task.py 60.6 KB
Newer Older
Baber's avatar
nit  
Baber committed
1
2
from __future__ import annotations

3
import abc
4
import ast
lintangsutawika's avatar
lintangsutawika committed
5
import logging
6
import random
7
import re
8
from collections.abc import Callable, Iterable, Iterator, Mapping
9
from copy import deepcopy
10
from functools import cached_property
Baber's avatar
types  
Baber committed
11
from typing import TYPE_CHECKING, Any, Literal, overload
12
13
14

import datasets
import numpy as np
15
from tqdm import tqdm
Baber's avatar
Baber committed
16
from typing_extensions import deprecated
17
18

from lm_eval import utils
19
20
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
21
from lm_eval.api.utils import check_gold_index_error
22
from lm_eval.caching.cache import load_from_cache, save_to_cache
Baber's avatar
Baber committed
23
from lm_eval.config.metric import MetricConfig
Baber's avatar
types  
Baber committed
24
from lm_eval.config.task import DataSet, TaskConfig
25
26
from lm_eval.filters import build_filter_ensemble

27

28
29
30
31
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
32
    "generate_until",
33
34
]

Baber's avatar
Baber committed
35
if TYPE_CHECKING:
Baber's avatar
Baber committed
36
    pass
Baber's avatar
Baber committed
37
38


Lintang Sutawika's avatar
Lintang Sutawika committed
39
eval_logger = logging.getLogger(__name__)
40

lintangsutawika's avatar
lintangsutawika committed
41

42
43
44
45
46
47
48
49
50
51
class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

Baber's avatar
nit  
Baber committed
52
    VERSION: int | str | None = None
53

54
55
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
Baber's avatar
nit  
Baber committed
56
    DATASET_PATH: str | None = None
57
58

    # The name of a subset within `DATASET_PATH`.
Baber's avatar
nit  
Baber committed
59
    DATASET_NAME: str | None = None
60

Baber's avatar
nit  
Baber committed
61
    OUTPUT_TYPE: OutputType | None = None
lintangsutawika's avatar
lintangsutawika committed
62

63
64
    def __init__(
        self,
Baber's avatar
nit  
Baber committed
65
66
67
68
        data_dir: str | None = None,
        cache_dir: str | None = None,
        download_mode: datasets.DownloadMode | None = None,
        config: Mapping | None = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
69
    ) -> None:
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
Baber's avatar
nit  
Baber committed
92
93
94
        self._training_docs: list | None = None
        self._fewshot_docs: list | None = None
        self._instances: list[Instance] | None = None
95

96
        self._config: TaskConfig = TaskConfig.from_yaml({**config})
97

98
        self._filters = [build_filter_ensemble("none", [("take_first", None)])]
Baber's avatar
nit  
Baber committed
99
        self.fewshot_rnd: random.Random | None = (
100
101
            None  # purposely induce errors in case of improper usage
        )
102

103
104
    def download(
        self,
Baber's avatar
nit  
Baber committed
105
106
        data_dir: str | None = None,
        cache_dir: str | None = None,
107
108
        download_mode=None,
    ) -> None:
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
Baber's avatar
types  
Baber committed
133
        assert self.DATASET_PATH is not None, "DATASET_PATH must be set in Task class"
134
135
136
137
138
139
140
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
141

142
    @property
143
    def config(self) -> TaskConfig:
144
145
146
        """Returns the TaskConfig associated with this class."""
        return self._config

147
    @property
Baber's avatar
Baber committed
148
    def has_training_docs(self) -> bool:
149
        """Whether the task has a training set"""
Baber's avatar
types  
Baber committed
150
        raise NotImplementedError
151

152
    @property
Baber's avatar
Baber committed
153
    def has_validation_docs(self) -> bool:
154
        """Whether the task has a validation set"""
Baber's avatar
types  
Baber committed
155
        raise NotImplementedError
156

157
    @property
Baber's avatar
Baber committed
158
    def has_test_docs(self) -> bool:
159
        """Whether the task has a test set"""
Baber's avatar
types  
Baber committed
160
        raise NotImplementedError
161

Baber's avatar
types  
Baber committed
162
    def training_docs(self) -> DataSet | None:
163
164
165
166
167
168
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

Baber's avatar
types  
Baber committed
169
    def validation_docs(self) -> DataSet | None:
170
171
172
173
174
175
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

Baber's avatar
types  
Baber committed
176
    def test_docs(self) -> DataSet | None:
177
178
179
180
181
182
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

Baber's avatar
types  
Baber committed
183
    def fewshot_docs(self) -> DataSet | None:
184
185
186
187
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
188
        if self.has_training_docs:
189
            return self.training_docs()
190
        elif self.has_validation_docs:
191
192
            return self.validation_docs()
        else:
Baber's avatar
Baber committed
193
            if self.config.num_fewshot and self.config.num_fewshot > 0:
Baber Abbasi's avatar
Baber Abbasi committed
194
195
196
197
                eval_logger.warning(
                    f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
                    ", using test_docs as fewshot_docs but this is not recommended."
                )
198
199
            return self.test_docs()

200
    def _process_doc(self, doc: dict) -> dict:
201
202
203
204
205
206
207
208
209
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
210

211
    @property
Baber's avatar
Baber committed
212
    def instances(self) -> list[Instance]:
213
214
215
216
217
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

218
    def fewshot_examples(self, k: int, rnd) -> Iterable[dict]:
219
220
221
222
223
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

Baber's avatar
Baber committed
224
    def doc_to_decontamination_query(self, doc: dict):
225
        raise NotImplementedError(
226
227
228
229
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
Baber's avatar
Baber committed
230
    def doc_to_text(self, doc: dict) -> str:
231
232
233
        pass

    @abc.abstractmethod
Baber's avatar
nit  
Baber committed
234
    def doc_to_target(self, doc: dict) -> str | int:
235
236
        pass

237
    # not an abstractmethod because not every language-only task has to implement this
Baber's avatar
Baber committed
238
    def doc_to_image(self, doc: dict):
239
240
        raise NotImplementedError

Baber's avatar
Baber committed
241
    def doc_to_audio(self, doc: dict):
242
243
        raise NotImplementedError

Baber's avatar
Baber committed
244
    def doc_to_prefix(self, doc: dict) -> str:
Baber Abbasi's avatar
Baber Abbasi committed
245
246
        return ""

247
248
    def build_all_requests(
        self,
249
        *,
Baber's avatar
nit  
Baber committed
250
251
        limit: int | None = None,
        samples: list[int] | None = None,
252
253
254
255
        rank: int = 0,
        world_size: int = 1,
        cache_requests: bool = False,
        rewrite_requests_cache: bool = False,
Baber's avatar
nit  
Baber committed
256
        system_instruction: str | None = None,
257
258
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
Baber's avatar
nit  
Baber committed
259
        chat_template: Callable | None = None,
260
        tokenizer_name: str = "",
261
    ) -> None:
262
        """Build a set of Instances for a task, and store them in task.instances"""
263
264
265
266

        # used with caching
        og_limit = limit

267
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
268
269
270
271
272
273
274
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
275
        cache_key += f"-tokenizer{tokenizer_name}"
276

Baber Abbasi's avatar
Baber Abbasi committed
277
        cached_instances = load_from_cache(file_name=cache_key, cache=cache_requests)
278
279
280
281
282
283
284
285
286
287
288
289
290

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
291
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
292

293
        instances = []
294
295
296
297
298
299
300
301
302
303

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
304
305
306
            self.doc_iterator(
                rank=rank, limit=limit, samples=samples, world_size=world_size
            )
307
308
309
310
311
312
313
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
314
        ):
315
            # sample fewshot context #TODO: need to offset doc_id by rank now!
316
            fewshot_ctx = self.fewshot_context(
317
                doc,
318
319
320
321
322
323
324
                num_fewshot=0
                if self.config.num_fewshot is None
                else self.config.num_fewshot,
                system_instruction=system_instruction,
                apply_chat_template=apply_chat_template,
                fewshot_as_multiturn=fewshot_as_multiturn,
                chat_template=chat_template,
Baber Abbasi's avatar
Baber Abbasi committed
325
                gen_prefix=self.doc_to_prefix(doc),
326
            )
327

328
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
329
330
331
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
Baber's avatar
Baber committed
332
                metadata=(self.config.task, doc_id, self.config.repeats),
333
                apply_chat_template=apply_chat_template,
334
                chat_template=chat_template,
lintangsutawika's avatar
lintangsutawika committed
335
            )
336
337
338
339

            if not isinstance(inst, list):
                inst = [inst]

340
341
342
343
344
345
346
347
348
349
350
351
352
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
353

354
355
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
356

357
358
359
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

360
    @abc.abstractmethod
Baber's avatar
nit  
Baber committed
361
    def construct_requests(self, doc: dict, ctx: list[dict] | str, **kwargs):
362
363
364
365
366
367
368
369
370
371
372
373
374
375
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
376
            The number of times each instance in a dataset is inferred on. Defaults to 1,
377
378
379
380
381
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
382
    def process_results(self, doc: dict, results: list) -> dict[str, Any]:
383
384
385
386
387
388
389
390
391
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
392
        raise NotImplementedError
393

Baber's avatar
Baber committed
394
    @deprecated("not used anymore")
395
396
397
398
399
400
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
Baber's avatar
nit  
Baber committed
401
        return True
402

Baber's avatar
Baber committed
403
    @deprecated("not used anymore")
404
405
406
407
408
409
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
Baber's avatar
nit  
Baber committed
410
        return True
411

412
413
414
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
415
    @classmethod
Baber's avatar
Baber committed
416
    def count_bytes(cls, doc: str) -> int:
haileyschoelkopf's avatar
haileyschoelkopf committed
417
418
419
420
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
Baber's avatar
Baber committed
421
    def count_words(cls, doc: str) -> int:
haileyschoelkopf's avatar
haileyschoelkopf committed
422
423
424
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

425
    @utils.positional_deprecated
Baber Abbasi's avatar
Baber Abbasi committed
426
    def fewshot_context(self, doc, num_fewshot, rnd=None, description=None, **kwargs):
427
428
429
430
431
432
433
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
434
435
436
437
438
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
439
440
441
        :returns: str
            The fewshot context.
        """
442
        if rnd is None:
443
444
445
446
447
448
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
449

450
        description = description if description else ""
451
452

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
453
            labeled_examples = ""
454
        else:
lintangsutawika's avatar
lintangsutawika committed
455
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
456
            if self.has_training_docs:
lintangsutawika's avatar
lintangsutawika committed
457
458
459
460
461
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
462
                        if self.has_validation_docs
lintangsutawika's avatar
lintangsutawika committed
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
479
            )
480
481

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
482
        return description + labeled_examples + example
483

Baber's avatar
nit  
Baber committed
484
    def apply_filters(self) -> list[Instance] | None:
Baber Abbasi's avatar
Baber Abbasi committed
485
        """Iterates over FilterEnsembles and applies them to instances"""
Baber's avatar
nit  
Baber committed
486
        if hasattr(self, "_filters") and self._instances:
lintangsutawika's avatar
lintangsutawika committed
487
            for f in self._filters:
488
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
489
        else:
Baber's avatar
nit  
Baber committed
490
491
492
            eval_logger.warning(
                "No filter defined or no instances, passing through instances"
            )
lintangsutawika's avatar
lintangsutawika committed
493
            return self._instances
494

baberabb's avatar
baberabb committed
495
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
496
        """Returns the config as a dictionary."""
497
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
498
        # (num_fewshot)
499
        return self.config.to_dict()
500

Baber Abbasi's avatar
Baber Abbasi committed
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
Baber's avatar
Baber committed
520
521
522
523
524
        # if not isinstance(self, ConfigurableTask):
        #     self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
        #     self.aggregation = lambda: {
        #         metric_name: get_metric_aggregation(metric_name)
        #     }
525
526
        self._config.metric_list = [MetricConfig(name=metric_name)]
        self._config.process_results = lambda *args: {"bypass": 0}
Baber Abbasi's avatar
Baber Abbasi committed
527

Baber's avatar
nit  
Baber committed
528
    def set_fewshot_seed(self, seed: int | None = None) -> None:
529
530
531
532
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

533
    @property
Baber's avatar
nit  
Baber committed
534
    def eval_docs(self) -> datasets.Dataset | Iterable[dict]:
535
        if self.has_test_docs:
536
            return self.test_docs()
537
        elif self.has_validation_docs:
538
539
            return self.validation_docs()
        else:
540
541
542
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
543
544

    def doc_iterator(
545
546
547
        self,
        *,
        rank: int = 0,
Baber's avatar
nit  
Baber committed
548
        limit: int | None = None,
549
        world_size: int = 1,
Baber's avatar
nit  
Baber committed
550
551
        samples: list[int] | None = None,
    ) -> Iterator[tuple[int, Any]]:
552
553
        if samples:
            n = len(self.eval_docs)
Baber's avatar
nit  
Baber committed
554
            assert all(e < n for e in samples), (
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
                f"Elements of --samples should be in the interval [0,k-1] where k is the number of total examples. In this case, k={n}."
            )
            eval_logger.info(
                f"{self.config.task}: Evaluating on {len(samples)} examples"
            )
            doc_iterator = utils.create_iterator(
                enumerate(x for i, x in enumerate(self.eval_docs) if i in samples),
                rank=int(rank),
                limit=None,  # limit does not matter here since we are selecting samples directly
                world_size=int(world_size),
            )
        else:
            limit = int(limit) if limit else None
            doc_iterator = utils.create_iterator(
                enumerate(self.eval_docs),
                rank=int(rank),
                limit=limit,
                world_size=int(world_size),
            )
574
575
        return doc_iterator

576
577

class ConfigurableTask(Task):
578
    VERSION = "Yaml"
579
    OUTPUT_TYPE = None
580
    CONFIG = None
581
582

    def __init__(
583
584
585
586
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
Baber's avatar
types  
Baber committed
587
        config: Mapping[str, Any] | None = None,
Baber's avatar
Baber committed
588
    ) -> None:
589
        # Get pre-configured attributes
590
        self._config = self.CONFIG
591

592
        # Use new configurations if there was no preconfiguration
593
        if self.config is None:
594
            self._config = TaskConfig.from_yaml(config)
595
596
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
597
            if config is not None:
598
                self._config.__dict__.update(config)
599

600
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
601
602
603
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
604

Baber's avatar
nit  
Baber committed
605
606
        if isinstance(self.config.metadata, dict) and "version" in self.config.metadata:
            self.VERSION = self.config.metadata["version"]
607

608
        if self.config.output_type is not None:
609
610
611
612
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
613
            self.OUTPUT_TYPE = self.config.output_type
614

615
616
617
618
        if self.config.doc_to_image is not None:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

619
620
621
622
        if self.config.doc_to_audio:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

Hojin Lee's avatar
Hojin Lee committed
623
624
625
        if self.config.unsafe_code is not False:
            self.UNSAFE_CODE = True

626
627
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
628

629
630
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
631

632
        # self.metric_list: list[MetricConfig] = self.config.get_metrics
633

634
        self.download(self.config.dataset_kwargs)
635
636
637
        self._training_docs = None
        self._fewshot_docs = None

Baber's avatar
Baber committed
638
        self._filters = self.config.get_filters
Baber's avatar
Baber committed
639

Baber's avatar
Baber committed
640
641
642
643
644
645
646
        # if self.config.use_prompt is not None:
        #     eval_logger.info(f"loading prompt {self.config.use_prompt}")
        #     self.prompt = get_prompt(
        #         self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
        #     )
        # else:
        #     self.prompt = None
647

648
649
650
651
        if (
            self.config.fewshot_cfg.num_fewshot() > 0
            and self.fewshot_docs() is not None
        ):
Baber's avatar
Baber committed
652
653
654
            self.fewshot_rnd = random.Random()
            self.sampler = self.config.fewshot_cfg.init_sampler(
                list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
655
            )
656
        self.task_docs = self.eval_docs
657

Baber's avatar
fix  
Baber committed
658
659
660
661
662
663
664
665
666
667
        # for name, fn in self.config._fn.items():
        #     if hasattr(self, name):
        #         setattr(
        #             self,
        #             name,
        #             types.MethodType(
        #                 lambda self, *args, _fn=fn, **kwargs: _fn(*args, **kwargs),
        #                 self,
        #             ),
        #         )
668

Baber's avatar
fix  
Baber committed
669
670
        self.runtime_checks(self.task_docs[0])

671
672
        print("hello")

Baber's avatar
nit  
Baber committed
673
    def download(self, dataset_kwargs: dict[str, Any] | None = None, **kwargs) -> None:
Baber Abbasi's avatar
Baber Abbasi committed
674
675
676
677
        from packaging.version import parse as vparse

        if dataset_kwargs and vparse(datasets.__version__) >= vparse("4.0.0"):
            dataset_kwargs.pop("trust_remote_code", None)
Baber's avatar
Baber committed
678

679
680
681
682
683
        self.config.dataset_kwargs, self.config.metadata = (
            self.config.dataset_kwargs or {},
            self.config.metadata or {},
        )
        if isinstance(df := self.config.custom_dataset, Callable):
Baber Abbasi's avatar
Baber Abbasi committed
684
685
686
687
            eval_logger.warning(
                f"{self.config.task}: Custom kwargs can be passed to `--metadata` in console (as json string) or to the TaskManager."
                + "\nFor example --metadata='{\"max_seq_lengths\":[4096, 8192]}'. For details see task Readme."
            )
688
            self.dataset = df(**(self.config.dataset_kwargs | self.config.metadata))
Baber Abbasi's avatar
Baber Abbasi committed
689
        else:
Baber's avatar
types  
Baber committed
690
691
692
            assert self.config.dataset_path is not None, (
                "dataset_path must be set in TaskConfig"
            )
Baber Abbasi's avatar
Baber Abbasi committed
693
            self.dataset = datasets.load_dataset(
694
695
696
                path=self.config.dataset_path,
                name=self.config.dataset_name,
                **self.config.dataset_kwargs,
Baber Abbasi's avatar
Baber Abbasi committed
697
            )
698

699
    @cached_property
baberabb's avatar
baberabb committed
700
    def has_training_docs(self) -> bool:
Baber's avatar
nit  
Baber committed
701
        return self.config.training_split is not None
702

703
    @cached_property
baberabb's avatar
baberabb committed
704
    def has_validation_docs(self) -> bool:
Baber's avatar
nit  
Baber committed
705
        return self.config.validation_split is not None
706

707
    @cached_property
baberabb's avatar
baberabb committed
708
    def has_test_docs(self) -> bool:
Baber's avatar
nit  
Baber committed
709
        return self.config.test_split is not None
710

Baber's avatar
types  
Baber committed
711
    def training_docs(self) -> DataSet | None:
712
        if self.has_training_docs:
713
714
715
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
716
                )
717
            return self.dataset[self.config.training_split]
718

Baber's avatar
types  
Baber committed
719
    def validation_docs(self) -> DataSet | None:
720
        if self.has_validation_docs:
721
722
723
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
724
                )
725
            return self.dataset[self.config.validation_split]
726

Baber's avatar
types  
Baber committed
727
    def test_docs(self) -> DataSet | None:
728
        if self.has_test_docs:
729
730
731
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
732

733
    def fewshot_docs(self):
Baber's avatar
Baber committed
734
735
736
737
738
739
        docs = self.config.fewshot_cfg.get_docs(self.dataset)

        if docs is not None:
            return docs

        # Fallback to parent implementation
Baber's avatar
nit  
Baber committed
740
741
742
743
744
745
746
747
748
749
        if (
            (_num_fewshot := self.config.num_fewshot)
            and isinstance(_num_fewshot, int)
            and _num_fewshot > 0
        ):
            eval_logger.warning(
                f"[Task: {self.config.task}] "
                "num_fewshot > 0 but no fewshot source configured. "
                "Using preconfigured rule."
            )
Baber's avatar
Baber committed
750
751

        return super().fewshot_docs()
752

KonradSzafer's avatar
KonradSzafer committed
753
754
    @staticmethod
    def append_target_question(
Baber's avatar
nit  
Baber committed
755
        labeled_examples: list[dict[str, str]],
KonradSzafer's avatar
KonradSzafer committed
756
757
        question: str,
        fewshot_as_multiturn: bool = False,
Baber's avatar
nit  
Baber committed
758
        gen_prefix: str | None = None,
KonradSzafer's avatar
KonradSzafer committed
759
760
761
762
763
764
765
766
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
767
                labeled_examples.append({"role": "user", "content": question})
KonradSzafer's avatar
KonradSzafer committed
768
769
            # if last message is user, append to it to avoid two user messages in a row
            else:
770
                labeled_examples[-1]["content"] += question
KonradSzafer's avatar
KonradSzafer committed
771
772
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
773
            labeled_examples.append({"role": "user", "content": question})
Baber Abbasi's avatar
Baber Abbasi committed
774
775
        if gen_prefix:
            labeled_examples.append({"role": "assistant", "content": gen_prefix})
KonradSzafer's avatar
KonradSzafer committed
776

lintangsutawika's avatar
lintangsutawika committed
777
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
778
779
    def fewshot_context(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
780
        doc: dict,
KonradSzafer's avatar
KonradSzafer committed
781
        num_fewshot: int,
Baber's avatar
nit  
Baber committed
782
        system_instruction: str | None = None,
KonradSzafer's avatar
KonradSzafer committed
783
784
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
Baber's avatar
nit  
Baber committed
785
786
787
        chat_template: Callable | None = None,
        gen_prefix: str | None = None,
    ) -> str | list[str] | None:
lintangsutawika's avatar
lintangsutawika committed
788
789
790
791
792
793
794
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
795
796
797
798
799
800
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
801
802
        :param chat_template:
            callable (from lm.apply_chat_template) that takes in a list[Dict] chat transcript and renders it into a string.
803
804
        :param gen_prefix:
            String to append after the <|assistant|> token.
lintangsutawika's avatar
lintangsutawika committed
805
806
807
        :returns: str
            The fewshot context.
        """
Baber's avatar
nit  
Baber committed
808
        labeled_examples = [] if apply_chat_template else ""
KonradSzafer's avatar
KonradSzafer committed
809
810

        # get task description
811
812
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
813

KonradSzafer's avatar
KonradSzafer committed
814
815
816
817
818
819
820
821
822
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
823
        else:
KonradSzafer's avatar
KonradSzafer committed
824
825
826
827
828
829
830
831
832
833
834
835
836
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt
        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
Baber Abbasi's avatar
Baber Abbasi committed
837
838
839
                        doc,
                        num_fewshot,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
840
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
841
842
843
                    )
                )
            else:
Baber Abbasi's avatar
Baber Abbasi committed
844
                labeled_examples += self.sampler.get_context(
Baber Abbasi's avatar
Baber Abbasi committed
845
                    doc, num_fewshot, gen_prefix=gen_prefix
Baber Abbasi's avatar
Baber Abbasi committed
846
                )
lintangsutawika's avatar
lintangsutawika committed
847
848

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
849
850
        if apply_chat_template:
            if self.multiple_input:
Baber Abbasi's avatar
Baber Abbasi committed
851
                # TODO: append prefill?
852
853
                if not labeled_examples:
                    return ""
854
                return chat_template(labeled_examples)
KonradSzafer's avatar
KonradSzafer committed
855
856
            if isinstance(example, str):
                self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
857
858
859
                    labeled_examples,
                    example,
                    fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
860
                    gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
861
862
863
864
865
866
867
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
868
869
870
871
                    self.append_target_question(
                        chat,
                        ex,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
872
                        gen_prefix=gen_prefix,
Baber Abbasi's avatar
Baber Abbasi committed
873
874
875
876
877
                    )
                    # TODO: append prefill?
                    labeled_examples_list.append(
                        chat_template(
                            chat,
Baber's avatar
nit  
Baber committed
878
                            add_generation_prompt=not gen_prefix,
Baber Abbasi's avatar
Baber Abbasi committed
879
880
                        )
                    )
KonradSzafer's avatar
KonradSzafer committed
881
882
883
884
885
886
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
887
888
889
                        labeled_examples,
                        choices[example],
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
890
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
891
892
893
                    )
                else:
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
894
895
896
                        labeled_examples,
                        str(example),
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
897
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
898
899
                    )
                # return lm.apply_chat_template(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
900
901
            return chat_template(
                labeled_examples,
Baber's avatar
nit  
Baber committed
902
                add_generation_prompt=not gen_prefix,
Baber Abbasi's avatar
Baber Abbasi committed
903
            )
904
        else:
Baber Abbasi's avatar
Baber Abbasi committed
905
            prefix = (
Baber Abbasi's avatar
Baber Abbasi committed
906
907
                self.config.target_delimiter + gen_prefix
                if gen_prefix is not None
Baber Abbasi's avatar
Baber Abbasi committed
908
909
                else ""
            )
KonradSzafer's avatar
KonradSzafer committed
910
911
            if self.multiple_input:
                return labeled_examples
912
            if isinstance(example, str):
Baber Abbasi's avatar
Baber Abbasi committed
913
                return labeled_examples + example + prefix
914
            elif isinstance(example, list):
Baber Abbasi's avatar
Baber Abbasi committed
915
                return [labeled_examples + ex + prefix for ex in example]
916
917
918
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
Baber Abbasi's avatar
Baber Abbasi committed
919
                    return labeled_examples + choices[example] + prefix
920
                else:
Baber Abbasi's avatar
Baber Abbasi committed
921
                    return labeled_examples + str(example) + prefix
lintangsutawika's avatar
lintangsutawika committed
922

Baber's avatar
nit  
Baber committed
923
    def apply_filters(self) -> list[Instance] | None:
Baber Abbasi's avatar
Baber Abbasi committed
924
        """Iterates over FilterEnsembles and applies them to instances"""
925
        if hasattr(self, "_filters") and self._instances:
926
            for f in self._filters:
927
                f.ensemble.apply(self._instances)
928
        else:
929
930
931
            eval_logger.warning(
                "No filter defined or instances found. Passing through instances"
            )
932
933
            return self._instances

934
    def should_decontaminate(self):
935
        return self.config.should_decontaminate
936

Baber Abbasi's avatar
Baber Abbasi committed
937
    def doc_to_decontamination_query(self, doc: dict):
938
        if self.config.should_decontaminate:
939
940
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
941
            else:
942
943
944
945
946
947
948
949
950
951
952
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
953

954
    def _process_doc(self, doc: dict) -> dict:
955
956
957
958
959
960
961
962
963
964
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

Baber's avatar
Baber committed
965
966
967
968
969
970
971
972
973
974
975
976
    @overload
    def doc_to_text(self, doc: dict, doc_to_text: None = None) -> str | int: ...

    @overload
    def doc_to_text(self, doc: dict, doc_to_text: int) -> int: ...

    @overload
    def doc_to_text(self, doc: dict, doc_to_text: str) -> str: ...

    @overload
    def doc_to_text(self, doc: dict, doc_to_text: Callable[..., str]) -> str: ...

Baber's avatar
nit  
Baber committed
977
978
    def doc_to_text(
        self, doc: dict, doc_to_text: int | str | Callable[..., str] | None = None
Baber's avatar
Baber committed
979
    ) -> str | int:
Baber's avatar
Baber committed
980
981
        # if self.prompt is not None:
        #     doc_to_text = self.prompt
Baber's avatar
nit  
Baber committed
982
        doc_to_text = doc_to_text or self.config.doc_to_text
Baber's avatar
fix  
Baber committed
983
984
        if callable(doc_to_text):
            return doc_to_text(doc)
985
986
        if doc_to_text in doc:
            return doc[doc_to_text]
987
        elif isinstance(doc_to_text, str):
988
989
990
            text_string = utils.apply_template(doc_to_text, doc)
            if text_string.isdigit() and self.config.doc_to_choice is not None:
                return ast.literal_eval(text_string)
991
            else:
992
993
994
                return text_string
        elif isinstance(doc_to_text, int):
            return doc_to_text
lintangsutawika's avatar
lintangsutawika committed
995
        # Used when applying a Promptsource template
Baber's avatar
Baber committed
996
997
998
999
1000
1001
1002
        # elif hasattr(doc_to_text, "apply"):
        #     applied_prompt = doc_to_text.apply(doc)
        #     if len(applied_prompt) == 2:
        #         return applied_prompt[0]
        #     else:
        #         eval_logger.warning("Applied prompt returns empty string")
        #         return self.config.fewshot_delimiter
1003
        else:
1004
            print(type(doc_to_text))
1005
            raise TypeError
1006

Baber's avatar
Baber committed
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
    @overload
    def doc_to_target(
        self, doc: dict, doc_to_target: None = None
    ) -> int | str | list[int]: ...

    @overload
    def doc_to_target(self, doc: dict, doc_to_target: int) -> int: ...

    @overload
    def doc_to_target(self, doc: dict, doc_to_target: str) -> int | str | list[int]: ...

    @overload
    def doc_to_target(self, doc: dict, doc_to_target: list) -> list[int]: ...

    @overload
    def doc_to_target(
        self, doc: dict, doc_to_target: Callable[..., int | str | list[int]]
    ) -> int | str | list[int]: ...

Baber's avatar
nit  
Baber committed
1026
    def doc_to_target(self, doc: dict, doc_to_target=None) -> int | str | list[int]:
Baber's avatar
Baber committed
1027
1028
        # if self.prompt is not None:
        #     doc_to_target = self.prompt
1029
        doc_to_target = doc_to_target or self.config.doc_to_target
Baber's avatar
fix  
Baber committed
1030
1031
        if callable(doc_to_target):
            doc_to_target(doc)
1032
1033
        if doc_to_target in doc:
            return doc[doc_to_target]
1034
        elif isinstance(doc_to_target, str):
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
            target_string = utils.apply_template(doc_to_target, doc)
            if target_string.isdigit() and self.config.doc_to_choice is not None:
                return ast.literal_eval(target_string)
            # elif (
            #     len(target_string) >= 2
            #     and (target_string[0] == "[")
            #     and (target_string[-1] == "]")
            # ):
            #     try:
            #         return ast.literal_eval(target_string)
            #     except (SyntaxError, ValueError):
            #         return target_string
1047
            else:
1048
1049
1050
                return target_string

        elif isinstance(doc_to_target, (int, list)):
1051
            return doc_to_target
1052
1053
1054
1055
        # elif isinstance(doc_to_target, list):
        #     return doc_to_target
        # elif callable(doc_to_target):
        #     return doc_to_target(doc)
Baber's avatar
Baber committed
1056
1057
1058
1059
1060
1061
1062
1063
        # # Used when applying a Promptsource template
        # elif hasattr(doc_to_target, "apply"):
        #     applied_prompt = doc_to_target.apply(doc)
        #     if len(applied_prompt) == 2:
        #         return applied_prompt[1]
        #     else:
        #         eval_logger.warning("Applied prompt returns empty string")
        #         return self.config.fewshot_delimiter
1064
1065
        else:
            raise TypeError
1066

Baber's avatar
Baber committed
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
    @overload
    def doc_to_choice(self, doc: dict, doc_to_choice: None = None) -> list[str]: ...

    @overload
    def doc_to_choice(self, doc: dict, doc_to_choice: str) -> list[str]: ...

    @overload
    def doc_to_choice(self, doc: dict, doc_to_choice: list) -> list[str]: ...

    @overload
    def doc_to_choice(self, doc: dict, doc_to_choice: dict) -> list[str]: ...

    @overload
    def doc_to_choice(
        self, doc: dict, doc_to_choice: Callable[..., list[str]]
    ) -> list[str]: ...

Baber's avatar
Baber committed
1084
    def doc_to_choice(
Baber's avatar
Baber committed
1085
1086
        self,
        doc: dict,
Baber's avatar
nit  
Baber committed
1087
1088
        doc_to_choice: str | list | dict | Callable[..., list[str]] | None = None,
    ) -> list[str]:
Baber's avatar
Baber committed
1089
1090
1091
        # if self.prompt is not None:
        #     doc_to_choice = self.prompt
        if doc_to_choice is not None:
Yu Shi Jie's avatar
Yu Shi Jie committed
1092
            doc_to_choice = doc_to_choice
1093
        elif self.config.doc_to_choice is None:
1094
            eval_logger.error("doc_to_choice was called but not set in config")
Baber's avatar
Baber committed
1095
            doc_to_choice = None
1096
        else:
1097
            doc_to_choice = self.config.doc_to_choice
1098

1099
        if isinstance(doc_to_choice, str):
1100
            if doc_to_choice in doc:
1101
1102
1103
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1104
        elif isinstance(doc_to_choice, list):
1105
            return doc_to_choice
1106
1107
        # elif isinstance(doc_to_choice, dict):
        #     return list(doc_to_choice.values())
Baber's avatar
Baber committed
1108
1109
        # elif hasattr(doc_to_choice, "get_answer_choices_list"):
        #     return doc_to_choice.get_answer_choices_list(doc)
1110
1111
        else:
            raise TypeError
1112

Baber's avatar
Baber committed
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
    @overload
    def doc_to_image(self, doc: dict, doc_to_image: None = None) -> None: ...

    @overload
    def doc_to_image(self, doc: dict, doc_to_image: list) -> list: ...

    @overload
    def doc_to_image(self, doc: dict, doc_to_image: str) -> int | str | None: ...

    @overload
    def doc_to_image(self, doc: dict, doc_to_image: Callable[..., Any]) -> Any: ...

Baber's avatar
nit  
Baber committed
1125
    def doc_to_image(self, doc: dict, doc_to_image=None) -> int | str | list | None:
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
        if doc_to_image is not None:
            doc_to_image = doc_to_image
        elif self.config.doc_to_image is not None:
            doc_to_image = self.config.doc_to_image
        else:
            return None

        if isinstance(doc_to_image, list):
            image_feature = [
                self.doc_to_image(doc, feature) for feature in doc_to_image
            ]
            return [feature for feature in image_feature if feature is not None]
        elif isinstance(doc_to_image, str):
            if doc_to_image in self.features:
                return doc[doc_to_image]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_image, doc))
        elif callable(doc_to_image):
            return doc_to_image(doc)
        else:
            return None

Baber's avatar
Baber committed
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
    @overload
    def doc_to_audio(self, doc: Any, doc_to_audio: None = None) -> None: ...

    @overload
    def doc_to_audio(self, doc: Any, doc_to_audio: list) -> list: ...

    @overload
    def doc_to_audio(self, doc: Any, doc_to_audio: str) -> int | str | None: ...

    @overload
    def doc_to_audio(self, doc: Any, doc_to_audio: Callable[..., Any]) -> Any: ...

Baber's avatar
nit  
Baber committed
1160
    def doc_to_audio(self, doc: Any, doc_to_audio=None) -> int | str | list | None:
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
        if doc_to_audio is not None:
            doc_to_audio = doc_to_audio
        elif self.config.doc_to_audio is not None:
            doc_to_audio = self.config.doc_to_audio
        else:
            return None

        if isinstance(doc_to_audio, list):
            audio_feature = [
                self.doc_to_audio(doc, feature) for feature in doc_to_audio
            ]
            return [feature for feature in audio_feature if feature is not None]
        elif isinstance(doc_to_audio, str):
            if doc_to_audio in self.features:
                return doc[doc_to_audio]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_audio, doc))
        elif callable(doc_to_audio):
            return doc_to_audio(doc)
        else:
            return None

Baber's avatar
nit  
Baber committed
1183
    def doc_to_prefix(self, doc: dict) -> str | None:
Baber Abbasi's avatar
Baber Abbasi committed
1184
        if (gen_prefix := self.config.gen_prefix) is not None:
1185
            if gen_prefix in doc:
Baber Abbasi's avatar
Baber Abbasi committed
1186
1187
1188
1189
1190
                return doc[gen_prefix]
            else:
                return utils.apply_template(gen_prefix, doc)
        return None

baberabb's avatar
baberabb committed
1191
1192
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
Baber's avatar
nit  
Baber committed
1193
    ) -> list[Instance] | Instance:
1194
        apply_chat_template = kwargs.pop("apply_chat_template", False)
1195
        chat_template: Callable | None = kwargs.pop("chat_template", None)
1196

1197
1198
        aux_arguments = None

1199
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1200
            arguments = (ctx, self.doc_to_target(doc))
1201
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1202
            arguments = (self.doc_to_target(doc),)
1203
        elif self.OUTPUT_TYPE == "multiple_choice":
1204
            choices = self.doc_to_choice(doc)
1205
            target_delimiter = self.config.target_delimiter
1206
1207
            if apply_chat_template:
                target_delimiter = ""
1208
1209
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1210
                # apply chat_template to choices if apply_chat_template
1211
                cont = self.doc_to_target(doc)
1212

1213
                arguments = [
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
                    (
                        ctx
                        + (
                            chat_template([{"role": "user", "content": choice}])
                            if apply_chat_template
                            else choice
                        ),
                        f"{target_delimiter}{cont}",
                    )
                    for choice in choices
1224
                ]
1225
            else:
1226
                # Otherwise they are placed in the continuation
1227
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1228

1229
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
Baber's avatar
Baber committed
1230
            if "acc_mutual_info" in [m.metric_name for m in self.config._metric_list]:
1231
1232
1233
1234
1235
1236
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

                # here mutual info refers to calculating
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
1237
1238
1239
1240
                # TODO: should these be strided? will have to modify the processing in process_results if so
                aux_arguments = [
                    ("", f"{target_delimiter}{choice}") for choice in choices
                ]
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255

                arguments.extend(aux_arguments)

        elif self.OUTPUT_TYPE == "generate_until":
            arguments = (ctx, deepcopy(self.config.generation_kwargs))

        multimodal_arg = {}
        if (
            self.config.doc_to_image
        ):  # TODO: ensure that non-multimodal tasks aren't getting visual args
            multimodal_arg = {
                **multimodal_arg,
                **{"visual": self.doc_to_image(doc)},
            }

1256
1257
1258
1259
1260
1261
1262
1263
        if (
            self.config.doc_to_audio
        ):  # TODO: ensure that non-multimodal tasks aren't getting audio args
            multimodal_arg = {
                **multimodal_arg,
                **{"audio": self.doc_to_audio(doc)},
            }

1264
1265
1266
1267
1268
1269
1270
        if bool(multimodal_arg):
            if isinstance(arguments, list):
                arguments = [arg + (multimodal_arg,) for arg in arguments]
            else:
                arguments = arguments + (multimodal_arg,)

        if self.OUTPUT_TYPE == "multiple_choice":
1271
            request_list = [
1272
1273
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1274
                    doc=doc,
1275
                    arguments=arg,
1276
                    idx=i,
1277
1278
                    **kwargs,
                )
1279
                for i, arg in enumerate(arguments)
1280
            ]
1281
1282

            return request_list
lintangsutawika's avatar
lintangsutawika committed
1283

lintangsutawika's avatar
lintangsutawika committed
1284
        return Instance(
1285
1286
1287
1288
1289
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=arguments,
            idx=0,
            **kwargs,
lintangsutawika's avatar
lintangsutawika committed
1290
        )
1291

1292
    def process_results(self, doc: dict, results: list) -> dict[str, Any]:
Baber's avatar
fix  
Baber committed
1293
1294
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
1295
        result_dict = {}
Baber's avatar
fixup  
Baber committed
1296
        use_metric = list(m.metric_name for m in self.config._metric_list)
1297
1298
1299
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1300
1301
1302
1303
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1304
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
1305
1306
1307
1308
1309
1310
            (loglikelihood, *_) = results
            assert isinstance(_target := self.doc_to_target(doc), str), (
                "Require target to be a string for loglikelihood_rolling"
            )
            _words = self.count_words(_target)
            _bytes = self.count_bytes(_target)
haileyschoelkopf's avatar
haileyschoelkopf committed
1311
            return {
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1327
            }
1328
        elif self.OUTPUT_TYPE == "multiple_choice":
1329
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1330

Baber's avatar
nit  
Baber committed
1331
            # retrieve choices in list[str] form, to compute choice lengths, etc.
1332
            choices = self.doc_to_choice(doc)
1333
1334
            completion_len = np.array([float(len(i)) for i in choices])

Baber's avatar
Baber committed
1335
            if 2 * len(choices) == len(lls) and "acc_mutual_info" in use_metric:
1336
1337
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
1338
1339
                # as we extend the args list with unconditional ("", continuation) pairs
                lls_unconditional = lls[len(choices) :]
1340
1341
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1342
                # and this stores our "regular" conditional loglikelihoods
1343
                lls = lls[: len(choices)]
Baber's avatar
Baber committed
1344
1345
            else:
                lls_unconditional = None
1346

1347
1348
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1349

1350
1351
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1352
            else:
1353
                gold = self.doc_to_target(doc)
1354

1355
            gold, gold_index_error = check_gold_index_error(choices, gold)
1356
1357
1358

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1359
                    f"Label index was not in within range of available choices,"
1360
1361
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1362

1363
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1364
1365
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Baber's avatar
nit  
Baber committed
1366
                exact_match = int(any(is_greedy[i] if i != -100 else 0 for i in gold))
lintangsutawika's avatar
lintangsutawika committed
1367
1368
1369
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1370
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1371
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1372

Lintang Sutawika's avatar
Lintang Sutawika committed
1373
1374
1375
1376
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1377
            result_dict = {
1378
                **({"acc": acc} if "acc" in use_metric else {}),
1379
1380
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1381
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1382
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1383
1384
1385
1386
1387
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1388
1389
            }

1390
            if "acc_mutual_info" in use_metric:
Baber's avatar
Baber committed
1391
1392
1393
                assert lls_unconditional is not None, (
                    "lls_unconditional should not be None if acc_mutual_info is in use_metric"
                )
lintangsutawika's avatar
lintangsutawika committed
1394
1395
1396
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1397
1398
1399
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1400
        elif self.OUTPUT_TYPE == "generate_until":
1401
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1402
            result = results[0]
Baber's avatar
Baber committed
1403
            for metric in self.config._metric_list:
Baber's avatar
Baber committed
1404
                try:
Baber's avatar
Baber committed
1405
                    result_score = metric.fn(
Baber's avatar
Baber committed
1406
1407
                        references=[gold] if not isinstance(gold, list) else gold,
                        predictions=[result],
Baber's avatar
Baber committed
1408
                        **metric.kwargs,
Baber's avatar
Baber committed
1409
1410
                    )
                except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
Baber's avatar
Baber committed
1411
                    result_score = metric.fn([gold, result])
1412
1413
1414
1415
1416
1417
                if isinstance(result_score, dict):
                    # TODO: this handles the case where HF evaluate returns a dict.
                    # This allows for multiple metrics to be returned from the same function
                    for k, v in result_score.items():
                        result_dict[k] = v
                else:
Baber's avatar
Baber committed
1418
                    result_dict[metric.name] = result_score
1419
        else:
lintangsutawika's avatar
lintangsutawika committed
1420
1421
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1422
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1423
            )
1424
1425
1426

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1427
    def aggregation(self) -> dict:
Baber's avatar
fixup  
Baber committed
1428
        return {k.name: k.aggregation_fn for k in self.config._metric_list}
1429

Baber Abbasi's avatar
Baber Abbasi committed
1430
    def higher_is_better(self) -> dict:
Baber's avatar
fixup  
Baber committed
1431
        return {k.name: k.higher_is_better for k in self.config._metric_list}
1432

Baber Abbasi's avatar
Baber Abbasi committed
1433
1434
1435
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

Lintang Sutawika's avatar
Lintang Sutawika committed
1436
    @property
Baber's avatar
nit  
Baber committed
1437
    def task_name(self) -> str | None:
Lintang Sutawika's avatar
Lintang Sutawika committed
1438
1439
        return getattr(self.config, "task", None)

Baber's avatar
Baber committed
1440
1441
1442
1443
    def runtime_checks(self, test_doc):
        # Test One Doc
        self.features: list[str] = list(self.task_docs.features.keys())
        self.multiple_target = 0
Baber's avatar
fix  
Baber committed
1444
        self.multiple_input = 0
Baber's avatar
Baber committed
1445
1446
1447
1448
1449
1450
1451
        test_text = self.doc_to_text(test_doc)
        test_target = self.doc_to_target(test_doc)

        if self.config.doc_to_choice is not None:
            test_choice = self.doc_to_choice(test_doc)
            if not isinstance(test_choice, list):
                eval_logger.error("doc_to_choice must return list")
Baber's avatar
fix  
Baber committed
1452
1453
1454
1455
1456
1457
1458
            else:
                num_choice = len(test_choice)

            if isinstance(test_text, int):
                eval_logger.debug(
                    "doc_to_text returned an int. Assuming multiple inputs."
                )
Baber's avatar
Baber committed
1459
1460
1461
1462
1463

            if isinstance(test_text, int):
                eval_logger.debug(
                    "doc_to_text returned an int. Assuming multiple inputs."
                )
Baber's avatar
fix  
Baber committed
1464
                self.multiple_input = num_choice
Baber's avatar
Baber committed
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
        else:
            test_choice = None

        if isinstance(test_target, list):
            eval_logger.debug(
                "doc_to_target returned a list. Assuming multiple targets."
            )
            self.multiple_target = len(test_target)
        else:
            if (isinstance(test_target, int)) and (test_choice is not None):
                test_target = test_choice[test_target]
            else:
                test_target = str(test_target)

        check_choices = test_choice if test_choice is not None else [test_target]
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = choice[0].isspace()
                delimiter_has_whitespace = (
                    self.config.target_delimiter.rstrip()
                    != self.config.target_delimiter
                )

                if delimiter_has_whitespace and choice_has_whitespace:
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
                    )

1497
1498
1499
1500
1501
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
Baber Abbasi's avatar
Baber Abbasi committed
1502
            f"num_samples={len(self.eval_docs)})"
1503
1504
        )

1505
1506

class MultipleChoiceTask(Task):
1507
    OUTPUT_TYPE = "loglikelihood"
1508

baberabb's avatar
baberabb committed
1509
    def doc_to_target(self, doc: dict) -> str:
1510
1511
        return " " + doc["choices"][doc["gold"]]

Baber's avatar
nit  
Baber committed
1512
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> list[Instance]:
1513
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1514
1515
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1516
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1517
                doc=doc,
1518
                arguments=(ctx, f" {choice}"),
1519
                idx=i,
1520
1521
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1522
1523
            for i, choice in enumerate(doc["choices"])
        ]
1524

Baber's avatar
nit  
Baber committed
1525
    def process_results(self, doc: dict, results: Iterable[tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1526
1527
1528
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1540
    def higher_is_better(self) -> dict:
1541
1542
1543
1544
1545
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1546
    def aggregation(self) -> dict:
1547
1548
1549
1550
1551
1552
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1553
class PerplexityTask(Task):
1554
1555
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1556
    def has_training_docs(self) -> bool:
1557
1558
        return False

Baber's avatar
nit  
Baber committed
1559
    def fewshot_examples(self, k: int, rnd) -> list:
1560
1561
1562
1563
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1564
1565
        return []

baberabb's avatar
baberabb committed
1566
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1567
1568
1569
1570
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1571
1572
1573

        return ""

baberabb's avatar
baberabb committed
1574
    def higher_is_better(self) -> dict:
1575
1576
1577
1578
1579
1580
1581
1582
1583
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1584
    def doc_to_text(self, doc) -> str:
1585
1586
1587
1588
1589
        return ""

    def doc_to_target(self, doc):
        return doc

Baber's avatar
nit  
Baber committed
1590
    def construct_requests(self, doc: dict, ctx: str | None, **kwargs):
1591
1592
        if bool(ctx):
            raise ValueError
1593

lintangsutawika's avatar
lintangsutawika committed
1594
1595
1596
1597
1598
1599
1600
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1601

Baber's avatar
nit  
Baber committed
1602
    def process_results(self, doc: dict, results: tuple[float]) -> dict:
1603
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1604
1605
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1606
1607
1608
1609
1610
1611
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1612
    def aggregation(self) -> dict:
1613
1614
1615
1616
1617
1618
1619
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1620
    def count_bytes(cls, doc) -> int:
1621
1622
1623
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1624
    def count_words(cls, doc) -> int:
1625
        """Downstream tasks with custom word boundaries should override this!"""
Lintang Sutawika's avatar
Lintang Sutawika committed
1626
        return len(re.split(r"\s+", doc))