task.py 71.6 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
21
    cast,
22
)
23
24
25

import datasets
import numpy as np
26
from tqdm import tqdm
27
28

from lm_eval import utils
29
from lm_eval.api import samplers
30
31
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
32
from lm_eval.api.registry import (
33
34
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
35
    get_aggregation,
36
    get_metric,
37
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
38
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
39
)
40
from lm_eval.caching.cache import load_from_cache, save_to_cache
41
42
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt
43
from lm_eval.utils import validate_index
44

45

46
47
48
49
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
50
    "generate_until",
51
52
]

Lintang Sutawika's avatar
Lintang Sutawika committed
53
eval_logger = logging.getLogger(__name__)
54

lintangsutawika's avatar
lintangsutawika committed
55

56
57
@dataclass
class TaskConfig(dict):
58
    # task naming/registry
59
60
    task: Optional[str] = None
    task_alias: Optional[str] = None
Lintang Sutawika's avatar
Lintang Sutawika committed
61
    tag: Optional[Union[str, list]] = None
62
63
64
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
Baber Abbasi's avatar
Baber Abbasi committed
65
    custom_dataset: Optional[Callable] = None
66
67
68
69
70
71
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
72
    fewshot_split: Optional[str] = (
Baber Abbasi's avatar
Baber Abbasi committed
73
        None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaluating (?)
74
    )
75
76
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
77
78
79
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
80
    doc_to_image: Union[Callable, str] = None
81
    doc_to_audio: Union[Callable, str] = None
Hojin Lee's avatar
Hojin Lee committed
82
    unsafe_code: bool = False
83
84
85
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
86
    description: str = ""
87
88
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
89
    fewshot_config: Optional[dict] = None
90
    # runtime configuration options
91
    num_fewshot: Optional[int] = None
92
    # scoring options
93
94
95
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
96
    repeats: int = 1
97
    filter_list: Optional[Union[str, list]] = None
98
    should_decontaminate: bool = False
99
    doc_to_decontamination_query: Optional[str] = None
Baber Abbasi's avatar
Baber Abbasi committed
100
    gen_prefix: Optional[str] = None
101
102
    multiple_inputs: bool = False
    multiple_targets: bool = False
103
104
105
    metadata: Optional[dict] = (
        None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
    )
106

Ethan Smith's avatar
Ethan Smith committed
107
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
108
        if self.generation_kwargs is not None:
109
            if self.output_type != "generate_until":
110
                eval_logger.warning(
111
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
112
113
114
115
116
117
118
119
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
Baber Abbasi's avatar
Baber Abbasi committed
120
121
122
                eval_logger.warning(
                    f"{self.task}: No `until` specified in `generation_kwargs`! Defaulting to the fewshot_delimiter={repr(self.fewshot_delimiter)}"
                )
123
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
124
        else:
125
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
126
127
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
128
129
130
131
132
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
133
                    "do_sample": False,
Baber Abbasi's avatar
Baber Abbasi committed
134
                    "temperature": 0,
Lintang Sutawika's avatar
Lintang Sutawika committed
135
                }
Baber Abbasi's avatar
Baber Abbasi committed
136
137
138
                eval_logger.warning(
                    f"{self.task}: No `generation_kwargs` specified in task config, defaulting to {self.generation_kwargs}"
                )
139

140
141
142
    def __getitem__(self, item):
        return getattr(self, item)

143
144
145
    def __setitem__(self, item, value):
        return setattr(self, item, value)

146
    def to_dict(self, keep_callable: bool = False) -> dict:
147
148
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
149
        Used for dumping results alongside full task configuration
150

haileyschoelkopf's avatar
haileyschoelkopf committed
151
152
153
154
155
156
157
158
159
160
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
161
162
163
164
165
166
167
168
169
170
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
171
        return cfg_dict
172

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

189
190
191
192
193
194
195
196
197
198
199

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

200
    VERSION: Optional[Union[int, str]] = None
201

202
203
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
204
    DATASET_PATH: Optional[str] = None
205
206

    # The name of a subset within `DATASET_PATH`.
207
    DATASET_NAME: Optional[str] = None
208

209
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
210

211
212
    def __init__(
        self,
213
214
215
216
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
217
    ) -> None:
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
240
241
242
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
243

244
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
245

lintangsutawika's avatar
lintangsutawika committed
246
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
247
248
249
        self.fewshot_rnd: Optional[random.Random] = (
            None  # purposely induce errors in case of improper usage
        )
250

251
252
253
254
255
256
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
281
282
283
284
285
286
287
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
288

289
    @property
290
    def config(self) -> TaskConfig:
291
292
293
        """Returns the TaskConfig associated with this class."""
        return self._config

294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

309
    def training_docs(self) -> Iterable:
310
311
312
313
314
315
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

316
    def validation_docs(self) -> Iterable:
317
318
319
320
321
322
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

323
    def test_docs(self) -> Iterable:
324
325
326
327
328
329
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

330
    def fewshot_docs(self) -> Iterable:
331
332
333
334
335
336
337
338
339
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
Baber Abbasi's avatar
Baber Abbasi committed
340
341
342
343
344
            if self.config.get("num_fewshot", 0) > 0:
                eval_logger.warning(
                    f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
                    ", using test_docs as fewshot_docs but this is not recommended."
                )
345
346
            return self.test_docs()

347
    def _process_doc(self, doc: dict) -> dict:
348
349
350
351
352
353
354
355
356
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
357

358
    @property
359
    def instances(self) -> List[Instance]:
360
361
362
363
364
365
366
367
368
369
370
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

371
372
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
373
374
375
376
377
378
379
380
381
382
383
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

384
385
386
387
    # not an abstractmethod because not every language-only task has to implement this
    def doc_to_image(self, doc):
        raise NotImplementedError

388
389
390
    def doc_to_audio(self, doc):
        raise NotImplementedError

Baber's avatar
Baber committed
391
    def doc_to_prefix(self, doc) -> Union[str, None]:
Baber Abbasi's avatar
Baber Abbasi committed
392
393
        return ""

394
395
    def build_all_requests(
        self,
396
        *,
397
        limit: Union[int, None] = None,
398
        samples: Optional[List[int]] = None,
399
400
401
402
403
404
405
406
407
        rank: int = 0,
        world_size: int = 1,
        cache_requests: bool = False,
        rewrite_requests_cache: bool = False,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        chat_template: Optional[Callable] = None,
        tokenizer_name: str = "",
408
    ) -> None:
409
        """Build a set of Instances for a task, and store them in task.instances"""
410
411
412
413

        # used with caching
        og_limit = limit

414
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
415
416
417
418
419
420
421
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
422
        cache_key += f"-tokenizer{tokenizer_name}"
423

Baber Abbasi's avatar
Baber Abbasi committed
424
        cached_instances = load_from_cache(file_name=cache_key, cache=cache_requests)
425
426
427
428
429
430
431
432
433
434
435
436
437

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
438
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
439

440
        instances = []
441
442
443
444
445
446
447
448
449
450

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
451
452
453
            self.doc_iterator(
                rank=rank, limit=limit, samples=samples, world_size=world_size
            )
454
455
456
457
458
459
460
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
461
        ):
462
            # sample fewshot context #TODO: need to offset doc_id by rank now!
463
            fewshot_ctx = self.fewshot_context(
464
                doc,
465
466
467
468
469
470
471
                num_fewshot=0
                if self.config.num_fewshot is None
                else self.config.num_fewshot,
                system_instruction=system_instruction,
                apply_chat_template=apply_chat_template,
                fewshot_as_multiturn=fewshot_as_multiturn,
                chat_template=chat_template,
Baber Abbasi's avatar
Baber Abbasi committed
472
                gen_prefix=self.doc_to_prefix(doc),
473
            )
474

475
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
476
477
478
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
479
                metadata=(self.config["task"], doc_id, self.config.repeats),
480
                apply_chat_template=apply_chat_template,
481
                chat_template=chat_template,
lintangsutawika's avatar
lintangsutawika committed
482
            )
483
484
485
486

            if not isinstance(inst, list):
                inst = [inst]

487
488
489
490
491
492
493
494
495
496
497
498
499
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
500

501
502
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
503

504
505
506
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
523
            The number of times each instance in a dataset is inferred on. Defaults to 1,
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

559
560
561
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
562
563
564
565
566
567
568
569
570
571
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

572
    @utils.positional_deprecated
Baber Abbasi's avatar
Baber Abbasi committed
573
    def fewshot_context(self, doc, num_fewshot, rnd=None, description=None, **kwargs):
574
575
576
577
578
579
580
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
581
582
583
584
585
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
586
587
588
        :returns: str
            The fewshot context.
        """
589
        if rnd is None:
590
591
592
593
594
595
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
596

597
        description = description if description else ""
598
599

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
600
            labeled_examples = ""
601
        else:
lintangsutawika's avatar
lintangsutawika committed
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
626
            )
627
628

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
629
        return description + labeled_examples + example
630

631
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
632
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
633
634
        if hasattr(self, "_filters"):
            for f in self._filters:
635
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
636
637
638
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
639

baberabb's avatar
baberabb committed
640
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
641
        """Returns the config as a dictionary."""
642
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
643
        # (num_fewshot)
644
        return self.config.to_dict()
645

Baber Abbasi's avatar
Baber Abbasi committed
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

686
687
688
689
690
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

691
692
693
694
695
696
697
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
698
699
700
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
701
702

    def doc_iterator(
703
704
705
706
707
708
        self,
        *,
        rank: int = 0,
        limit: Union[int, None] = None,
        world_size: int = 1,
        samples: Optional[List[int]] = None,
709
    ) -> Iterator[Tuple[int, Any]]:
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
        if samples:
            n = len(self.eval_docs)
            assert all([e < n for e in samples]), (
                f"Elements of --samples should be in the interval [0,k-1] where k is the number of total examples. In this case, k={n}."
            )
            eval_logger.info(
                f"{self.config.task}: Evaluating on {len(samples)} examples"
            )
            doc_iterator = utils.create_iterator(
                enumerate(x for i, x in enumerate(self.eval_docs) if i in samples),
                rank=int(rank),
                limit=None,  # limit does not matter here since we are selecting samples directly
                world_size=int(world_size),
            )
        else:
            limit = int(limit) if limit else None
            doc_iterator = utils.create_iterator(
                enumerate(self.eval_docs),
                rank=int(rank),
                limit=limit,
                world_size=int(world_size),
            )
732
733
        return doc_iterator

734
735

class ConfigurableTask(Task):
736
    VERSION = "Yaml"
737
    OUTPUT_TYPE = None
738
    CONFIG = None
739
740

    def __init__(
741
742
743
744
745
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
746
    ) -> None:  # TODO no super() call here
747
        # Get pre-configured attributes
748
        self._config = self.CONFIG
749

750
        # Use new configurations if there was no preconfiguration
751
        if self.config is None:
752
            self._config = TaskConfig(**config)
753
754
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
755
            if config is not None:
756
                self._config.__dict__.update(config)
757

758
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
759
760
761
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
762

763
764
765
766
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

767
        if self.config.output_type is not None:
768
769
770
771
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
772
            self.OUTPUT_TYPE = self.config.output_type
773

774
775
776
777
778
779
        self.multiple_targets = self.config.multiple_targets
        self.multiple_inputs = self.config.multiple_inputs
        assert not (self.multiple_targets and self.multiple_inputs), (
            "Cannot have both multiple_targets and multiple_inputs"
        )

780
781
782
783
        if self.config.doc_to_image is not None:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

784
785
786
787
        if self.config.doc_to_audio:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

Hojin Lee's avatar
Hojin Lee committed
788
789
790
        if self.config.unsafe_code is not False:
            self.UNSAFE_CODE = True

791
792
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
793

794
795
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
796

797
798
799
800
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
801

802
        if self.config.metric_list is None:
803
            # TODO: handle this in TaskConfig.__post_init__ ?
804
805
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

806
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
807
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
808
                self._metric_fn_kwargs[metric_name] = {}
809
810
811
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
812
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
813
        else:
814
            for metric_config in self.config.metric_list:
815
816
817
818
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
819
820
821
822
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
823
824
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
825
                }
Chris's avatar
Chris committed
826
827
828
829
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
830

831
                if self.config.process_results is not None:
832
833
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
834
835
836
837
838
839
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
840
841
842
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
843
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
844

845
                if "aggregation" in metric_config:
846
                    agg_name = metric_config["aggregation"]
847
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
848
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
849
                    elif callable(agg_name):  # noqa: E721
850
851
852
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
853
                else:
854
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
855
                    metric_agg = get_metric_aggregation(metric_name)
856
                    eval_logger.warning(
857
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
858
859
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
860
                    )
861
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
862

863
864
865
866
867
868
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
869
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
870
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
871
                        f"higher_is_better={is_higher_better(metric_name)}"
872
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
873
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
874

875
        self.download(self.config.dataset_kwargs)
876
877
878
        self._training_docs = None
        self._fewshot_docs = None

879
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
880
            self._filters = []
881
            for filter_config in self.config.filter_list:
882
883
884
885
886
887
888
889
890
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
891
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
892
        else:
Baber Abbasi's avatar
Baber Abbasi committed
893
894
895
896
            # TODO: handle repeats in a more general way rather than just discarding
            eval_logger.debug(
                "No custom filters defined. Using default 'take_first' filter for handling repeats."
            )
897
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
898

899
900
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
901
            self.prompt = get_prompt(
902
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
903
            )
904
905
906
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
907
        if self.fewshot_docs() is not None:
908
909
910
911
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
912
913
914
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
931

932
        self.task_docs = self.eval_docs
933

934
        # Test One Doc
935
936
        self.features = list(self.task_docs.features.keys())
        test_doc = self.task_docs[0]
937
        test_text = self.doc_to_text(test_doc)
938
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
939

940
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
941
            test_choice = self.doc_to_choice(test_doc)
942
943
            if self.multiple_inputs:
                # we require:
944
                # doc_to_text: list
945
                # doc_to_choice: list
946
947
948
949
950
                # doc_to_target: int
                # e.g. text: [Maria was better than Sarah, Sarah was better than Sarah], choice: [so she was envious]
                # target: 0
                assert isinstance(test_text, list), (
                    f"[{self.config.task}] doc_to_text must return list for multiple inputs"
951
                )
952
953
                assert isinstance(test_target, int), (
                    f"[{self.config.task}] doc_to_target must return int label for multiple inputs"
954
955
                )
                assert self.config.output_type != "generate_until", (
Baber's avatar
Baber committed
956
                    f"[{self.config.task}] Only multiple-choice tasks can be used with multiple inputs"
957
958
959
960
961
962
963
964
965
                )
                test_text = test_choice[0]

            elif self.multiple_targets:
                # we require:
                # doc_to_text: str
                # doc_to_choice: list
                # doc_to_target: list
                assert isinstance(test_target, (list, tuple)), (
Baber's avatar
Baber committed
966
                    f"[{self.config.task}] doc_to_target must be an iterable for multiple targets"
967
968
                )
                test_target = test_target[0]
969
            else:
970
                assert isinstance(test_target, int), (
Baber's avatar
Baber committed
971
                    f"[{self.config.task}] doc_to_target must return int for multiple-choice tasks"
Baber Abbasi's avatar
Baber Abbasi committed
972
                )
lintangsutawika's avatar
lintangsutawika committed
973
                test_target = test_choice[test_target]
974

975
            for choice in test_choice:
976
977
                choice_has_whitespace, delimiter_has_whitespace = (
                    choice[0].isspace(),
978
                    self.config.target_delimiter.rstrip()
979
                    != self.config.target_delimiter,
980
                )
981

982
                if delimiter_has_whitespace and choice_has_whitespace:
983
                    eval_logger.debug(
Baber's avatar
Baber committed
984
985
                        f'[{self.config.task}] Both target_delimiter "{self.config.target_delimiter}" and target '
                        f'choice: "{choice}" have whitespace'
986
987
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
988
                    eval_logger.debug(
Baber's avatar
Baber committed
989
990
                        f'[{self.config.task}] Both target_delimiter "{self.config.target_delimiter}" and target '
                        f'choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
991
992
                    )

Baber Abbasi's avatar
Baber Abbasi committed
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
    def download(
        self, dataset_kwargs: Optional[Dict[str, Any]] = None, **kwargs
    ) -> None:
        if isinstance(self.config.custom_dataset, Callable):
            eval_logger.warning(
                f"{self.config.task}: Custom kwargs can be passed to `--metadata` in console (as json string) or to the TaskManager."
                + "\nFor example --metadata='{\"max_seq_lengths\":[4096, 8192]}'. For details see task Readme."
            )
            self.dataset = self.config.custom_dataset(
                **(self.config.metadata or {}), **(self.config.dataset_kwargs or {})
            )
        else:
            self.dataset = datasets.load_dataset(
                path=self.DATASET_PATH,
                name=self.DATASET_NAME,
                **dataset_kwargs if dataset_kwargs is not None else {},
            )
1010

baberabb's avatar
baberabb committed
1011
    def has_training_docs(self) -> bool:
1012
        if self.config.training_split is not None:
1013
1014
1015
1016
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1017
    def has_validation_docs(self) -> bool:
1018
        if self.config.validation_split is not None:
1019
1020
1021
1022
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1023
    def has_test_docs(self) -> bool:
1024
        if self.config.test_split is not None:
1025
1026
1027
1028
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1029
    def training_docs(self) -> datasets.Dataset:
1030
        if self.has_training_docs():
1031
1032
1033
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
1034
                )
1035
            return self.dataset[self.config.training_split]
1036

baberabb's avatar
baberabb committed
1037
    def validation_docs(self) -> datasets.Dataset:
1038
        if self.has_validation_docs():
1039
1040
1041
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
1042
                )
1043
            return self.dataset[self.config.validation_split]
1044

baberabb's avatar
baberabb committed
1045
    def test_docs(self) -> datasets.Dataset:
1046
        if self.has_test_docs():
1047
1048
1049
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
1050

1051
    def fewshot_docs(self):
1052
        if self.config.fewshot_split is not None:
1053
1054
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
1055
            return self.dataset[self.config.fewshot_split]
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
        elif (
            self.config.fewshot_config is not None
            and self.config.fewshot_config.get("samples", None) is not None
        ):
            if isinstance(self.config.fewshot_config["samples"], list):
                return self.config.fewshot_config["samples"]
            elif callable(self.config.fewshot_config["samples"]):
                return self.config.fewshot_config["samples"]()
            else:
                raise Exception(
                    "`fewshot_config['samples']` was incorrectly defined in the configuration. It should be either a list of samples as a dict, or function returning this list."
                )
1068
        else:
1069
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
1070
                eval_logger.warning(
Lintang Sutawika's avatar
Lintang Sutawika committed
1071
                    f"[Task: {self.config.task}] "
1072
1073
1074
1075
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
1076

KonradSzafer's avatar
KonradSzafer committed
1077
1078
1079
1080
1081
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
1082
        gen_prefix: Optional[str] = None,
KonradSzafer's avatar
KonradSzafer committed
1083
1084
1085
1086
1087
1088
1089
1090
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
1091
                labeled_examples.append({"role": "user", "content": question})
KonradSzafer's avatar
KonradSzafer committed
1092
1093
            # if last message is user, append to it to avoid two user messages in a row
            else:
1094
                labeled_examples[-1]["content"] += question
KonradSzafer's avatar
KonradSzafer committed
1095
1096
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
1097
            labeled_examples.append({"role": "user", "content": question})
Baber Abbasi's avatar
Baber Abbasi committed
1098
1099
        if gen_prefix:
            labeled_examples.append({"role": "assistant", "content": gen_prefix})
KonradSzafer's avatar
KonradSzafer committed
1100

lintangsutawika's avatar
lintangsutawika committed
1101
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
1102
1103
    def fewshot_context(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
1104
        doc: dict,
KonradSzafer's avatar
KonradSzafer committed
1105
1106
1107
1108
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
1109
        chat_template: Optional[Callable] = None,
Baber Abbasi's avatar
Baber Abbasi committed
1110
        gen_prefix: Optional[str] = None,
Baber Abbasi's avatar
Baber Abbasi committed
1111
    ) -> Union[str, List[str]]:
lintangsutawika's avatar
lintangsutawika committed
1112
1113
1114
1115
1116
1117
1118
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
1119
1120
1121
1122
1123
1124
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
1125
1126
        :param chat_template:
            callable (from lm.apply_chat_template) that takes in a list[Dict] chat transcript and renders it into a string.
1127
1128
        :param gen_prefix:
            String to append after the <|assistant|> token.
lintangsutawika's avatar
lintangsutawika committed
1129
1130
1131
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
1132
1133
1134
1135
1136
1137
        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
1138
1139
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1140

KonradSzafer's avatar
KonradSzafer committed
1141
1142
1143
1144
1145
1146
1147
1148
1149
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
1150
        else:
KonradSzafer's avatar
KonradSzafer committed
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt
        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
Baber Abbasi's avatar
Baber Abbasi committed
1164
1165
1166
                        doc,
                        num_fewshot,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1167
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1168
1169
1170
                    )
                )
            else:
Baber Abbasi's avatar
Baber Abbasi committed
1171
                labeled_examples += self.sampler.get_context(
Baber Abbasi's avatar
Baber Abbasi committed
1172
                    doc, num_fewshot, gen_prefix=gen_prefix
Baber Abbasi's avatar
Baber Abbasi committed
1173
                )
lintangsutawika's avatar
lintangsutawika committed
1174
1175

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
1176
        if apply_chat_template:
1177
            if self.multiple_inputs:
Baber Abbasi's avatar
Baber Abbasi committed
1178
                # TODO: append prefill?
1179
1180
                if not labeled_examples:
                    return ""
1181
                return chat_template(labeled_examples)
KonradSzafer's avatar
KonradSzafer committed
1182
1183
            if isinstance(example, str):
                self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1184
1185
1186
                    labeled_examples,
                    example,
                    fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1187
                    gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1188
1189
1190
1191
1192
1193
1194
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
1195
1196
1197
1198
                    self.append_target_question(
                        chat,
                        ex,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1199
                        gen_prefix=gen_prefix,
Baber Abbasi's avatar
Baber Abbasi committed
1200
1201
1202
1203
1204
                    )
                    # TODO: append prefill?
                    labeled_examples_list.append(
                        chat_template(
                            chat,
Baber Abbasi's avatar
Baber Abbasi committed
1205
                            add_generation_prompt=False if gen_prefix else True,
Baber Abbasi's avatar
Baber Abbasi committed
1206
1207
                        )
                    )
KonradSzafer's avatar
KonradSzafer committed
1208
1209
1210
1211
1212
1213
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1214
1215
1216
                        labeled_examples,
                        choices[example],
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1217
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1218
1219
1220
                    )
                else:
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1221
1222
1223
                        labeled_examples,
                        str(example),
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1224
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1225
1226
                    )
                # return lm.apply_chat_template(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
1227
1228
            return chat_template(
                labeled_examples,
Baber Abbasi's avatar
Baber Abbasi committed
1229
                add_generation_prompt=False if gen_prefix else True,
Baber Abbasi's avatar
Baber Abbasi committed
1230
            )
1231
        else:
Baber Abbasi's avatar
Baber Abbasi committed
1232
            prefix = (
Baber Abbasi's avatar
Baber Abbasi committed
1233
1234
                self.config.target_delimiter + gen_prefix
                if gen_prefix is not None
Baber Abbasi's avatar
Baber Abbasi committed
1235
1236
                else ""
            )
1237
            if self.multiple_inputs:
KonradSzafer's avatar
KonradSzafer committed
1238
                return labeled_examples
1239
            if isinstance(example, str):
Baber Abbasi's avatar
Baber Abbasi committed
1240
                return labeled_examples + example + prefix
1241
            elif isinstance(example, list):
Baber Abbasi's avatar
Baber Abbasi committed
1242
                return [labeled_examples + ex + prefix for ex in example]
1243
1244
1245
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
Baber Abbasi's avatar
Baber Abbasi committed
1246
                    return labeled_examples + choices[example] + prefix
1247
                else:
Baber Abbasi's avatar
Baber Abbasi committed
1248
                    return labeled_examples + str(example) + prefix
lintangsutawika's avatar
lintangsutawika committed
1249

Baber Abbasi's avatar
Baber Abbasi committed
1250
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
1251
        """Iterates over FilterEnsembles and applies them to instances"""
1252
1253
        if hasattr(self, "_filters"):
            for f in self._filters:
1254
                f.apply(self._instances)
1255
1256
1257
1258
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1259
    def should_decontaminate(self):
1260
        return self.config.should_decontaminate
1261

Baber Abbasi's avatar
Baber Abbasi committed
1262
    def doc_to_decontamination_query(self, doc: dict):
1263
        if self.config.should_decontaminate:
1264
1265
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1266
            else:
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1278

1279
    def _process_doc(self, doc: dict) -> dict:
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

Yu Shi Jie's avatar
Yu Shi Jie committed
1290
    def doc_to_text(self, doc, doc_to_text=None):
Baber's avatar
Baber committed
1291
        doc_to_text = doc_to_text or self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1292

1293
        if isinstance(doc_to_text, int):
Baber's avatar
Baber committed
1294
            # doc_to_text: 2
1295
            return doc_to_text
1296
        elif isinstance(doc_to_text, str):
Baber's avatar
Baber committed
1297
            # return df field
1298
1299
1300
            if doc_to_text in self.features:
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1301
                text_string = utils.apply_template(doc_to_text, doc)
Baber's avatar
Baber committed
1302
                if not self.multiple_inputs:
lintangsutawika's avatar
lintangsutawika committed
1303
                    return text_string
Baber's avatar
Baber committed
1304
1305
1306
1307
1308
                else:
                    assert text_string.isdigit(), (
                        "doc_to_text should be int label for multiple_inputs!"
                    )
                    return ast.literal_eval(text_string)
1309
        elif callable(doc_to_text):
1310
            return doc_to_text(doc)
1311
        else:
1312
            print(type(doc_to_text))
1313
            raise TypeError
1314

Baber's avatar
Baber committed
1315
1316
1317
1318
    def doc_to_target(
        self, doc: dict[str, Any], doc_to_target=None
    ) -> Union[int, str, list]:
        doc_to_target = doc_to_target or self.config.doc_to_target
1319

Baber's avatar
Baber committed
1320
1321
        if isinstance(doc_to_target, int):
            # yaml int; doc_to_target: 2
1322
            return doc_to_target
1323
        elif isinstance(doc_to_target, str):
Baber's avatar
Baber committed
1324
            # return the df field
1325
            if doc_to_target in self.features:
1326
                return doc[doc_to_target]
Baber's avatar
Baber committed
1327
            target_string = utils.apply_template(doc_to_target, doc)
Baber's avatar
Baber committed
1328
1329
            # Target is usually integer for multiple-choice but jinja _always_ returns str.
            # doc_to_target: {{answer[0]}} -> "2"
Baber's avatar
Baber committed
1330
1331
            if target_string.isdigit() and self._config.doc_to_choice is not None:
                return ast.literal_eval(target_string)
1332
            else:
Baber's avatar
Baber committed
1333
                return target_string
1334
        elif callable(doc_to_target):
Baber's avatar
Baber committed
1335
            # !function utils.func
1336
            return doc_to_target(doc)
Baber's avatar
Baber committed
1337
1338
1339
        elif isinstance(doc_to_target, list):
            # ["{{field}}", "{{field}}"]
            return utils.apply_template(doc_to_target, doc)
1340
1341
        else:
            raise TypeError
1342

Yu Shi Jie's avatar
Yu Shi Jie committed
1343
    def doc_to_choice(self, doc: Any, doc_to_choice=None) -> List[str]:
Baber's avatar
Baber committed
1344
1345
        doc_to_choice = doc_to_choice or self.config.doc_to_choice
        if doc_to_choice is None:
1346
1347
            eval_logger.error("doc_to_choice was called but not set in config")

1348
        if isinstance(doc_to_choice, str):
1349
            if doc_to_choice in self.features:
Baber's avatar
Baber committed
1350
                # return the df field
1351
1352
                return doc[doc_to_choice]
            else:
Baber's avatar
Baber committed
1353
1354
                # literal_eval for parsing "{{[x, y]}}"
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1355
        elif isinstance(doc_to_choice, list):
Baber's avatar
Baber committed
1356
            # ["{{x}}", "{{y}}"]
1357
            return utils.apply_template(doc_to_choice, doc)
1358
        elif isinstance(doc_to_choice, dict):
1359
1360
1361
1362
1363
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        else:
            raise TypeError
1364

1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
    def doc_to_image(self, doc: Any, doc_to_image=None) -> Union[int, str, list]:
        if doc_to_image is not None:
            doc_to_image = doc_to_image
        elif self.config.doc_to_image is not None:
            doc_to_image = self.config.doc_to_image
        else:
            return None

        if isinstance(doc_to_image, list):
            image_feature = [
                self.doc_to_image(doc, feature) for feature in doc_to_image
            ]
            return [feature for feature in image_feature if feature is not None]
        elif isinstance(doc_to_image, str):
            if doc_to_image in self.features:
                return doc[doc_to_image]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_image, doc))
        elif callable(doc_to_image):
            return doc_to_image(doc)
        else:
            return None

1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
    def doc_to_audio(self, doc: Any, doc_to_audio=None) -> Union[int, str, list]:
        if doc_to_audio is not None:
            doc_to_audio = doc_to_audio
        elif self.config.doc_to_audio is not None:
            doc_to_audio = self.config.doc_to_audio
        else:
            return None

        if isinstance(doc_to_audio, list):
            audio_feature = [
                self.doc_to_audio(doc, feature) for feature in doc_to_audio
            ]
            return [feature for feature in audio_feature if feature is not None]
        elif isinstance(doc_to_audio, str):
            if doc_to_audio in self.features:
                return doc[doc_to_audio]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_audio, doc))
        elif callable(doc_to_audio):
            return doc_to_audio(doc)
        else:
            return None

Baber's avatar
Baber committed
1411
    def doc_to_prefix(self, doc) -> Union[str, None]:
Baber Abbasi's avatar
Baber Abbasi committed
1412
        if (gen_prefix := self.config.gen_prefix) is not None:
Baber's avatar
Baber committed
1413
1414
1415
1416
1417
            return (
                doc[gen_prefix]
                if gen_prefix in self.features
                else utils.apply_template(gen_prefix, doc)
            )
Baber Abbasi's avatar
Baber Abbasi committed
1418
1419
        return None

baberabb's avatar
baberabb committed
1420
1421
1422
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1423
        apply_chat_template = kwargs.pop("apply_chat_template", False)
Baber's avatar
Baber committed
1424
        chat_template: Union[Callable, None] = kwargs.pop("chat_template", None)
1425

1426
1427
        aux_arguments = None

1428
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1429
            arguments = (ctx, self.doc_to_target(doc))
1430
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1431
            arguments = (self.doc_to_target(doc),)
1432
        elif self.OUTPUT_TYPE == "multiple_choice":
1433
            choices = self.doc_to_choice(doc)
1434
            target_delimiter = self.config.target_delimiter
1435
1436
            if apply_chat_template:
                target_delimiter = ""
1437
            if self.multiple_inputs:
1438
                # If there are multiple inputs, choices are placed in the ctx
1439
                # apply chat_template to choices if apply_chat_template
1440
                cont = self.doc_to_target(doc)
1441

1442
                arguments = [
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
                    (
                        ctx
                        + (
                            chat_template([{"role": "user", "content": choice}])
                            if apply_chat_template
                            else choice
                        ),
                        f"{target_delimiter}{cont}",
                    )
                    for choice in choices
1453
                ]
1454
            else:
1455
                # Otherwise they are placed in the continuation
1456
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1457

1458
1459
1460
1461
1462
1463
1464
1465
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
            if "acc_mutual_info" in self._metric_fn_list.keys():
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

                # here mutual info refers to calculating
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
1466
1467
1468
1469
                # TODO: should these be strided? will have to modify the processing in process_results if so
                aux_arguments = [
                    ("", f"{target_delimiter}{choice}") for choice in choices
                ]
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484

                arguments.extend(aux_arguments)

        elif self.OUTPUT_TYPE == "generate_until":
            arguments = (ctx, deepcopy(self.config.generation_kwargs))

        multimodal_arg = {}
        if (
            self.config.doc_to_image
        ):  # TODO: ensure that non-multimodal tasks aren't getting visual args
            multimodal_arg = {
                **multimodal_arg,
                **{"visual": self.doc_to_image(doc)},
            }

1485
1486
1487
1488
1489
1490
1491
1492
        if (
            self.config.doc_to_audio
        ):  # TODO: ensure that non-multimodal tasks aren't getting audio args
            multimodal_arg = {
                **multimodal_arg,
                **{"audio": self.doc_to_audio(doc)},
            }

1493
1494
1495
1496
1497
1498
1499
        if bool(multimodal_arg):
            if isinstance(arguments, list):
                arguments = [arg + (multimodal_arg,) for arg in arguments]
            else:
                arguments = arguments + (multimodal_arg,)

        if self.OUTPUT_TYPE == "multiple_choice":
1500
            request_list = [
1501
1502
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1503
                    doc=doc,
1504
                    arguments=arg,
1505
                    idx=i,
1506
1507
                    **kwargs,
                )
1508
                for i, arg in enumerate(arguments)
1509
            ]
1510
1511

            return request_list
lintangsutawika's avatar
lintangsutawika committed
1512

lintangsutawika's avatar
lintangsutawika committed
1513
        return Instance(
1514
1515
1516
1517
1518
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=arguments,
            idx=0,
            **kwargs,
lintangsutawika's avatar
lintangsutawika committed
1519
        )
1520
1521

    def process_results(self, doc, results):
1522
1523
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1524

1525
        result_dict = {}
1526
        use_metric = list(self._metric_fn_list.keys())
1527
1528
1529
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1530
1531
1532
1533
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1534
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1535
            (loglikelihood,) = results
1536
1537
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1538
            return {
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1554
            }
1555
        elif self.OUTPUT_TYPE == "multiple_choice":
1556
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1557

1558
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1559
1560
1561
1562
1563
            choices = (
                self.doc_to_choice(doc)
                if not self.multiple_inputs
                else cast(list[str], self.doc_to_text(doc))
            )
1564
1565
            completion_len = np.array([float(len(i)) for i in choices])

1566
1567
            if (
                2 * len(choices) == len(lls)
1568
                and "acc_mutual_info" in self._metric_fn_list.keys()
1569
1570
1571
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
1572
1573
                # as we extend the args list with unconditional ("", continuation) pairs
                lls_unconditional = lls[len(choices) :]
1574
1575
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1576
                # and this stores our "regular" conditional loglikelihoods
1577
                lls = lls[: len(choices)]
1578

1579
1580
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1581

1582
            gold = backup = self.doc_to_target(doc)
1583

1584
            if isinstance(gold, list):
1585
1586
                gold = [validate_index(g, len(choices)) for g in gold]
                gold_index_error = -100 in gold
1587
            else:
1588
                if isinstance(gold, int):
1589
                    gold = validate_index(gold, len(choices))
1590
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1591
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1592

1593
                gold_index_error = gold == -100
1594
1595
1596

            if gold_index_error:
                eval_logger.warning(
1597
                    f"Label [{backup}] index was not in within range of available choices {choices},"
1598
1599
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1600

1601
            if self.multiple_targets:
lintangsutawika's avatar
lintangsutawika committed
1602
1603
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1604
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1605
1606
1607
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1608
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1609
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1610

Lintang Sutawika's avatar
Lintang Sutawika committed
1611
1612
1613
1614
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1615
            result_dict = {
1616
                **({"acc": acc} if "acc" in use_metric else {}),
1617
1618
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1619
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1620
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1621
1622
1623
1624
1625
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1626
1627
            }

1628
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1629
1630
1631
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1632
1633
1634
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1635
        elif self.OUTPUT_TYPE == "generate_until":
1636
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1637
            result = results[0]
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
            # we expect multiple_targets to be a list.
            if self.multiple_target:
                gold = list(gold)
            # TODO: handle this better
            elif type(gold) is not type(result) and not (
                "bypass" in self._metric_fn_list.keys() or isinstance(result, list)
            ):
                # cast gold to the same type as result
                gold = type(result)(gold)

lintangsutawika's avatar
lintangsutawika committed
1648
            for metric in self._metric_fn_list.keys():
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
                    else:
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
                else:
                    try:
                        result_score = self._metric_fn_list[metric](
                            references=[gold],
                            predictions=[result],
                            **self._metric_fn_kwargs[metric],
                        )
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
                        result_score = self._metric_fn_list[metric]([gold, result])
1697
1698
1699
1700
1701
1702
1703
                if isinstance(result_score, dict):
                    # TODO: this handles the case where HF evaluate returns a dict.
                    # This allows for multiple metrics to be returned from the same function
                    for k, v in result_score.items():
                        result_dict[k] = v
                else:
                    result_dict[metric] = result_score
1704
        else:
lintangsutawika's avatar
lintangsutawika committed
1705
1706
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1707
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1708
            )
1709
1710
1711

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1712
    def aggregation(self) -> dict:
1713
1714
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1715
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1716
        return self._higher_is_better
1717

Baber Abbasi's avatar
Baber Abbasi committed
1718
1719
1720
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

Lintang Sutawika's avatar
Lintang Sutawika committed
1721
1722
1723
1724
    @property
    def task_name(self) -> Any:
        return getattr(self.config, "task", None)

1725
1726
1727
1728
1729
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
Baber Abbasi's avatar
Baber Abbasi committed
1730
            f"num_samples={len(self.eval_docs)})"
1731
1732
        )

1733
1734

class MultipleChoiceTask(Task):
1735
    OUTPUT_TYPE = "loglikelihood"
1736

baberabb's avatar
baberabb committed
1737
    def doc_to_target(self, doc: dict) -> str:
1738
1739
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1740
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1741
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1742
1743
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1744
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1745
                doc=doc,
1746
                arguments=(ctx, " {}".format(choice)),
1747
                idx=i,
1748
1749
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1750
1751
            for i, choice in enumerate(doc["choices"])
        ]
1752

1753
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1754
1755
1756
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1768
    def higher_is_better(self) -> dict:
1769
1770
1771
1772
1773
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1774
    def aggregation(self) -> dict:
1775
1776
1777
1778
1779
1780
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1781
class PerplexityTask(Task):
1782
1783
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1784
    def has_training_docs(self) -> bool:
1785
1786
        return False

baberabb's avatar
baberabb committed
1787
    def fewshot_examples(self, k: int, rnd) -> List:
1788
1789
1790
1791
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1792
1793
        return []

baberabb's avatar
baberabb committed
1794
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1795
1796
1797
1798
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1799
1800
1801

        return ""

baberabb's avatar
baberabb committed
1802
    def higher_is_better(self) -> dict:
1803
1804
1805
1806
1807
1808
1809
1810
1811
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1812
    def doc_to_text(self, doc) -> str:
1813
1814
1815
1816
1817
        return ""

    def doc_to_target(self, doc):
        return doc

1818
1819
1820
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1821

lintangsutawika's avatar
lintangsutawika committed
1822
1823
1824
1825
1826
1827
1828
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1829

1830
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1831
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1832
1833
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1834
1835
1836
1837
1838
1839
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1840
    def aggregation(self) -> dict:
1841
1842
1843
1844
1845
1846
1847
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1848
    def count_bytes(cls, doc) -> int:
1849
1850
1851
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1852
    def count_words(cls, doc) -> int:
1853
        """Downstream tasks with custom word boundaries should override this!"""
Lintang Sutawika's avatar
Lintang Sutawika committed
1854
        return len(re.split(r"\s+", doc))