::DT_COMPLEX64:
        case tensorflow::DataType::DT_COMPLEX128:
        case tensorflow::DataType::DT_QINT8:
        case tensorflow::DataType::DT_QUINT8:
        case tensorflow::DataType::DT_QINT32:
        case tensorflow::DataType::DT_BFLOAT16:
        case tensorflow::DataType::DT_QINT16:
        case tensorflow::DataType::DT_QUINT16:
        case tensorflow::DataType::DT_RESOURCE:
        case tensorflow::DataType::DT_VARIANT:
        case tensorflow::DataType::DT_FLOAT_REF:
        case tensorflow::DataType::DT_DOUBLE_REF:
        case tensorflow::DataType::DT_INT32_REF:
        case tensorflow::DataType::DT_UINT8_REF:
        case tensorflow::DataType::DT_INT16_REF:
        case tensorflow::DataType::DT_INT8_REF:
        case tensorflow::DataType::DT_STRING_REF:
        case tensorflow::DataType::DT_COMPLEX64_REF:
        case tensorflow::DataType::DT_INT64_REF:
        case tensorflow::DataType::DT_BOOL_REF:
        case tensorflow::DataType::DT_QINT8_REF:
        case tensorflow::DataType::DT_QUINT8_REF:
        case tensorflow::DataType::DT_QINT32_REF:
        case tensorflow::DataType::DT_BFLOAT16_REF:
        case tensorflow::DataType::DT_QINT16_REF:
        case tensorflow::DataType::DT_QUINT16_REF:
        case tensorflow::DataType::DT_UINT16_REF:
        case tensorflow::DataType::DT_COMPLEX128_REF:
        case tensorflow::DataType::DT_HALF_REF:
        case tensorflow::DataType::DT_RESOURCE_REF:
        case tensorflow::DataType::DT_VARIANT_REF:
        case tensorflow::DataType::DT_UINT32_REF:
        case tensorflow::DataType::DT_UINT64_REF:
Khalique's avatar
Khalique committed
1395
1396
1397
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
Khalique's avatar
Khalique committed
1398
1399
1400
1401
        }
        MIGRAPHX_THROW("Invalid tensor type");
    }

1402
    template <class T>
Khalique's avatar
Khalique committed
1403
    static std::vector<T> get_data_vals(const google::protobuf::RepeatedField<T>& data,
1404
                                        const size_t& shape_size)
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
    {
        std::vector<T> data_vals(shape_size);
        // check if shape has enough data values given existing fields
        if(data.size() == 1)
        {
            std::fill(data_vals.begin(), data_vals.end(), data[0]);
        }
        else
            copy(data.begin(), data.end(), std::back_inserter(data_vals));
        return data_vals;
    }

Khalique's avatar
Khalique committed
1417
1418
1419
1420
    static std::vector<size_t> parse_dims(const tensorflow::TensorShapeProto& s)
    {
        std::vector<size_t> dims;
        auto input_dims = s.dim();
Khalique's avatar
Khalique committed
1421
1422
1423
        std::transform(input_dims.begin(),
                       input_dims.end(),
                       std::back_inserter(dims),
Paul's avatar
Paul committed
1424
                       [](const tensorflow::TensorShapeProto_Dim& dim) { return dim.size(); });
Khalique's avatar
Khalique committed
1425
1426
        return dims;
    }
1427
1428

    template <class T>
Khalique's avatar
Khalique committed
1429
    static literal
1430
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, std::vector<T> data)
1431
    {
Khalique's avatar
Khalique committed
1432
        // assume if explicit value is mentioned in protobuf and dim size <= 1, treat as scalar
1433
        if(dims.empty() or (dims.size() == 1 and dims.front() == 1))
1434
            return literal{{shape_type}, data};
1435
1436
        return literal{{shape_type, dims}, data};
    }
Khalique's avatar
Khalique committed
1437
1438
};

Shucai Xiao's avatar
Shucai Xiao committed
1439
program parse_tf(const std::string& name, const tf_options& options)
Khalique's avatar
Khalique committed
1440
1441
1442
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    tf_parser parser;
Shucai Xiao's avatar
Shucai Xiao committed
1443
1444
1445
    parser.is_nhwc        = options.is_nhwc;
    parser.batch_size     = options.batch_size;
    parser.map_input_dims = options.map_input_dims;
Khalique's avatar
Khalique committed
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460

#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
1461
    parser.to_nchw(std::prev(parser.mm->end()));
Khalique's avatar
Khalique committed
1462
1463
1464
1465
1466
    return std::move(parser.prog);
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx