task.py 58.8 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
25
from tqdm import tqdm
26
27

from lm_eval import utils
28
from lm_eval.api import samplers
29
30
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
31
from lm_eval.api.registry import (
32
33
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
34
    get_aggregation,
35
    get_metric,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
38
)
39
from lm_eval.caching.cache import load_from_cache, save_to_cache
40
41
42
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

43

44
45
46
47
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
48
    "generate_until",
49
50
]

51
eval_logger = logging.getLogger("lm-eval")
52

lintangsutawika's avatar
lintangsutawika committed
53

lintangsutawika's avatar
lintangsutawika committed
54
55
@dataclass
class GroupConfig(dict):
lintangsutawika's avatar
lintangsutawika committed
56
57
58
    group: Optional[str] = None
    group_alias: Optional[str] = None
    task: Optional[Union[str, list]] = None
lintangsutawika's avatar
lintangsutawika committed
59
60
61
    aggregate_metric: Optional[str] = False
    aggregate_fn: Optional[str] = "mean"
    weight_by_size: Optional[str] = False
lintangsutawika's avatar
lintangsutawika committed
62
    metric_alias: Optional[str] = None
63
    version: Optional[str] = 0
lintangsutawika's avatar
lintangsutawika committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

    def __getitem__(self, item):
        return getattr(self, item)

    def __setitem__(self, item, value):
        return setattr(self, item, value)

    def to_dict(self, keep_callable: bool = False) -> dict:
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
        Used for dumping results alongside full task configuration

        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
        return cfg_dict

    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)


lintangsutawika's avatar
lintangsutawika committed
107
108
109
110
111
112
113
114
115
116
class ConfigurableGroup(abc.ABC):
    def __init__(
        self,
        config: Optional[dict] = None,
    ) -> None:
        self._config = GroupConfig(**config)

    @property
    def group(self):
        return self._config.group
117

lintangsutawika's avatar
lintangsutawika committed
118
119
120
    @property
    def group_alias(self):
        return self._config.group_alias
121
122
123
124
125

    @property
    def version(self):
        return self._config.version

lintangsutawika's avatar
lintangsutawika committed
126
127
128
129
130
131
    @property
    def config(self):
        return self._config.to_dict()

    def __repr__(self):
        return (
132
            f"ConfigurableGroup(group={self.group}," f"group_alias={self.group_alias})"
lintangsutawika's avatar
lintangsutawika committed
133
134
        )

135

136
137
@dataclass
class TaskConfig(dict):
138
    # task naming/registry
139
140
    task: Optional[str] = None
    task_alias: Optional[str] = None
lintangsutawika's avatar
lintangsutawika committed
141
    tags: Optional[Union[str, list]] = None
142
143
    group: Optional[Union[str, list]] = None
    group_alias: Optional[Union[str, list]] = None
144
145
146
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
147
148
149
150
151
152
153
154
155
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
    fewshot_split: Optional[
        str
    ] = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
156
157
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
158
159
160
161
162
163
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
164
    description: str = ""
165
166
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
167
    fewshot_config: Optional[dict] = None
168
    # runtime configuration options
169
    num_fewshot: Optional[int] = None
170
    # scoring options
171
172
173
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
174
    repeats: int = 1
175
    filter_list: Optional[Union[str, list]] = None
176
    should_decontaminate: bool = False
177
178
179
180
    doc_to_decontamination_query: Optional[str] = None
    metadata: Optional[
        dict
    ] = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
181

Ethan Smith's avatar
Ethan Smith committed
182
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
183
        if self.generation_kwargs is not None:
184
            if self.output_type != "generate_until":
185
                eval_logger.warning(
186
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
187
188
189
190
191
192
193
194
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
195
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
196
        else:
197
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
198
199
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
200
201
202
203
204
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
205
206
                    "do_sample": False,
                }
207

208
209
210
    def __getitem__(self, item):
        return getattr(self, item)

211
212
213
    def __setitem__(self, item, value):
        return setattr(self, item, value)

214
    def to_dict(self, keep_callable: bool = False) -> dict:
215
216
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
217
        Used for dumping results alongside full task configuration
218

haileyschoelkopf's avatar
haileyschoelkopf committed
219
220
221
222
223
224
225
226
227
228
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
229
230
231
232
233
234
235
236
237
238
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
239
        return cfg_dict
240

241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

257
258
259
260
261
262
263
264
265
266
267

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

268
    VERSION: Optional[Union[int, str]] = None
269

270
271
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
272
    DATASET_PATH: Optional[str] = None
273
274

    # The name of a subset within `DATASET_PATH`.
275
    DATASET_NAME: Optional[str] = None
276

277
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
278

279
280
    def __init__(
        self,
281
282
283
284
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
285
    ) -> None:
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
308
309
310
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
311

312
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
313

lintangsutawika's avatar
lintangsutawika committed
314
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
315

316
317
318
319
320
321
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
346
347
348
349
350
351
352
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
353

354
    @property
355
    def config(self) -> TaskConfig:
356
357
358
        """Returns the TaskConfig associated with this class."""
        return self._config

359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

374
    def training_docs(self) -> Iterable:
375
376
377
378
379
380
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

381
    def validation_docs(self) -> Iterable:
382
383
384
385
386
387
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

388
    def test_docs(self) -> Iterable:
389
390
391
392
393
394
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

395
    def fewshot_docs(self) -> Iterable:
396
397
398
399
400
401
402
403
404
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
405
            eval_logger.warning(
406
                f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
407
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
408
            )
409
410
            return self.test_docs()

411
    def _process_doc(self, doc: dict) -> dict:
412
413
414
415
416
417
418
419
420
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
421

422
    @property
423
    def instances(self) -> List[Instance]:
424
425
426
427
428
429
430
431
432
433
434
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

435
436
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
437
438
439
440
441
442
443
444
445
446
447
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

448
449
    def build_all_requests(
        self,
450
        *,
451
452
453
454
455
456
        limit=None,
        rank=None,
        world_size=None,
        cache_requests=False,
        rewrite_requests_cache=False,
    ) -> None:
457
        """Build a set of Instances for a task, and store them in task.instances"""
458
459
460
461

        # used with caching
        og_limit = limit

462
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477

        cached_instances = load_from_cache(file_name=cache_key)

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
478
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
479

480
        instances = []
481
482
483
484
485
486
487
488
489
490

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
491
            self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
492
493
494
495
496
497
498
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
499
        ):
500
            # sample fewshot context #TODO: need to offset doc_id by rank now!
501
            fewshot_ctx = self.fewshot_context(
502
                doc,
503
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
504
            )
505

506
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
507
508
509
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
510
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
511
            )
512
513
514
515

            if not isinstance(inst, list):
                inst = [inst]

516
517
518
519
520
521
522
523
524
525
526
527
528
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
529

530
531
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
532

533
534
535
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
552
            The number of times each instance in a dataset is inferred on. Defaults to 1,
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

588
589
590
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
591
592
593
594
595
596
597
598
599
600
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

601
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
602
    def fewshot_context(
603
604
605
606
607
        self,
        doc,
        num_fewshot,
        rnd=random.Random(1234),
        description=None,
lintangsutawika's avatar
lintangsutawika committed
608
    ):
609
610
611
612
613
614
615
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
616
617
618
619
620
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
621
622
623
        :returns: str
            The fewshot context.
        """
624
625
626
627
        if rnd is None:
            raise ValueError(
                "A `random.Random` generator argument must be provided to `rnd`"
            )
lintangsutawika's avatar
lintangsutawika committed
628

629
        description = description if description else ""
630
631

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
632
            labeled_examples = ""
633
        else:
lintangsutawika's avatar
lintangsutawika committed
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
658
            )
659
660

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
661
        return description + labeled_examples + example
662

663
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
664
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
665
666
        if hasattr(self, "_filters"):
            for f in self._filters:
667
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
668
669
670
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
671

baberabb's avatar
baberabb committed
672
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
673
        """Returns the config as a dictionary."""
674
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
675
        # (num_fewshot)
676
        return self.config.to_dict()
677

Baber Abbasi's avatar
Baber Abbasi committed
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

718
719
720
721
722
723
724
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
725
726
727
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
728
729
730
731
732
733
734
735
736
737
738
739
740

    def doc_iterator(
        self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
    ) -> Iterator[Tuple[int, Any]]:
        limit = int(limit) if limit else None
        doc_iterator = utils.create_iterator(
            enumerate(self.eval_docs),
            rank=int(rank),
            limit=limit,
            world_size=int(world_size),
        )
        return doc_iterator

741
742

class ConfigurableTask(Task):
743
    VERSION = "Yaml"
744
    OUTPUT_TYPE = None
745
    CONFIG = None
746
747

    def __init__(
748
749
750
751
752
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
753
    ) -> None:  # TODO no super() call here
754
        # Get pre-configured attributes
755
        self._config = self.CONFIG
756

757
        # Use new configurations if there was no preconfiguration
758
        if self.config is None:
759
            self._config = TaskConfig(**config)
760
761
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
762
            if config is not None:
763
                self._config.__dict__.update(config)
764

765
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
766
767
768
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
769

770
771
772
773
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

774
        if self.config.output_type is not None:
775
776
777
778
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
779
            self.OUTPUT_TYPE = self.config.output_type
780

781
782
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
783

784
785
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
786

787
788
789
790
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
791

792
        if self.config.metric_list is None:
793
            # TODO: handle this in TaskConfig.__post_init__ ?
794
795
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

796
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
797
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
798
                self._metric_fn_kwargs[metric_name] = {}
799
800
801
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
802
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
803
        else:
804
            for metric_config in self.config.metric_list:
805
806
807
808
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
809
810
811
812
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
813
814
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
815
                }
Chris's avatar
Chris committed
816
817
818
819
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
820

821
                if self.config.process_results is not None:
822
823
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
824
825
826
827
828
829
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
830
831
832
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
833
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
834

835
                if "aggregation" in metric_config:
836
                    agg_name = metric_config["aggregation"]
837
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
838
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
839
                    elif callable(agg_name):  # noqa: E721
840
841
842
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
843
                else:
844
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
845
                    metric_agg = get_metric_aggregation(metric_name)
846
                    eval_logger.warning(
847
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
848
849
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
850
                    )
851
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
852

853
854
855
856
857
858
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
859
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
860
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
861
                        f"higher_is_better={is_higher_better(metric_name)}"
862
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
863
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
864

865
        self.download(self.config.dataset_kwargs)
866
867
868
        self._training_docs = None
        self._fewshot_docs = None

869
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
870
            self._filters = []
871
            for filter_config in self.config.filter_list:
872
873
874
875
876
877
878
879
880
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
881
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
882
        else:
883
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
884

885
886
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
887
            self.prompt = get_prompt(
888
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
889
            )
890
891
892
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
893
        if self.fewshot_docs() is not None:
haileyschoelkopf's avatar
haileyschoelkopf committed
894
            self.sampler = samplers.get_sampler(
haileyschoelkopf's avatar
haileyschoelkopf committed
895
896
897
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
haileyschoelkopf's avatar
haileyschoelkopf committed
898
            )(list(self.fewshot_docs()), self, rnd=random.Random(1234))
899

900
        self.task_docs = self.eval_docs
901

902
        # Test One Doc
903
        self.features = list(self.task_docs.features.keys())
904
905
        self.multiple_input = 0
        self.multiple_target = 0
906
        test_doc = self.task_docs[0]
907
        test_text = self.doc_to_text(test_doc)
908
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
909

910
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
911
            test_choice = self.doc_to_choice(test_doc)
912
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
913
                eval_logger.error("doc_to_choice must return list")
914
915
            else:
                num_choice = len(test_choice)
916

917
            if isinstance(test_text, int):
918
                self.multiple_input = num_choice
919
920
        else:
            test_choice = None
921

922
        if isinstance(test_target, list):
923
            self.multiple_target = len(test_target)
924
        else:
925
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
926
                test_target = test_choice[test_target]
927
            else:
lintangsutawika's avatar
lintangsutawika committed
928
                test_target = str(test_target)
929

930
931
932
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
933
            check_choices = [test_target]
934
935
936
937
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
938
939
                    True
                    if self.config.target_delimiter.rstrip()
940
                    != self.config.target_delimiter
941
                    else False
942
                )
943

944
                if delimiter_has_whitespace and choice_has_whitespace:
945
946
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
947
948
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
949
                    eval_logger.debug(
950
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
951
952
                    )

953
    def download(self, dataset_kwargs: Optional[Dict[str, Any]] = None) -> None:
954
955
956
957
958
959
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
960
    def has_training_docs(self) -> bool:
961
        if self.config.training_split is not None:
962
963
964
965
            return True
        else:
            return False

baberabb's avatar
baberabb committed
966
    def has_validation_docs(self) -> bool:
967
        if self.config.validation_split is not None:
968
969
970
971
            return True
        else:
            return False

baberabb's avatar
baberabb committed
972
    def has_test_docs(self) -> bool:
973
        if self.config.test_split is not None:
974
975
976
977
            return True
        else:
            return False

baberabb's avatar
baberabb committed
978
    def training_docs(self) -> datasets.Dataset:
979
        if self.has_training_docs():
980
981
982
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
983
                )
984
            return self.dataset[self.config.training_split]
985

baberabb's avatar
baberabb committed
986
    def validation_docs(self) -> datasets.Dataset:
987
        if self.has_validation_docs():
988
989
990
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
991
                )
992
            return self.dataset[self.config.validation_split]
993

baberabb's avatar
baberabb committed
994
    def test_docs(self) -> datasets.Dataset:
995
        if self.has_test_docs():
996
997
998
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
999

1000
    def fewshot_docs(self):
1001
        if self.config.fewshot_split is not None:
1002
1003
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
1004
            return self.dataset[self.config.fewshot_split]
1005
        else:
1006
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
1007
                eval_logger.warning(
1008
                    f"Task '{self.config.task}': "
1009
1010
1011
1012
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
1013

lintangsutawika's avatar
lintangsutawika committed
1014
    @utils.positional_deprecated
1015
    def fewshot_context(self, doc: str, num_fewshot: int) -> str:
lintangsutawika's avatar
lintangsutawika committed
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """
1026
1027
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1028
1029
1030

        if num_fewshot == 0:
            # always prepend the (possibly empty) task description
1031
            labeled_examples = description
lintangsutawika's avatar
lintangsutawika committed
1032
        else:
1033
            labeled_examples = description + self.sampler.get_context(doc, num_fewshot)
lintangsutawika's avatar
lintangsutawika committed
1034
1035

        example = self.doc_to_text(doc)
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
        if self.multiple_input:
            return labeled_examples
        else:
            if isinstance(example, str):
                return labeled_examples + example
            elif isinstance(example, list):
                return [labeled_examples + ex for ex in example]
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    return labeled_examples + choices[example]
                else:
                    return labeled_examples + str(example)
lintangsutawika's avatar
lintangsutawika committed
1049

1050
    def apply_filters(self):
Baber Abbasi's avatar
Baber Abbasi committed
1051
        """Iterates over FilterEnsembles and applies them to instances"""
1052
1053
        if hasattr(self, "_filters"):
            for f in self._filters:
1054
                f.apply(self._instances)
1055
1056
1057
1058
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1059
    def should_decontaminate(self):
1060
        return self.config.should_decontaminate
1061
1062

    def doc_to_decontamination_query(self, doc):
1063
        if self.config.should_decontaminate:
1064
1065
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1066
            else:
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1078

1079
    def _process_doc(self, doc: dict) -> dict:
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
1091
1092
        if self.prompt is not None:
            doc_to_text = self.prompt
1093
        else:
1094
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1095

1096
        if isinstance(doc_to_text, int):
1097
            return doc_to_text
1098
        elif isinstance(doc_to_text, str):
1099
            if doc_to_text in self.features:
1100
                # if self.config.doc_to_choice is not None:
1101
1102
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1103
1104
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1105
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1106
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1107
1108
1109
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1110
        elif callable(doc_to_text):
1111
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1112
        # Used when applying a Promptsource template
1113
        elif hasattr(doc_to_text, "apply"):
1114
1115
1116
1117
1118
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1119
                return self.config.fewshot_delimiter
1120
        else:
1121
            print(type(doc_to_text))
1122
            raise TypeError
1123

1124
    def doc_to_target(self, doc: Mapping) -> Union[int, str, list]:
1125
1126
        if self.prompt is not None:
            doc_to_target = self.prompt
1127
        else:
1128
            doc_to_target = self.config.doc_to_target
1129

1130
        if isinstance(doc_to_target, int):
1131
            return doc_to_target
1132
        elif isinstance(doc_to_target, str):
1133
            if doc_to_target in self.features:
1134
                # if self.config.doc_to_choice is not None:
1135
1136
1137
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1138
            else:
lintangsutawika's avatar
lintangsutawika committed
1139
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1140
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1141
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1142
1143
1144
1145
1146
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1147
1148
1149
1150
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1151
1152
                else:
                    return target_string
1153
        elif isinstance(doc_to_target, list):
1154
            return doc_to_target
1155
        elif callable(doc_to_target):
1156
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1157
        # Used when applying a Promptsource template
1158
        elif hasattr(doc_to_target, "apply"):
1159
            applied_prompt = doc_to_target.apply(doc)
1160
1161
1162
1163
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1164
                return self.config.fewshot_delimiter
1165
1166
        else:
            raise TypeError
1167

baberabb's avatar
baberabb committed
1168
    def doc_to_choice(self, doc: Any) -> List[str]:
1169
1170
        if self.prompt is not None:
            doc_to_choice = self.prompt
1171
        elif self.config.doc_to_choice is None:
1172
1173
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1174
            doc_to_choice = self.config.doc_to_choice
1175

1176
        if isinstance(doc_to_choice, str):
1177
1178
1179
1180
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1181
        elif isinstance(doc_to_choice, list):
1182
            return doc_to_choice
1183
        elif isinstance(doc_to_choice, dict):
1184
1185
1186
1187
1188
1189
1190
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1191

baberabb's avatar
baberabb committed
1192
1193
1194
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1195
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1196
            arguments = (ctx, self.doc_to_target(doc))
1197
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1198
            arguments = (self.doc_to_target(doc),)
1199
        elif self.OUTPUT_TYPE == "multiple_choice":
1200
            choices = self.doc_to_choice(doc)
1201
            target_delimiter = self.config.target_delimiter
1202
1203
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1204
                cont = self.doc_to_target(doc)
1205
1206
1207
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
1208
            else:
1209
                # Otherwise they are placed in the continuation
1210
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1211

1212
            request_list = [
1213
1214
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1215
                    doc=doc,
1216
                    arguments=arg,
1217
                    idx=i,
1218
1219
                    **kwargs,
                )
1220
                for i, arg in enumerate(arguments)
1221
            ]
1222
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
1223
            if "acc_mutual_info" in self._metric_fn_list.keys():
1224
1225
1226
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
1227
                # here mutual info refers to calculating
1228
1229
1230
1231
1232
1233
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1234
                            doc=doc,
1235
                            arguments=("", "{}".format(choice)),
1236
1237
1238
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
1239
                        for i, choice in enumerate(choices)
1240
1241
1242
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
1243

1244
        elif self.OUTPUT_TYPE == "generate_until":
1245
            arguments = (ctx, deepcopy(self.config.generation_kwargs))
lintangsutawika's avatar
lintangsutawika committed
1246
1247

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
1248
1249
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
1250
1251

    def process_results(self, doc, results):
1252
1253
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1254

1255
        result_dict = {}
1256
        use_metric = list(self._metric_fn_list.keys())
1257
1258
1259
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1260
1261
1262
1263
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1264
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1265
            (loglikelihood,) = results
1266
1267
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1268
            return {
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1284
            }
1285
        elif self.OUTPUT_TYPE == "multiple_choice":
1286
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1287

1288
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1289
            choices = self.doc_to_choice(doc)
1290
1291
            completion_len = np.array([float(len(i)) for i in choices])

1292
1293
            if (
                2 * len(choices) == len(lls)
1294
                and "acc_mutual_info" in self._metric_fn_list.keys()
1295
1296
1297
1298
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
1299
1300
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1301
1302
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1303

1304
1305
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1306

1307
1308
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1309
            else:
1310
                gold = self.doc_to_target(doc)
1311
1312

            gold_index_error = False
1313
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1314
1315
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1316
1317
                    gold_index_error = True
            else:
1318
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1319
                    gold = gold if gold < len(choices) else -100
1320
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1321
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1322

Lintang Sutawika's avatar
Lintang Sutawika committed
1323
                if gold == -100:
1324
1325
1326
1327
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1328
                    f"Label index was not in within range of available choices,"
1329
1330
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1331

1332
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1333
1334
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1335
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1336
1337
1338
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1339
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1340
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1341

Lintang Sutawika's avatar
Lintang Sutawika committed
1342
1343
1344
1345
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1346
            result_dict = {
1347
                **({"acc": acc} if "acc" in use_metric else {}),
1348
1349
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1350
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1351
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1352
1353
1354
1355
1356
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1357
1358
            }

1359
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1360
1361
1362
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1363
1364
1365
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1366
        elif self.OUTPUT_TYPE == "generate_until":
1367
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1368
            result = results[0]
1369
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1370
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1371
                # it assumes that doc_to_target returns a number.
1372
1373
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1374
1375
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1376
                gold = list(gold)
Chris's avatar
Chris committed
1377
1378
1379
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1380

lintangsutawika's avatar
lintangsutawika committed
1381
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1382
1383
1384
1385
1386
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1387
1388
1389
1390
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1391
1392
1393
1394
1395
1396
1397
1398
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1399
                    else:
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1421
                else:
1422
                    try:
1423
                        result_score = self._metric_fn_list[metric](
1424
1425
                            references=[gold],
                            predictions=[result],
1426
                            **self._metric_fn_kwargs[metric],
1427
                        )
1428
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1429
                        result_score = self._metric_fn_list[metric]([gold, result])
1430
1431
1432
1433
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1434
        else:
lintangsutawika's avatar
lintangsutawika committed
1435
1436
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1437
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1438
            )
1439
1440
1441

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1442
    def aggregation(self) -> dict:
1443
1444
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1445
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1446
        return self._higher_is_better
1447

Baber Abbasi's avatar
Baber Abbasi committed
1448
1449
1450
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

1451
1452
1453
1454
1455
1456
1457
1458
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
            f"num_samples={len(self.eval_docs)})"
        )

1459
1460

class MultipleChoiceTask(Task):
1461
    OUTPUT_TYPE = "loglikelihood"
1462

baberabb's avatar
baberabb committed
1463
    def doc_to_target(self, doc: dict) -> str:
1464
1465
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1466
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1467
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1468
1469
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1470
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1471
                doc=doc,
1472
                arguments=(ctx, " {}".format(choice)),
1473
                idx=i,
1474
1475
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1476
1477
            for i, choice in enumerate(doc["choices"])
        ]
1478

1479
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1480
1481
1482
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1494
    def higher_is_better(self) -> dict:
1495
1496
1497
1498
1499
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1500
    def aggregation(self) -> dict:
1501
1502
1503
1504
1505
1506
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1507
class PerplexityTask(Task):
1508
1509
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1510
    def has_training_docs(self) -> bool:
1511
1512
        return False

baberabb's avatar
baberabb committed
1513
    def fewshot_examples(self, k: int, rnd) -> List:
1514
1515
1516
1517
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1518
1519
        return []

baberabb's avatar
baberabb committed
1520
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1521
1522
1523
1524
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1525
1526
1527

        return ""

baberabb's avatar
baberabb committed
1528
    def higher_is_better(self) -> dict:
1529
1530
1531
1532
1533
1534
1535
1536
1537
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1538
    def doc_to_text(self, doc) -> str:
1539
1540
1541
1542
1543
        return ""

    def doc_to_target(self, doc):
        return doc

1544
1545
1546
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1547

lintangsutawika's avatar
lintangsutawika committed
1548
1549
1550
1551
1552
1553
1554
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1555

1556
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1557
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1558
1559
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1560
1561
1562
1563
1564
1565
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1566
    def aggregation(self) -> dict:
1567
1568
1569
1570
1571
1572
1573
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1574
    def count_bytes(cls, doc) -> int:
1575
1576
1577
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1578
    def count_words(cls, doc) -> int:
1579
1580
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))