onnx.cpp 57.3 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34

    std::unordered_map<std::string, op_func> ops;
35
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
36
37
38

    onnx_parser()
    {
Khalique's avatar
Khalique committed
39
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
40
41
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
42
43
        add_generic_op("Exp", op::exp{});
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
44
45
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
46
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
47
48
49
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
50
51
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
52
        add_generic_op("Tanh", op::tanh{});
53
54
55
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
Paul's avatar
Paul committed
56

Khalique's avatar
Khalique committed
57
58
59
60
61
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

Khalique's avatar
Khalique committed
62
63
64
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
65

Khalique's avatar
Khalique committed
66
        add_mem_op("Clip", &onnx_parser::parse_clip);
Khalique's avatar
Khalique committed
67
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
68
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
69
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
70
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
71
72
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
73
74
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
75
76
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
77
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
78
79
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
80
        add_mem_op("MatMul", &onnx_parser::parse_matmul);
81
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
82
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
Shucai Xiao's avatar
Shucai Xiao committed
83
        add_mem_op("LogSoftmax", &onnx_parser::parse_logsoftmax);
84
85
86
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
87
        add_mem_op("Concat", &onnx_parser::parse_concat);
88
89
90
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
Khalique's avatar
Khalique committed
91
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
92
        add_mem_op("RNN", &onnx_parser::parse_rnn);
93
        add_mem_op("GRU", &onnx_parser::parse_gru);
Shucai Xiao's avatar
Shucai Xiao committed
94
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
Khalique's avatar
Khalique committed
95
        add_mem_op("Pad", &onnx_parser::parse_pad);
96
97
98
99
100
101
102

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
103
104
105
106
107
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
108
109
110
111
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
112
113
114
115
116
117
118
119
120
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
121
122
123
124
125
126
127
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
128
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
129
130
131
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
132

133
    template <class T>
Khalique's avatar
Khalique committed
134
    void add_binary_op(std::string name, T x)
135
    {
Paul's avatar
Paul committed
136
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
137
            if(args.size() != 2)
Paul's avatar
Paul committed
138
                MIGRAPHX_THROW("binary operators should have 2 operands");
139
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
140
141
142
143
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
144
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
145
146
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
147
148
                    return prog.add_instruction(x, args[0], l);
                }
149
                return prog.add_instruction(x, args);
150
            }
Paul's avatar
Paul committed
151
            else
152
            {
Khalique's avatar
Khalique committed
153
                return add_broadcastable_binary_op(args[0], args[1], x);
154
155
156
157
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
158
159
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
160
161
162
163
164
165
166
167
168
169
170
171
172
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
173
        if(s0.size() > s1.size())
174
175
176
177
178
179
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
180
181
182
183
184
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
                       [](auto a, auto b) { return std::max(a, b); });
185
186
187
188

        return out_lens;
    }

Khalique's avatar
Khalique committed
189
190
191
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
192
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
193
194
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
195
196
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
197
            auto out_lens = compute_broadcasted_lens(s0, s1);
Shucai Xiao's avatar
Shucai Xiao committed
198
199
            auto l0       = prog.add_instruction(op::multibroadcast{out_lens}, arg0);
            auto l1       = prog.add_instruction(op::multibroadcast{out_lens}, arg1);
Khalique's avatar
Khalique committed
200
201
202
203
204
205
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
206
207
    }

Paul's avatar
Paul committed
208
    template <class T>
Paul's avatar
Paul committed
209
210
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
211
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
212
213
214
215
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
216
    template <class T>
Khalique's avatar
Khalique committed
217
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
218
    {
Paul's avatar
Paul committed
219
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
220
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
221
222
223
224
225
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
226
        });
Khalique's avatar
Khalique committed
227
228
    }

Khalique's avatar
Khalique committed
229
230
231
    instruction_ref parse_clip(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
232
233
234
235
236
237
238
239
240
241
242
243
244
    {
        op::clip op;
        if(contains(attributes, "max"))
        {
            op.max_val = parse_value(attributes.at("max")).at<float>();
        }
        if(contains(attributes, "min"))
        {
            op.min_val = parse_value(attributes.at("min")).at<float>();
        }
        return prog.add_instruction(op, std::move(args));
    }

Paul's avatar
Paul committed
245
    instruction_ref
Paul's avatar
Paul committed
246
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
247
248
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
249
250
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
251
252
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
253
254
    }

Shucai Xiao's avatar
Shucai Xiao committed
255
256
257
    instruction_ref parse_logsoftmax(const std::string&,
                                     const attribute_map& attributes,
                                     std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
258
259
260
261
262
263
264
265
266
267
    {
        int axis = 1;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

        return prog.add_instruction(op::logsoftmax{axis}, std::move(args));
    }

Paul's avatar
Paul committed
268
    instruction_ref
Paul's avatar
Paul committed
269
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
270
    {
271
        op::convolution op;
272
        auto l0 = args[0];
Paul's avatar
Paul committed
273
274
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
275
            if(contains(attributes, "auto_pad"))
276
            {
Paul's avatar
Paul committed
277
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
278
            }
279
280
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
281
            if(padding.size() != 4)
282
            {
Paul's avatar
Paul committed
283
                MIGRAPHX_THROW("padding should have 4 values");
284
            }
Scott Thornton's avatar
Scott Thornton committed
285
            if(padding[0] != padding[2] || padding[1] != padding[3])
286
            {
287
288
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
289
                l0      = prog.add_instruction(op::pad{padding}, l0);
290
            }
291
292
293
294
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
295
            }
Paul's avatar
Paul committed
296
        }
Paul's avatar
Paul committed
297
298
299
300
301
302
303
304
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
305
        if(contains(attributes, "auto_pad"))
306
307
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
308
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
309
            {
Paul's avatar
Paul committed
310
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
311
312
            }

wsttiger's avatar
fixes  
wsttiger committed
313
            if(s.find("SAME") != std::string::npos)
314
            {
315
                op.padding_mode = op::padding_mode_t::same;
316
317
            }
        }
Khalique's avatar
Khalique committed
318
319
320
321
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
322
323
324
325
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Shucai Xiao's avatar
Shucai Xiao committed
326
            auto l2 = prog.add_instruction(op::broadcast{axis, l1->get_shape().lens()}, args[2]);
327
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
328
        }
329
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
330
    }
Paul's avatar
Paul committed
331

Paul's avatar
Paul committed
332
333
334
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
335
    {
Khalique's avatar
Khalique committed
336
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
337
        auto l0 = args[0];
Khalique's avatar
Khalique committed
338
        if(starts_with(name, "Global"))
339
        {
Khalique's avatar
Khalique committed
340
341
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
342
        }
Paul's avatar
Paul committed
343
344
        if(contains(attributes, "pads"))
        {
345
346
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
347
            if(padding.size() != 4)
348
            {
Paul's avatar
Paul committed
349
                MIGRAPHX_THROW("padding should have 4 values");
350
            }
Scott Thornton's avatar
Scott Thornton committed
351
            if(padding[0] != padding[2] || padding[1] != padding[3])
352
            {
353
354
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
355
                l0      = prog.add_instruction(op::pad{padding}, l0);
356
357
358
359
360
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
361
            }
Paul's avatar
Paul committed
362
363
364
365
366
367
368
369
370
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
371
        if(contains(attributes, "auto_pad"))
372
373
        {
            auto s = attributes["auto_pad"].s();
374
            if(s.find("SAME_UPPER") == std::string::npos)
375
            {
376
                MIGRAPHX_THROW("auto_pad only supports SAME_UPPER for pooling");
377
            }
378
            op.padding_mode = op::padding_mode_t::same;
379
380
        }

381
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
382
383
    }

Paul's avatar
Paul committed
384
    instruction_ref
Paul's avatar
Paul committed
385
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
386
    {
387
        op::reshape op;
Paul's avatar
Paul committed
388
389
390
391
392
393
394
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
395
            auto s = args[1]->eval();
Paul's avatar
Paul committed
396
            if(s.empty())
Paul's avatar
Paul committed
397
                MIGRAPHX_THROW("Dynamic shape is not supported.");
Paul's avatar
Paul committed
398
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
399
        }
Paul's avatar
Paul committed
400
401
402
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
403
    instruction_ref
Paul's avatar
Paul committed
404
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
405
    {
406
        uint64_t axis = 1;
Paul's avatar
Paul committed
407
408
409
410
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
411
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
412
413
    }

414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
432
433
434
435
436
437
438
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
439

440
441
442
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
443
        int axis = 0;
444
445
446
447
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
448
        op::gather op{axis};
449
450
451
        return prog.add_instruction(op, std::move(args));
    }

452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
472
473
474
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
475
    {
Shucai Xiao's avatar
Shucai Xiao committed
476
        literal v     = parse_value(attributes.at("value"));
477
478
479
        auto dim_size = attributes.at("value").t().dims_size();
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
480
        {
481
            migraphx::shape scalar_shape{v.get_shape().type()};
482
483
484
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
485
486
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
487

Paul's avatar
Paul committed
488
    instruction_ref
Paul's avatar
Paul committed
489
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
490
491
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
492
        float beta  = 1.0f;
Paul's avatar
Paul committed
493
494
495
496
497
498
499
500
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
501
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
502
503
504
505
506
507
508
509
510
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
511
512
513
514
515
516

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

517
518
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
519
520
        if(args.size() == 3)
        {
521
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
522
            {
Shucai Xiao's avatar
Shucai Xiao committed
523
                auto out_lens   = l1->get_shape().lens();
524
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
525
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
526
527
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
528
                {
529
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
530
                }
531
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
532
            }
Paul's avatar
Paul committed
533
        }
534
        return prog.add_instruction(op::dot{alpha}, l1, l2);
Paul's avatar
Paul committed
535
536
    }

537
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
538
    parse_matmul(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
539
    {
Shucai Xiao's avatar
Shucai Xiao committed
540
541
        auto l0      = args[0];
        auto l1      = args[1];
542
543
544
545
546
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
547
        if(l0_lens.size() == 1)
548
549
550
551
552
553
554
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
555
        if(l1_lens.size() == 1)
556
557
558
559
560
561
562
563
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
564
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
565
566
567
568
569
570
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
571
            l0_broadcasted_lens = output_lens;
572
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
573
            l1_broadcasted_lens = output_lens;
574
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
575
            if(l0_lens != l0_broadcasted_lens)
576
577
578
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
579
            if(l1_lens != l1_broadcasted_lens)
580
581
582
583
584
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
585
        auto dot_res     = prog.add_instruction(op::dot{1.0f, 0.0f}, bl0, bl1);
586
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
587
        if(is_a_prepended)
588
589
590
591
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
592
        if(is_b_appended)
593
594
595
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
596

597
598
599
        return dot_res;
    }

600
    instruction_ref
Paul's avatar
Paul committed
601
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
602
    {
Scott Thornton's avatar
Scott Thornton committed
603
604
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
605
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
606
        bool is_test                                      = false;
607
608
609
610
611
612
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
613
            momentum = parse_value(attributes.at("momentum")).at<float>();
614
615
616
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
617
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
618
619
620
        }
        if(contains(attributes, "spatial"))
        {
621
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
622
623
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
624
        }
Paul's avatar
Paul committed
625
        (void)is_test;
Paul's avatar
Paul committed
626
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
627
        return prog.add_instruction(op, std::move(args));
628
629
    }

630
631
632
633
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
634
        float alpha = 0.01; // default alpha val for leaky relu
635
636
637
638
639
640
641
642
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
643
644
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
645
646
647
648
649
650
651
652
653
654
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
655
656
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
657
658
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
659
660
661
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
662
663
664
665
666
667
668
669
670
671
672
673
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
690
        auto input_lens = args.front()->get_shape().lens();
Khalique's avatar
Khalique committed
691

Khalique's avatar
Khalique committed
692
693
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
694
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
695

696
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
697
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
698
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
699
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
700
    }
Khalique's avatar
Khalique committed
701

Khalique's avatar
Khalique committed
702
703
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
704
705
706
707
708
709
710
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
711
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
712
713
    }

Khalique's avatar
Khalique committed
714
715
716
717
718
719
720
721
722
723
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
724
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
725
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
726
727
728
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
Khalique's avatar
Khalique committed
729
730
731
732
733
734
735
736
737
738
739
740
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
741
742
743
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
744
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
745
746
    {
        if(args.size() != 1)
747
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
784
785
        if(contains(attributes, "extra_shape"))
        {
786
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
787
788
        }

789
790
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
791
            if(args.size() != 1)
792
            {
793
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
794
795
            }

Shucai Xiao's avatar
Shucai Xiao committed
796
797
            if(contains(attributes, "shape"))
            {
798
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
799
                               "at the same time");
800
801
            }

802
803
804
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
805
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
806
            }
807

808
809
810
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
811
812
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
813
814
815
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
816
817
            if(!contains(attributes, "shape"))
            {
818
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
819
820
821
            }

            literal ls = parse_value(attributes.at("shape"));
822
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
823
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
824
            migraphx::shape s{type, dims};
825
826
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
827
828
829
        }
        else
        {
830
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
831
832
833
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
834
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
835
836
837
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
838
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
839
840
841

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
842
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
843
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
844
845
846
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
847
848
849
850
851
852
853
854
855
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

856
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
857
858
        if(direction == "bidirectional")
        {
859
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
860
861
862
        }
        else if(direction == "reverse")
        {
863
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
864
865
        }

866
867
868
869
870
        std::vector<std::string> vec_names{"tanh"};
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
871
            vec_names.resize(names.size());
872
            std::copy(names.begin(), names.end(), vec_names.begin());
873
874
        }

875
876
877
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
878
        if(name_it != vec_names.end())
879
880
881
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
882

Shucai Xiao's avatar
Shucai Xiao committed
883
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
884
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
885
        // if only one actv function is provided, we use it in both
886
        // forward and reverse direction
887
        if(dirct == op::rnn_direction::bidirectional)
888
        {
Shucai Xiao's avatar
Shucai Xiao committed
889
            if(vec_names.size() == 1)
890
891
892
893
894
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
895
896
897
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& fn) {
            return map_actv_funcs[fn];
898
        });
Shucai Xiao's avatar
Shucai Xiao committed
899

Shucai Xiao's avatar
Shucai Xiao committed
900
901
902
903
904
905
906
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

907
908
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
909
        if(args.size() < 6)
910
911
912
913
914
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
915
916
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
917
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
918

919
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
920
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
921

Shucai Xiao's avatar
Shucai Xiao committed
922
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
923
924
    }

925
    std::vector<instruction_ref>
926
927
928
929
930
931
932
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
933
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
934
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
935
936
937
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
938
939
940
941
942
943
944
945
946
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

947
        op::rnn_direction dirct = op::rnn_direction::forward;
948
949
        if(direction == "bidirectional")
        {
950
            dirct = op::rnn_direction::bidirectional;
951
952
953
        }
        else if(direction == "reverse")
        {
954
            dirct = op::rnn_direction::reverse;
955
956
        }

957
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
958
959
        if(contains(attributes, "activations"))
        {
960
            auto names = attributes.at("activations").strings();
961
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
962
            vec_names.resize(names.size());
963
            std::copy(names.begin(), names.end(), vec_names.begin());
964
965
        }

966
        // need 4 activation functions
967
        if(dirct == op::rnn_direction::bidirectional)
968
        {
Shucai Xiao's avatar
Shucai Xiao committed
969
            // 4 activation functions are used in the bidirectional
970
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
971
972
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
973
974
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
975
976
977
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
978
            if(vec_names.size() == 1)
979
            {
980
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
981
            }
982
            else if(vec_names.size() == 2)
983
            {
984
985
986
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
987
            }
988
            else if(vec_names.size() == 3)
989
            {
990
                vec_names.push_back(vec_names.at(2));
991
992
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
993
        else
994
        {
995
            if(vec_names.size() == 1)
996
            {
997
                vec_names.push_back(vec_names.at(0));
998
999
1000
            }
        }

1001
1002
1003
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1004
        if(name_it != vec_names.end())
1005
1006
1007
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1008

Shucai Xiao's avatar
Shucai Xiao committed
1009
1010
1011
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
Shucai Xiao's avatar
Shucai Xiao committed
1012
        });
1013
1014
1015
1016
1017
1018
1019
1020

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
1021
        if(contains(attributes, "linear_before_reset"))
1022
1023
1024
1025
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1026
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1027
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1028
1029
1030
1031
1032
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1033
1034
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1035
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1036
            std::move(args));
1037
1038

        // second output for last gru output
1039
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1040

Shucai Xiao's avatar
Shucai Xiao committed
1041
        return {hidden_states, last_output};
1042
1043
    }

Shucai Xiao's avatar
Shucai Xiao committed
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
    std::vector<instruction_ref>
    parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1066
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1067
1068
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1069
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1070
1071
1072
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1073
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1074
        }
Shucai Xiao's avatar
Shucai Xiao committed
1075
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1076
        {
Shucai Xiao's avatar
Shucai Xiao committed
1077
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
1090
            std::copy(names.begin(), names.end(), vec_names.begin());
Shucai Xiao's avatar
Shucai Xiao committed
1091
1092
1093
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1094
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1095
1096
1097
1098
1099
1100
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1101
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1102
1103
1104
1105
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1106
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1107
1108
1109
1110
1111
1112
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1113
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1114
1115
1116

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1117
1118
1119
1120
1121
1122
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1123
1124
1125
1126
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1127
1128
1129
1130
1131
1132
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1133
1134
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1135
1136
1137
1138
1139
1140
1141
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1142
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1143

Shucai Xiao's avatar
Shucai Xiao committed
1144
1145
1146
1147
1148
1149
1150
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1151
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1152

Shucai Xiao's avatar
Shucai Xiao committed
1153
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1154
1155
1156
1157
1158
1159
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1160
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1161
1162
1163

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1164
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1165
1166
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1167
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1168
1169
1170
            }
        }

1171
1172
1173
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1174
        if(name_it != vec_names.end())
1175
1176
1177
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199

        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
        });

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int input_forget = 0;
        if(contains(attributes, "input_forget"))
        {
            input_forget = parse_value(attributes.at("input_forget")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1200
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1201
1202
1203
1204
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1205
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1206
1207

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1208
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1209
1210
1211
1212
1213
1214
1215

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }

Paul's avatar
Paul committed
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1228
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1229
1230
1231
1232
1233
1234
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1235
1236
1237
1238
1239
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
1240
1241
1242
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1255
        }
Paul's avatar
Paul committed
1256
        for(auto&& output : graph.output())
Paul's avatar
Paul committed
1257
        {
Paul's avatar
Paul committed
1258
            this->parse_node(output.name());
Paul's avatar
Paul committed
1259
1260
1261
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1262
    void parse_undefined(const std::string& name)
1263
    {
Shucai Xiao's avatar
Shucai Xiao committed
1264
        auto ins           = prog.add_instruction(op::undefined{});
1265
1266
1267
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1268
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1269
    {
Paul's avatar
Paul committed
1270
        if(name.empty())
Paul's avatar
Paul committed
1271
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1272
1273
1274
1275
1276
1277
1278
1279
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
1280
1281
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1282
                }
Shucai Xiao's avatar
Shucai Xiao committed
1283
                else if(input.empty())
Paul's avatar
Paul committed
1284
                {
1285
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1286
                }
1287
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1288
            }
Paul's avatar
Paul committed
1289
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1290
1291
            if(ops.count(node.op_type()) == 0)
            {
1292
                result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1293
1294
1295
            }
            else
            {
Paul's avatar
Paul committed
1296
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1297
            }
Paul's avatar
Paul committed
1298
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1299
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1300
1301
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1302
1303
1304
            }
            else
            {
Paul's avatar
Paul committed
1305
1306
1307
1308
1309
1310
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1328
        std::size_t n = 0;
Paul's avatar
Paul committed
1329
1330
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1331
            if(node.output().empty())
Paul's avatar
Paul committed
1332
            {
Paul's avatar
Paul committed
1333
                if(node.name().empty())
Paul's avatar
Paul committed
1334
1335
1336
1337
1338
1339
1340
1341
1342
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
1368
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1369
1370
1371
1372
1373
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1374
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1375
1376
1377
1378
1379
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
1380
1381
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1382
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1383
1384
1385
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
1386
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1387
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
1388
            case onnx::TensorProto::INT8: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1389
1390
            case onnx::TensorProto::UINT16:
                return create_literal(shape::int32_type, dims, s.data());
1391
1392
1393
            case onnx::TensorProto::INT16: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT32: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1394
            case onnx::TensorProto::STRING: throw std::runtime_error("");
1395
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1396
1397
1398
1399
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1400
1401
1402
1403
1404
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1405
            MIGRAPHX_THROW("Invalid tensor type");
1406
        }
Paul's avatar
Paul committed
1407
1408
1409
1410
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Khalique's avatar
Khalique committed
1411
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
1412
1413
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Khalique's avatar
Khalique committed
1414
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1415
        case onnx::TensorProto::UINT16:
Khalique's avatar
Khalique committed
1416
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1417
        case onnx::TensorProto::INT16:
Khalique's avatar
Khalique committed
1418
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1419
        case onnx::TensorProto::INT32:
Khalique's avatar
Khalique committed
1420
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1421
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
1422
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
1423
1424
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
1425
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1426
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
1427
        {
Khalique's avatar
Khalique committed
1428
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
1429
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
1430
1431
1432
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
1433
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1434
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1435
        }
Paul's avatar
Paul committed
1436
        case onnx::TensorProto::DOUBLE:
Khalique's avatar
Khalique committed
1437
            return create_literal(shape::double_type, dims, t.double_data());
Paul's avatar
Paul committed
1438
1439
1440
1441
1442
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1443
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1444
1445
    }

Khalique's avatar
Khalique committed
1446
    static literal
1447
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
1448
    {
Khalique's avatar
Khalique committed
1449
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1450
        if(dims.empty())
1451
            return literal{{shape_type}, data};
1452
1453
1454
        return literal{{shape_type, dims}, data};
    }

1455
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
1456
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
1457
1458
    {
        if(dims.empty())
1459
            return literal{{shape_type}, data.begin(), data.end()};
1460
        return literal{{shape_type, dims}, data.begin(), data.end()};
1461
1462
    }

Paul's avatar
Paul committed
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
1482
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1483
1484
1485
1486
1487
1488
1489
1490
1491
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1492
        auto&& tensor_dims = t.tensor_type().shape().dim();
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
1504
1505
        return {shape_type, dims};
    }
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1551
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1552
} // namespace migraphx