task.py 67 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
25
from tqdm import tqdm
26
27

from lm_eval import utils
28
from lm_eval.api import samplers
29
30
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
31
from lm_eval.api.registry import (
32
33
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
34
    get_aggregation,
35
    get_metric,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
38
)
39
from lm_eval.caching.cache import load_from_cache, save_to_cache
40
41
42
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

43

44
45
46
47
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
48
    "generate_until",
49
50
]

51
eval_logger = logging.getLogger("lm-eval")
52

lintangsutawika's avatar
lintangsutawika committed
53

54
55
@dataclass
class TaskConfig(dict):
56
    # task naming/registry
57
58
    task: Optional[str] = None
    task_alias: Optional[str] = None
Lintang Sutawika's avatar
Lintang Sutawika committed
59
    tag: Optional[Union[str, list]] = None
60
    group: Optional[Union[str, list]] = None
61
62
63
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
64
65
66
67
68
69
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
70
71
72
    fewshot_split: Optional[str] = (
        None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
    )
73
74
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
75
76
77
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
78
    doc_to_image: Union[Callable, str] = None
79
80
81
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
82
    description: str = ""
83
84
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
85
    fewshot_config: Optional[dict] = None
86
    # runtime configuration options
87
    num_fewshot: Optional[int] = None
88
    # scoring options
89
90
91
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
92
    repeats: int = 1
93
    filter_list: Optional[Union[str, list]] = None
94
    should_decontaminate: bool = False
95
    doc_to_decontamination_query: Optional[str] = None
96
    gen_prefix: str = None
97
98
99
    metadata: Optional[dict] = (
        None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
    )
100

Ethan Smith's avatar
Ethan Smith committed
101
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
102
103
104
105
106
107
108
109
110
111
112
113
        if self.group is not None:
            eval_logger.warning(
                "A task YAML file was found to contain a `group` key. Groups which provide aggregate scores over several subtasks now require a separate config file--if not aggregating, you may want to use the `tag` config option instead within your config. Setting `group` within a TaskConfig will be deprecated in v0.4.4. Please see https://github.com/EleutherAI/lm-evaluation-harness/blob/main/docs/task_guide.md for more information."
            )

            if self.tag is None:
                self.tag = self.group
            else:
                raise ValueError(
                    "Got both a `group` and `tag` entry within a TaskConfig. Please use one or the other--`group` values will be deprecated in v0.4.4."
                )

Lintang Sutawika's avatar
Lintang Sutawika committed
114
        if self.generation_kwargs is not None:
115
            if self.output_type != "generate_until":
116
                eval_logger.warning(
117
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
118
119
120
121
122
123
124
125
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
126
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
127
        else:
128
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
129
130
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
131
132
133
134
135
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
136
137
                    "do_sample": False,
                }
138

139
140
141
    def __getitem__(self, item):
        return getattr(self, item)

142
143
144
    def __setitem__(self, item, value):
        return setattr(self, item, value)

145
    def to_dict(self, keep_callable: bool = False) -> dict:
146
147
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
148
        Used for dumping results alongside full task configuration
149

haileyschoelkopf's avatar
haileyschoelkopf committed
150
151
152
153
154
155
156
157
158
159
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
160
161
162
163
164
165
166
167
168
169
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
170
        return cfg_dict
171

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

188
189
190
191
192
193
194
195
196
197
198

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

199
    VERSION: Optional[Union[int, str]] = None
200

201
202
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
203
    DATASET_PATH: Optional[str] = None
204
205

    # The name of a subset within `DATASET_PATH`.
206
    DATASET_NAME: Optional[str] = None
207

208
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
209

210
211
    def __init__(
        self,
212
213
214
215
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
216
    ) -> None:
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
239
240
241
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
242

243
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
244

lintangsutawika's avatar
lintangsutawika committed
245
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
246
247
248
        self.fewshot_rnd: Optional[random.Random] = (
            None  # purposely induce errors in case of improper usage
        )
249

250
251
252
253
254
255
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
280
281
282
283
284
285
286
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
287

288
    @property
289
    def config(self) -> TaskConfig:
290
291
292
        """Returns the TaskConfig associated with this class."""
        return self._config

293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

308
    def training_docs(self) -> Iterable:
309
310
311
312
313
314
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

315
    def validation_docs(self) -> Iterable:
316
317
318
319
320
321
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

322
    def test_docs(self) -> Iterable:
323
324
325
326
327
328
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

329
    def fewshot_docs(self) -> Iterable:
330
331
332
333
334
335
336
337
338
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
339
            eval_logger.warning(
340
                f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
341
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
342
            )
343
344
            return self.test_docs()

345
    def _process_doc(self, doc: dict) -> dict:
346
347
348
349
350
351
352
353
354
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
355

356
    @property
357
    def instances(self) -> List[Instance]:
358
359
360
361
362
363
364
365
366
367
368
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

369
370
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
371
372
373
374
375
376
377
378
379
380
381
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

382
383
384
385
    # not an abstractmethod because not every language-only task has to implement this
    def doc_to_image(self, doc):
        raise NotImplementedError

386
387
    def build_all_requests(
        self,
388
        *,
389
390
391
392
393
394
395
396
397
398
        limit: Union[int, None] = None,
        rank: int = 0,
        world_size: int = 1,
        cache_requests: bool = False,
        rewrite_requests_cache: bool = False,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        chat_template: Optional[Callable] = None,
        tokenizer_name: str = "",
399
    ) -> None:
400
        """Build a set of Instances for a task, and store them in task.instances"""
401
402
403
404

        # used with caching
        og_limit = limit

405
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
406
407
408
409
410
411
412
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
413
        cache_key += f"-tokenizer{tokenizer_name}"
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428

        cached_instances = load_from_cache(file_name=cache_key)

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
429
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
430

431
        instances = []
432
433
434
435
436
437
438
439
440
441

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
442
            self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
443
444
445
446
447
448
449
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
450
        ):
451
            # sample fewshot context #TODO: need to offset doc_id by rank now!
452
            fewshot_ctx = self.fewshot_context(
453
                doc,
454
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
KonradSzafer's avatar
KonradSzafer committed
455
456
457
                system_instruction,
                apply_chat_template,
                fewshot_as_multiturn,
458
                chat_template,
459
            )
460

461
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
462
463
464
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
465
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
466
            )
467
468
469
470

            if not isinstance(inst, list):
                inst = [inst]

471
472
473
474
475
476
477
478
479
480
481
482
483
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
484

485
486
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
487

488
489
490
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
507
            The number of times each instance in a dataset is inferred on. Defaults to 1,
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

543
544
545
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
546
547
548
549
550
551
552
553
554
555
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

556
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
557
    def fewshot_context(
558
559
560
        self,
        doc,
        num_fewshot,
561
        rnd=None,
562
        description=None,
lintangsutawika's avatar
lintangsutawika committed
563
    ):
564
565
566
567
568
569
570
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
571
572
573
574
575
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
576
577
578
        :returns: str
            The fewshot context.
        """
579
        if rnd is None:
580
581
582
583
584
585
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
586

587
        description = description if description else ""
588
589

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
590
            labeled_examples = ""
591
        else:
lintangsutawika's avatar
lintangsutawika committed
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
616
            )
617
618

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
619
        return description + labeled_examples + example
620

621
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
622
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
623
624
        if hasattr(self, "_filters"):
            for f in self._filters:
625
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
626
627
628
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
629

baberabb's avatar
baberabb committed
630
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
631
        """Returns the config as a dictionary."""
632
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
633
        # (num_fewshot)
634
        return self.config.to_dict()
635

Baber Abbasi's avatar
Baber Abbasi committed
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

676
677
678
679
680
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

681
682
683
684
685
686
687
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
688
689
690
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
691
692
693
694
695
696
697
698
699
700
701
702
703

    def doc_iterator(
        self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
    ) -> Iterator[Tuple[int, Any]]:
        limit = int(limit) if limit else None
        doc_iterator = utils.create_iterator(
            enumerate(self.eval_docs),
            rank=int(rank),
            limit=limit,
            world_size=int(world_size),
        )
        return doc_iterator

704
705

class ConfigurableTask(Task):
706
    VERSION = "Yaml"
707
    OUTPUT_TYPE = None
708
    CONFIG = None
709
710

    def __init__(
711
712
713
714
715
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
716
    ) -> None:  # TODO no super() call here
717
        # Get pre-configured attributes
718
        self._config = self.CONFIG
719

720
        # Use new configurations if there was no preconfiguration
721
        if self.config is None:
722
            self._config = TaskConfig(**config)
723
724
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
725
            if config is not None:
726
                self._config.__dict__.update(config)
727

728
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
729
730
731
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
732

733
734
735
736
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

737
        if self.config.output_type is not None:
738
739
740
741
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
742
            self.OUTPUT_TYPE = self.config.output_type
743

744
745
746
747
        if self.config.doc_to_image is not None:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

748
749
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
750

751
752
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
753

754
755
756
757
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
758

759
        if self.config.metric_list is None:
760
            # TODO: handle this in TaskConfig.__post_init__ ?
761
762
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

763
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
764
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
765
                self._metric_fn_kwargs[metric_name] = {}
766
767
768
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
769
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
770
        else:
771
            for metric_config in self.config.metric_list:
772
773
774
775
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
776
777
778
779
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
780
781
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
782
                }
Chris's avatar
Chris committed
783
784
785
786
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
787

788
                if self.config.process_results is not None:
789
790
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
791
792
793
794
795
796
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
797
798
799
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
800
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
801

802
                if "aggregation" in metric_config:
803
                    agg_name = metric_config["aggregation"]
804
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
805
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
806
                    elif callable(agg_name):  # noqa: E721
807
808
809
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
810
                else:
811
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
812
                    metric_agg = get_metric_aggregation(metric_name)
813
                    eval_logger.warning(
814
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
815
816
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
817
                    )
818
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
819

820
821
822
823
824
825
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
826
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
827
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
828
                        f"higher_is_better={is_higher_better(metric_name)}"
829
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
830
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
831

832
        self.download(self.config.dataset_kwargs)
833
834
835
        self._training_docs = None
        self._fewshot_docs = None

836
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
837
            self._filters = []
838
            for filter_config in self.config.filter_list:
839
840
841
842
843
844
845
846
847
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
848
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
849
        else:
850
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
851

852
853
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
854
            self.prompt = get_prompt(
855
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
856
            )
857
858
859
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
860
        if self.fewshot_docs() is not None:
861
862
863
864
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
865
866
867
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
884

885
        self.task_docs = self.eval_docs
886

887
        # Test One Doc
888
        self.features = list(self.task_docs.features.keys())
889
890
        self.multiple_input = 0
        self.multiple_target = 0
891
        test_doc = self.task_docs[0]
892
        test_text = self.doc_to_text(test_doc)
893
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
894

895
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
896
            test_choice = self.doc_to_choice(test_doc)
897
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
898
                eval_logger.error("doc_to_choice must return list")
899
900
            else:
                num_choice = len(test_choice)
901

902
            if isinstance(test_text, int):
903
                self.multiple_input = num_choice
904
905
        else:
            test_choice = None
906

907
        if isinstance(test_target, list):
908
            self.multiple_target = len(test_target)
909
        else:
910
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
911
                test_target = test_choice[test_target]
912
            else:
lintangsutawika's avatar
lintangsutawika committed
913
                test_target = str(test_target)
914

915
916
917
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
918
            check_choices = [test_target]
919
920
921
922
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
923
924
                    True
                    if self.config.target_delimiter.rstrip()
925
                    != self.config.target_delimiter
926
                    else False
927
                )
928

929
                if delimiter_has_whitespace and choice_has_whitespace:
930
931
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
932
933
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
934
                    eval_logger.debug(
935
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
936
937
                    )

938
    def download(self, dataset_kwargs: Optional[Dict[str, Any]] = None) -> None:
939
940
941
942
943
944
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
945
    def has_training_docs(self) -> bool:
946
        if self.config.training_split is not None:
947
948
949
950
            return True
        else:
            return False

baberabb's avatar
baberabb committed
951
    def has_validation_docs(self) -> bool:
952
        if self.config.validation_split is not None:
953
954
955
956
            return True
        else:
            return False

baberabb's avatar
baberabb committed
957
    def has_test_docs(self) -> bool:
958
        if self.config.test_split is not None:
959
960
961
962
            return True
        else:
            return False

baberabb's avatar
baberabb committed
963
    def training_docs(self) -> datasets.Dataset:
964
        if self.has_training_docs():
965
966
967
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
968
                )
969
            return self.dataset[self.config.training_split]
970

baberabb's avatar
baberabb committed
971
    def validation_docs(self) -> datasets.Dataset:
972
        if self.has_validation_docs():
973
974
975
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
976
                )
977
            return self.dataset[self.config.validation_split]
978

baberabb's avatar
baberabb committed
979
    def test_docs(self) -> datasets.Dataset:
980
        if self.has_test_docs():
981
982
983
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
984

985
    def fewshot_docs(self):
986
        if self.config.fewshot_split is not None:
987
988
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
989
            return self.dataset[self.config.fewshot_split]
990
991
992
993
994
995
996
997
998
999
1000
1001
        elif (
            self.config.fewshot_config is not None
            and self.config.fewshot_config.get("samples", None) is not None
        ):
            if isinstance(self.config.fewshot_config["samples"], list):
                return self.config.fewshot_config["samples"]
            elif callable(self.config.fewshot_config["samples"]):
                return self.config.fewshot_config["samples"]()
            else:
                raise Exception(
                    "`fewshot_config['samples']` was incorrectly defined in the configuration. It should be either a list of samples as a dict, or function returning this list."
                )
1002
        else:
1003
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
1004
                eval_logger.warning(
Lintang Sutawika's avatar
Lintang Sutawika committed
1005
                    f"[Task: {self.config.task}] "
1006
1007
1008
1009
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
1010

KonradSzafer's avatar
KonradSzafer committed
1011
1012
1013
1014
1015
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
Baber's avatar
Baber committed
1016
        gen_prefix: str = None,
KonradSzafer's avatar
KonradSzafer committed
1017
    ) -> None:
Baber's avatar
Baber committed
1018
        """Adds a target question to the labeled examples list (in-place update)
KonradSzafer's avatar
KonradSzafer committed
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
                labeled_examples.append({"role": "user", "content": question})
            # if last message is user, append to it to avoid two user messages in a row
            else:
                labeled_examples[-1]["content"] += question
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
            labeled_examples.append({"role": "user", "content": question})

Baber's avatar
Baber committed
1033
1034
1035
1036
1037
        if gen_prefix:
            labeled_examples.append(
                {"role": "assistant", "content": gen_prefix.lstrip()}
            )

lintangsutawika's avatar
lintangsutawika committed
1038
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
1039
1040
    def fewshot_context(
        self,
1041
        doc: Dict[str, str],
KonradSzafer's avatar
KonradSzafer committed
1042
1043
1044
1045
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
1046
        chat_template: Optional[Callable] = None,
1047
    ) -> Union[str, List[Dict[str, str]]]:
lintangsutawika's avatar
lintangsutawika committed
1048
1049
1050
1051
1052
1053
1054
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
1055
1056
1057
1058
1059
1060
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
1061
1062
        :param chat_template:
            callable (from lm.apply_chat_template) that takes in a list[Dict] chat transcript and renders it into a string.
lintangsutawika's avatar
lintangsutawika committed
1063
1064
1065
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
1066
1067
1068
1069
1070
1071

        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

Baber's avatar
Baber committed
1072
1073
        gen_prefix = "" if not self.config.gen_prefix else self.config.gen_prefix

KonradSzafer's avatar
KonradSzafer committed
1074
        # get task description
1075
1076
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1077

1078
        ## [System prompt/Description] ##
KonradSzafer's avatar
KonradSzafer committed
1079
1080
1081
1082
1083
1084
1085
1086
1087
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
1088
        else:
KonradSzafer's avatar
KonradSzafer committed
1089
1090
1091
1092
1093
1094
1095
1096
1097
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt

1098
        ## [Few-shot examples] ##
KonradSzafer's avatar
KonradSzafer committed
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
                        doc, num_fewshot, fewshot_as_multiturn
                    )
                )
            else:
                labeled_examples += self.sampler.get_context(doc, num_fewshot)
lintangsutawika's avatar
lintangsutawika committed
1109

1110
        ## [Prompt] ##
lintangsutawika's avatar
lintangsutawika committed
1111
        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
1112
1113
        if apply_chat_template:
            if self.multiple_input:
Baber's avatar
Baber committed
1114
                # TODO<baber>: How to handle gen_prefix for multiple inputs?
1115
                return chat_template(labeled_examples)
KonradSzafer's avatar
KonradSzafer committed
1116
1117
            if isinstance(example, str):
                self.append_target_question(
Baber's avatar
Baber committed
1118
1119
1120
                    labeled_examples,
                    example,
                    fewshot_as_multiturn,
Baber's avatar
Baber committed
1121
                    gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1122
1123
1124
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
Baber's avatar
Baber committed
1125
                # TODO<baber>: when is example a list?
KonradSzafer's avatar
KonradSzafer committed
1126
1127
1128
1129
1130
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
                    self.append_target_question(chat, ex, fewshot_as_multiturn)
1131
                    labeled_examples_list.append(chat_template(chat))
KonradSzafer's avatar
KonradSzafer committed
1132
1133
1134
1135
1136
1137
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
Baber's avatar
Baber committed
1138
1139
1140
                        labeled_examples,
                        choices[example],
                        fewshot_as_multiturn,
Baber's avatar
Baber committed
1141
                        gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1142
1143
1144
                    )
                else:
                    self.append_target_question(
Baber's avatar
Baber committed
1145
1146
1147
                        labeled_examples,
                        str(example),
                        fewshot_as_multiturn,
Baber's avatar
Baber committed
1148
                        gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1149
1150
                    )
                # return lm.apply_chat_template(labeled_examples)
1151
            return chat_template(labeled_examples)
1152
        else:
KonradSzafer's avatar
KonradSzafer committed
1153
            if self.multiple_input:
Baber's avatar
Baber committed
1154
                # TODO<baber>: How to handle gen_prefix for multiple inputs?
KonradSzafer's avatar
KonradSzafer committed
1155
                return labeled_examples
1156
            if isinstance(example, str):
Baber's avatar
Baber committed
1157
                return labeled_examples + example + gen_prefix
1158
            elif isinstance(example, list):
Baber's avatar
Baber committed
1159
                return [labeled_examples + ex + gen_prefix for ex in example]
1160
1161
1162
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
Baber's avatar
Baber committed
1163
                    return labeled_examples + choices[example] + gen_prefix
1164
                else:
Baber's avatar
Baber committed
1165
                    return labeled_examples + str(example) + gen_prefix
lintangsutawika's avatar
lintangsutawika committed
1166

1167
    def apply_filters(self):
Baber Abbasi's avatar
Baber Abbasi committed
1168
        """Iterates over FilterEnsembles and applies them to instances"""
1169
1170
        if hasattr(self, "_filters"):
            for f in self._filters:
1171
                f.apply(self._instances)
1172
1173
1174
1175
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1176
    def should_decontaminate(self):
1177
        return self.config.should_decontaminate
1178
1179

    def doc_to_decontamination_query(self, doc):
1180
        if self.config.should_decontaminate:
1181
1182
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1183
            else:
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1195

1196
    def _process_doc(self, doc: dict) -> dict:
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

Yu Shi Jie's avatar
Yu Shi Jie committed
1207
    def doc_to_text(self, doc, doc_to_text=None):
1208
1209
        if self.prompt is not None:
            doc_to_text = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1210
1211
        elif doc_to_text is not None:
            doc_to_text = doc_to_text
1212
        else:
1213
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1214

1215
        if isinstance(doc_to_text, int):
1216
            return doc_to_text
1217
        elif isinstance(doc_to_text, str):
1218
            if doc_to_text in self.features:
1219
                # if self.config.doc_to_choice is not None:
1220
1221
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1222
1223
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1224
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1225
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1226
1227
1228
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1229
        elif callable(doc_to_text):
1230
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1231
        # Used when applying a Promptsource template
1232
        elif hasattr(doc_to_text, "apply"):
1233
1234
1235
1236
1237
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1238
                return self.config.fewshot_delimiter
1239
        else:
1240
            print(type(doc_to_text))
1241
            raise TypeError
1242

1243
    def doc_to_target(self, doc: Dict, doc_to_target=None) -> Union[int, str, list]:
1244
1245
        if self.prompt is not None:
            doc_to_target = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1246
1247
        elif doc_to_target is not None:
            doc_to_target = doc_to_target
1248
        else:
1249
            doc_to_target = self.config.doc_to_target
1250

1251
        if isinstance(doc_to_target, int):
1252
            return doc_to_target
1253
        elif isinstance(doc_to_target, str):
1254
            if doc_to_target in self.features:
1255
                # if self.config.doc_to_choice is not None:
1256
1257
1258
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1259
            else:
lintangsutawika's avatar
lintangsutawika committed
1260
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1261
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1262
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1263
1264
1265
1266
1267
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1268
1269
1270
1271
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1272
1273
                else:
                    return target_string
1274
        elif isinstance(doc_to_target, list):
1275
            return doc_to_target
1276
        elif callable(doc_to_target):
1277
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1278
        # Used when applying a Promptsource template
1279
        elif hasattr(doc_to_target, "apply"):
1280
            applied_prompt = doc_to_target.apply(doc)
1281
1282
1283
1284
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1285
                return self.config.fewshot_delimiter
1286
1287
        else:
            raise TypeError
1288

Yu Shi Jie's avatar
Yu Shi Jie committed
1289
    def doc_to_choice(self, doc: Any, doc_to_choice=None) -> List[str]:
1290
1291
        if self.prompt is not None:
            doc_to_choice = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1292
1293
        elif doc_to_choice is not None:
            doc_to_choice = doc_to_choice
1294
        elif self.config.doc_to_choice is None:
1295
1296
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1297
            doc_to_choice = self.config.doc_to_choice
1298

1299
        if isinstance(doc_to_choice, str):
1300
1301
1302
1303
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1304
        elif isinstance(doc_to_choice, list):
1305
            return doc_to_choice
1306
        elif isinstance(doc_to_choice, dict):
1307
1308
1309
1310
1311
1312
1313
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1314

1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
    def doc_to_image(self, doc: Any, doc_to_image=None) -> Union[int, str, list]:
        if doc_to_image is not None:
            doc_to_image = doc_to_image
        elif self.config.doc_to_image is not None:
            doc_to_image = self.config.doc_to_image
        else:
            return None

        if isinstance(doc_to_image, list):
            image_feature = [
                self.doc_to_image(doc, feature) for feature in doc_to_image
            ]
            return [feature for feature in image_feature if feature is not None]
        elif isinstance(doc_to_image, str):
            if doc_to_image in self.features:
                return doc[doc_to_image]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_image, doc))
        elif callable(doc_to_image):
            return doc_to_image(doc)
        else:
            return None

baberabb's avatar
baberabb committed
1338
1339
1340
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1341
1342
        aux_arguments = None

1343
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1344
            arguments = (ctx, self.doc_to_target(doc))
1345
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1346
            arguments = (self.doc_to_target(doc),)
1347
        elif self.OUTPUT_TYPE == "multiple_choice":
1348
            choices = self.doc_to_choice(doc)
1349
            target_delimiter = self.config.target_delimiter
1350
1351
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1352
                cont = self.doc_to_target(doc)
1353
1354
1355
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
1356
            else:
1357
                # Otherwise they are placed in the continuation
1358
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1359

1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
            if "acc_mutual_info" in self._metric_fn_list.keys():
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

                # here mutual info refers to calculating
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                aux_arguments = [("", f"{choice}") for choice in choices]

                arguments.extend(aux_arguments)

        elif self.OUTPUT_TYPE == "generate_until":
            arguments = (ctx, deepcopy(self.config.generation_kwargs))

        multimodal_arg = {}
        if (
            self.config.doc_to_image
        ):  # TODO: ensure that non-multimodal tasks aren't getting visual args
            multimodal_arg = {
                **multimodal_arg,
                **{"visual": self.doc_to_image(doc)},
            }

        if bool(multimodal_arg):
            if isinstance(arguments, list):
                arguments = [arg + (multimodal_arg,) for arg in arguments]
            else:
                arguments = arguments + (multimodal_arg,)

        if self.OUTPUT_TYPE == "multiple_choice":
1391
            request_list = [
1392
1393
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1394
                    doc=doc,
1395
                    arguments=arg,
1396
                    idx=i,
1397
1398
                    **kwargs,
                )
1399
                for i, arg in enumerate(arguments)
1400
            ]
1401
1402

            return request_list
lintangsutawika's avatar
lintangsutawika committed
1403

lintangsutawika's avatar
lintangsutawika committed
1404
        return Instance(
1405
1406
1407
1408
1409
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=arguments,
            idx=0,
            **kwargs,
lintangsutawika's avatar
lintangsutawika committed
1410
        )
1411
1412

    def process_results(self, doc, results):
1413
1414
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1415

1416
        result_dict = {}
1417
        use_metric = list(self._metric_fn_list.keys())
1418
1419
1420
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1421
1422
1423
1424
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1425
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1426
            (loglikelihood,) = results
1427
1428
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1429
            return {
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1445
            }
1446
        elif self.OUTPUT_TYPE == "multiple_choice":
1447
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1448

1449
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1450
            choices = self.doc_to_choice(doc)
1451
1452
            completion_len = np.array([float(len(i)) for i in choices])

1453
1454
            if (
                2 * len(choices) == len(lls)
1455
                and "acc_mutual_info" in self._metric_fn_list.keys()
1456
1457
1458
1459
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
1460
1461
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1462
1463
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1464

1465
1466
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1467

1468
1469
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1470
            else:
1471
                gold = self.doc_to_target(doc)
1472
1473

            gold_index_error = False
1474
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1475
1476
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1477
1478
                    gold_index_error = True
            else:
1479
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1480
                    gold = gold if gold < len(choices) else -100
1481
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1482
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1483

Lintang Sutawika's avatar
Lintang Sutawika committed
1484
                if gold == -100:
1485
1486
1487
1488
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1489
                    f"Label index was not in within range of available choices,"
1490
1491
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1492

1493
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1494
1495
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1496
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1497
1498
1499
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1500
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1501
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1502

Lintang Sutawika's avatar
Lintang Sutawika committed
1503
1504
1505
1506
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1507
            result_dict = {
1508
                **({"acc": acc} if "acc" in use_metric else {}),
1509
1510
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1511
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1512
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1513
1514
1515
1516
1517
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1518
1519
            }

1520
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1521
1522
1523
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1524
1525
1526
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1527
        elif self.OUTPUT_TYPE == "generate_until":
1528
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1529
            result = results[0]
1530
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1531
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1532
                # it assumes that doc_to_target returns a number.
1533
1534
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1535
1536
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1537
                gold = list(gold)
Chris's avatar
Chris committed
1538
1539
1540
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1541

lintangsutawika's avatar
lintangsutawika committed
1542
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1543
1544
1545
1546
1547
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1548
1549
1550
1551
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1552
1553
1554
1555
1556
1557
1558
1559
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1560
                    else:
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1582
                else:
1583
                    try:
1584
                        result_score = self._metric_fn_list[metric](
1585
1586
                            references=[gold],
                            predictions=[result],
1587
                            **self._metric_fn_kwargs[metric],
1588
                        )
1589
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1590
                        result_score = self._metric_fn_list[metric]([gold, result])
1591
1592
1593
1594
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1595
        else:
lintangsutawika's avatar
lintangsutawika committed
1596
1597
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1598
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1599
            )
1600
1601
1602

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1603
    def aggregation(self) -> dict:
1604
1605
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1606
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1607
        return self._higher_is_better
1608

Baber Abbasi's avatar
Baber Abbasi committed
1609
1610
1611
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

Lintang Sutawika's avatar
Lintang Sutawika committed
1612
1613
1614
1615
    @property
    def task_name(self) -> Any:
        return getattr(self.config, "task", None)

1616
1617
1618
1619
1620
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
1621
            f"num_samples={len(self.eval_docs)})",
1622
1623
        )

1624
1625

class MultipleChoiceTask(Task):
1626
    OUTPUT_TYPE = "loglikelihood"
1627

baberabb's avatar
baberabb committed
1628
    def doc_to_target(self, doc: dict) -> str:
1629
1630
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1631
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1632
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1633
1634
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1635
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1636
                doc=doc,
1637
                arguments=(ctx, " {}".format(choice)),
1638
                idx=i,
1639
1640
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1641
1642
            for i, choice in enumerate(doc["choices"])
        ]
1643

1644
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1645
1646
1647
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1659
    def higher_is_better(self) -> dict:
1660
1661
1662
1663
1664
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1665
    def aggregation(self) -> dict:
1666
1667
1668
1669
1670
1671
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1672
class PerplexityTask(Task):
1673
1674
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1675
    def has_training_docs(self) -> bool:
1676
1677
        return False

baberabb's avatar
baberabb committed
1678
    def fewshot_examples(self, k: int, rnd) -> List:
1679
1680
1681
1682
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1683
1684
        return []

baberabb's avatar
baberabb committed
1685
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1686
1687
1688
1689
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1690
1691
1692

        return ""

baberabb's avatar
baberabb committed
1693
    def higher_is_better(self) -> dict:
1694
1695
1696
1697
1698
1699
1700
1701
1702
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1703
    def doc_to_text(self, doc) -> str:
1704
1705
1706
1707
1708
        return ""

    def doc_to_target(self, doc):
        return doc

1709
1710
1711
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1712

lintangsutawika's avatar
lintangsutawika committed
1713
1714
1715
1716
1717
1718
1719
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1720

1721
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1722
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1723
1724
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1725
1726
1727
1728
1729
1730
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1731
    def aggregation(self) -> dict:
1732
1733
1734
1735
1736
1737
1738
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1739
    def count_bytes(cls, doc) -> int:
1740
1741
1742
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1743
    def count_words(cls, doc) -> int:
1744
        """Downstream tasks with custom word boundaries should override this!"""
Lintang Sutawika's avatar
Lintang Sutawika committed
1745
        return len(re.split(r"\s+", doc))