task.py 65.4 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
25
from tqdm import tqdm
26
27

from lm_eval import utils
28
from lm_eval.api import samplers
29
30
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
31
from lm_eval.api.registry import (
32
33
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
34
    get_aggregation,
35
    get_metric,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
38
)
39
from lm_eval.caching.cache import load_from_cache, save_to_cache
40
41
42
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

43

44
45
46
47
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
48
    "generate_until",
49
50
]

51
eval_logger = logging.getLogger("lm-eval")
52

lintangsutawika's avatar
lintangsutawika committed
53

54
55
@dataclass
class TaskConfig(dict):
56
    # task naming/registry
57
58
    task: Optional[str] = None
    task_alias: Optional[str] = None
Lintang Sutawika's avatar
Lintang Sutawika committed
59
    tag: Optional[Union[str, list]] = None
60
    group: Optional[Union[str, list]] = None
61
62
63
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
64
65
66
67
68
69
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
70
71
72
    fewshot_split: Optional[str] = (
        None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
    )
73
74
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
75
76
77
78
79
80
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
81
    description: str = ""
82
83
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
84
    fewshot_config: Optional[dict] = None
85
    # runtime configuration options
86
    num_fewshot: Optional[int] = None
87
    # scoring options
88
89
90
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
91
    repeats: int = 1
92
    filter_list: Optional[Union[str, list]] = None
93
    should_decontaminate: bool = False
94
    doc_to_decontamination_query: Optional[str] = None
95
    gen_prefix: str = None
96
97
98
    metadata: Optional[dict] = (
        None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
    )
99

Ethan Smith's avatar
Ethan Smith committed
100
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
101
102
103
104
105
106
107
108
109
110
111
112
        if self.group is not None:
            eval_logger.warning(
                "A task YAML file was found to contain a `group` key. Groups which provide aggregate scores over several subtasks now require a separate config file--if not aggregating, you may want to use the `tag` config option instead within your config. Setting `group` within a TaskConfig will be deprecated in v0.4.4. Please see https://github.com/EleutherAI/lm-evaluation-harness/blob/main/docs/task_guide.md for more information."
            )

            if self.tag is None:
                self.tag = self.group
            else:
                raise ValueError(
                    "Got both a `group` and `tag` entry within a TaskConfig. Please use one or the other--`group` values will be deprecated in v0.4.4."
                )

Lintang Sutawika's avatar
Lintang Sutawika committed
113
        if self.generation_kwargs is not None:
114
            if self.output_type != "generate_until":
115
                eval_logger.warning(
116
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
117
118
119
120
121
122
123
124
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
125
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
126
        else:
127
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
128
129
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
130
131
132
133
134
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
135
136
                    "do_sample": False,
                }
137

138
139
140
    def __getitem__(self, item):
        return getattr(self, item)

141
142
143
    def __setitem__(self, item, value):
        return setattr(self, item, value)

144
    def to_dict(self, keep_callable: bool = False) -> dict:
145
146
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
147
        Used for dumping results alongside full task configuration
148

haileyschoelkopf's avatar
haileyschoelkopf committed
149
150
151
152
153
154
155
156
157
158
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
159
160
161
162
163
164
165
166
167
168
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
169
        return cfg_dict
170

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

187
188
189
190
191
192
193
194
195
196
197

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

198
    VERSION: Optional[Union[int, str]] = None
199

200
201
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
202
    DATASET_PATH: Optional[str] = None
203
204

    # The name of a subset within `DATASET_PATH`.
205
    DATASET_NAME: Optional[str] = None
206

207
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
208

209
210
    def __init__(
        self,
211
212
213
214
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
215
    ) -> None:
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
238
239
240
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
241

242
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
243

lintangsutawika's avatar
lintangsutawika committed
244
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
245
246
247
        self.fewshot_rnd: Optional[random.Random] = (
            None  # purposely induce errors in case of improper usage
        )
248

249
250
251
252
253
254
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
279
280
281
282
283
284
285
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
286

287
    @property
288
    def config(self) -> TaskConfig:
289
290
291
        """Returns the TaskConfig associated with this class."""
        return self._config

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

307
    def training_docs(self) -> Iterable:
308
309
310
311
312
313
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

314
    def validation_docs(self) -> Iterable:
315
316
317
318
319
320
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

321
    def test_docs(self) -> Iterable:
322
323
324
325
326
327
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

328
    def fewshot_docs(self) -> Iterable:
329
330
331
332
333
334
335
336
337
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
338
            eval_logger.warning(
339
                f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
340
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
341
            )
342
343
            return self.test_docs()

344
    def _process_doc(self, doc: dict) -> dict:
345
346
347
348
349
350
351
352
353
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
354

355
    @property
356
    def instances(self) -> List[Instance]:
357
358
359
360
361
362
363
364
365
366
367
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

368
369
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
370
371
372
373
374
375
376
377
378
379
380
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

381
382
    def build_all_requests(
        self,
383
        *,
384
385
386
387
388
389
390
391
392
393
        limit: Union[int, None] = None,
        rank: int = 0,
        world_size: int = 1,
        cache_requests: bool = False,
        rewrite_requests_cache: bool = False,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        chat_template: Optional[Callable] = None,
        tokenizer_name: str = "",
394
    ) -> None:
395
        """Build a set of Instances for a task, and store them in task.instances"""
396
397
398
399

        # used with caching
        og_limit = limit

400
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
401
402
403
404
405
406
407
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
408
        cache_key += f"-tokenizer{tokenizer_name}"
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423

        cached_instances = load_from_cache(file_name=cache_key)

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
424
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
425

426
        instances = []
427
428
429
430
431
432
433
434
435
436

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
437
            self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
438
439
440
441
442
443
444
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
445
        ):
446
            # sample fewshot context #TODO: need to offset doc_id by rank now!
447
            fewshot_ctx = self.fewshot_context(
448
                doc,
449
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
KonradSzafer's avatar
KonradSzafer committed
450
451
452
                system_instruction,
                apply_chat_template,
                fewshot_as_multiturn,
453
                chat_template,
454
            )
455

456
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
457
458
459
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
460
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
461
            )
462
463
464
465

            if not isinstance(inst, list):
                inst = [inst]

466
467
468
469
470
471
472
473
474
475
476
477
478
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
479

480
481
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
482

483
484
485
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
502
            The number of times each instance in a dataset is inferred on. Defaults to 1,
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

538
539
540
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
541
542
543
544
545
546
547
548
549
550
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

551
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
552
    def fewshot_context(
553
554
555
        self,
        doc,
        num_fewshot,
556
        rnd=None,
557
        description=None,
lintangsutawika's avatar
lintangsutawika committed
558
    ):
559
560
561
562
563
564
565
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
566
567
568
569
570
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
571
572
573
        :returns: str
            The fewshot context.
        """
574
        if rnd is None:
575
576
577
578
579
580
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
581

582
        description = description if description else ""
583
584

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
585
            labeled_examples = ""
586
        else:
lintangsutawika's avatar
lintangsutawika committed
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
611
            )
612
613

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
614
        return description + labeled_examples + example
615

616
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
617
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
618
619
        if hasattr(self, "_filters"):
            for f in self._filters:
620
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
621
622
623
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
624

baberabb's avatar
baberabb committed
625
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
626
        """Returns the config as a dictionary."""
627
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
628
        # (num_fewshot)
629
        return self.config.to_dict()
630

Baber Abbasi's avatar
Baber Abbasi committed
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

671
672
673
674
675
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

676
677
678
679
680
681
682
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
683
684
685
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
686
687
688
689
690
691
692
693
694
695
696
697
698

    def doc_iterator(
        self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
    ) -> Iterator[Tuple[int, Any]]:
        limit = int(limit) if limit else None
        doc_iterator = utils.create_iterator(
            enumerate(self.eval_docs),
            rank=int(rank),
            limit=limit,
            world_size=int(world_size),
        )
        return doc_iterator

699
700

class ConfigurableTask(Task):
701
    VERSION = "Yaml"
702
    OUTPUT_TYPE = None
703
    CONFIG = None
704
705

    def __init__(
706
707
708
709
710
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
711
    ) -> None:  # TODO no super() call here
712
        # Get pre-configured attributes
713
        self._config = self.CONFIG
714

715
        # Use new configurations if there was no preconfiguration
716
        if self.config is None:
717
            self._config = TaskConfig(**config)
718
719
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
720
            if config is not None:
721
                self._config.__dict__.update(config)
722

723
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
724
725
726
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
727

728
729
730
731
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

732
        if self.config.output_type is not None:
733
734
735
736
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
737
            self.OUTPUT_TYPE = self.config.output_type
738

739
740
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
741

742
743
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
744

745
746
747
748
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
749

750
        if self.config.metric_list is None:
751
            # TODO: handle this in TaskConfig.__post_init__ ?
752
753
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

754
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
755
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
756
                self._metric_fn_kwargs[metric_name] = {}
757
758
759
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
760
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
761
        else:
762
            for metric_config in self.config.metric_list:
763
764
765
766
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
767
768
769
770
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
771
772
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
773
                }
Chris's avatar
Chris committed
774
775
776
777
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
778

779
                if self.config.process_results is not None:
780
781
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
782
783
784
785
786
787
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
788
789
790
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
791
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
792

793
                if "aggregation" in metric_config:
794
                    agg_name = metric_config["aggregation"]
795
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
796
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
797
                    elif callable(agg_name):  # noqa: E721
798
799
800
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
801
                else:
802
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
803
                    metric_agg = get_metric_aggregation(metric_name)
804
                    eval_logger.warning(
805
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
806
807
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
808
                    )
809
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
810

811
812
813
814
815
816
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
817
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
818
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
819
                        f"higher_is_better={is_higher_better(metric_name)}"
820
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
821
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
822

823
        self.download(self.config.dataset_kwargs)
824
825
826
        self._training_docs = None
        self._fewshot_docs = None

827
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
828
            self._filters = []
829
            for filter_config in self.config.filter_list:
830
831
832
833
834
835
836
837
838
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
839
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
840
        else:
841
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
842

843
844
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
845
            self.prompt = get_prompt(
846
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
847
            )
848
849
850
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
851
        if self.fewshot_docs() is not None:
852
853
854
855
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
856
857
858
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
875

876
        self.task_docs = self.eval_docs
877

878
        # Test One Doc
879
        self.features = list(self.task_docs.features.keys())
880
881
        self.multiple_input = 0
        self.multiple_target = 0
882
        test_doc = self.task_docs[0]
883
        test_text = self.doc_to_text(test_doc)
884
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
885

886
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
887
            test_choice = self.doc_to_choice(test_doc)
888
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
889
                eval_logger.error("doc_to_choice must return list")
890
891
            else:
                num_choice = len(test_choice)
892

893
            if isinstance(test_text, int):
894
                self.multiple_input = num_choice
895
896
        else:
            test_choice = None
897

898
        if isinstance(test_target, list):
899
            self.multiple_target = len(test_target)
900
        else:
901
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
902
                test_target = test_choice[test_target]
903
            else:
lintangsutawika's avatar
lintangsutawika committed
904
                test_target = str(test_target)
905

906
907
908
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
909
            check_choices = [test_target]
910
911
912
913
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
914
915
                    True
                    if self.config.target_delimiter.rstrip()
916
                    != self.config.target_delimiter
917
                    else False
918
                )
919

920
                if delimiter_has_whitespace and choice_has_whitespace:
921
922
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
923
924
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
925
                    eval_logger.debug(
926
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
927
928
                    )

929
    def download(self, dataset_kwargs: Optional[Dict[str, Any]] = None) -> None:
930
931
932
933
934
935
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
936
    def has_training_docs(self) -> bool:
937
        if self.config.training_split is not None:
938
939
940
941
            return True
        else:
            return False

baberabb's avatar
baberabb committed
942
    def has_validation_docs(self) -> bool:
943
        if self.config.validation_split is not None:
944
945
946
947
            return True
        else:
            return False

baberabb's avatar
baberabb committed
948
    def has_test_docs(self) -> bool:
949
        if self.config.test_split is not None:
950
951
952
953
            return True
        else:
            return False

baberabb's avatar
baberabb committed
954
    def training_docs(self) -> datasets.Dataset:
955
        if self.has_training_docs():
956
957
958
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
959
                )
960
            return self.dataset[self.config.training_split]
961

baberabb's avatar
baberabb committed
962
    def validation_docs(self) -> datasets.Dataset:
963
        if self.has_validation_docs():
964
965
966
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
967
                )
968
            return self.dataset[self.config.validation_split]
969

baberabb's avatar
baberabb committed
970
    def test_docs(self) -> datasets.Dataset:
971
        if self.has_test_docs():
972
973
974
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
975

976
    def fewshot_docs(self):
977
        if self.config.fewshot_split is not None:
978
979
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
980
            return self.dataset[self.config.fewshot_split]
981
982
983
984
985
986
987
988
989
990
991
992
        elif (
            self.config.fewshot_config is not None
            and self.config.fewshot_config.get("samples", None) is not None
        ):
            if isinstance(self.config.fewshot_config["samples"], list):
                return self.config.fewshot_config["samples"]
            elif callable(self.config.fewshot_config["samples"]):
                return self.config.fewshot_config["samples"]()
            else:
                raise Exception(
                    "`fewshot_config['samples']` was incorrectly defined in the configuration. It should be either a list of samples as a dict, or function returning this list."
                )
993
        else:
994
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
995
                eval_logger.warning(
Lintang Sutawika's avatar
Lintang Sutawika committed
996
                    f"[Task: {self.config.task}] "
997
998
999
1000
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
1001

KonradSzafer's avatar
KonradSzafer committed
1002
1003
1004
1005
1006
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
Baber's avatar
Baber committed
1007
        gen_prefix: str = None,
KonradSzafer's avatar
KonradSzafer committed
1008
    ) -> None:
Baber's avatar
Baber committed
1009
        """Adds a target question to the labeled examples list (in-place update)
KonradSzafer's avatar
KonradSzafer committed
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
                labeled_examples.append({"role": "user", "content": question})
            # if last message is user, append to it to avoid two user messages in a row
            else:
                labeled_examples[-1]["content"] += question
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
            labeled_examples.append({"role": "user", "content": question})

Baber's avatar
Baber committed
1024
1025
1026
1027
1028
        if gen_prefix:
            labeled_examples.append(
                {"role": "assistant", "content": gen_prefix.lstrip()}
            )

lintangsutawika's avatar
lintangsutawika committed
1029
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
1030
1031
    def fewshot_context(
        self,
1032
        doc: Dict[str, str],
KonradSzafer's avatar
KonradSzafer committed
1033
1034
1035
1036
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
1037
        chat_template: Optional[Callable] = None,
1038
    ) -> Union[str, List[Dict[str, str]]]:
lintangsutawika's avatar
lintangsutawika committed
1039
1040
1041
1042
1043
1044
1045
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
1046
1047
1048
1049
1050
1051
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
1052
1053
        :param chat_template: Callable
            Chat template to be applied to the fewshot context.
lintangsutawika's avatar
lintangsutawika committed
1054
1055
1056
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
1057
1058
1059
1060
1061
1062

        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

Baber's avatar
Baber committed
1063
1064
        gen_prefix = "" if not self.config.gen_prefix else self.config.gen_prefix

KonradSzafer's avatar
KonradSzafer committed
1065
        # get task description
1066
1067
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1068

1069
        ## [System prompt/Description] ##
KonradSzafer's avatar
KonradSzafer committed
1070
1071
1072
1073
1074
1075
1076
1077
1078
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
1079
        else:
KonradSzafer's avatar
KonradSzafer committed
1080
1081
1082
1083
1084
1085
1086
1087
1088
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt

1089
        ## [Few-shot examples] ##
KonradSzafer's avatar
KonradSzafer committed
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
                        doc, num_fewshot, fewshot_as_multiturn
                    )
                )
            else:
                labeled_examples += self.sampler.get_context(doc, num_fewshot)
lintangsutawika's avatar
lintangsutawika committed
1100

1101
        ## [Prompt] ##
lintangsutawika's avatar
lintangsutawika committed
1102
        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
1103
1104
        if apply_chat_template:
            if self.multiple_input:
Baber's avatar
Baber committed
1105
                # TODO<baber>: How to handle gen_prefix for multiple inputs?
1106
                return chat_template(labeled_examples)
KonradSzafer's avatar
KonradSzafer committed
1107
1108
            if isinstance(example, str):
                self.append_target_question(
Baber's avatar
Baber committed
1109
1110
1111
                    labeled_examples,
                    example,
                    fewshot_as_multiturn,
Baber's avatar
Baber committed
1112
                    gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1113
1114
1115
1116
1117
1118
1119
1120
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
                    self.append_target_question(chat, ex, fewshot_as_multiturn)
1121
                    labeled_examples_list.append(chat_template(chat))
KonradSzafer's avatar
KonradSzafer committed
1122
1123
1124
1125
1126
1127
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
Baber's avatar
Baber committed
1128
1129
1130
                        labeled_examples,
                        choices[example],
                        fewshot_as_multiturn,
Baber's avatar
Baber committed
1131
                        gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1132
1133
1134
                    )
                else:
                    self.append_target_question(
Baber's avatar
Baber committed
1135
1136
1137
                        labeled_examples,
                        str(example),
                        fewshot_as_multiturn,
Baber's avatar
Baber committed
1138
                        gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1139
1140
                    )
                # return lm.apply_chat_template(labeled_examples)
1141
            return chat_template(labeled_examples)
1142
        else:
KonradSzafer's avatar
KonradSzafer committed
1143
            if self.multiple_input:
Baber's avatar
Baber committed
1144
                # TODO<baber>: How to handle gen_prefix for multiple inputs?
KonradSzafer's avatar
KonradSzafer committed
1145
                return labeled_examples
1146
            if isinstance(example, str):
Baber's avatar
Baber committed
1147
                return labeled_examples + example + gen_prefix
1148
            elif isinstance(example, list):
Baber's avatar
Baber committed
1149
                return [labeled_examples + ex + gen_prefix for ex in example]
1150
1151
1152
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
Baber's avatar
Baber committed
1153
                    return labeled_examples + choices[example] + gen_prefix
1154
                else:
Baber's avatar
Baber committed
1155
                    return labeled_examples + str(example) + gen_prefix
lintangsutawika's avatar
lintangsutawika committed
1156

1157
    def apply_filters(self):
Baber Abbasi's avatar
Baber Abbasi committed
1158
        """Iterates over FilterEnsembles and applies them to instances"""
1159
1160
        if hasattr(self, "_filters"):
            for f in self._filters:
1161
                f.apply(self._instances)
1162
1163
1164
1165
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1166
    def should_decontaminate(self):
1167
        return self.config.should_decontaminate
1168
1169

    def doc_to_decontamination_query(self, doc):
1170
        if self.config.should_decontaminate:
1171
1172
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1173
            else:
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1185

1186
    def _process_doc(self, doc: dict) -> dict:
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

Yu Shi Jie's avatar
Yu Shi Jie committed
1197
    def doc_to_text(self, doc, doc_to_text=None):
1198
1199
        if self.prompt is not None:
            doc_to_text = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1200
1201
        elif doc_to_text is not None:
            doc_to_text = doc_to_text
1202
        else:
1203
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1204

1205
        if isinstance(doc_to_text, int):
1206
            return doc_to_text
1207
        elif isinstance(doc_to_text, str):
1208
            if doc_to_text in self.features:
1209
                # if self.config.doc_to_choice is not None:
1210
1211
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1212
1213
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1214
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1215
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1216
1217
1218
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1219
        elif callable(doc_to_text):
1220
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1221
        # Used when applying a Promptsource template
1222
        elif hasattr(doc_to_text, "apply"):
1223
1224
1225
1226
1227
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1228
                return self.config.fewshot_delimiter
1229
        else:
1230
            print(type(doc_to_text))
1231
            raise TypeError
1232

1233
    def doc_to_target(self, doc: Dict, doc_to_target=None) -> Union[int, str, list]:
1234
1235
        if self.prompt is not None:
            doc_to_target = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1236
1237
        elif doc_to_target is not None:
            doc_to_target = doc_to_target
1238
        else:
1239
            doc_to_target = self.config.doc_to_target
1240

1241
        if isinstance(doc_to_target, int):
1242
            return doc_to_target
1243
        elif isinstance(doc_to_target, str):
1244
            if doc_to_target in self.features:
1245
                # if self.config.doc_to_choice is not None:
1246
1247
1248
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1249
            else:
lintangsutawika's avatar
lintangsutawika committed
1250
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1251
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1252
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1253
1254
1255
1256
1257
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1258
1259
1260
1261
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1262
1263
                else:
                    return target_string
1264
        elif isinstance(doc_to_target, list):
1265
            return doc_to_target
1266
        elif callable(doc_to_target):
1267
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1268
        # Used when applying a Promptsource template
1269
        elif hasattr(doc_to_target, "apply"):
1270
            applied_prompt = doc_to_target.apply(doc)
1271
1272
1273
1274
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1275
                return self.config.fewshot_delimiter
1276
1277
        else:
            raise TypeError
1278

Yu Shi Jie's avatar
Yu Shi Jie committed
1279
    def doc_to_choice(self, doc: Any, doc_to_choice=None) -> List[str]:
1280
1281
        if self.prompt is not None:
            doc_to_choice = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1282
1283
        elif doc_to_choice is not None:
            doc_to_choice = doc_to_choice
1284
        elif self.config.doc_to_choice is None:
1285
1286
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1287
            doc_to_choice = self.config.doc_to_choice
1288

1289
        if isinstance(doc_to_choice, str):
1290
1291
1292
1293
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1294
        elif isinstance(doc_to_choice, list):
1295
            return doc_to_choice
1296
        elif isinstance(doc_to_choice, dict):
1297
1298
1299
1300
1301
1302
1303
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1304

baberabb's avatar
baberabb committed
1305
1306
1307
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1308
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1309
            arguments = (ctx, self.doc_to_target(doc))
1310
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1311
            arguments = (self.doc_to_target(doc),)
1312
        elif self.OUTPUT_TYPE == "multiple_choice":
1313
            choices = self.doc_to_choice(doc)
1314
            target_delimiter = self.config.target_delimiter
1315
1316
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1317
                cont = self.doc_to_target(doc)
1318
1319
1320
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
1321
            else:
1322
                # Otherwise they are placed in the continuation
1323
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1324

1325
            request_list = [
1326
1327
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1328
                    doc=doc,
1329
                    arguments=arg,
1330
                    idx=i,
1331
1332
                    **kwargs,
                )
1333
                for i, arg in enumerate(arguments)
1334
            ]
1335
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
1336
            if "acc_mutual_info" in self._metric_fn_list.keys():
1337
1338
1339
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
1340
                # here mutual info refers to calculating
1341
1342
1343
1344
1345
1346
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1347
                            doc=doc,
1348
                            arguments=("", "{}".format(choice)),
1349
1350
1351
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
1352
                        for i, choice in enumerate(choices)
1353
1354
1355
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
1356

1357
        elif self.OUTPUT_TYPE == "generate_until":
1358
            arguments = (ctx, deepcopy(self.config.generation_kwargs))
lintangsutawika's avatar
lintangsutawika committed
1359
1360

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
1361
1362
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
1363
1364

    def process_results(self, doc, results):
1365
1366
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1367

1368
        result_dict = {}
1369
        use_metric = list(self._metric_fn_list.keys())
1370
1371
1372
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1373
1374
1375
1376
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1377
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1378
            (loglikelihood,) = results
1379
1380
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1381
            return {
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1397
            }
1398
        elif self.OUTPUT_TYPE == "multiple_choice":
1399
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1400

1401
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1402
            choices = self.doc_to_choice(doc)
1403
1404
            completion_len = np.array([float(len(i)) for i in choices])

1405
1406
            if (
                2 * len(choices) == len(lls)
1407
                and "acc_mutual_info" in self._metric_fn_list.keys()
1408
1409
1410
1411
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
1412
1413
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1414
1415
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1416

1417
1418
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1419

1420
1421
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1422
            else:
1423
                gold = self.doc_to_target(doc)
1424
1425

            gold_index_error = False
1426
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1427
1428
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1429
1430
                    gold_index_error = True
            else:
1431
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1432
                    gold = gold if gold < len(choices) else -100
1433
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1434
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1435

Lintang Sutawika's avatar
Lintang Sutawika committed
1436
                if gold == -100:
1437
1438
1439
1440
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1441
                    f"Label index was not in within range of available choices,"
1442
1443
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1444

1445
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1446
1447
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1448
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1449
1450
1451
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1452
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1453
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1454

Lintang Sutawika's avatar
Lintang Sutawika committed
1455
1456
1457
1458
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1459
            result_dict = {
1460
                **({"acc": acc} if "acc" in use_metric else {}),
1461
1462
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1463
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1464
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1465
1466
1467
1468
1469
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1470
1471
            }

1472
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1473
1474
1475
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1476
1477
1478
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1479
        elif self.OUTPUT_TYPE == "generate_until":
1480
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1481
            result = results[0]
1482
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1483
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1484
                # it assumes that doc_to_target returns a number.
1485
1486
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1487
1488
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1489
                gold = list(gold)
Chris's avatar
Chris committed
1490
1491
1492
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1493

lintangsutawika's avatar
lintangsutawika committed
1494
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1495
1496
1497
1498
1499
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1500
1501
1502
1503
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1504
1505
1506
1507
1508
1509
1510
1511
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1512
                    else:
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1534
                else:
1535
                    try:
1536
                        result_score = self._metric_fn_list[metric](
1537
1538
                            references=[gold],
                            predictions=[result],
1539
                            **self._metric_fn_kwargs[metric],
1540
                        )
1541
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1542
                        result_score = self._metric_fn_list[metric]([gold, result])
1543
1544
1545
1546
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1547
        else:
lintangsutawika's avatar
lintangsutawika committed
1548
1549
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1550
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1551
            )
1552
1553
1554

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1555
    def aggregation(self) -> dict:
1556
1557
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1558
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1559
        return self._higher_is_better
1560

Baber Abbasi's avatar
Baber Abbasi committed
1561
1562
1563
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

Lintang Sutawika's avatar
Lintang Sutawika committed
1564
1565
1566
1567
    @property
    def task_name(self) -> Any:
        return getattr(self.config, "task", None)

1568
1569
1570
1571
1572
1573
1574
1575
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
            f"num_samples={len(self.eval_docs)})"
        )

1576
1577

class MultipleChoiceTask(Task):
1578
    OUTPUT_TYPE = "loglikelihood"
1579

baberabb's avatar
baberabb committed
1580
    def doc_to_target(self, doc: dict) -> str:
1581
1582
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1583
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1584
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1585
1586
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1587
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1588
                doc=doc,
1589
                arguments=(ctx, " {}".format(choice)),
1590
                idx=i,
1591
1592
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1593
1594
            for i, choice in enumerate(doc["choices"])
        ]
1595

1596
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1597
1598
1599
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1611
    def higher_is_better(self) -> dict:
1612
1613
1614
1615
1616
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1617
    def aggregation(self) -> dict:
1618
1619
1620
1621
1622
1623
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1624
class PerplexityTask(Task):
1625
1626
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1627
    def has_training_docs(self) -> bool:
1628
1629
        return False

baberabb's avatar
baberabb committed
1630
    def fewshot_examples(self, k: int, rnd) -> List:
1631
1632
1633
1634
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1635
1636
        return []

baberabb's avatar
baberabb committed
1637
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1638
1639
1640
1641
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1642
1643
1644

        return ""

baberabb's avatar
baberabb committed
1645
    def higher_is_better(self) -> dict:
1646
1647
1648
1649
1650
1651
1652
1653
1654
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1655
    def doc_to_text(self, doc) -> str:
1656
1657
1658
1659
1660
        return ""

    def doc_to_target(self, doc):
        return doc

1661
1662
1663
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1664

lintangsutawika's avatar
lintangsutawika committed
1665
1666
1667
1668
1669
1670
1671
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1672

1673
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1674
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1675
1676
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1677
1678
1679
1680
1681
1682
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1683
    def aggregation(self) -> dict:
1684
1685
1686
1687
1688
1689
1690
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1691
    def count_bytes(cls, doc) -> int:
1692
1693
1694
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1695
    def count_words(cls, doc) -> int:
1696
        """Downstream tasks with custom word boundaries should override this!"""
Lintang Sutawika's avatar
Lintang Sutawika committed
1697
        return len(re.split(r"\s+", doc))