"src/targets/vscode:/vscode.git/clone" did not exist on "e17fb9848368a85c94dc5ba0b7a9ec8cff1bb7bf"
onnx.cpp 56.7 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34

    std::unordered_map<std::string, op_func> ops;
35
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
36
37
38

    onnx_parser()
    {
Khalique's avatar
Khalique committed
39
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
40
41
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
42
43
        add_generic_op("Exp", op::exp{});
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
44
45
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
46
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
47
48
49
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
50
51
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
52
        add_generic_op("Tanh", op::tanh{});
53
54
55
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
Paul's avatar
Paul committed
56

Khalique's avatar
Khalique committed
57
58
59
60
61
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

Khalique's avatar
Khalique committed
62
63
64
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
65

Khalique's avatar
Khalique committed
66
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
67
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
68
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
69
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
70
71
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
72
73
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
74
75
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
76
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
77
78
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
79
        add_mem_op("MatMul", &onnx_parser::parse_matmul);
80
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
81
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
Shucai Xiao's avatar
Shucai Xiao committed
82
        add_mem_op("LogSoftmax", &onnx_parser::parse_logsoftmax);
83
84
85
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
86
        add_mem_op("Concat", &onnx_parser::parse_concat);
87
88
89
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
Khalique's avatar
Khalique committed
90
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
91
        add_mem_op("RNN", &onnx_parser::parse_rnn);
92
        add_mem_op("GRU", &onnx_parser::parse_gru);
Shucai Xiao's avatar
Shucai Xiao committed
93
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
Khalique's avatar
Khalique committed
94
        add_mem_op("Pad", &onnx_parser::parse_pad);
95
96
97
98
99
100
101

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
102
103
104
105
106
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
107
108
109
110
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
111
112
113
114
115
116
117
118
119
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
120
121
122
123
124
125
126
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
127
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
128
129
130
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
131

132
    template <class T>
Khalique's avatar
Khalique committed
133
    void add_binary_op(std::string name, T x)
134
    {
Paul's avatar
Paul committed
135
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
136
            if(args.size() != 2)
Paul's avatar
Paul committed
137
                MIGRAPHX_THROW("binary operators should have 2 operands");
138
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
139
140
141
142
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
143
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
144
145
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
146
147
                    return prog.add_instruction(x, args[0], l);
                }
148
                return prog.add_instruction(x, args);
149
            }
Paul's avatar
Paul committed
150
            else
151
            {
Khalique's avatar
Khalique committed
152
                return add_broadcastable_binary_op(args[0], args[1], x);
153
154
155
156
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
157
158
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
159
160
161
162
163
164
165
166
167
168
169
170
171
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
172
        if(s0.size() > s1.size())
173
174
175
176
177
178
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
179
180
181
182
183
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
                       [](auto a, auto b) { return std::max(a, b); });
184
185
186
187

        return out_lens;
    }

Khalique's avatar
Khalique committed
188
189
190
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
191
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
192
193
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
194
195
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
196
            auto out_lens = compute_broadcasted_lens(s0, s1);
Shucai Xiao's avatar
Shucai Xiao committed
197
198
            auto l0       = prog.add_instruction(op::multibroadcast{out_lens}, arg0);
            auto l1       = prog.add_instruction(op::multibroadcast{out_lens}, arg1);
Khalique's avatar
Khalique committed
199
200
201
202
203
204
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
205
206
    }

Paul's avatar
Paul committed
207
    template <class T>
Paul's avatar
Paul committed
208
209
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
210
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
211
212
213
214
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
215
    template <class T>
Khalique's avatar
Khalique committed
216
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
217
    {
Paul's avatar
Paul committed
218
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
219
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
220
221
222
223
224
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
225
        });
Khalique's avatar
Khalique committed
226
227
    }

Paul's avatar
Paul committed
228
    instruction_ref
Paul's avatar
Paul committed
229
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
230
231
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
232
233
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
234
235
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
236
237
    }

Shucai Xiao's avatar
Shucai Xiao committed
238
239
240
    instruction_ref parse_logsoftmax(const std::string&,
                                     const attribute_map& attributes,
                                     std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
241
242
243
244
245
246
247
248
249
250
    {
        int axis = 1;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

        return prog.add_instruction(op::logsoftmax{axis}, std::move(args));
    }

Paul's avatar
Paul committed
251
    instruction_ref
Paul's avatar
Paul committed
252
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
253
    {
254
        op::convolution op;
255
        auto l0 = args[0];
Paul's avatar
Paul committed
256
257
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
258
            if(contains(attributes, "auto_pad"))
259
            {
Paul's avatar
Paul committed
260
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
261
            }
262
263
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
264
            if(padding.size() != 4)
265
            {
Paul's avatar
Paul committed
266
                MIGRAPHX_THROW("padding should have 4 values");
267
            }
Scott Thornton's avatar
Scott Thornton committed
268
            if(padding[0] != padding[2] || padding[1] != padding[3])
269
            {
270
271
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
272
                l0      = prog.add_instruction(op::pad{padding}, l0);
273
            }
274
275
276
277
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
278
            }
Paul's avatar
Paul committed
279
        }
Paul's avatar
Paul committed
280
281
282
283
284
285
286
287
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
288
        if(contains(attributes, "auto_pad"))
289
290
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
291
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
292
            {
Paul's avatar
Paul committed
293
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
294
295
            }

wsttiger's avatar
fixes  
wsttiger committed
296
            if(s.find("SAME") != std::string::npos)
297
            {
298
                op.padding_mode = op::padding_mode_t::same;
299
300
            }
        }
Khalique's avatar
Khalique committed
301
302
303
304
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
305
306
307
308
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Shucai Xiao's avatar
Shucai Xiao committed
309
            auto l2 = prog.add_instruction(op::broadcast{axis, l1->get_shape().lens()}, args[2]);
310
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
311
        }
312
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
313
    }
Paul's avatar
Paul committed
314

Paul's avatar
Paul committed
315
316
317
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
318
    {
Khalique's avatar
Khalique committed
319
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
320
        auto l0 = args[0];
Khalique's avatar
Khalique committed
321
        if(starts_with(name, "Global"))
322
        {
Khalique's avatar
Khalique committed
323
324
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
325
        }
Paul's avatar
Paul committed
326
327
        if(contains(attributes, "pads"))
        {
328
329
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
330
            if(padding.size() != 4)
331
            {
Paul's avatar
Paul committed
332
                MIGRAPHX_THROW("padding should have 4 values");
333
            }
Scott Thornton's avatar
Scott Thornton committed
334
            if(padding[0] != padding[2] || padding[1] != padding[3])
335
            {
336
337
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
338
                l0      = prog.add_instruction(op::pad{padding}, l0);
339
340
341
342
343
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
344
            }
Paul's avatar
Paul committed
345
346
347
348
349
350
351
352
353
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
354
        if(contains(attributes, "auto_pad"))
355
356
        {
            auto s = attributes["auto_pad"].s();
357
            if(s.find("SAME_UPPER") == std::string::npos)
358
            {
359
                MIGRAPHX_THROW("auto_pad only supports SAME_UPPER for pooling");
360
            }
361
            op.padding_mode = op::padding_mode_t::same;
362
363
        }

364
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
365
366
    }

Paul's avatar
Paul committed
367
    instruction_ref
Paul's avatar
Paul committed
368
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
369
    {
370
        op::reshape op;
Paul's avatar
Paul committed
371
372
373
374
375
376
377
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
378
            auto s = args[1]->eval();
Paul's avatar
Paul committed
379
            if(s.empty())
Paul's avatar
Paul committed
380
                MIGRAPHX_THROW("Dynamic shape is not supported.");
Paul's avatar
Paul committed
381
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
382
        }
Paul's avatar
Paul committed
383
384
385
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
386
    instruction_ref
Paul's avatar
Paul committed
387
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
388
    {
389
        uint64_t axis = 1;
Paul's avatar
Paul committed
390
391
392
393
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
394
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
395
396
    }

397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
415
416
417
418
419
420
421
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
422

423
424
425
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
426
        int axis = 0;
427
428
429
430
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
431
        op::gather op{axis};
432
433
434
        return prog.add_instruction(op, std::move(args));
    }

435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
455
456
457
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
458
    {
Shucai Xiao's avatar
Shucai Xiao committed
459
        literal v     = parse_value(attributes.at("value"));
460
461
462
        auto dim_size = attributes.at("value").t().dims_size();
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
463
        {
464
            migraphx::shape scalar_shape{v.get_shape().type()};
465
466
467
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
468
469
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
470

Paul's avatar
Paul committed
471
    instruction_ref
Paul's avatar
Paul committed
472
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
473
474
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
475
        float beta  = 1.0f;
Paul's avatar
Paul committed
476
477
478
479
480
481
482
483
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
484
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
485
486
487
488
489
490
491
492
493
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
494
495
496
497
498
499

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

500
501
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
502
503
        if(args.size() == 3)
        {
504
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
505
            {
Shucai Xiao's avatar
Shucai Xiao committed
506
                auto out_lens   = l1->get_shape().lens();
507
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
508
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
509
510
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
511
                {
512
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
513
                }
514
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
515
            }
Paul's avatar
Paul committed
516
        }
517
        return prog.add_instruction(op::dot{alpha}, l1, l2);
Paul's avatar
Paul committed
518
519
    }

520
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
521
    parse_matmul(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
522
    {
Shucai Xiao's avatar
Shucai Xiao committed
523
524
        auto l0      = args[0];
        auto l1      = args[1];
525
526
527
528
529
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
530
        if(l0_lens.size() == 1)
531
532
533
534
535
536
537
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
538
        if(l1_lens.size() == 1)
539
540
541
542
543
544
545
546
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
547
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
548
549
550
551
552
553
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
554
            l0_broadcasted_lens = output_lens;
555
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
556
            l1_broadcasted_lens = output_lens;
557
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
558
            if(l0_lens != l0_broadcasted_lens)
559
560
561
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
562
            if(l1_lens != l1_broadcasted_lens)
563
564
565
566
567
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
568
        auto dot_res     = prog.add_instruction(op::dot{1.0f, 0.0f}, bl0, bl1);
569
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
570
        if(is_a_prepended)
571
572
573
574
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
575
        if(is_b_appended)
576
577
578
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
579

580
581
582
        return dot_res;
    }

583
    instruction_ref
Paul's avatar
Paul committed
584
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
585
    {
Scott Thornton's avatar
Scott Thornton committed
586
587
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
588
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
589
        bool is_test                                      = false;
590
591
592
593
594
595
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
596
            momentum = parse_value(attributes.at("momentum")).at<float>();
597
598
599
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
600
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
601
602
603
        }
        if(contains(attributes, "spatial"))
        {
604
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
605
606
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
607
        }
Paul's avatar
Paul committed
608
        (void)is_test;
Paul's avatar
Paul committed
609
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
610
        return prog.add_instruction(op, std::move(args));
611
612
    }

613
614
615
616
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
617
        float alpha = 0.01; // default alpha val for leaky relu
618
619
620
621
622
623
624
625
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
626
627
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
628
629
630
631
632
633
634
635
636
637
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
638
639
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
640
641
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
642
643
644
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
645
646
647
648
649
650
651
652
653
654
655
656
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
673
        auto input_lens = args.front()->get_shape().lens();
Khalique's avatar
Khalique committed
674

Khalique's avatar
Khalique committed
675
676
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
677
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
678

679
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
680
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
681
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
682
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
683
    }
Khalique's avatar
Khalique committed
684

Khalique's avatar
Khalique committed
685
686
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
687
688
689
690
691
692
693
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
694
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
695
696
    }

Khalique's avatar
Khalique committed
697
698
699
700
701
702
703
704
705
706
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
707
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
708
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
709
710
711
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
Khalique's avatar
Khalique committed
712
713
714
715
716
717
718
719
720
721
722
723
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
724
725
726
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
727
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
728
729
    {
        if(args.size() != 1)
730
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
767
768
        if(contains(attributes, "extra_shape"))
        {
769
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
770
771
        }

772
773
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
774
            if(args.size() != 1)
775
            {
776
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
777
778
            }

Shucai Xiao's avatar
Shucai Xiao committed
779
780
            if(contains(attributes, "shape"))
            {
781
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
782
                               "at the same time");
783
784
            }

785
786
787
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
788
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
789
            }
790

791
792
793
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
794
795
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
796
797
798
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
799
800
            if(!contains(attributes, "shape"))
            {
801
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
802
803
804
            }

            literal ls = parse_value(attributes.at("shape"));
805
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
806
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
807
            migraphx::shape s{type, dims};
808
809
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
810
811
812
        }
        else
        {
813
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
814
815
816
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
817
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
818
819
820
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
821
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
822
823
824

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
825
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
826
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
827
828
829
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
830
831
832
833
834
835
836
837
838
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

839
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
840
841
        if(direction == "bidirectional")
        {
842
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
843
844
845
        }
        else if(direction == "reverse")
        {
846
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
847
848
        }

849
850
851
852
853
        std::vector<std::string> vec_names{"tanh"};
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
854
            vec_names.resize(names.size());
855
            std::copy(names.begin(), names.end(), vec_names.begin());
856
857
        }

858
859
860
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
861
        if(name_it != vec_names.end())
862
863
864
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
865

Shucai Xiao's avatar
Shucai Xiao committed
866
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
867
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
868
        // if only one actv function is provided, we use it in both
869
        // forward and reverse direction
870
        if(dirct == op::rnn_direction::bidirectional)
871
        {
Shucai Xiao's avatar
Shucai Xiao committed
872
            if(vec_names.size() == 1)
873
874
875
876
877
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
878
879
880
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& fn) {
            return map_actv_funcs[fn];
881
        });
Shucai Xiao's avatar
Shucai Xiao committed
882

Shucai Xiao's avatar
Shucai Xiao committed
883
884
885
886
887
888
889
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

890
891
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
892
        if(args.size() < 6)
893
894
895
896
897
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
898
899
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
900
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
901

902
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
903
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
904

Shucai Xiao's avatar
Shucai Xiao committed
905
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
906
907
    }

908
    std::vector<instruction_ref>
909
910
911
912
913
914
915
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
916
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
917
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
918
919
920
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
921
922
923
924
925
926
927
928
929
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

930
        op::rnn_direction dirct = op::rnn_direction::forward;
931
932
        if(direction == "bidirectional")
        {
933
            dirct = op::rnn_direction::bidirectional;
934
935
936
        }
        else if(direction == "reverse")
        {
937
            dirct = op::rnn_direction::reverse;
938
939
        }

940
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
941
942
        if(contains(attributes, "activations"))
        {
943
            auto names = attributes.at("activations").strings();
944
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
945
            vec_names.resize(names.size());
946
            std::copy(names.begin(), names.end(), vec_names.begin());
947
948
        }

949
        // need 4 activation functions
950
        if(dirct == op::rnn_direction::bidirectional)
951
        {
Shucai Xiao's avatar
Shucai Xiao committed
952
            // 4 activation functions are used in the bidirectional
953
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
954
955
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
956
957
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
958
959
960
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
961
            if(vec_names.size() == 1)
962
            {
963
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
964
            }
965
            else if(vec_names.size() == 2)
966
            {
967
968
969
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
970
            }
971
            else if(vec_names.size() == 3)
972
            {
973
                vec_names.push_back(vec_names.at(2));
974
975
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
976
        else
977
        {
978
            if(vec_names.size() == 1)
979
            {
980
                vec_names.push_back(vec_names.at(0));
981
982
983
            }
        }

984
985
986
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
987
        if(name_it != vec_names.end())
988
989
990
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
991

Shucai Xiao's avatar
Shucai Xiao committed
992
993
994
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
Shucai Xiao's avatar
Shucai Xiao committed
995
        });
996
997
998
999
1000
1001
1002
1003

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
1004
        if(contains(attributes, "linear_before_reset"))
1005
1006
1007
1008
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1009
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1010
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1011
1012
1013
1014
1015
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1016
1017
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1018
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1019
            std::move(args));
1020
1021

        // second output for last gru output
1022
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1023

Shucai Xiao's avatar
Shucai Xiao committed
1024
        return {hidden_states, last_output};
1025
1026
    }

Shucai Xiao's avatar
Shucai Xiao committed
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
    std::vector<instruction_ref>
    parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1049
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1050
1051
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1052
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1053
1054
1055
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1056
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1057
        }
Shucai Xiao's avatar
Shucai Xiao committed
1058
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1059
        {
Shucai Xiao's avatar
Shucai Xiao committed
1060
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
1073
            std::copy(names.begin(), names.end(), vec_names.begin());
Shucai Xiao's avatar
Shucai Xiao committed
1074
1075
1076
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1077
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1078
1079
1080
1081
1082
1083
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1084
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1085
1086
1087
1088
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1089
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1090
1091
1092
1093
1094
1095
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1096
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1097
1098
1099

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1100
1101
1102
1103
1104
1105
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1106
1107
1108
1109
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1110
1111
1112
1113
1114
1115
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1116
1117
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1118
1119
1120
1121
1122
1123
1124
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1125
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1126

Shucai Xiao's avatar
Shucai Xiao committed
1127
1128
1129
1130
1131
1132
1133
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1134
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1135

Shucai Xiao's avatar
Shucai Xiao committed
1136
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1137
1138
1139
1140
1141
1142
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1143
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1144
1145
1146

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1147
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1148
1149
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1150
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1151
1152
1153
            }
        }

1154
1155
1156
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1157
        if(name_it != vec_names.end())
1158
1159
1160
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182

        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
        });

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int input_forget = 0;
        if(contains(attributes, "input_forget"))
        {
            input_forget = parse_value(attributes.at("input_forget")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1183
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1184
1185
1186
1187
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1188
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1189
1190

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1191
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1192
1193
1194
1195
1196
1197
1198

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }

Paul's avatar
Paul committed
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1211
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1212
1213
1214
1215
1216
1217
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1218
1219
1220
1221
1222
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
1223
1224
1225
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1238
        }
Paul's avatar
Paul committed
1239
        for(auto&& output : graph.output())
Paul's avatar
Paul committed
1240
        {
Paul's avatar
Paul committed
1241
            this->parse_node(output.name());
Paul's avatar
Paul committed
1242
1243
1244
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1245
    void parse_undefined(const std::string& name)
1246
    {
Shucai Xiao's avatar
Shucai Xiao committed
1247
        auto ins           = prog.add_instruction(op::undefined{});
1248
1249
1250
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1251
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1252
    {
Paul's avatar
Paul committed
1253
        if(name.empty())
Paul's avatar
Paul committed
1254
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1255
1256
1257
1258
1259
1260
1261
1262
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
1263
1264
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1265
                }
Shucai Xiao's avatar
Shucai Xiao committed
1266
                else if(input.empty())
Paul's avatar
Paul committed
1267
                {
1268
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1269
                }
1270
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1271
            }
Paul's avatar
Paul committed
1272
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1273
1274
            if(ops.count(node.op_type()) == 0)
            {
1275
                result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1276
1277
1278
            }
            else
            {
Paul's avatar
Paul committed
1279
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1280
            }
Paul's avatar
Paul committed
1281
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1282
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1283
1284
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1285
1286
1287
            }
            else
            {
Paul's avatar
Paul committed
1288
1289
1290
1291
1292
1293
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1311
        std::size_t n = 0;
Paul's avatar
Paul committed
1312
1313
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1314
            if(node.output().empty())
Paul's avatar
Paul committed
1315
            {
Paul's avatar
Paul committed
1316
                if(node.name().empty())
Paul's avatar
Paul committed
1317
1318
1319
1320
1321
1322
1323
1324
1325
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
1351
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1352
1353
1354
1355
1356
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1357
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1358
1359
1360
1361
1362
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
1363
1364
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1365
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1366
1367
1368
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
1369
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1370
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
1371
            case onnx::TensorProto::INT8: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1372
1373
            case onnx::TensorProto::UINT16:
                return create_literal(shape::int32_type, dims, s.data());
1374
1375
1376
            case onnx::TensorProto::INT16: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT32: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1377
            case onnx::TensorProto::STRING: throw std::runtime_error("");
1378
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1379
1380
1381
1382
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1383
1384
1385
1386
1387
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1388
            MIGRAPHX_THROW("Invalid tensor type");
1389
        }
Paul's avatar
Paul committed
1390
1391
1392
1393
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Khalique's avatar
Khalique committed
1394
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
1395
1396
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Khalique's avatar
Khalique committed
1397
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1398
        case onnx::TensorProto::UINT16:
Khalique's avatar
Khalique committed
1399
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1400
        case onnx::TensorProto::INT16:
Khalique's avatar
Khalique committed
1401
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1402
        case onnx::TensorProto::INT32:
Khalique's avatar
Khalique committed
1403
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1404
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
1405
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
1406
1407
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
1408
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1409
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
1410
        {
Khalique's avatar
Khalique committed
1411
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
1412
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
1413
1414
1415
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
1416
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1417
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1418
        }
Paul's avatar
Paul committed
1419
        case onnx::TensorProto::DOUBLE:
Khalique's avatar
Khalique committed
1420
            return create_literal(shape::double_type, dims, t.double_data());
Paul's avatar
Paul committed
1421
1422
1423
1424
1425
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1426
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1427
1428
    }

Khalique's avatar
Khalique committed
1429
    static literal
1430
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
1431
    {
Khalique's avatar
Khalique committed
1432
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1433
        if(dims.empty())
1434
            return literal{{shape_type}, data};
1435
1436
1437
        return literal{{shape_type, dims}, data};
    }

1438
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
1439
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
1440
1441
    {
        if(dims.empty())
1442
            return literal{{shape_type}, data.begin(), data.end()};
1443
        return literal{{shape_type, dims}, data.begin(), data.end()};
1444
1445
    }

Paul's avatar
Paul committed
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
1465
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1466
1467
1468
1469
1470
1471
1472
1473
1474
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1475
        auto&& tensor_dims = t.tensor_type().shape().dim();
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
1487
1488
        return {shape_type, dims};
    }
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1534
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1535
} // namespace migraphx