task.py 60.4 KB
Newer Older
Baber's avatar
cleanup  
Baber committed
1
2
from __future__ import annotations

3
import abc
4
import ast
lintangsutawika's avatar
lintangsutawika committed
5
import logging
6
import random
7
8
import re
from collections.abc import Callable
9
from copy import deepcopy
Baber's avatar
Baber committed
10
from typing import TYPE_CHECKING, Any, Literal, overload
11
12
13

import datasets
import numpy as np
14
from tqdm import tqdm
Baber's avatar
Baber committed
15
from typing_extensions import deprecated
16
17

from lm_eval import utils
18
19
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
20
from lm_eval.api.utils import check_gold_index_error
21
from lm_eval.caching.cache import load_from_cache, save_to_cache
Baber's avatar
Baber committed
22
from lm_eval.config.metric import MetricConfig
Baber's avatar
Baber committed
23
from lm_eval.config.task import DataSet, TaskConfig
24
25
from lm_eval.filters import build_filter_ensemble

26

27
28
29
30
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
31
    "generate_until",
32
33
]

Baber's avatar
cleanup  
Baber committed
34
if TYPE_CHECKING:
Baber's avatar
Baber committed
35
    pass
Baber's avatar
cleanup  
Baber committed
36
37


Lintang Sutawika's avatar
Lintang Sutawika committed
38
eval_logger = logging.getLogger(__name__)
39

lintangsutawika's avatar
lintangsutawika committed
40

41
42
43
44
45
46
47
48
49
50
class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

Baber's avatar
cleanup  
Baber committed
51
    VERSION: int | str | None = None
52

53
54
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
Baber's avatar
cleanup  
Baber committed
55
    DATASET_PATH: str | None = None
56
57

    # The name of a subset within `DATASET_PATH`.
Baber's avatar
cleanup  
Baber committed
58
    DATASET_NAME: str | None = None
59

Baber's avatar
cleanup  
Baber committed
60
    OUTPUT_TYPE: OutputType | None = None
lintangsutawika's avatar
lintangsutawika committed
61

62
63
    def __init__(
        self,
Baber's avatar
cleanup  
Baber committed
64
65
66
67
        data_dir: str | None = None,
        cache_dir: str | None = None,
        download_mode: datasets.DownloadMode | None = None,
        config: Mapping | None = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
68
    ) -> None:
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
Baber's avatar
cleanup  
Baber committed
91
92
93
        self._training_docs: list | None = None
        self._fewshot_docs: list | None = None
        self._instances: list[Instance] | None = None
94

95
        self._config: TaskConfig = TaskConfig.from_yaml({**config})
96

97
        self._filters = [build_filter_ensemble("none", [("take_first", None)])]
Baber's avatar
cleanup  
Baber committed
98
        self.fewshot_rnd: random.Random | None = (
99
100
            None  # purposely induce errors in case of improper usage
        )
101

102
103
    def download(
        self,
Baber's avatar
cleanup  
Baber committed
104
105
        data_dir: str | None = None,
        cache_dir: str | None = None,
106
107
        download_mode=None,
    ) -> None:
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
Baber's avatar
Baber committed
132
        assert self.DATASET_PATH is not None, "DATASET_PATH must be set in Task class"
133
134
135
136
137
138
139
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
140

141
    @property
142
    def config(self) -> TaskConfig:
143
144
145
        """Returns the TaskConfig associated with this class."""
        return self._config

Baber's avatar
Baber committed
146
    def has_training_docs(self) -> bool:
147
        """Whether the task has a training set"""
Baber's avatar
Baber committed
148
        raise NotImplementedError
149

Baber's avatar
Baber committed
150
    def has_validation_docs(self) -> bool:
151
        """Whether the task has a validation set"""
Baber's avatar
Baber committed
152
        raise NotImplementedError
153

Baber's avatar
Baber committed
154
    def has_test_docs(self) -> bool:
155
        """Whether the task has a test set"""
Baber's avatar
Baber committed
156
        raise NotImplementedError
157

Baber's avatar
Baber committed
158
    def training_docs(self) -> DataSet | None:
159
160
161
162
163
164
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

Baber's avatar
Baber committed
165
    def validation_docs(self) -> DataSet | None:
166
167
168
169
170
171
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

Baber's avatar
Baber committed
172
    def test_docs(self) -> DataSet | None:
173
174
175
176
177
178
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

Baber's avatar
Baber committed
179
    def fewshot_docs(self) -> DataSet | None:
180
181
182
183
184
185
186
187
188
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
Baber's avatar
Baber committed
189
            if self.config.num_fewshot and self.config.num_fewshot > 0:
Baber Abbasi's avatar
Baber Abbasi committed
190
191
192
193
                eval_logger.warning(
                    f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
                    ", using test_docs as fewshot_docs but this is not recommended."
                )
194
195
            return self.test_docs()

196
    def _process_doc(self, doc: dict) -> dict:
197
198
199
200
201
202
203
204
205
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
206

207
    @property
Baber's avatar
cleanup  
Baber committed
208
    def instances(self) -> list[Instance]:
209
210
211
212
213
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

Baber's avatar
Baber committed
214
    def fewshot_examples(self, k, rnd) -> Iterable[dict]:
215
216
217
218
219
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

Baber's avatar
cleanup  
Baber committed
220
    def doc_to_decontamination_query(self, doc: dict):
221
        raise NotImplementedError(
222
223
224
225
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
Baber's avatar
cleanup  
Baber committed
226
    def doc_to_text(self, doc: dict) -> str:
227
228
229
        pass

    @abc.abstractmethod
Baber's avatar
cleanup  
Baber committed
230
    def doc_to_target(self, doc: dict) -> str | int:
231
232
        pass

233
    # not an abstractmethod because not every language-only task has to implement this
Baber's avatar
cleanup  
Baber committed
234
    def doc_to_image(self, doc: dict):
235
236
        raise NotImplementedError

Baber's avatar
cleanup  
Baber committed
237
    def doc_to_audio(self, doc: dict):
238
239
        raise NotImplementedError

Baber's avatar
cleanup  
Baber committed
240
    def doc_to_prefix(self, doc: dict) -> str:
Baber Abbasi's avatar
Baber Abbasi committed
241
242
        return ""

243
244
    def build_all_requests(
        self,
245
        *,
Baber's avatar
cleanup  
Baber committed
246
247
        limit: int | None = None,
        samples: list[int] | None = None,
248
249
250
251
        rank: int = 0,
        world_size: int = 1,
        cache_requests: bool = False,
        rewrite_requests_cache: bool = False,
Baber's avatar
cleanup  
Baber committed
252
        system_instruction: str | None = None,
253
254
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
Baber's avatar
cleanup  
Baber committed
255
        chat_template: Callable | None = None,
256
        tokenizer_name: str = "",
257
    ) -> None:
258
        """Build a set of Instances for a task, and store them in task.instances"""
259
260
261
262

        # used with caching
        og_limit = limit

263
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
264
265
266
267
268
269
270
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
271
        cache_key += f"-tokenizer{tokenizer_name}"
272

Baber Abbasi's avatar
Baber Abbasi committed
273
        cached_instances = load_from_cache(file_name=cache_key, cache=cache_requests)
274
275
276
277
278
279
280
281
282
283
284
285
286

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
287
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
288

289
        instances = []
290
291
292
293
294
295
296
297
298
299

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
300
301
302
            self.doc_iterator(
                rank=rank, limit=limit, samples=samples, world_size=world_size
            )
303
304
305
306
307
308
309
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
310
        ):
311
            # sample fewshot context #TODO: need to offset doc_id by rank now!
312
            fewshot_ctx = self.fewshot_context(
313
                doc,
314
315
316
317
318
319
320
                num_fewshot=0
                if self.config.num_fewshot is None
                else self.config.num_fewshot,
                system_instruction=system_instruction,
                apply_chat_template=apply_chat_template,
                fewshot_as_multiturn=fewshot_as_multiturn,
                chat_template=chat_template,
Baber Abbasi's avatar
Baber Abbasi committed
321
                gen_prefix=self.doc_to_prefix(doc),
322
            )
323

324
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
325
326
327
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
Baber's avatar
Baber committed
328
                metadata=(self.config.task, doc_id, self.config.repeats),
329
                apply_chat_template=apply_chat_template,
330
                chat_template=chat_template,
lintangsutawika's avatar
lintangsutawika committed
331
            )
332
333
334
335

            if not isinstance(inst, list):
                inst = [inst]

336
337
338
339
340
341
342
343
344
345
346
347
348
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
349

350
351
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
352

353
354
355
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

356
    @abc.abstractmethod
Baber's avatar
cleanup  
Baber committed
357
    def construct_requests(self, doc: dict, ctx: list[dict] | str, **kwargs):
358
359
360
361
362
363
364
365
366
367
368
369
370
371
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
372
            The number of times each instance in a dataset is inferred on. Defaults to 1,
373
374
375
376
377
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
378
    def process_results(self, doc: dict, results: list) -> dict[str, Any]:
379
380
381
382
383
384
385
386
387
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
388
        raise NotImplementedError
389

Baber's avatar
Baber committed
390
    @deprecated("not used anymore")
391
392
393
394
395
396
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
Baber's avatar
cleanup  
Baber committed
397
        return True
398

Baber's avatar
Baber committed
399
    @deprecated("not used anymore")
400
401
402
403
404
405
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
Baber's avatar
cleanup  
Baber committed
406
        return True
407

408
409
410
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
411
    @classmethod
Baber's avatar
Baber committed
412
    def count_bytes(cls, doc: str) -> int:
haileyschoelkopf's avatar
haileyschoelkopf committed
413
414
415
416
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
Baber's avatar
Baber committed
417
    def count_words(cls, doc: str) -> int:
haileyschoelkopf's avatar
haileyschoelkopf committed
418
419
420
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

421
    @utils.positional_deprecated
Baber Abbasi's avatar
Baber Abbasi committed
422
    def fewshot_context(self, doc, num_fewshot, rnd=None, description=None, **kwargs):
423
424
425
426
427
428
429
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
430
431
432
433
434
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
435
436
437
        :returns: str
            The fewshot context.
        """
438
        if rnd is None:
439
440
441
442
443
444
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
445

446
        description = description if description else ""
447
448

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
449
            labeled_examples = ""
450
        else:
lintangsutawika's avatar
lintangsutawika committed
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
475
            )
476
477

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
478
        return description + labeled_examples + example
479

Baber's avatar
cleanup  
Baber committed
480
    def apply_filters(self) -> list[Instance] | None:
Baber Abbasi's avatar
Baber Abbasi committed
481
        """Iterates over FilterEnsembles and applies them to instances"""
Baber's avatar
cleanup  
Baber committed
482
        if hasattr(self, "_filters") and self._instances:
lintangsutawika's avatar
lintangsutawika committed
483
            for f in self._filters:
484
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
485
        else:
Baber's avatar
cleanup  
Baber committed
486
487
488
            eval_logger.warning(
                "No filter defined or no instances, passing through instances"
            )
lintangsutawika's avatar
lintangsutawika committed
489
            return self._instances
490

baberabb's avatar
baberabb committed
491
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
492
        """Returns the config as a dictionary."""
493
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
494
        # (num_fewshot)
495
        return self.config.to_dict()
496

Baber Abbasi's avatar
Baber Abbasi committed
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
Baber's avatar
Baber committed
516
517
518
519
520
521
522
        # if not isinstance(self, ConfigurableTask):
        #     self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
        #     self.aggregation = lambda: {
        #         metric_name: get_metric_aggregation(metric_name)
        #     }
        setattr(self._config, "metric_list", [MetricConfig(name=metric_name)])
        setattr(self._config, "process_results", lambda *args: {"bypass": 0})
Baber Abbasi's avatar
Baber Abbasi committed
523

Baber's avatar
cleanup  
Baber committed
524
    def set_fewshot_seed(self, seed: int | None = None) -> None:
525
526
527
528
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

529
    @property
Baber's avatar
cleanup  
Baber committed
530
    def eval_docs(self) -> datasets.Dataset | Iterable[dict]:
531
532
533
534
535
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
536
537
538
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
539
540

    def doc_iterator(
541
542
543
        self,
        *,
        rank: int = 0,
Baber's avatar
cleanup  
Baber committed
544
        limit: int | None = None,
545
        world_size: int = 1,
Baber's avatar
cleanup  
Baber committed
546
547
        samples: list[int] | None = None,
    ) -> Iterator[tuple[int, Any]]:
548
549
        if samples:
            n = len(self.eval_docs)
Baber's avatar
cleanup  
Baber committed
550
            assert all(e < n for e in samples), (
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
                f"Elements of --samples should be in the interval [0,k-1] where k is the number of total examples. In this case, k={n}."
            )
            eval_logger.info(
                f"{self.config.task}: Evaluating on {len(samples)} examples"
            )
            doc_iterator = utils.create_iterator(
                enumerate(x for i, x in enumerate(self.eval_docs) if i in samples),
                rank=int(rank),
                limit=None,  # limit does not matter here since we are selecting samples directly
                world_size=int(world_size),
            )
        else:
            limit = int(limit) if limit else None
            doc_iterator = utils.create_iterator(
                enumerate(self.eval_docs),
                rank=int(rank),
                limit=limit,
                world_size=int(world_size),
            )
570
571
        return doc_iterator

572
573

class ConfigurableTask(Task):
574
    VERSION = "Yaml"
575
    OUTPUT_TYPE = None
576
    CONFIG = None
577
578

    def __init__(
579
580
581
582
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
Baber's avatar
Baber committed
583
        config: Mapping[str, Any] | None = None,
Baber's avatar
Baber committed
584
    ) -> None:
585
        # Get pre-configured attributes
586
        self._config = self.CONFIG
587

588
        # Use new configurations if there was no preconfiguration
589
        if self.config is None:
590
            self._config = TaskConfig(**config)
591
592
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
593
            if config is not None:
594
                self._config.__dict__.update(config)
595

596
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
597
598
599
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
600

Baber's avatar
cleanup  
Baber committed
601
602
        if isinstance(self.config.metadata, dict) and "version" in self.config.metadata:
            self.VERSION = self.config.metadata["version"]
603

604
        if self.config.output_type is not None:
605
606
607
608
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
609
            self.OUTPUT_TYPE = self.config.output_type
610

611
612
613
614
        if self.config.doc_to_image is not None:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

615
616
617
618
        if self.config.doc_to_audio:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

Hojin Lee's avatar
Hojin Lee committed
619
620
621
        if self.config.unsafe_code is not False:
            self.UNSAFE_CODE = True

622
623
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
624

625
626
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
627

628
        # self.metric_list: list[MetricConfig] = self.config.get_metrics
629

630
        self.download(self.config.dataset_kwargs)
631
632
633
        self._training_docs = None
        self._fewshot_docs = None

Baber's avatar
Baber committed
634
        self._filters = self.config.get_filters
Baber's avatar
Baber committed
635

Baber's avatar
Baber committed
636
637
638
639
640
641
642
        # if self.config.use_prompt is not None:
        #     eval_logger.info(f"loading prompt {self.config.use_prompt}")
        #     self.prompt = get_prompt(
        #         self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
        #     )
        # else:
        #     self.prompt = None
643

644
645
646
647
        if (
            self.config.fewshot_cfg.num_fewshot() > 0
            and self.fewshot_docs() is not None
        ):
Baber's avatar
Baber committed
648
649
650
            self.fewshot_rnd = random.Random()
            self.sampler = self.config.fewshot_cfg.init_sampler(
                list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
651
            )
652
        self.task_docs = self.eval_docs
653

654
        # Test One Doc
Baber's avatar
Baber committed
655
        self.features: list[str] = list(self.task_docs.features.keys())
Baber's avatar
Baber committed
656
        self.multiple_input = self.config.multiple_input
657
        self.multiple_target = 0
658
        test_doc = self.task_docs[0]
659
        test_text = self.doc_to_text(test_doc)
660
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
661

662
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
663
            test_choice = self.doc_to_choice(test_doc)
664
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
665
                eval_logger.error("doc_to_choice must return list")
666
667
            else:
                num_choice = len(test_choice)
668

669
            if isinstance(test_text, int):
Baber Abbasi's avatar
Baber Abbasi committed
670
671
672
                eval_logger.debug(
                    "doc_to_text returned an int. Assuming multiple inputs."
                )
673
                self.multiple_input = num_choice
674
675
        else:
            test_choice = None
676

677
        if isinstance(test_target, list):
Baber Abbasi's avatar
Baber Abbasi committed
678
679
680
            eval_logger.debug(
                "doc_to_target returned a list. Assuming multiple targets."
            )
681
            self.multiple_target = len(test_target)
682
        else:
683
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
684
                test_target = test_choice[test_target]
685
            else:
lintangsutawika's avatar
lintangsutawika committed
686
                test_target = str(test_target)
687

Baber's avatar
cleanup  
Baber committed
688
        check_choices = test_choice if test_choice is not None else [test_target]
689
690
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
Baber's avatar
cleanup  
Baber committed
691
                choice_has_whitespace = choice[0].isspace()
692
                delimiter_has_whitespace = (
Baber's avatar
cleanup  
Baber committed
693
                    self.config.target_delimiter.rstrip()
694
                    != self.config.target_delimiter
695
                )
696

697
                if delimiter_has_whitespace and choice_has_whitespace:
698
699
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
700
701
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
702
                    eval_logger.debug(
703
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
704
705
                    )

Baber Abbasi's avatar
Baber Abbasi committed
706
    def download(
Baber's avatar
cleanup  
Baber committed
707
        self, dataset_kwargs:dict[str, Any] | None = None, **kwargs
Baber Abbasi's avatar
Baber Abbasi committed
708
    ) -> None:
Baber Abbasi's avatar
Baber Abbasi committed
709
710
        from packaging.version import parse as vparse

711
712
713
714
        self.config.dataset_kwargs, self.config.metadata = (
            self.config.dataset_kwargs or {},
            self.config.metadata or {},
        )
Baber Abbasi's avatar
Baber Abbasi committed
715
716
        if dataset_kwargs and vparse(datasets.__version__) >= vparse("4.0.0"):
            dataset_kwargs.pop("trust_remote_code", None)
717
        if isinstance(df := self.config.custom_dataset, Callable):
Baber Abbasi's avatar
Baber Abbasi committed
718
719
720
721
            eval_logger.warning(
                f"{self.config.task}: Custom kwargs can be passed to `--metadata` in console (as json string) or to the TaskManager."
                + "\nFor example --metadata='{\"max_seq_lengths\":[4096, 8192]}'. For details see task Readme."
            )
722
            self.dataset = df(**(self.config.dataset_kwargs | self.config.metadata))
Baber Abbasi's avatar
Baber Abbasi committed
723
        else:
Baber's avatar
Baber committed
724
725
726
            assert self.config.dataset_path is not None, (
                "dataset_path must be set in TaskConfig"
            )
Baber Abbasi's avatar
Baber Abbasi committed
727
            self.dataset = datasets.load_dataset(
728
729
730
                path=self.config.dataset_path,
                name=self.config.dataset_name,
                **self.config.dataset_kwargs,
Baber Abbasi's avatar
Baber Abbasi committed
731
            )
732

baberabb's avatar
baberabb committed
733
    def has_training_docs(self) -> bool:
Baber's avatar
cleanup  
Baber committed
734
        return self.config.training_split is not None
735

baberabb's avatar
baberabb committed
736
    def has_validation_docs(self) -> bool:
Baber's avatar
cleanup  
Baber committed
737
        return self.config.validation_split is not None
738

baberabb's avatar
baberabb committed
739
    def has_test_docs(self) -> bool:
Baber's avatar
cleanup  
Baber committed
740
        return self.config.test_split is not None
741

Baber's avatar
Baber committed
742
    def training_docs(self) -> DataSet | None:
743
        if self.has_training_docs():
744
745
746
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
747
                )
748
            return self.dataset[self.config.training_split]
749

Baber's avatar
Baber committed
750
    def validation_docs(self) -> DataSet | None:
751
        if self.has_validation_docs():
752
753
754
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
755
                )
756
            return self.dataset[self.config.validation_split]
757

Baber's avatar
Baber committed
758
    def test_docs(self) -> DataSet | None:
759
        if self.has_test_docs():
760
761
762
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
763

764
    def fewshot_docs(self):
Baber's avatar
Baber committed
765
766
767
768
769
770
        docs = self.config.fewshot_cfg.get_docs(self.dataset)

        if docs is not None:
            return docs

        # Fallback to parent implementation
Baber's avatar
cleanup  
Baber committed
771
772
773
774
775
776
777
778
779
780
        if (
            (_num_fewshot := self.config.num_fewshot)
            and isinstance(_num_fewshot, int)
            and _num_fewshot > 0
        ):
            eval_logger.warning(
                f"[Task: {self.config.task}] "
                "num_fewshot > 0 but no fewshot source configured. "
                "Using preconfigured rule."
            )
Baber's avatar
Baber committed
781
782

        return super().fewshot_docs()
783

KonradSzafer's avatar
KonradSzafer committed
784
785
    @staticmethod
    def append_target_question(
Baber's avatar
cleanup  
Baber committed
786
        labeled_examples: list[dict[str, str]],
KonradSzafer's avatar
KonradSzafer committed
787
788
        question: str,
        fewshot_as_multiturn: bool = False,
Baber's avatar
cleanup  
Baber committed
789
        gen_prefix: str | None = None,
KonradSzafer's avatar
KonradSzafer committed
790
791
792
793
794
795
796
797
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
798
                labeled_examples.append({"role": "user", "content": question})
KonradSzafer's avatar
KonradSzafer committed
799
800
            # if last message is user, append to it to avoid two user messages in a row
            else:
801
                labeled_examples[-1]["content"] += question
KonradSzafer's avatar
KonradSzafer committed
802
803
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
804
            labeled_examples.append({"role": "user", "content": question})
Baber Abbasi's avatar
Baber Abbasi committed
805
806
        if gen_prefix:
            labeled_examples.append({"role": "assistant", "content": gen_prefix})
KonradSzafer's avatar
KonradSzafer committed
807

lintangsutawika's avatar
lintangsutawika committed
808
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
809
810
    def fewshot_context(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
811
        doc: dict,
KonradSzafer's avatar
KonradSzafer committed
812
        num_fewshot: int,
Baber's avatar
cleanup  
Baber committed
813
        system_instruction: str | None = None,
KonradSzafer's avatar
KonradSzafer committed
814
815
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
Baber's avatar
cleanup  
Baber committed
816
817
818
        chat_template: Callable | None = None,
        gen_prefix: str | None = None,
    ) -> str | list[str] | None:
lintangsutawika's avatar
lintangsutawika committed
819
820
821
822
823
824
825
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
826
827
828
829
830
831
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
832
833
        :param chat_template:
            callable (from lm.apply_chat_template) that takes in a list[Dict] chat transcript and renders it into a string.
834
835
        :param gen_prefix:
            String to append after the <|assistant|> token.
lintangsutawika's avatar
lintangsutawika committed
836
837
838
        :returns: str
            The fewshot context.
        """
Baber's avatar
cleanup  
Baber committed
839
        labeled_examples = [] if apply_chat_template else ""
KonradSzafer's avatar
KonradSzafer committed
840
841

        # get task description
842
843
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
844

KonradSzafer's avatar
KonradSzafer committed
845
846
847
848
849
850
851
852
853
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
854
        else:
KonradSzafer's avatar
KonradSzafer committed
855
856
857
858
859
860
861
862
863
864
865
866
867
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt
        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
Baber Abbasi's avatar
Baber Abbasi committed
868
869
870
                        doc,
                        num_fewshot,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
871
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
872
873
874
                    )
                )
            else:
Baber Abbasi's avatar
Baber Abbasi committed
875
                labeled_examples += self.sampler.get_context(
Baber Abbasi's avatar
Baber Abbasi committed
876
                    doc, num_fewshot, gen_prefix=gen_prefix
Baber Abbasi's avatar
Baber Abbasi committed
877
                )
lintangsutawika's avatar
lintangsutawika committed
878
879

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
880
881
        if apply_chat_template:
            if self.multiple_input:
Baber Abbasi's avatar
Baber Abbasi committed
882
                # TODO: append prefill?
883
884
                if not labeled_examples:
                    return ""
885
                return chat_template(labeled_examples)
KonradSzafer's avatar
KonradSzafer committed
886
887
            if isinstance(example, str):
                self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
888
889
890
                    labeled_examples,
                    example,
                    fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
891
                    gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
892
893
894
895
896
897
898
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
899
900
901
902
                    self.append_target_question(
                        chat,
                        ex,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
903
                        gen_prefix=gen_prefix,
Baber Abbasi's avatar
Baber Abbasi committed
904
905
906
907
908
                    )
                    # TODO: append prefill?
                    labeled_examples_list.append(
                        chat_template(
                            chat,
Baber's avatar
cleanup  
Baber committed
909
                            add_generation_prompt=not gen_prefix,
Baber Abbasi's avatar
Baber Abbasi committed
910
911
                        )
                    )
KonradSzafer's avatar
KonradSzafer committed
912
913
914
915
916
917
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
918
919
920
                        labeled_examples,
                        choices[example],
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
921
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
922
923
924
                    )
                else:
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
925
926
927
                        labeled_examples,
                        str(example),
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
928
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
929
930
                    )
                # return lm.apply_chat_template(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
931
932
            return chat_template(
                labeled_examples,
Baber's avatar
cleanup  
Baber committed
933
                add_generation_prompt=not gen_prefix,
Baber Abbasi's avatar
Baber Abbasi committed
934
            )
935
        else:
Baber Abbasi's avatar
Baber Abbasi committed
936
            prefix = (
Baber Abbasi's avatar
Baber Abbasi committed
937
938
                self.config.target_delimiter + gen_prefix
                if gen_prefix is not None
Baber Abbasi's avatar
Baber Abbasi committed
939
940
                else ""
            )
KonradSzafer's avatar
KonradSzafer committed
941
942
            if self.multiple_input:
                return labeled_examples
943
            if isinstance(example, str):
Baber Abbasi's avatar
Baber Abbasi committed
944
                return labeled_examples + example + prefix
945
            elif isinstance(example, list):
Baber Abbasi's avatar
Baber Abbasi committed
946
                return [labeled_examples + ex + prefix for ex in example]
947
948
949
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
Baber Abbasi's avatar
Baber Abbasi committed
950
                    return labeled_examples + choices[example] + prefix
951
                else:
Baber Abbasi's avatar
Baber Abbasi committed
952
                    return labeled_examples + str(example) + prefix
lintangsutawika's avatar
lintangsutawika committed
953

Baber's avatar
cleanup  
Baber committed
954
    def apply_filters(self) -> list[Instance] | None:
Baber Abbasi's avatar
Baber Abbasi committed
955
        """Iterates over FilterEnsembles and applies them to instances"""
956
        if hasattr(self, "_filters") and self._instances:
957
            for f in self._filters:
958
                f.ensemble.apply(self._instances)
959
        else:
960
961
962
            eval_logger.warning(
                "No filter defined or instances found. Passing through instances"
            )
963
964
            return self._instances

965
    def should_decontaminate(self):
966
        return self.config.should_decontaminate
967

Baber Abbasi's avatar
Baber Abbasi committed
968
    def doc_to_decontamination_query(self, doc: dict):
969
        if self.config.should_decontaminate:
970
971
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
972
            else:
973
974
975
976
977
978
979
980
981
982
983
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
984

985
    def _process_doc(self, doc: dict) -> dict:
986
987
988
989
990
991
992
993
994
995
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

Baber's avatar
Baber committed
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
    @overload
    def doc_to_text(self, doc: dict, doc_to_text: None = None) -> str | int: ...

    @overload
    def doc_to_text(self, doc: dict, doc_to_text: int) -> int: ...

    @overload
    def doc_to_text(self, doc: dict, doc_to_text: str) -> str: ...

    @overload
    def doc_to_text(self, doc: dict, doc_to_text: Callable[..., str]) -> str: ...

1008
1009
    def doc_to_text(
        self, doc: dict, doc_to_text: int | str | Callable[..., str] | None = None
Baber's avatar
Baber committed
1010
    ) -> str | int:
Baber's avatar
Baber committed
1011
1012
        # if self.prompt is not None:
        #     doc_to_text = self.prompt
1013
        doc_to_text = doc_to_text or self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1014

1015
        if isinstance(doc_to_text, int):
1016
            return doc_to_text
1017
        elif isinstance(doc_to_text, str):
1018
            if doc_to_text in self.features:
1019
                # if self.config.doc_to_choice is not None:
1020
1021
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1022
1023
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1024
                text_string = utils.apply_template(doc_to_text, doc)
Baber's avatar
Baber committed
1025
                if text_string.isdigit() and self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1026
1027
1028
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1029
        elif callable(doc_to_text):
1030
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1031
        # Used when applying a Promptsource template
Baber's avatar
Baber committed
1032
1033
1034
1035
1036
1037
1038
        # elif hasattr(doc_to_text, "apply"):
        #     applied_prompt = doc_to_text.apply(doc)
        #     if len(applied_prompt) == 2:
        #         return applied_prompt[0]
        #     else:
        #         eval_logger.warning("Applied prompt returns empty string")
        #         return self.config.fewshot_delimiter
1039
        else:
1040
            print(type(doc_to_text))
1041
            raise TypeError
1042

Baber's avatar
Baber committed
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
    @overload
    def doc_to_target(
        self, doc: dict, doc_to_target: None = None
    ) -> int | str | list[int]: ...

    @overload
    def doc_to_target(self, doc: dict, doc_to_target: int) -> int: ...

    @overload
    def doc_to_target(self, doc: dict, doc_to_target: str) -> int | str | list[int]: ...

    @overload
    def doc_to_target(self, doc: dict, doc_to_target: list) -> list[int]: ...

    @overload
    def doc_to_target(
        self, doc: dict, doc_to_target: Callable[..., int | str | list[int]]
    ) -> int | str | list[int]: ...

Baber's avatar
cleanup  
Baber committed
1062
    def doc_to_target(self, doc: dict, doc_to_target=None) -> int | str | list[int]:
Baber's avatar
Baber committed
1063
1064
1065
        # if self.prompt is not None:
        #     doc_to_target = self.prompt
        if doc_to_target is not None:
Yu Shi Jie's avatar
Yu Shi Jie committed
1066
            doc_to_target = doc_to_target
1067
        else:
1068
            doc_to_target = self.config.doc_to_target
1069

1070
        if isinstance(doc_to_target, int):
1071
            return doc_to_target
1072
        elif isinstance(doc_to_target, str):
1073
            if doc_to_target in self.features:
1074
                # if self.config.doc_to_choice is not None:
1075
1076
1077
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1078
            else:
lintangsutawika's avatar
lintangsutawika committed
1079
                target_string = utils.apply_template(doc_to_target, doc)
Baber's avatar
Baber committed
1080
                if target_string.isdigit() and self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1081
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1082
1083
1084
1085
1086
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1087
1088
1089
1090
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1091
1092
                else:
                    return target_string
1093
        elif isinstance(doc_to_target, list):
1094
            return doc_to_target
1095
        elif callable(doc_to_target):
1096
            return doc_to_target(doc)
Baber's avatar
Baber committed
1097
1098
1099
1100
1101
1102
1103
1104
        # # Used when applying a Promptsource template
        # elif hasattr(doc_to_target, "apply"):
        #     applied_prompt = doc_to_target.apply(doc)
        #     if len(applied_prompt) == 2:
        #         return applied_prompt[1]
        #     else:
        #         eval_logger.warning("Applied prompt returns empty string")
        #         return self.config.fewshot_delimiter
1105
1106
        else:
            raise TypeError
1107

Baber's avatar
Baber committed
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
    @overload
    def doc_to_choice(self, doc: dict, doc_to_choice: None = None) -> list[str]: ...

    @overload
    def doc_to_choice(self, doc: dict, doc_to_choice: str) -> list[str]: ...

    @overload
    def doc_to_choice(self, doc: dict, doc_to_choice: list) -> list[str]: ...

    @overload
    def doc_to_choice(self, doc: dict, doc_to_choice: dict) -> list[str]: ...

    @overload
    def doc_to_choice(
        self, doc: dict, doc_to_choice: Callable[..., list[str]]
    ) -> list[str]: ...

Baber's avatar
cleanup  
Baber committed
1125
    def doc_to_choice(
Baber's avatar
Baber committed
1126
1127
        self,
        doc: dict,
Baber's avatar
cleanup  
Baber committed
1128
1129
        doc_to_choice: str | list | dict | Callable[..., list[str]] | None = None,
    ) -> list[str]:
Baber's avatar
Baber committed
1130
1131
1132
        # if self.prompt is not None:
        #     doc_to_choice = self.prompt
        if doc_to_choice is not None:
Yu Shi Jie's avatar
Yu Shi Jie committed
1133
            doc_to_choice = doc_to_choice
1134
        elif self.config.doc_to_choice is None:
1135
            eval_logger.error("doc_to_choice was called but not set in config")
Baber's avatar
Baber committed
1136
            doc_to_choice = None
1137
        else:
1138
            doc_to_choice = self.config.doc_to_choice
1139

1140
        if isinstance(doc_to_choice, str):
1141
1142
1143
1144
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1145
        elif isinstance(doc_to_choice, list):
1146
            return doc_to_choice
1147
        elif isinstance(doc_to_choice, dict):
1148
1149
1150
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
Baber's avatar
Baber committed
1151
1152
        # elif hasattr(doc_to_choice, "get_answer_choices_list"):
        #     return doc_to_choice.get_answer_choices_list(doc)
1153
1154
        else:
            raise TypeError
1155

Baber's avatar
Baber committed
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
    @overload
    def doc_to_image(self, doc: dict, doc_to_image: None = None) -> None: ...

    @overload
    def doc_to_image(self, doc: dict, doc_to_image: list) -> list: ...

    @overload
    def doc_to_image(self, doc: dict, doc_to_image: str) -> int | str | None: ...

    @overload
    def doc_to_image(self, doc: dict, doc_to_image: Callable[..., Any]) -> Any: ...

Baber's avatar
cleanup  
Baber committed
1168
    def doc_to_image(self, doc: dict, doc_to_image=None) -> int | str | list | None:
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
        if doc_to_image is not None:
            doc_to_image = doc_to_image
        elif self.config.doc_to_image is not None:
            doc_to_image = self.config.doc_to_image
        else:
            return None

        if isinstance(doc_to_image, list):
            image_feature = [
                self.doc_to_image(doc, feature) for feature in doc_to_image
            ]
            return [feature for feature in image_feature if feature is not None]
        elif isinstance(doc_to_image, str):
            if doc_to_image in self.features:
                return doc[doc_to_image]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_image, doc))
        elif callable(doc_to_image):
            return doc_to_image(doc)
        else:
            return None

Baber's avatar
Baber committed
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
    @overload
    def doc_to_audio(self, doc: Any, doc_to_audio: None = None) -> None: ...

    @overload
    def doc_to_audio(self, doc: Any, doc_to_audio: list) -> list: ...

    @overload
    def doc_to_audio(self, doc: Any, doc_to_audio: str) -> int | str | None: ...

    @overload
    def doc_to_audio(self, doc: Any, doc_to_audio: Callable[..., Any]) -> Any: ...

Baber's avatar
cleanup  
Baber committed
1203
    def doc_to_audio(self, doc: Any, doc_to_audio=None) -> int | str | list | None:
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
        if doc_to_audio is not None:
            doc_to_audio = doc_to_audio
        elif self.config.doc_to_audio is not None:
            doc_to_audio = self.config.doc_to_audio
        else:
            return None

        if isinstance(doc_to_audio, list):
            audio_feature = [
                self.doc_to_audio(doc, feature) for feature in doc_to_audio
            ]
            return [feature for feature in audio_feature if feature is not None]
        elif isinstance(doc_to_audio, str):
            if doc_to_audio in self.features:
                return doc[doc_to_audio]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_audio, doc))
        elif callable(doc_to_audio):
            return doc_to_audio(doc)
        else:
            return None

Baber's avatar
cleanup  
Baber committed
1226
    def doc_to_prefix(self, doc: dict) -> str | None:
Baber Abbasi's avatar
Baber Abbasi committed
1227
1228
1229
1230
1231
1232
1233
        if (gen_prefix := self.config.gen_prefix) is not None:
            if gen_prefix in self.features:
                return doc[gen_prefix]
            else:
                return utils.apply_template(gen_prefix, doc)
        return None

baberabb's avatar
baberabb committed
1234
1235
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
Baber's avatar
cleanup  
Baber committed
1236
    ) -> list[Instance] | Instance:
1237
        apply_chat_template = kwargs.pop("apply_chat_template", False)
1238
        chat_template: Callable | None = kwargs.pop("chat_template", None)
1239

1240
1241
        aux_arguments = None

1242
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1243
            arguments = (ctx, self.doc_to_target(doc))
1244
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1245
            arguments = (self.doc_to_target(doc),)
1246
        elif self.OUTPUT_TYPE == "multiple_choice":
1247
            choices = self.doc_to_choice(doc)
1248
            target_delimiter = self.config.target_delimiter
1249
1250
            if apply_chat_template:
                target_delimiter = ""
1251
1252
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1253
                # apply chat_template to choices if apply_chat_template
1254
                cont = self.doc_to_target(doc)
1255

1256
                arguments = [
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
                    (
                        ctx
                        + (
                            chat_template([{"role": "user", "content": choice}])
                            if apply_chat_template
                            else choice
                        ),
                        f"{target_delimiter}{cont}",
                    )
                    for choice in choices
1267
                ]
1268
            else:
1269
                # Otherwise they are placed in the continuation
1270
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1271

1272
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
1273
            if "acc_mutual_info" in [m.metric_name for m in self.config._metric_list]:
1274
1275
1276
1277
1278
1279
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

                # here mutual info refers to calculating
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
1280
1281
1282
1283
                # TODO: should these be strided? will have to modify the processing in process_results if so
                aux_arguments = [
                    ("", f"{target_delimiter}{choice}") for choice in choices
                ]
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298

                arguments.extend(aux_arguments)

        elif self.OUTPUT_TYPE == "generate_until":
            arguments = (ctx, deepcopy(self.config.generation_kwargs))

        multimodal_arg = {}
        if (
            self.config.doc_to_image
        ):  # TODO: ensure that non-multimodal tasks aren't getting visual args
            multimodal_arg = {
                **multimodal_arg,
                **{"visual": self.doc_to_image(doc)},
            }

1299
1300
1301
1302
1303
1304
1305
1306
        if (
            self.config.doc_to_audio
        ):  # TODO: ensure that non-multimodal tasks aren't getting audio args
            multimodal_arg = {
                **multimodal_arg,
                **{"audio": self.doc_to_audio(doc)},
            }

1307
1308
1309
1310
1311
1312
1313
        if bool(multimodal_arg):
            if isinstance(arguments, list):
                arguments = [arg + (multimodal_arg,) for arg in arguments]
            else:
                arguments = arguments + (multimodal_arg,)

        if self.OUTPUT_TYPE == "multiple_choice":
1314
            request_list = [
1315
1316
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1317
                    doc=doc,
1318
                    arguments=arg,
1319
                    idx=i,
1320
1321
                    **kwargs,
                )
1322
                for i, arg in enumerate(arguments)
1323
            ]
1324
1325

            return request_list
lintangsutawika's avatar
lintangsutawika committed
1326

lintangsutawika's avatar
lintangsutawika committed
1327
        return Instance(
1328
1329
1330
1331
1332
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=arguments,
            idx=0,
            **kwargs,
lintangsutawika's avatar
lintangsutawika committed
1333
        )
1334

1335
    def process_results(self, doc: dict, results: list) -> dict[str, Any]:
1336
1337
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1338

1339
        result_dict = {}
1340
        use_metric = list(m.metric_name for m in self.config._metric_list)
1341
1342
1343
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1344
1345
1346
1347
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1348
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
1349
1350
1351
1352
1353
1354
            (loglikelihood, *_) = results
            assert isinstance(_target := self.doc_to_target(doc), str), (
                "Require target to be a string for loglikelihood_rolling"
            )
            _words = self.count_words(_target)
            _bytes = self.count_bytes(_target)
haileyschoelkopf's avatar
haileyschoelkopf committed
1355
            return {
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1371
            }
1372
        elif self.OUTPUT_TYPE == "multiple_choice":
1373
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1374

Baber's avatar
cleanup  
Baber committed
1375
            # retrieve choices in list[str] form, to compute choice lengths, etc.
1376
            choices = self.doc_to_choice(doc)
1377
1378
            completion_len = np.array([float(len(i)) for i in choices])

Baber's avatar
Baber committed
1379
            if 2 * len(choices) == len(lls) and "acc_mutual_info" in use_metric:
1380
1381
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
1382
1383
                # as we extend the args list with unconditional ("", continuation) pairs
                lls_unconditional = lls[len(choices) :]
1384
1385
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1386
                # and this stores our "regular" conditional loglikelihoods
1387
                lls = lls[: len(choices)]
Baber's avatar
Baber committed
1388
1389
            else:
                lls_unconditional = None
1390

1391
1392
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1393

1394
1395
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1396
            else:
1397
                gold = self.doc_to_target(doc)
1398

1399
            gold, gold_index_error = check_gold_index_error(choices, gold)
1400
1401
1402

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1403
                    f"Label index was not in within range of available choices,"
1404
1405
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1406

1407
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1408
1409
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Baber's avatar
cleanup  
Baber committed
1410
                exact_match = int(any(is_greedy[i] if i != -100 else 0 for i in gold))
lintangsutawika's avatar
lintangsutawika committed
1411
1412
1413
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1414
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1415
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1416

Lintang Sutawika's avatar
Lintang Sutawika committed
1417
1418
1419
1420
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1421
            result_dict = {
1422
                **({"acc": acc} if "acc" in use_metric else {}),
1423
1424
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1425
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1426
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1427
1428
1429
1430
1431
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1432
1433
            }

1434
            if "acc_mutual_info" in use_metric:
Baber's avatar
Baber committed
1435
1436
1437
                assert lls_unconditional is not None, (
                    "lls_unconditional should not be None if acc_mutual_info is in use_metric"
                )
lintangsutawika's avatar
lintangsutawika committed
1438
1439
1440
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1441
1442
1443
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1444
        elif self.OUTPUT_TYPE == "generate_until":
1445
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1446
            result = results[0]
Baber's avatar
Baber committed
1447
            for metric in self.config._metric_list:
1448
                try:
Baber's avatar
Baber committed
1449
                    result_score = metric.fn(
1450
1451
                        references=[gold] if not isinstance(gold, list) else gold,
                        predictions=[result],
Baber's avatar
Baber committed
1452
                        **metric.kwargs,
1453
1454
                    )
                except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
Baber's avatar
Baber committed
1455
                    result_score = metric.fn([gold, result])
1456
1457
1458
1459
1460
1461
1462
                if isinstance(result_score, dict):
                    # TODO: this handles the case where HF evaluate returns a dict.
                    # This allows for multiple metrics to be returned from the same function
                    for k, v in result_score.items():
                        result_dict[k] = v
                else:
                    result_dict[metric] = result_score
1463
        else:
lintangsutawika's avatar
lintangsutawika committed
1464
1465
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1466
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1467
            )
1468
1469
1470

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1471
    def aggregation(self) -> dict:
1472
        return {k.name: k.aggregation_fn for k in self.config._metric_list}
1473

Baber Abbasi's avatar
Baber Abbasi committed
1474
    def higher_is_better(self) -> dict:
1475
        return {k.name: k.higher_is_better for k in self.config._metric_list}
1476

Baber Abbasi's avatar
Baber Abbasi committed
1477
1478
1479
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

Lintang Sutawika's avatar
Lintang Sutawika committed
1480
    @property
Baber's avatar
cleanup  
Baber committed
1481
    def task_name(self) -> str | None:
Lintang Sutawika's avatar
Lintang Sutawika committed
1482
1483
        return getattr(self.config, "task", None)

1484
1485
1486
1487
1488
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
Baber Abbasi's avatar
Baber Abbasi committed
1489
            f"num_samples={len(self.eval_docs)})"
1490
1491
        )

1492
1493

class MultipleChoiceTask(Task):
1494
    OUTPUT_TYPE = "loglikelihood"
1495

baberabb's avatar
baberabb committed
1496
    def doc_to_target(self, doc: dict) -> str:
1497
1498
        return " " + doc["choices"][doc["gold"]]

Baber's avatar
cleanup  
Baber committed
1499
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> list[Instance]:
1500
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1501
1502
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1503
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1504
                doc=doc,
1505
                arguments=(ctx, " {}".format(choice)),
1506
                idx=i,
1507
1508
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1509
1510
            for i, choice in enumerate(doc["choices"])
        ]
1511

Baber's avatar
cleanup  
Baber committed
1512
    def process_results(self, doc: dict, results: Iterable[tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1513
1514
1515
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1527
    def higher_is_better(self) -> dict:
1528
1529
1530
1531
1532
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1533
    def aggregation(self) -> dict:
1534
1535
1536
1537
1538
1539
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1540
class PerplexityTask(Task):
1541
1542
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1543
    def has_training_docs(self) -> bool:
1544
1545
        return False

Baber's avatar
cleanup  
Baber committed
1546
    def fewshot_examples(self, k: int, rnd) -> list:
1547
1548
1549
1550
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1551
1552
        return []

baberabb's avatar
baberabb committed
1553
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1554
1555
1556
1557
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1558
1559
1560

        return ""

baberabb's avatar
baberabb committed
1561
    def higher_is_better(self) -> dict:
1562
1563
1564
1565
1566
1567
1568
1569
1570
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1571
    def doc_to_text(self, doc) -> str:
1572
1573
1574
1575
1576
        return ""

    def doc_to_target(self, doc):
        return doc

Baber's avatar
cleanup  
Baber committed
1577
    def construct_requests(self, doc: dict, ctx: str | None, **kwargs):
1578
1579
        if bool(ctx):
            raise ValueError
1580

lintangsutawika's avatar
lintangsutawika committed
1581
1582
1583
1584
1585
1586
1587
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1588

Baber's avatar
cleanup  
Baber committed
1589
    def process_results(self, doc: dict, results: tuple[float]) -> dict:
1590
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1591
1592
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1593
1594
1595
1596
1597
1598
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1599
    def aggregation(self) -> dict:
1600
1601
1602
1603
1604
1605
1606
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1607
    def count_bytes(cls, doc) -> int:
1608
1609
1610
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1611
    def count_words(cls, doc) -> int:
1612
        """Downstream tasks with custom word boundaries should override this!"""
Lintang Sutawika's avatar
Lintang Sutawika committed
1613
        return len(re.split(r"\s+", doc))