onnx.cpp 57.3 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34

    std::unordered_map<std::string, op_func> ops;
35
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
36
37
38

    onnx_parser()
    {
Khalique's avatar
Khalique committed
39
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
40
41
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
42
43
        add_generic_op("Exp", op::exp{});
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
44
45
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
46
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
47
48
49
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
50
51
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
52
        add_generic_op("Tanh", op::tanh{});
53
54
55
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
Paul's avatar
Paul committed
56

Khalique's avatar
Khalique committed
57
58
59
60
61
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

Khalique's avatar
Khalique committed
62
63
64
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
65

Khalique's avatar
Khalique committed
66
        add_mem_op("Clip", &onnx_parser::parse_clip);
Khalique's avatar
Khalique committed
67
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
68
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
69
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
70
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
71
72
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
73
74
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
75
76
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
77
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
78
79
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
80
        add_mem_op("MatMul", &onnx_parser::parse_matmul);
81
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
82
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
Shucai Xiao's avatar
Shucai Xiao committed
83
        add_mem_op("LogSoftmax", &onnx_parser::parse_logsoftmax);
84
85
86
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
87
        add_mem_op("Concat", &onnx_parser::parse_concat);
88
89
90
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
Khalique's avatar
Khalique committed
91
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
92
        add_mem_op("RNN", &onnx_parser::parse_rnn);
93
        add_mem_op("GRU", &onnx_parser::parse_gru);
Shucai Xiao's avatar
Shucai Xiao committed
94
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
Khalique's avatar
Khalique committed
95
        add_mem_op("Pad", &onnx_parser::parse_pad);
96
97
98
99
100
101
102

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
103
104
105
106
107
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
108
109
110
111
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
112
113
114
115
116
117
118
119
120
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
121
122
123
124
125
126
127
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
128
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
129
130
131
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
132

133
    template <class T>
Khalique's avatar
Khalique committed
134
    void add_binary_op(std::string name, T x)
135
    {
Paul's avatar
Paul committed
136
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
137
            if(args.size() != 2)
Paul's avatar
Paul committed
138
                MIGRAPHX_THROW("binary operators should have 2 operands");
139
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
140
141
142
143
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
144
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
145
146
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
147
148
                    return prog.add_instruction(x, args[0], l);
                }
149
                return prog.add_instruction(x, args);
150
            }
Paul's avatar
Paul committed
151
            else
152
            {
Khalique's avatar
Khalique committed
153
                return add_broadcastable_binary_op(args[0], args[1], x);
154
155
156
157
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
158
159
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
160
161
162
163
164
165
166
167
168
169
170
171
172
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
173
        if(s0.size() > s1.size())
174
175
176
177
178
179
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
180
181
182
183
184
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
                       [](auto a, auto b) { return std::max(a, b); });
185
186
187
188

        return out_lens;
    }

Khalique's avatar
Khalique committed
189
190
191
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
192
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
193
194
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
195
196
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
197
            auto out_lens = compute_broadcasted_lens(s0, s1);
Shucai Xiao's avatar
Shucai Xiao committed
198
199
            auto l0       = prog.add_instruction(op::multibroadcast{out_lens}, arg0);
            auto l1       = prog.add_instruction(op::multibroadcast{out_lens}, arg1);
Khalique's avatar
Khalique committed
200
201
202
203
204
205
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
206
207
    }

Paul's avatar
Paul committed
208
    template <class T>
Paul's avatar
Paul committed
209
210
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
211
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
212
213
214
215
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
216
    template <class T>
Khalique's avatar
Khalique committed
217
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
218
    {
Paul's avatar
Paul committed
219
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
220
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
221
222
223
224
225
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
226
        });
Khalique's avatar
Khalique committed
227
228
    }

Khalique's avatar
Khalique committed
229
230
231
    instruction_ref parse_clip(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
232
233
234
235
236
237
238
239
240
241
242
243
244
    {
        op::clip op;
        if(contains(attributes, "max"))
        {
            op.max_val = parse_value(attributes.at("max")).at<float>();
        }
        if(contains(attributes, "min"))
        {
            op.min_val = parse_value(attributes.at("min")).at<float>();
        }
        return prog.add_instruction(op, std::move(args));
    }

Paul's avatar
Paul committed
245
    instruction_ref
Paul's avatar
Paul committed
246
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
247
248
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
249
250
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
251
252
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
253
254
    }

Shucai Xiao's avatar
Shucai Xiao committed
255
256
257
    instruction_ref parse_logsoftmax(const std::string&,
                                     const attribute_map& attributes,
                                     std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
258
259
260
261
262
263
264
265
266
267
    {
        int axis = 1;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

        return prog.add_instruction(op::logsoftmax{axis}, std::move(args));
    }

Paul's avatar
Paul committed
268
    instruction_ref
Paul's avatar
Paul committed
269
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
270
    {
271
        op::convolution op;
272
        auto l0 = args[0];
Paul's avatar
Paul committed
273
274
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
275
            if(contains(attributes, "auto_pad"))
276
            {
Paul's avatar
Paul committed
277
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
278
            }
279
280
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
281
            if(padding.size() != 4)
282
            {
Paul's avatar
Paul committed
283
                MIGRAPHX_THROW("padding should have 4 values");
284
            }
Scott Thornton's avatar
Scott Thornton committed
285
            if(padding[0] != padding[2] || padding[1] != padding[3])
286
            {
287
288
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
289
                l0      = prog.add_instruction(op::pad{padding}, l0);
290
            }
291
292
293
294
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
295
            }
Paul's avatar
Paul committed
296
        }
Paul's avatar
Paul committed
297
298
299
300
301
302
303
304
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
305
        if(contains(attributes, "auto_pad"))
306
307
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
308
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
309
            {
Paul's avatar
Paul committed
310
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
311
312
            }

wsttiger's avatar
fixes  
wsttiger committed
313
            if(s.find("SAME") != std::string::npos)
314
            {
315
                op.padding_mode = op::padding_mode_t::same;
316
317
            }
        }
Khalique's avatar
Khalique committed
318
319
320
321
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
322
323
324
325
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Shucai Xiao's avatar
Shucai Xiao committed
326
            auto l2 = prog.add_instruction(op::broadcast{axis, l1->get_shape().lens()}, args[2]);
327
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
328
        }
329
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
330
    }
Paul's avatar
Paul committed
331

Paul's avatar
Paul committed
332
333
334
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
335
    {
Khalique's avatar
Khalique committed
336
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
337
        auto l0 = args[0];
Khalique's avatar
Khalique committed
338
        if(starts_with(name, "Global"))
339
        {
Khalique's avatar
Khalique committed
340
341
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
342
        }
Paul's avatar
Paul committed
343
344
        if(contains(attributes, "pads"))
        {
345
346
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
347
            if(padding.size() != 4)
348
            {
Paul's avatar
Paul committed
349
                MIGRAPHX_THROW("padding should have 4 values");
350
            }
Scott Thornton's avatar
Scott Thornton committed
351
            if(padding[0] != padding[2] || padding[1] != padding[3])
352
            {
353
354
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
355
                l0      = prog.add_instruction(op::pad{padding}, l0);
356
357
358
359
360
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
361
            }
Paul's avatar
Paul committed
362
363
364
365
366
367
368
369
370
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
371
        if(contains(attributes, "auto_pad"))
372
373
        {
            auto s = attributes["auto_pad"].s();
374
            if(s.find("SAME_UPPER") == std::string::npos)
375
            {
376
                MIGRAPHX_THROW("auto_pad only supports SAME_UPPER for pooling");
377
            }
378
            op.padding_mode = op::padding_mode_t::same;
379
380
        }

381
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
382
383
    }

Paul's avatar
Paul committed
384
    instruction_ref
Paul's avatar
Paul committed
385
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
386
    {
387
        op::reshape op;
Paul's avatar
Paul committed
388
389
390
391
392
393
394
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
395
            auto s = args[1]->eval();
Paul's avatar
Paul committed
396
            if(s.empty())
Paul's avatar
Paul committed
397
                MIGRAPHX_THROW("Dynamic shape is not supported.");
Paul's avatar
Paul committed
398
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
399
        }
Paul's avatar
Paul committed
400
401
402
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
403
    instruction_ref
Paul's avatar
Paul committed
404
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
405
    {
406
        uint64_t axis = 1;
Paul's avatar
Paul committed
407
408
409
410
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
411
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
412
413
    }

414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
432
433
434
435
436
437
438
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
439

440
441
442
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
443
        int axis = 0;
444
445
446
447
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
448
        op::gather op{axis};
449
450
451
        return prog.add_instruction(op, std::move(args));
    }

452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
472
473
474
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
475
    {
Shucai Xiao's avatar
Shucai Xiao committed
476
        literal v     = parse_value(attributes.at("value"));
477
478
479
        auto dim_size = attributes.at("value").t().dims_size();
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
480
        {
481
            migraphx::shape scalar_shape{v.get_shape().type()};
482
483
484
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
485
486
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
487

Paul's avatar
Paul committed
488
    instruction_ref
Paul's avatar
Paul committed
489
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
490
491
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
492
        float beta  = 1.0f;
Paul's avatar
Paul committed
493
494
495
496
497
498
499
500
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
501
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
502
503
504
505
506
507
508
509
510
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
511

512
513
514
515
516
        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

517
518
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
519
520
        if(args.size() == 3)
        {
521
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
522
            {
Shucai Xiao's avatar
Shucai Xiao committed
523
                auto out_lens   = l1->get_shape().lens();
524
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
525
526
527
                auto l3         = args[2];
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
528
                {
529
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
530
                }
531
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
532
            }
Paul's avatar
Paul committed
533
        }
534

Shucai Xiao's avatar
Shucai Xiao committed
535
        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
536
537
    }

538
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
539
    parse_matmul(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
540
    {
Shucai Xiao's avatar
Shucai Xiao committed
541
542
        auto l0      = args[0];
        auto l1      = args[1];
543
544
545
546
547
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
548
        if(l0_lens.size() == 1)
549
550
551
552
553
554
555
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
556
        if(l1_lens.size() == 1)
557
558
559
560
561
562
563
564
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
565
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
566
567
568
569
570
571
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
572
            l0_broadcasted_lens = output_lens;
573
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
574
            l1_broadcasted_lens = output_lens;
575
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
576
            if(l0_lens != l0_broadcasted_lens)
577
578
579
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
580
            if(l1_lens != l1_broadcasted_lens)
581
582
583
584
585
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
586
        auto dot_res     = prog.add_instruction(op::dot{1.0f, 0.0f}, bl0, bl1);
587
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
588
        if(is_a_prepended)
589
590
591
592
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
593
        if(is_b_appended)
594
595
596
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
597

598
599
600
        return dot_res;
    }

601
    instruction_ref
Paul's avatar
Paul committed
602
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
603
    {
Scott Thornton's avatar
Scott Thornton committed
604
605
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
606
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
607
        bool is_test                                      = false;
608
609
610
611
612
613
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
614
            momentum = parse_value(attributes.at("momentum")).at<float>();
615
616
617
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
618
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
619
620
621
        }
        if(contains(attributes, "spatial"))
        {
622
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
623
624
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
625
        }
Paul's avatar
Paul committed
626
        (void)is_test;
Paul's avatar
Paul committed
627
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
628
        return prog.add_instruction(op, std::move(args));
629
630
    }

631
632
633
634
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
635
        float alpha = 0.01; // default alpha val for leaky relu
636
637
638
639
640
641
642
643
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
644
645
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
646
647
648
649
650
651
652
653
654
655
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
656
657
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
658
659
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
660
661
662
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
663
664
665
666
667
668
669
670
671
672
673
674
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
691
        auto input_lens = args.front()->get_shape().lens();
Khalique's avatar
Khalique committed
692

Khalique's avatar
Khalique committed
693
694
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
695
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
696

697
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
698
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
699
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
700
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
701
    }
Khalique's avatar
Khalique committed
702

Khalique's avatar
Khalique committed
703
704
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
705
706
707
708
709
710
711
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
712
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
713
714
    }

Khalique's avatar
Khalique committed
715
716
717
718
719
720
721
722
723
724
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
725
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
726
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
727
728
729
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
Khalique's avatar
Khalique committed
730
731
732
733
734
735
736
737
738
739
740
741
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
742
743
744
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
745
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
746
747
    {
        if(args.size() != 1)
748
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
785
786
        if(contains(attributes, "extra_shape"))
        {
787
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
788
789
        }

790
791
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
792
            if(args.size() != 1)
793
            {
794
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
795
796
            }

Shucai Xiao's avatar
Shucai Xiao committed
797
798
            if(contains(attributes, "shape"))
            {
799
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
800
                               "at the same time");
801
802
            }

803
804
805
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
806
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
807
            }
808

809
810
811
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
812
813
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
814
815
816
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
817
818
            if(!contains(attributes, "shape"))
            {
819
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
820
821
822
            }

            literal ls = parse_value(attributes.at("shape"));
823
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
824
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
825
            migraphx::shape s{type, dims};
826
827
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
828
829
830
        }
        else
        {
831
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
832
833
834
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
835
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
836
837
838
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
839
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
840
841
842

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
843
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
844
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
845
846
847
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
848
849
850
851
852
853
854
855
856
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

857
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
858
859
        if(direction == "bidirectional")
        {
860
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
861
862
863
        }
        else if(direction == "reverse")
        {
864
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
865
866
        }

867
868
869
870
871
        std::vector<std::string> vec_names{"tanh"};
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
872
            vec_names.resize(names.size());
873
            std::copy(names.begin(), names.end(), vec_names.begin());
874
875
        }

876
877
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
878
        });
Shucai Xiao's avatar
Shucai Xiao committed
879
        if(name_it != vec_names.end())
880
881
882
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
883

Shucai Xiao's avatar
Shucai Xiao committed
884
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
885
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
886
        // if only one actv function is provided, we use it in both
887
        // forward and reverse direction
888
        if(dirct == op::rnn_direction::bidirectional)
889
        {
Shucai Xiao's avatar
Shucai Xiao committed
890
            if(vec_names.size() == 1)
891
892
893
894
895
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
896
897
898
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& fn) {
            return map_actv_funcs[fn];
899
        });
Shucai Xiao's avatar
Shucai Xiao committed
900

Shucai Xiao's avatar
Shucai Xiao committed
901
902
903
904
905
906
907
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

908
909
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
910
        if(args.size() < 6)
911
912
913
914
915
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
916
917
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
918
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
919

920
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
921
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
922

Shucai Xiao's avatar
Shucai Xiao committed
923
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
924
925
    }

926
    std::vector<instruction_ref>
927
928
929
930
931
932
933
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
934
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
935
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
936
937
938
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
939
940
941
942
943
944
945
946
947
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

948
        op::rnn_direction dirct = op::rnn_direction::forward;
949
950
        if(direction == "bidirectional")
        {
951
            dirct = op::rnn_direction::bidirectional;
952
953
954
        }
        else if(direction == "reverse")
        {
955
            dirct = op::rnn_direction::reverse;
956
957
        }

958
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
959
960
        if(contains(attributes, "activations"))
        {
961
            auto names = attributes.at("activations").strings();
962
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
963
            vec_names.resize(names.size());
964
            std::copy(names.begin(), names.end(), vec_names.begin());
965
966
        }

967
        // need 4 activation functions
968
        if(dirct == op::rnn_direction::bidirectional)
969
        {
Shucai Xiao's avatar
Shucai Xiao committed
970
            // 4 activation functions are used in the bidirectional
971
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
972
973
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
974
975
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
976
977
978
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
979
            if(vec_names.size() == 1)
980
            {
981
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
982
            }
983
            else if(vec_names.size() == 2)
984
            {
985
986
987
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
988
            }
989
            else if(vec_names.size() == 3)
990
            {
991
                vec_names.push_back(vec_names.at(2));
992
993
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
994
        else
995
        {
996
            if(vec_names.size() == 1)
997
            {
998
                vec_names.push_back(vec_names.at(0));
999
1000
1001
            }
        }

1002
1003
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
Shucai Xiao's avatar
Shucai Xiao committed
1004
        });
Shucai Xiao's avatar
Shucai Xiao committed
1005
1006
        if(name_it != vec_names.end())
        {
1007
1008
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1009

Shucai Xiao's avatar
Shucai Xiao committed
1010
1011
1012
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
Shucai Xiao's avatar
Shucai Xiao committed
1013
        });
1014
1015
1016
1017
1018
1019
1020
1021

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
1022
        if(contains(attributes, "linear_before_reset"))
1023
1024
1025
1026
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1027
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1028
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1029
1030
1031
1032
1033
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1034
1035
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1036
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1037
            std::move(args));
1038
1039

        // second output for last gru output
1040
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1041

Shucai Xiao's avatar
Shucai Xiao committed
1042
        return {hidden_states, last_output};
1043
1044
    }

Shucai Xiao's avatar
Shucai Xiao committed
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
    std::vector<instruction_ref>
    parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1067
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1068
1069
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1070
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1071
1072
1073
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1074
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1075
        }
Shucai Xiao's avatar
Shucai Xiao committed
1076
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1077
        {
Shucai Xiao's avatar
Shucai Xiao committed
1078
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
1091
            std::copy(names.begin(), names.end(), vec_names.begin());
Shucai Xiao's avatar
Shucai Xiao committed
1092
1093
1094
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1095
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1096
1097
1098
1099
1100
1101
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1102
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1103
1104
1105
1106
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1107
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1108
1109
1110
1111
1112
1113
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1114
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1115
1116
1117

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1118
1119
1120
1121
1122
1123
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1124
1125
1126
1127
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1128
1129
1130
1131
1132
1133
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1134
1135
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1136
1137
1138
1139
1140
1141
1142
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1143
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1144

Shucai Xiao's avatar
Shucai Xiao committed
1145
1146
1147
1148
1149
1150
1151
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1152
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1153

Shucai Xiao's avatar
Shucai Xiao committed
1154
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1155
1156
1157
1158
1159
1160
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1161
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1162
1163
1164

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1165
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1166
1167
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1168
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1169
1170
1171
            }
        }

1172
1173
1174
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1175
        if(name_it != vec_names.end())
1176
1177
1178
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200

        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
        });

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int input_forget = 0;
        if(contains(attributes, "input_forget"))
        {
            input_forget = parse_value(attributes.at("input_forget")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1201
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1202
1203
1204
1205
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1206
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1207
1208

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1209
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1210
1211
1212
1213
1214
1215
1216

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }

Paul's avatar
Paul committed
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1229
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1230
1231
1232
1233
1234
1235
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1236
1237
1238
1239
1240
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
1241
1242
1243
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1256
        }
Paul's avatar
Paul committed
1257
        for(auto&& output : graph.output())
Paul's avatar
Paul committed
1258
        {
Paul's avatar
Paul committed
1259
            this->parse_node(output.name());
Paul's avatar
Paul committed
1260
1261
1262
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1263
    void parse_undefined(const std::string& name)
1264
    {
Shucai Xiao's avatar
Shucai Xiao committed
1265
        auto ins           = prog.add_instruction(op::undefined{});
1266
1267
1268
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1269
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1270
    {
Paul's avatar
Paul committed
1271
        if(name.empty())
Paul's avatar
Paul committed
1272
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1273
1274
1275
1276
1277
1278
1279
1280
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
1281
1282
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1283
                }
Shucai Xiao's avatar
Shucai Xiao committed
1284
                else if(input.empty())
Paul's avatar
Paul committed
1285
                {
1286
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1287
                }
1288
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1289
            }
Paul's avatar
Paul committed
1290
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1291
1292
            if(ops.count(node.op_type()) == 0)
            {
1293
                result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1294
1295
1296
            }
            else
            {
Paul's avatar
Paul committed
1297
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1298
            }
Paul's avatar
Paul committed
1299
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1300
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1301
1302
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1303
1304
1305
            }
            else
            {
Paul's avatar
Paul committed
1306
1307
1308
1309
1310
1311
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1329
        std::size_t n = 0;
Paul's avatar
Paul committed
1330
1331
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1332
            if(node.output().empty())
Paul's avatar
Paul committed
1333
            {
Paul's avatar
Paul committed
1334
                if(node.name().empty())
Paul's avatar
Paul committed
1335
1336
1337
1338
1339
1340
1341
1342
1343
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
1369
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1370
1371
1372
1373
1374
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1375
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1376
1377
1378
1379
1380
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
1381
1382
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1383
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1384
1385
1386
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
1387
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1388
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
1389
            case onnx::TensorProto::INT8: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1390
1391
            case onnx::TensorProto::UINT16:
                return create_literal(shape::int32_type, dims, s.data());
1392
1393
1394
            case onnx::TensorProto::INT16: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT32: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1395
            case onnx::TensorProto::STRING: throw std::runtime_error("");
1396
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1397
1398
1399
1400
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1401
1402
1403
1404
1405
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1406
            MIGRAPHX_THROW("Invalid tensor type");
1407
        }
Paul's avatar
Paul committed
1408
1409
1410
1411
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Khalique's avatar
Khalique committed
1412
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
1413
1414
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Khalique's avatar
Khalique committed
1415
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1416
        case onnx::TensorProto::UINT16:
Khalique's avatar
Khalique committed
1417
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1418
        case onnx::TensorProto::INT16:
Khalique's avatar
Khalique committed
1419
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1420
        case onnx::TensorProto::INT32:
Khalique's avatar
Khalique committed
1421
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1422
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
1423
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
1424
1425
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
1426
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1427
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
1428
        {
Khalique's avatar
Khalique committed
1429
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
1430
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
1431
1432
1433
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
1434
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1435
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1436
        }
Paul's avatar
Paul committed
1437
        case onnx::TensorProto::DOUBLE:
Khalique's avatar
Khalique committed
1438
            return create_literal(shape::double_type, dims, t.double_data());
Paul's avatar
Paul committed
1439
1440
1441
1442
1443
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1444
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1445
1446
    }

Khalique's avatar
Khalique committed
1447
    static literal
1448
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
1449
    {
Khalique's avatar
Khalique committed
1450
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1451
        if(dims.empty())
1452
            return literal{{shape_type}, data};
1453
1454
1455
        return literal{{shape_type, dims}, data};
    }

1456
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
1457
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
1458
1459
    {
        if(dims.empty())
1460
            return literal{{shape_type}, data.begin(), data.end()};
1461
        return literal{{shape_type, dims}, data.begin(), data.end()};
1462
1463
    }

Paul's avatar
Paul committed
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
1483
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1484
1485
1486
1487
1488
1489
1490
1491
1492
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1493
        auto&& tensor_dims = t.tensor_type().shape().dim();
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
1505
1506
        return {shape_type, dims};
    }
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1552
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1553
} // namespace migraphx