task.py 58.6 KB
Newer Older
Baber's avatar
cleanup  
Baber committed
1
2
from __future__ import annotations

3
import abc
4
import ast
lintangsutawika's avatar
lintangsutawika committed
5
import logging
6
import random
7
8
import re
from collections.abc import Callable
9
from copy import deepcopy
10
from typing import (
Baber's avatar
cleanup  
Baber committed
11
    TYPE_CHECKING,
12
13
14
    Any,
    Literal,
)
15
16
17

import datasets
import numpy as np
18
from tqdm import tqdm
Baber's avatar
Baber committed
19
from typing_extensions import deprecated
20
21

from lm_eval import utils
22
23
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
24
from lm_eval.caching.cache import load_from_cache, save_to_cache
Baber's avatar
Baber committed
25
26
from lm_eval.config.metric import MetricConfig
from lm_eval.config.task import TaskConfig
27
28
from lm_eval.filters import build_filter_ensemble

29

30
31
32
33
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
34
    "generate_until",
35
36
]

Baber's avatar
cleanup  
Baber committed
37
if TYPE_CHECKING:
Baber's avatar
Baber committed
38
    pass
Baber's avatar
cleanup  
Baber committed
39
40


Lintang Sutawika's avatar
Lintang Sutawika committed
41
eval_logger = logging.getLogger(__name__)
42

lintangsutawika's avatar
lintangsutawika committed
43

44
45
46
47
48
49
50
51
52
53
class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

Baber's avatar
cleanup  
Baber committed
54
    VERSION: int | str | None = None
55

56
57
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
Baber's avatar
cleanup  
Baber committed
58
    DATASET_PATH: str | None = None
59
60

    # The name of a subset within `DATASET_PATH`.
Baber's avatar
cleanup  
Baber committed
61
    DATASET_NAME: str | None = None
62

Baber's avatar
cleanup  
Baber committed
63
    OUTPUT_TYPE: OutputType | None = None
lintangsutawika's avatar
lintangsutawika committed
64

65
66
    def __init__(
        self,
Baber's avatar
cleanup  
Baber committed
67
68
69
70
        data_dir: str | None = None,
        cache_dir: str | None = None,
        download_mode: datasets.DownloadMode | None = None,
        config: Mapping | None = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
71
    ) -> None:
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
Baber's avatar
cleanup  
Baber committed
94
95
96
        self._training_docs: list | None = None
        self._fewshot_docs: list | None = None
        self._instances: list[Instance] | None = None
97

98
        self._config: TaskConfig = TaskConfig.from_yaml({**config})
99

100
        self._filters = [build_filter_ensemble("none", [("take_first", None)])]
Baber's avatar
cleanup  
Baber committed
101
        self.fewshot_rnd: random.Random | None = (
102
103
            None  # purposely induce errors in case of improper usage
        )
104

105
106
    def download(
        self,
Baber's avatar
cleanup  
Baber committed
107
108
        data_dir: str | None = None,
        cache_dir: str | None = None,
109
110
        download_mode=None,
    ) -> None:
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
135
136
137
138
139
140
141
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
142

143
    @property
144
    def config(self) -> TaskConfig:
145
146
147
        """Returns the TaskConfig associated with this class."""
        return self._config

148
    @abc.abstractmethod
Baber's avatar
Baber committed
149
    def has_training_docs(self) -> bool:
150
151
152
153
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
Baber's avatar
Baber committed
154
    def has_validation_docs(self) -> bool:
155
156
157
158
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
Baber's avatar
Baber committed
159
    def has_test_docs(self) -> bool:
160
161
162
        """Whether the task has a test set"""
        pass

163
    def training_docs(self) -> Iterable:
164
165
166
167
168
169
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

170
    def validation_docs(self) -> Iterable:
171
172
173
174
175
176
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

177
    def test_docs(self) -> Iterable:
178
179
180
181
182
183
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

184
    def fewshot_docs(self) -> Iterable:
185
186
187
188
189
190
191
192
193
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
Baber Abbasi's avatar
Baber Abbasi committed
194
195
196
197
198
            if self.config.get("num_fewshot", 0) > 0:
                eval_logger.warning(
                    f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
                    ", using test_docs as fewshot_docs but this is not recommended."
                )
199
200
            return self.test_docs()

201
    def _process_doc(self, doc: dict) -> dict:
202
203
204
205
206
207
208
209
210
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
211

212
    @property
Baber's avatar
cleanup  
Baber committed
213
    def instances(self) -> list[Instance]:
214
215
216
217
218
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

Baber's avatar
Baber committed
219
    def fewshot_examples(self, k, rnd) -> Iterable[dict]:
220
221
222
223
224
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

Baber's avatar
cleanup  
Baber committed
225
    def doc_to_decontamination_query(self, doc: dict):
226
        raise NotImplementedError(
227
228
229
230
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
Baber's avatar
cleanup  
Baber committed
231
    def doc_to_text(self, doc: dict) -> str:
232
233
234
        pass

    @abc.abstractmethod
Baber's avatar
cleanup  
Baber committed
235
    def doc_to_target(self, doc: dict) -> str | int:
236
237
        pass

238
    # not an abstractmethod because not every language-only task has to implement this
Baber's avatar
cleanup  
Baber committed
239
    def doc_to_image(self, doc: dict):
240
241
        raise NotImplementedError

Baber's avatar
cleanup  
Baber committed
242
    def doc_to_audio(self, doc: dict):
243
244
        raise NotImplementedError

Baber's avatar
cleanup  
Baber committed
245
    def doc_to_prefix(self, doc: dict) -> str:
Baber Abbasi's avatar
Baber Abbasi committed
246
247
        return ""

248
249
    def build_all_requests(
        self,
250
        *,
Baber's avatar
cleanup  
Baber committed
251
252
        limit: int | None = None,
        samples: list[int] | None = None,
253
254
255
256
        rank: int = 0,
        world_size: int = 1,
        cache_requests: bool = False,
        rewrite_requests_cache: bool = False,
Baber's avatar
cleanup  
Baber committed
257
        system_instruction: str | None = None,
258
259
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
Baber's avatar
cleanup  
Baber committed
260
        chat_template: Callable | None = None,
261
        tokenizer_name: str = "",
262
    ) -> None:
263
        """Build a set of Instances for a task, and store them in task.instances"""
264
265
266
267

        # used with caching
        og_limit = limit

268
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
269
270
271
272
273
274
275
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
276
        cache_key += f"-tokenizer{tokenizer_name}"
277

Baber Abbasi's avatar
Baber Abbasi committed
278
        cached_instances = load_from_cache(file_name=cache_key, cache=cache_requests)
279
280
281
282
283
284
285
286
287
288
289
290
291

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
292
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
293

294
        instances = []
295
296
297
298
299
300
301
302
303
304

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
305
306
307
            self.doc_iterator(
                rank=rank, limit=limit, samples=samples, world_size=world_size
            )
308
309
310
311
312
313
314
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
315
        ):
316
            # sample fewshot context #TODO: need to offset doc_id by rank now!
317
            fewshot_ctx = self.fewshot_context(
318
                doc,
319
320
321
322
323
324
325
                num_fewshot=0
                if self.config.num_fewshot is None
                else self.config.num_fewshot,
                system_instruction=system_instruction,
                apply_chat_template=apply_chat_template,
                fewshot_as_multiturn=fewshot_as_multiturn,
                chat_template=chat_template,
Baber Abbasi's avatar
Baber Abbasi committed
326
                gen_prefix=self.doc_to_prefix(doc),
327
            )
328

329
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
330
331
332
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
333
                metadata=(self.config["task"], doc_id, self.config.repeats),
334
                apply_chat_template=apply_chat_template,
335
                chat_template=chat_template,
lintangsutawika's avatar
lintangsutawika committed
336
            )
337
338
339
340

            if not isinstance(inst, list):
                inst = [inst]

341
342
343
344
345
346
347
348
349
350
351
352
353
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
354

355
356
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
357

358
359
360
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

361
    @abc.abstractmethod
Baber's avatar
cleanup  
Baber committed
362
    def construct_requests(self, doc: dict, ctx: list[dict] | str, **kwargs):
363
364
365
366
367
368
369
370
371
372
373
374
375
376
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
377
            The number of times each instance in a dataset is inferred on. Defaults to 1,
378
379
380
381
382
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
Baber's avatar
cleanup  
Baber committed
383
    def process_results(self, doc: dict, results: list):
384
385
386
387
388
389
390
391
392
393
394
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

Baber's avatar
Baber committed
395
    @deprecated("not used anymore")
396
397
398
399
400
401
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
Baber's avatar
cleanup  
Baber committed
402
        return True
403

Baber's avatar
Baber committed
404
    @deprecated("not used anymore")
405
406
407
408
409
410
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
Baber's avatar
cleanup  
Baber committed
411
        return True
412

413
414
415
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
416
    @classmethod
Baber's avatar
Baber committed
417
    def count_bytes(cls, doc: str) -> int:
haileyschoelkopf's avatar
haileyschoelkopf committed
418
419
420
421
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
Baber's avatar
Baber committed
422
    def count_words(cls, doc: str) -> int:
haileyschoelkopf's avatar
haileyschoelkopf committed
423
424
425
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

426
    @utils.positional_deprecated
Baber Abbasi's avatar
Baber Abbasi committed
427
    def fewshot_context(self, doc, num_fewshot, rnd=None, description=None, **kwargs):
428
429
430
431
432
433
434
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
435
436
437
438
439
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
440
441
442
        :returns: str
            The fewshot context.
        """
443
        if rnd is None:
444
445
446
447
448
449
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
450

451
        description = description if description else ""
452
453

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
454
            labeled_examples = ""
455
        else:
lintangsutawika's avatar
lintangsutawika committed
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
480
            )
481
482

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
483
        return description + labeled_examples + example
484

Baber's avatar
cleanup  
Baber committed
485
    def apply_filters(self) -> list[Instance] | None:
Baber Abbasi's avatar
Baber Abbasi committed
486
        """Iterates over FilterEnsembles and applies them to instances"""
Baber's avatar
cleanup  
Baber committed
487
        if hasattr(self, "_filters") and self._instances:
lintangsutawika's avatar
lintangsutawika committed
488
            for f in self._filters:
489
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
490
        else:
Baber's avatar
cleanup  
Baber committed
491
492
493
            eval_logger.warning(
                "No filter defined or no instances, passing through instances"
            )
lintangsutawika's avatar
lintangsutawika committed
494
            return self._instances
495

baberabb's avatar
baberabb committed
496
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
497
        """Returns the config as a dictionary."""
498
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
499
        # (num_fewshot)
500
        return self.config.to_dict()
501

Baber Abbasi's avatar
Baber Abbasi committed
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
Baber's avatar
Baber committed
521
522
523
524
525
526
527
        # if not isinstance(self, ConfigurableTask):
        #     self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
        #     self.aggregation = lambda: {
        #         metric_name: get_metric_aggregation(metric_name)
        #     }
        setattr(self._config, "metric_list", [MetricConfig(name=metric_name)])
        setattr(self._config, "process_results", lambda *args: {"bypass": 0})
Baber Abbasi's avatar
Baber Abbasi committed
528

Baber's avatar
cleanup  
Baber committed
529
    def set_fewshot_seed(self, seed: int | None = None) -> None:
530
531
532
533
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

534
    @property
Baber's avatar
cleanup  
Baber committed
535
    def eval_docs(self) -> datasets.Dataset | Iterable[dict]:
536
537
538
539
540
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
541
542
543
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
544
545

    def doc_iterator(
546
547
548
        self,
        *,
        rank: int = 0,
Baber's avatar
cleanup  
Baber committed
549
        limit: int | None = None,
550
        world_size: int = 1,
Baber's avatar
cleanup  
Baber committed
551
552
        samples: list[int] | None = None,
    ) -> Iterator[tuple[int, Any]]:
553
554
        if samples:
            n = len(self.eval_docs)
Baber's avatar
cleanup  
Baber committed
555
            assert all(e < n for e in samples), (
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
                f"Elements of --samples should be in the interval [0,k-1] where k is the number of total examples. In this case, k={n}."
            )
            eval_logger.info(
                f"{self.config.task}: Evaluating on {len(samples)} examples"
            )
            doc_iterator = utils.create_iterator(
                enumerate(x for i, x in enumerate(self.eval_docs) if i in samples),
                rank=int(rank),
                limit=None,  # limit does not matter here since we are selecting samples directly
                world_size=int(world_size),
            )
        else:
            limit = int(limit) if limit else None
            doc_iterator = utils.create_iterator(
                enumerate(self.eval_docs),
                rank=int(rank),
                limit=limit,
                world_size=int(world_size),
            )
575
576
        return doc_iterator

577
578

class ConfigurableTask(Task):
579
    VERSION = "Yaml"
580
    OUTPUT_TYPE = None
581
    CONFIG = None
582
583

    def __init__(
584
585
586
587
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
Baber's avatar
cleanup  
Baber committed
588
        config: dict | None = None,
Baber's avatar
Baber committed
589
    ) -> None:
590
        # Get pre-configured attributes
591
        self._config = self.CONFIG
592

593
        # Use new configurations if there was no preconfiguration
594
        if self.config is None:
595
            self._config = TaskConfig(**config)
596
597
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
598
            if config is not None:
599
                self._config.__dict__.update(config)
600

601
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
602
603
604
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
605

Baber's avatar
cleanup  
Baber committed
606
607
        if isinstance(self.config.metadata, dict) and "version" in self.config.metadata:
            self.VERSION = self.config.metadata["version"]
608

609
        if self.config.output_type is not None:
610
611
612
613
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
614
            self.OUTPUT_TYPE = self.config.output_type
615

616
617
618
619
        if self.config.doc_to_image is not None:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

620
621
622
623
        if self.config.doc_to_audio:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

Hojin Lee's avatar
Hojin Lee committed
624
625
626
        if self.config.unsafe_code is not False:
            self.UNSAFE_CODE = True

627
628
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
629

630
631
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
632

633
        # self.metric_list: list[MetricConfig] = self.config.get_metrics
634

635
        self.download(self.config.dataset_kwargs)
636
637
638
        self._training_docs = None
        self._fewshot_docs = None

Baber's avatar
Baber committed
639
        self._filters = self.config.get_filters
Baber's avatar
Baber committed
640

Baber's avatar
Baber committed
641
642
643
644
645
646
647
        # if self.config.use_prompt is not None:
        #     eval_logger.info(f"loading prompt {self.config.use_prompt}")
        #     self.prompt = get_prompt(
        #         self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
        #     )
        # else:
        #     self.prompt = None
648

649
650
651
652
        if (
            self.config.fewshot_cfg.num_fewshot() > 0
            and self.fewshot_docs() is not None
        ):
Baber's avatar
Baber committed
653
654
655
            self.fewshot_rnd = random.Random()
            self.sampler = self.config.fewshot_cfg.init_sampler(
                list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
656
            )
657
        self.task_docs = self.eval_docs
658

659
        # Test One Doc
Baber's avatar
Baber committed
660
        self.features: list[str] = list(self.task_docs.features.keys())
661
662
        self.multiple_input = 0
        self.multiple_target = 0
663
        test_doc = self.task_docs[0]
664
        test_text = self.doc_to_text(test_doc)
665
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
666

667
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
668
            test_choice = self.doc_to_choice(test_doc)
669
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
670
                eval_logger.error("doc_to_choice must return list")
671
672
            else:
                num_choice = len(test_choice)
673

674
            if isinstance(test_text, int):
Baber Abbasi's avatar
Baber Abbasi committed
675
676
677
                eval_logger.debug(
                    "doc_to_text returned an int. Assuming multiple inputs."
                )
678
                self.multiple_input = num_choice
679
680
        else:
            test_choice = None
681

682
        if isinstance(test_target, list):
Baber Abbasi's avatar
Baber Abbasi committed
683
684
685
            eval_logger.debug(
                "doc_to_target returned a list. Assuming multiple targets."
            )
686
            self.multiple_target = len(test_target)
687
        else:
688
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
689
                test_target = test_choice[test_target]
690
            else:
lintangsutawika's avatar
lintangsutawika committed
691
                test_target = str(test_target)
692

Baber's avatar
cleanup  
Baber committed
693
        check_choices = test_choice if test_choice is not None else [test_target]
694
695
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
Baber's avatar
cleanup  
Baber committed
696
                choice_has_whitespace = choice[0].isspace()
697
                delimiter_has_whitespace = (
Baber's avatar
cleanup  
Baber committed
698
                    self.config.target_delimiter.rstrip()
699
                    != self.config.target_delimiter
700
                )
701

702
                if delimiter_has_whitespace and choice_has_whitespace:
703
704
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
705
706
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
707
                    eval_logger.debug(
708
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
709
710
                    )

Baber Abbasi's avatar
Baber Abbasi committed
711
    def download(
Baber's avatar
cleanup  
Baber committed
712
        self, dataset_kwargs:dict[str, Any] | None = None, **kwargs
Baber Abbasi's avatar
Baber Abbasi committed
713
    ) -> None:
Baber Abbasi's avatar
Baber Abbasi committed
714
715
        from packaging.version import parse as vparse

716
717
718
719
        self.config.dataset_kwargs, self.config.metadata = (
            self.config.dataset_kwargs or {},
            self.config.metadata or {},
        )
Baber Abbasi's avatar
Baber Abbasi committed
720
721
        if dataset_kwargs and vparse(datasets.__version__) >= vparse("4.0.0"):
            dataset_kwargs.pop("trust_remote_code", None)
722
        if isinstance(df := self.config.custom_dataset, Callable):
Baber Abbasi's avatar
Baber Abbasi committed
723
724
725
726
            eval_logger.warning(
                f"{self.config.task}: Custom kwargs can be passed to `--metadata` in console (as json string) or to the TaskManager."
                + "\nFor example --metadata='{\"max_seq_lengths\":[4096, 8192]}'. For details see task Readme."
            )
727
            self.dataset = df(**(self.config.dataset_kwargs | self.config.metadata))
Baber Abbasi's avatar
Baber Abbasi committed
728
729
        else:
            self.dataset = datasets.load_dataset(
730
731
732
                path=self.config.dataset_path,
                name=self.config.dataset_name,
                **self.config.dataset_kwargs,
Baber Abbasi's avatar
Baber Abbasi committed
733
            )
734

baberabb's avatar
baberabb committed
735
    def has_training_docs(self) -> bool:
Baber's avatar
cleanup  
Baber committed
736
        return self.config.training_split is not None
737

baberabb's avatar
baberabb committed
738
    def has_validation_docs(self) -> bool:
Baber's avatar
cleanup  
Baber committed
739
        return self.config.validation_split is not None
740

baberabb's avatar
baberabb committed
741
    def has_test_docs(self) -> bool:
Baber's avatar
cleanup  
Baber committed
742
        return self.config.test_split is not None
743

Baber's avatar
cleanup  
Baber committed
744
    def training_docs(self) -> datasets.Dataset | None:
745
        if self.has_training_docs():
746
747
748
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
749
                )
750
            return self.dataset[self.config.training_split]
751

Baber's avatar
cleanup  
Baber committed
752
    def validation_docs(self) -> datasets.Dataset | None:
753
        if self.has_validation_docs():
754
755
756
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
757
                )
758
            return self.dataset[self.config.validation_split]
759

Baber's avatar
cleanup  
Baber committed
760
    def test_docs(self) -> datasets.Dataset | None:
761
        if self.has_test_docs():
762
763
764
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
765

766
    def fewshot_docs(self):
Baber's avatar
Baber committed
767
768
769
770
771
772
        docs = self.config.fewshot_cfg.get_docs(self.dataset)

        if docs is not None:
            return docs

        # Fallback to parent implementation
Baber's avatar
cleanup  
Baber committed
773
774
775
776
777
778
779
780
781
782
        if (
            (_num_fewshot := self.config.num_fewshot)
            and isinstance(_num_fewshot, int)
            and _num_fewshot > 0
        ):
            eval_logger.warning(
                f"[Task: {self.config.task}] "
                "num_fewshot > 0 but no fewshot source configured. "
                "Using preconfigured rule."
            )
Baber's avatar
Baber committed
783
784

        return super().fewshot_docs()
785

KonradSzafer's avatar
KonradSzafer committed
786
787
    @staticmethod
    def append_target_question(
Baber's avatar
cleanup  
Baber committed
788
        labeled_examples: list[dict[str, str]],
KonradSzafer's avatar
KonradSzafer committed
789
790
        question: str,
        fewshot_as_multiturn: bool = False,
Baber's avatar
cleanup  
Baber committed
791
        gen_prefix: str | None = None,
KonradSzafer's avatar
KonradSzafer committed
792
793
794
795
796
797
798
799
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
800
                labeled_examples.append({"role": "user", "content": question})
KonradSzafer's avatar
KonradSzafer committed
801
802
            # if last message is user, append to it to avoid two user messages in a row
            else:
803
                labeled_examples[-1]["content"] += question
KonradSzafer's avatar
KonradSzafer committed
804
805
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
806
            labeled_examples.append({"role": "user", "content": question})
Baber Abbasi's avatar
Baber Abbasi committed
807
808
        if gen_prefix:
            labeled_examples.append({"role": "assistant", "content": gen_prefix})
KonradSzafer's avatar
KonradSzafer committed
809

lintangsutawika's avatar
lintangsutawika committed
810
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
811
812
    def fewshot_context(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
813
        doc: dict,
KonradSzafer's avatar
KonradSzafer committed
814
        num_fewshot: int,
Baber's avatar
cleanup  
Baber committed
815
        system_instruction: str | None = None,
KonradSzafer's avatar
KonradSzafer committed
816
817
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
Baber's avatar
cleanup  
Baber committed
818
819
820
        chat_template: Callable | None = None,
        gen_prefix: str | None = None,
    ) -> str | list[str] | None:
lintangsutawika's avatar
lintangsutawika committed
821
822
823
824
825
826
827
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
828
829
830
831
832
833
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
834
835
        :param chat_template:
            callable (from lm.apply_chat_template) that takes in a list[Dict] chat transcript and renders it into a string.
836
837
        :param gen_prefix:
            String to append after the <|assistant|> token.
lintangsutawika's avatar
lintangsutawika committed
838
839
840
        :returns: str
            The fewshot context.
        """
Baber's avatar
cleanup  
Baber committed
841
        labeled_examples = [] if apply_chat_template else ""
KonradSzafer's avatar
KonradSzafer committed
842
843

        # get task description
844
845
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
846

KonradSzafer's avatar
KonradSzafer committed
847
848
849
850
851
852
853
854
855
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
856
        else:
KonradSzafer's avatar
KonradSzafer committed
857
858
859
860
861
862
863
864
865
866
867
868
869
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt
        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
Baber Abbasi's avatar
Baber Abbasi committed
870
871
872
                        doc,
                        num_fewshot,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
873
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
874
875
876
                    )
                )
            else:
Baber Abbasi's avatar
Baber Abbasi committed
877
                labeled_examples += self.sampler.get_context(
Baber Abbasi's avatar
Baber Abbasi committed
878
                    doc, num_fewshot, gen_prefix=gen_prefix
Baber Abbasi's avatar
Baber Abbasi committed
879
                )
lintangsutawika's avatar
lintangsutawika committed
880
881

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
882
883
        if apply_chat_template:
            if self.multiple_input:
Baber Abbasi's avatar
Baber Abbasi committed
884
                # TODO: append prefill?
885
886
                if not labeled_examples:
                    return ""
887
                return chat_template(labeled_examples)
KonradSzafer's avatar
KonradSzafer committed
888
889
            if isinstance(example, str):
                self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
890
891
892
                    labeled_examples,
                    example,
                    fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
893
                    gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
894
895
896
897
898
899
900
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
901
902
903
904
                    self.append_target_question(
                        chat,
                        ex,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
905
                        gen_prefix=gen_prefix,
Baber Abbasi's avatar
Baber Abbasi committed
906
907
908
909
910
                    )
                    # TODO: append prefill?
                    labeled_examples_list.append(
                        chat_template(
                            chat,
Baber's avatar
cleanup  
Baber committed
911
                            add_generation_prompt=not gen_prefix,
Baber Abbasi's avatar
Baber Abbasi committed
912
913
                        )
                    )
KonradSzafer's avatar
KonradSzafer committed
914
915
916
917
918
919
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
920
921
922
                        labeled_examples,
                        choices[example],
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
923
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
924
925
926
                    )
                else:
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
927
928
929
                        labeled_examples,
                        str(example),
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
930
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
931
932
                    )
                # return lm.apply_chat_template(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
933
934
            return chat_template(
                labeled_examples,
Baber's avatar
cleanup  
Baber committed
935
                add_generation_prompt=not gen_prefix,
Baber Abbasi's avatar
Baber Abbasi committed
936
            )
937
        else:
Baber Abbasi's avatar
Baber Abbasi committed
938
            prefix = (
Baber Abbasi's avatar
Baber Abbasi committed
939
940
                self.config.target_delimiter + gen_prefix
                if gen_prefix is not None
Baber Abbasi's avatar
Baber Abbasi committed
941
942
                else ""
            )
KonradSzafer's avatar
KonradSzafer committed
943
944
            if self.multiple_input:
                return labeled_examples
945
            if isinstance(example, str):
Baber Abbasi's avatar
Baber Abbasi committed
946
                return labeled_examples + example + prefix
947
            elif isinstance(example, list):
Baber Abbasi's avatar
Baber Abbasi committed
948
                return [labeled_examples + ex + prefix for ex in example]
949
950
951
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
Baber Abbasi's avatar
Baber Abbasi committed
952
                    return labeled_examples + choices[example] + prefix
953
                else:
Baber Abbasi's avatar
Baber Abbasi committed
954
                    return labeled_examples + str(example) + prefix
lintangsutawika's avatar
lintangsutawika committed
955

Baber's avatar
cleanup  
Baber committed
956
    def apply_filters(self) -> list[Instance] | None:
Baber Abbasi's avatar
Baber Abbasi committed
957
        """Iterates over FilterEnsembles and applies them to instances"""
958
959
        if hasattr(self, "_filters"):
            for f in self._filters:
960
                f.ensemble.apply(self._instances)
961
962
963
964
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

965
    def should_decontaminate(self):
966
        return self.config.should_decontaminate
967

Baber Abbasi's avatar
Baber Abbasi committed
968
    def doc_to_decontamination_query(self, doc: dict):
969
        if self.config.should_decontaminate:
970
971
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
972
            else:
973
974
975
976
977
978
979
980
981
982
983
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
984

985
    def _process_doc(self, doc: dict) -> dict:
986
987
988
989
990
991
992
993
994
995
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

Baber's avatar
cleanup  
Baber committed
996
    def doc_to_text(self, doc: dict, doc_to_text: int | str | Callable | None = None):
Baber's avatar
Baber committed
997
998
999
        # if self.prompt is not None:
        #     doc_to_text = self.prompt
        if doc_to_text is not None:
Yu Shi Jie's avatar
Yu Shi Jie committed
1000
            doc_to_text = doc_to_text
1001
        else:
1002
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1003

1004
        if isinstance(doc_to_text, int):
1005
            return doc_to_text
1006
        elif isinstance(doc_to_text, str):
1007
            if doc_to_text in self.features:
1008
                # if self.config.doc_to_choice is not None:
1009
1010
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1011
1012
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1013
                text_string = utils.apply_template(doc_to_text, doc)
Baber's avatar
Baber committed
1014
                if text_string.isdigit() and self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1015
1016
1017
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1018
        elif callable(doc_to_text):
1019
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1020
        # Used when applying a Promptsource template
Baber's avatar
Baber committed
1021
1022
1023
1024
1025
1026
1027
        # elif hasattr(doc_to_text, "apply"):
        #     applied_prompt = doc_to_text.apply(doc)
        #     if len(applied_prompt) == 2:
        #         return applied_prompt[0]
        #     else:
        #         eval_logger.warning("Applied prompt returns empty string")
        #         return self.config.fewshot_delimiter
1028
        else:
1029
            print(type(doc_to_text))
1030
            raise TypeError
1031

Baber's avatar
cleanup  
Baber committed
1032
    def doc_to_target(self, doc: dict, doc_to_target=None) -> int | str | list[int]:
Baber's avatar
Baber committed
1033
1034
1035
        # if self.prompt is not None:
        #     doc_to_target = self.prompt
        if doc_to_target is not None:
Yu Shi Jie's avatar
Yu Shi Jie committed
1036
            doc_to_target = doc_to_target
1037
        else:
1038
            doc_to_target = self.config.doc_to_target
1039

1040
        if isinstance(doc_to_target, int):
1041
            return doc_to_target
1042
        elif isinstance(doc_to_target, str):
1043
            if doc_to_target in self.features:
1044
                # if self.config.doc_to_choice is not None:
1045
1046
1047
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1048
            else:
lintangsutawika's avatar
lintangsutawika committed
1049
                target_string = utils.apply_template(doc_to_target, doc)
Baber's avatar
Baber committed
1050
                if target_string.isdigit() and self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1051
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1052
1053
1054
1055
1056
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1057
1058
1059
1060
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1061
1062
                else:
                    return target_string
1063
        elif isinstance(doc_to_target, list):
1064
            return doc_to_target
1065
        elif callable(doc_to_target):
1066
            return doc_to_target(doc)
Baber's avatar
Baber committed
1067
1068
1069
1070
1071
1072
1073
1074
        # # Used when applying a Promptsource template
        # elif hasattr(doc_to_target, "apply"):
        #     applied_prompt = doc_to_target.apply(doc)
        #     if len(applied_prompt) == 2:
        #         return applied_prompt[1]
        #     else:
        #         eval_logger.warning("Applied prompt returns empty string")
        #         return self.config.fewshot_delimiter
1075
1076
        else:
            raise TypeError
1077

Baber's avatar
cleanup  
Baber committed
1078
    def doc_to_choice(
Baber's avatar
Baber committed
1079
1080
        self,
        doc: dict,
Baber's avatar
cleanup  
Baber committed
1081
1082
        doc_to_choice: str | list | dict | Callable[..., list[str]] | None = None,
    ) -> list[str]:
Baber's avatar
Baber committed
1083
1084
1085
        # if self.prompt is not None:
        #     doc_to_choice = self.prompt
        if doc_to_choice is not None:
Yu Shi Jie's avatar
Yu Shi Jie committed
1086
            doc_to_choice = doc_to_choice
1087
        elif self.config.doc_to_choice is None:
1088
            eval_logger.error("doc_to_choice was called but not set in config")
Baber's avatar
Baber committed
1089
            doc_to_choice = None
1090
        else:
1091
            doc_to_choice = self.config.doc_to_choice
1092

1093
        if isinstance(doc_to_choice, str):
1094
1095
1096
1097
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1098
        elif isinstance(doc_to_choice, list):
1099
            return doc_to_choice
1100
        elif isinstance(doc_to_choice, dict):
1101
1102
1103
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
Baber's avatar
Baber committed
1104
1105
        # elif hasattr(doc_to_choice, "get_answer_choices_list"):
        #     return doc_to_choice.get_answer_choices_list(doc)
1106
1107
        else:
            raise TypeError
1108

Baber's avatar
cleanup  
Baber committed
1109
    def doc_to_image(self, doc: dict, doc_to_image=None) -> int | str | list | None:
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
        if doc_to_image is not None:
            doc_to_image = doc_to_image
        elif self.config.doc_to_image is not None:
            doc_to_image = self.config.doc_to_image
        else:
            return None

        if isinstance(doc_to_image, list):
            image_feature = [
                self.doc_to_image(doc, feature) for feature in doc_to_image
            ]
            return [feature for feature in image_feature if feature is not None]
        elif isinstance(doc_to_image, str):
            if doc_to_image in self.features:
                return doc[doc_to_image]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_image, doc))
        elif callable(doc_to_image):
            return doc_to_image(doc)
        else:
            return None

Baber's avatar
cleanup  
Baber committed
1132
    def doc_to_audio(self, doc: Any, doc_to_audio=None) -> int | str | list | None:
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
        if doc_to_audio is not None:
            doc_to_audio = doc_to_audio
        elif self.config.doc_to_audio is not None:
            doc_to_audio = self.config.doc_to_audio
        else:
            return None

        if isinstance(doc_to_audio, list):
            audio_feature = [
                self.doc_to_audio(doc, feature) for feature in doc_to_audio
            ]
            return [feature for feature in audio_feature if feature is not None]
        elif isinstance(doc_to_audio, str):
            if doc_to_audio in self.features:
                return doc[doc_to_audio]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_audio, doc))
        elif callable(doc_to_audio):
            return doc_to_audio(doc)
        else:
            return None

Baber's avatar
cleanup  
Baber committed
1155
    def doc_to_prefix(self, doc: dict) -> str | None:
Baber Abbasi's avatar
Baber Abbasi committed
1156
1157
1158
1159
1160
1161
1162
        if (gen_prefix := self.config.gen_prefix) is not None:
            if gen_prefix in self.features:
                return doc[gen_prefix]
            else:
                return utils.apply_template(gen_prefix, doc)
        return None

baberabb's avatar
baberabb committed
1163
1164
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
Baber's avatar
cleanup  
Baber committed
1165
    ) -> list[Instance] | Instance:
1166
        apply_chat_template = kwargs.pop("apply_chat_template", False)
1167
        chat_template: Callable | None = kwargs.pop("chat_template", None)
1168

1169
1170
        aux_arguments = None

1171
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1172
            arguments = (ctx, self.doc_to_target(doc))
1173
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1174
            arguments = (self.doc_to_target(doc),)
1175
        elif self.OUTPUT_TYPE == "multiple_choice":
1176
            choices = self.doc_to_choice(doc)
1177
            target_delimiter = self.config.target_delimiter
1178
1179
            if apply_chat_template:
                target_delimiter = ""
1180
1181
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1182
                # apply chat_template to choices if apply_chat_template
1183
                cont = self.doc_to_target(doc)
1184

1185
                arguments = [
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
                    (
                        ctx
                        + (
                            chat_template([{"role": "user", "content": choice}])
                            if apply_chat_template
                            else choice
                        ),
                        f"{target_delimiter}{cont}",
                    )
                    for choice in choices
1196
                ]
1197
            else:
1198
                # Otherwise they are placed in the continuation
1199
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1200

1201
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
1202
            if "acc_mutual_info" in [m.metric_name for m in self.config._metric_list]:
1203
1204
1205
1206
1207
1208
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

                # here mutual info refers to calculating
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
1209
1210
1211
1212
                # TODO: should these be strided? will have to modify the processing in process_results if so
                aux_arguments = [
                    ("", f"{target_delimiter}{choice}") for choice in choices
                ]
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227

                arguments.extend(aux_arguments)

        elif self.OUTPUT_TYPE == "generate_until":
            arguments = (ctx, deepcopy(self.config.generation_kwargs))

        multimodal_arg = {}
        if (
            self.config.doc_to_image
        ):  # TODO: ensure that non-multimodal tasks aren't getting visual args
            multimodal_arg = {
                **multimodal_arg,
                **{"visual": self.doc_to_image(doc)},
            }

1228
1229
1230
1231
1232
1233
1234
1235
        if (
            self.config.doc_to_audio
        ):  # TODO: ensure that non-multimodal tasks aren't getting audio args
            multimodal_arg = {
                **multimodal_arg,
                **{"audio": self.doc_to_audio(doc)},
            }

1236
1237
1238
1239
1240
1241
1242
        if bool(multimodal_arg):
            if isinstance(arguments, list):
                arguments = [arg + (multimodal_arg,) for arg in arguments]
            else:
                arguments = arguments + (multimodal_arg,)

        if self.OUTPUT_TYPE == "multiple_choice":
1243
            request_list = [
1244
1245
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1246
                    doc=doc,
1247
                    arguments=arg,
1248
                    idx=i,
1249
1250
                    **kwargs,
                )
1251
                for i, arg in enumerate(arguments)
1252
            ]
1253
1254

            return request_list
lintangsutawika's avatar
lintangsutawika committed
1255

lintangsutawika's avatar
lintangsutawika committed
1256
        return Instance(
1257
1258
1259
1260
1261
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=arguments,
            idx=0,
            **kwargs,
lintangsutawika's avatar
lintangsutawika committed
1262
        )
1263

Baber's avatar
cleanup  
Baber committed
1264
    def process_results(self, doc: dict, results: list) -> dict:
1265
1266
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1267

1268
        result_dict = {}
1269
        use_metric = list(m.metric_name for m in self.config._metric_list)
1270
1271
1272
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1273
1274
1275
1276
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1277
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1278
            (loglikelihood,) = results
1279
1280
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1281
            return {
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1297
            }
1298
        elif self.OUTPUT_TYPE == "multiple_choice":
1299
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1300

Baber's avatar
cleanup  
Baber committed
1301
            # retrieve choices in list[str] form, to compute choice lengths, etc.
1302
            choices = self.doc_to_choice(doc)
1303
1304
            completion_len = np.array([float(len(i)) for i in choices])

Baber's avatar
Baber committed
1305
            if 2 * len(choices) == len(lls) and "acc_mutual_info" in use_metric:
1306
1307
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
1308
1309
                # as we extend the args list with unconditional ("", continuation) pairs
                lls_unconditional = lls[len(choices) :]
1310
1311
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1312
                # and this stores our "regular" conditional loglikelihoods
1313
                lls = lls[: len(choices)]
Baber's avatar
Baber committed
1314
1315
            else:
                lls_unconditional = None
1316

1317
1318
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1319

1320
1321
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1322
            else:
1323
                gold = self.doc_to_target(doc)
1324
1325

            gold_index_error = False
1326
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1327
1328
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1329
1330
                    gold_index_error = True
            else:
1331
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1332
                    gold = gold if gold < len(choices) else -100
1333
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1334
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1335

Lintang Sutawika's avatar
Lintang Sutawika committed
1336
                if gold == -100:
1337
1338
1339
1340
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1341
                    f"Label index was not in within range of available choices,"
1342
1343
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1344

1345
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1346
1347
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Baber's avatar
cleanup  
Baber committed
1348
                exact_match = int(any(is_greedy[i] if i != -100 else 0 for i in gold))
lintangsutawika's avatar
lintangsutawika committed
1349
1350
1351
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1352
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1353
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1354

Lintang Sutawika's avatar
Lintang Sutawika committed
1355
1356
1357
1358
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1359
            result_dict = {
1360
                **({"acc": acc} if "acc" in use_metric else {}),
1361
1362
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1363
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1364
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1365
1366
1367
1368
1369
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1370
1371
            }

1372
            if "acc_mutual_info" in use_metric:
Baber's avatar
Baber committed
1373
1374
1375
                assert lls_unconditional is not None, (
                    "lls_unconditional should not be None if acc_mutual_info is in use_metric"
                )
lintangsutawika's avatar
lintangsutawika committed
1376
1377
1378
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1379
1380
1381
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1382
        elif self.OUTPUT_TYPE == "generate_until":
1383
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1384
            result = results[0]
1385
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1386
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1387
                # it assumes that doc_to_target returns a number.
1388
1389
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
Baber's avatar
cleanup  
Baber committed
1390
            for metric in self._metric_fn_list:
1391
1392
1393
1394
1395
1396
1397
1398
                try:
                    result_score = self._metric_fn_list[metric](
                        references=[gold] if not isinstance(gold, list) else gold,
                        predictions=[result],
                        **self._metric_fn_kwargs[metric],
                    )
                except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
                    result_score = self._metric_fn_list[metric]([gold, result])
1399
1400
1401
1402
1403
1404
1405
                if isinstance(result_score, dict):
                    # TODO: this handles the case where HF evaluate returns a dict.
                    # This allows for multiple metrics to be returned from the same function
                    for k, v in result_score.items():
                        result_dict[k] = v
                else:
                    result_dict[metric] = result_score
1406
        else:
lintangsutawika's avatar
lintangsutawika committed
1407
1408
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1409
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1410
            )
1411
1412
1413

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1414
    def aggregation(self) -> dict:
1415
        return {k.name: k.aggregation_fn for k in self.config._metric_list}
1416

Baber Abbasi's avatar
Baber Abbasi committed
1417
    def higher_is_better(self) -> dict:
1418
        return {k.name: k.higher_is_better for k in self.config._metric_list}
1419

Baber Abbasi's avatar
Baber Abbasi committed
1420
1421
1422
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

Lintang Sutawika's avatar
Lintang Sutawika committed
1423
    @property
Baber's avatar
cleanup  
Baber committed
1424
    def task_name(self) -> str | None:
Lintang Sutawika's avatar
Lintang Sutawika committed
1425
1426
        return getattr(self.config, "task", None)

1427
1428
1429
1430
1431
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
Baber Abbasi's avatar
Baber Abbasi committed
1432
            f"num_samples={len(self.eval_docs)})"
1433
1434
        )

1435
1436

class MultipleChoiceTask(Task):
1437
    OUTPUT_TYPE = "loglikelihood"
1438

baberabb's avatar
baberabb committed
1439
    def doc_to_target(self, doc: dict) -> str:
1440
1441
        return " " + doc["choices"][doc["gold"]]

Baber's avatar
cleanup  
Baber committed
1442
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> list[Instance]:
1443
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1444
1445
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1446
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1447
                doc=doc,
1448
                arguments=(ctx, " {}".format(choice)),
1449
                idx=i,
1450
1451
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1452
1453
            for i, choice in enumerate(doc["choices"])
        ]
1454

Baber's avatar
cleanup  
Baber committed
1455
    def process_results(self, doc: dict, results: Iterable[tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1456
1457
1458
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1470
    def higher_is_better(self) -> dict:
1471
1472
1473
1474
1475
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1476
    def aggregation(self) -> dict:
1477
1478
1479
1480
1481
1482
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1483
class PerplexityTask(Task):
1484
1485
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1486
    def has_training_docs(self) -> bool:
1487
1488
        return False

Baber's avatar
cleanup  
Baber committed
1489
    def fewshot_examples(self, k: int, rnd) -> list:
1490
1491
1492
1493
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1494
1495
        return []

baberabb's avatar
baberabb committed
1496
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1497
1498
1499
1500
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1501
1502
1503

        return ""

baberabb's avatar
baberabb committed
1504
    def higher_is_better(self) -> dict:
1505
1506
1507
1508
1509
1510
1511
1512
1513
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1514
    def doc_to_text(self, doc) -> str:
1515
1516
1517
1518
1519
        return ""

    def doc_to_target(self, doc):
        return doc

Baber's avatar
cleanup  
Baber committed
1520
    def construct_requests(self, doc: dict, ctx: str | None, **kwargs):
1521
1522
        if bool(ctx):
            raise ValueError
1523

lintangsutawika's avatar
lintangsutawika committed
1524
1525
1526
1527
1528
1529
1530
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1531

Baber's avatar
cleanup  
Baber committed
1532
    def process_results(self, doc: dict, results: tuple[float]) -> dict:
1533
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1534
1535
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1536
1537
1538
1539
1540
1541
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1542
    def aggregation(self) -> dict:
1543
1544
1545
1546
1547
1548
1549
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1550
    def count_bytes(cls, doc) -> int:
1551
1552
1553
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1554
    def count_words(cls, doc) -> int:
1555
        """Downstream tasks with custom word boundaries should override this!"""
Lintang Sutawika's avatar
Lintang Sutawika committed
1556
        return len(re.split(r"\s+", doc))