"...git@developer.sourcefind.cn:gaoqiong/flash-attention.git" did not exist on "7c9953815aa04bb61e24237ffc29780708cc9c8e"
modeling_utils.py 248 KB
Newer Older
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
16
import collections
17
import copy
18
import functools
19
import gc
20
import importlib.metadata
Yih-Dar's avatar
Yih-Dar committed
21
import inspect
22
import itertools
Sylvain Gugger's avatar
Sylvain Gugger committed
23
import json
24
import os
25
import re
Sylvain Gugger's avatar
Sylvain Gugger committed
26
27
import shutil
import tempfile
28
import warnings
29
from contextlib import contextmanager
30
from dataclasses import dataclass
31
from functools import partial, wraps
32
from threading import Thread
33
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
34
from zipfile import is_zipfile
35
36

import torch
37
from huggingface_hub import split_torch_state_dict_into_shards
38
from packaging import version
Sylvain Gugger's avatar
Sylvain Gugger committed
39
from torch import Tensor, nn
40
from torch.nn import CrossEntropyLoss, Identity
41
from torch.utils.checkpoint import checkpoint
42

43
from .activations import get_activation
44
from .configuration_utils import PretrainedConfig
45
from .dynamic_module_utils import custom_object_save
46
from .generation import GenerationConfig, GenerationMixin
47
from .integrations import PeftAdapterMixin, deepspeed_config, is_deepspeed_zero3_enabled
48
49
50
51
from .pytorch_utils import (  # noqa: F401
    Conv1D,
    apply_chunking_to_forward,
    find_pruneable_heads_and_indices,
Thomas Wang's avatar
Thomas Wang committed
52
    id_tensor_storage,
53
    is_torch_greater_or_equal_than_1_13,
54
55
56
57
    prune_conv1d_layer,
    prune_layer,
    prune_linear_layer,
)
58
from .quantizers import AutoHfQuantizer, HfQuantizer
59
from .quantizers.quantizers_utils import get_module_from_name
60
from .safetensors_conversion import auto_conversion
61
from .utils import (
62
63
    ADAPTER_SAFE_WEIGHTS_NAME,
    ADAPTER_WEIGHTS_NAME,
64
    CONFIG_NAME,
Aymeric Augustin's avatar
Aymeric Augustin committed
65
    DUMMY_INPUTS,
66
    FLAX_WEIGHTS_NAME,
67
68
    SAFE_WEIGHTS_INDEX_NAME,
    SAFE_WEIGHTS_NAME,
69
70
    TF2_WEIGHTS_NAME,
    TF_WEIGHTS_NAME,
Sylvain Gugger's avatar
Sylvain Gugger committed
71
    WEIGHTS_INDEX_NAME,
72
    WEIGHTS_NAME,
73
    ContextManagers,
74
    ModelOutput,
Sylvain Gugger's avatar
Sylvain Gugger committed
75
    PushToHubMixin,
76
    cached_file,
77
    copy_func,
78
    download_url,
79
    extract_commit_hash,
80
    has_file,
81
    is_accelerate_available,
82
    is_bitsandbytes_available,
83
    is_flash_attn_2_available,
84
    is_offline_mode,
85
    is_optimum_available,
86
    is_peft_available,
87
    is_remote_url,
88
    is_safetensors_available,
89
    is_torch_sdpa_available,
90
    is_torch_xla_available,
91
    logging,
Sylvain Gugger's avatar
Sylvain Gugger committed
92
    replace_return_docstrings,
93
    strtobool,
94
)
95
from .utils.hub import convert_file_size_to_int, create_and_tag_model_card, get_checkpoint_shard_files
96
97
98
99
100
101
from .utils.import_utils import (
    ENV_VARS_TRUE_VALUES,
    is_sagemaker_mp_enabled,
    is_torch_fx_proxy,
    is_torchdynamo_compiling,
)
102
from .utils.quantization_config import BitsAndBytesConfig, QuantizationMethod
103

Aymeric Augustin's avatar
Aymeric Augustin committed
104

105
106
XLA_USE_BF16 = os.environ.get("XLA_USE_BF16", "0").upper()
XLA_DOWNCAST_BF16 = os.environ.get("XLA_DOWNCAST_BF16", "0").upper()
107
108
PARAM_RENAME_WARNING = "A parameter name that contains `{}` will be renamed internally to `{}`. Please use a different name to suppress this warning."

109

110
111
if is_accelerate_available():
    from accelerate import dispatch_model, infer_auto_device_map, init_empty_weights
112
    from accelerate.hooks import add_hook_to_module
113
    from accelerate.utils import (
114
        check_tied_parameters_on_same_device,
115
        extract_model_from_parallel,
116
        find_tied_parameters,
117
        get_balanced_memory,
Marc Sun's avatar
Marc Sun committed
118
        get_max_memory,
119
120
121
122
123
124
        load_offloaded_weights,
        offload_weight,
        save_offload_index,
        set_module_tensor_to_device,
    )

125
126
127
128
    accelerate_version = version.parse(importlib.metadata.version("accelerate"))
    if accelerate_version >= version.parse("0.31"):
        from accelerate.utils.modeling import get_state_dict_from_offload

129
130
131
132
if is_safetensors_available():
    from safetensors import safe_open
    from safetensors.torch import load_file as safe_load_file
    from safetensors.torch import save_file as safe_save_file
133

Lysandre Debut's avatar
Lysandre Debut committed
134
logger = logging.get_logger(__name__)
135

136
137
138
139

_init_weights = True


140
def is_fsdp_enabled():
141
142
143
144
    return (
        torch.distributed.is_available()
        and torch.distributed.is_initialized()
        and strtobool(os.environ.get("ACCELERATE_USE_FSDP", "False")) == 1
145
        and strtobool(os.environ.get("FSDP_CPU_RAM_EFFICIENT_LOADING", "False")) == 1
146
    )
147
148


149
150
151
152
153
154
def is_local_dist_rank_0():
    return (
        torch.distributed.is_available()
        and torch.distributed.is_initialized()
        and int(os.environ.get("LOCAL_RANK", -1)) == 0
    )
155
156


157
158
159
160
161
162
163
164
if is_sagemaker_mp_enabled():
    import smdistributed.modelparallel.torch as smp
    from smdistributed.modelparallel import __version__ as SMP_VERSION

    IS_SAGEMAKER_MP_POST_1_10 = version.parse(SMP_VERSION) >= version.parse("1.10")
else:
    IS_SAGEMAKER_MP_POST_1_10 = False

165
166
167
if is_peft_available():
    from .utils import find_adapter_config_file

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
TORCH_INIT_FUNCTIONS = {
    "uniform_": nn.init.uniform_,
    "normal_": nn.init.normal_,
    "trunc_normal_": nn.init.trunc_normal_,
    "constant_": nn.init.constant_,
    "xavier_uniform_": nn.init.xavier_uniform_,
    "xavier_normal_": nn.init.xavier_normal_,
    "kaiming_uniform_": nn.init.kaiming_uniform_,
    "kaiming_normal_": nn.init.kaiming_normal_,
    "uniform": nn.init.uniform,
    "normal": nn.init.normal,
    "xavier_uniform": nn.init.xavier_uniform,
    "xavier_normal": nn.init.xavier_normal,
    "kaiming_uniform": nn.init.kaiming_uniform,
    "kaiming_normal": nn.init.kaiming_normal,
}

185

186
187
188
189
190
191
192
193
@contextmanager
def no_init_weights(_enable=True):
    """
    Context manager to globally disable weight initialization to speed up loading large models.

    TODO(Patrick): Delete safety argument `_enable=True` at next major version. .
    """
    global _init_weights
194
    old_init_weights = _init_weights
195

196
197
    if _enable:
        _init_weights = False
198
199
200
201
202
203
204

        def _skip_init(*args, **kwargs):
            pass

        # # Save the original initialization functions
        for name, init_func in TORCH_INIT_FUNCTIONS.items():
            setattr(torch.nn.init, name, _skip_init)
205
206
207
    try:
        yield
    finally:
208
        _init_weights = old_init_weights
209
210
211
212
        if _enable:
            # # Restore the original initialization functions
            for name, init_func in TORCH_INIT_FUNCTIONS.items():
                setattr(torch.nn.init, name, init_func)
213
214


Lysandre Debut's avatar
Lysandre Debut committed
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
def get_parameter_device(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    try:
        return next(parameter.parameters()).device
    except StopIteration:
        # For nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].device


230
231
232
233
def get_first_parameter_dtype(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    """
    Returns the first parameter dtype (can be non-floating) or asserts if none were found.
    """
Lysandre Debut's avatar
Lysandre Debut committed
234
235
236
    try:
        return next(parameter.parameters()).dtype
    except StopIteration:
Sylvain Gugger's avatar
Sylvain Gugger committed
237
        # For nn.DataParallel compatibility in PyTorch > 1.5
Lysandre Debut's avatar
Lysandre Debut committed
238
239
240
241
242
243
244
245
246
247

        def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].dtype


248
249
def get_parameter_dtype(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
250
    Returns the first found floating dtype in parameters if there is one, otherwise returns the last dtype it found.
251
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
252
253
254
255
    last_dtype = None
    for t in parameter.parameters():
        last_dtype = t.dtype
        if t.is_floating_point():
256
257
258
            # Adding fix for https://github.com/pytorch/xla/issues/4152
            # Fixes issue where the model code passes a value that is out of range for XLA_USE_BF16=1
            # and XLA_DOWNCAST_BF16=1 so the conversion would cast it to -inf
259
260
            # NOTE: `is_torch_xla_available()` is checked last as it induces a graph break in torch dynamo
            if XLA_USE_BF16 in ENV_VARS_TRUE_VALUES and is_torch_xla_available():
261
                return torch.bfloat16
262
            if XLA_DOWNCAST_BF16 in ENV_VARS_TRUE_VALUES and is_torch_xla_available():
263
                if t.dtype == torch.float:
264
                    return torch.bfloat16
265
266
                if t.dtype == torch.double:
                    return torch.float32
Sylvain Gugger's avatar
Sylvain Gugger committed
267
            return t.dtype
268

Sylvain Gugger's avatar
Sylvain Gugger committed
269
270
271
    if last_dtype is not None:
        # if no floating dtype was found return whatever the first dtype is
        return last_dtype
272

273
274
275
276
277
278
279
280
281
282
283
284
285
    # For nn.DataParallel compatibility in PyTorch > 1.5
    def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
        tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
        return tuples

    gen = parameter._named_members(get_members_fn=find_tensor_attributes)
    last_tuple = None
    for tuple in gen:
        last_tuple = tuple
        if tuple[1].is_floating_point():
            return tuple[1].dtype

    if last_tuple is not None:
286
287
        # fallback to the last dtype
        return last_tuple[1].dtype
288

289
290
291
292
293
294
295
    # fallback to buffer dtype
    for t in parameter.buffers():
        last_dtype = t.dtype
        if t.is_floating_point():
            return t.dtype
    return last_dtype

296
297
298
299
300
301
302
303
304
305
306
307
308
309

def get_state_dict_float_dtype(state_dict):
    """
    Returns the first found floating dtype in `state_dict` or asserts if none were found.
    """
    for t in state_dict.values():
        if t.is_floating_point():
            return t.dtype

    raise ValueError("couldn't find any floating point dtypes in state_dict")


def get_state_dict_dtype(state_dict):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
310
    Returns the first found floating dtype in `state_dict` if there is one, otherwise returns the first dtype.
311
312
313
314
315
316
317
    """
    for t in state_dict.values():
        if t.is_floating_point():
            return t.dtype

    # if no floating dtype was found return whatever the first dtype is
    else:
Sylvain Gugger's avatar
Sylvain Gugger committed
318
        return next(state_dict.values()).dtype
319
320


Sylvain Gugger's avatar
Sylvain Gugger committed
321
322
323
324
325
326
327
328
329
330
331
332
333
def dtype_byte_size(dtype):
    """
    Returns the size (in bytes) occupied by one parameter of type `dtype`.

    Example:

    ```py
    >>> dtype_byte_size(torch.float32)
    4
    ```
    """
    if dtype == torch.bool:
        return 1 / 8
334
    bit_search = re.search(r"[^\d](\d+)_?", str(dtype))
Sylvain Gugger's avatar
Sylvain Gugger committed
335
336
337
338
339
340
    if bit_search is None:
        raise ValueError(f"`dtype` is not a valid dtype: {dtype}.")
    bit_size = int(bit_search.groups()[0])
    return bit_size // 8


341
342
343
344
345
346
def check_support_param_buffer_assignment(model_to_load, state_dict, start_prefix=""):
    """
    Checks if `model_to_load` supports param buffer assignment (such
    as when loading in empty weights) by first checking
    if the model explicitly disables it, then by ensuring that the state dict keys
    are a subset of the model's parameters.
347
348

    Note: We fully disable this if we are using `deepspeed`
349
350
351
352
    """
    if len([key for key in state_dict if key.startswith(start_prefix)]) == 0:
        return False

353
354
355
    if is_deepspeed_zero3_enabled():
        return False

356
    # Some models explicitly do not support param buffer assignment
357
    if not getattr(model_to_load, "_supports_param_buffer_assignment", True):
358
359
360
361
362
363
364
365
366
367
368
369
370
371
        logger.debug(
            f"{model_to_load.__class__.__name__} does not support param buffer assignment, loading will be slower"
        )
        return False

    # If the model does, the incoming `state_dict` and the `model_to_load` must be the same dtype
    first_key = list(model_to_load.state_dict().keys())[0]
    if start_prefix + first_key in state_dict:
        return state_dict[start_prefix + first_key].dtype == model_to_load.state_dict()[first_key].dtype

    # For cases when the `state_dict` doesn't contain real weights to the model (`test_model_weights_reload_no_missing_tied_weights`)
    return False


372
373
374
def shard_checkpoint(
    state_dict: Dict[str, torch.Tensor], max_shard_size: Union[int, str] = "10GB", weights_name: str = WEIGHTS_NAME
):
Sylvain Gugger's avatar
Sylvain Gugger committed
375
376
377
378
379
380
381
382
383
384
385
    """
    Splits a model state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a
    given size.

    The sub-checkpoints are determined by iterating through the `state_dict` in the order of its keys, so there is no
    optimization made to make each sub-checkpoint as close as possible to the maximum size passed. For example, if the
    limit is 10GB and we have weights of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as [6GB], [6+2GB],
    [6+2+2GB] and not [6+2+2GB], [6+2GB], [6GB].

    <Tip warning={true}>

Alan Ji's avatar
Alan Ji committed
386
    If one of the model's weight is bigger than `max_shard_size`, it will end up in its own sub-checkpoint which will
Sylvain Gugger's avatar
Sylvain Gugger committed
387
388
389
390
391
392
393
394
395
    have a size greater than `max_shard_size`.

    </Tip>

    Args:
        state_dict (`Dict[str, torch.Tensor]`): The state dictionary of a model to save.
        max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
            The maximum size of each sub-checkpoint. If expressed as a string, needs to be digits followed by a unit
            (like `"5MB"`).
396
397
        weights_name (`str`, *optional*, defaults to `"pytorch_model.bin"`):
            The name of the model save file.
Sylvain Gugger's avatar
Sylvain Gugger committed
398
    """
399
400
401
402
    logger.warning(
        "Note that `shard_checkpoint` is deprecated and will be removed in v4.44. We recommend you using "
        "split_torch_state_dict_into_shards from huggingface_hub library"
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
403
404
    max_shard_size = convert_file_size_to_int(max_shard_size)

Thomas Wang's avatar
Thomas Wang committed
405
406
    sharded_state_dicts = [{}]
    last_block_size = 0
Sylvain Gugger's avatar
Sylvain Gugger committed
407
    total_size = 0
Thomas Wang's avatar
Thomas Wang committed
408
    storage_id_to_block = {}
Sylvain Gugger's avatar
Sylvain Gugger committed
409
410

    for key, weight in state_dict.items():
411
412
413
414
415
416
        # when bnb serialization is used the weights in the state dict can be strings
        # check: https://github.com/huggingface/transformers/pull/24416 for more details
        if isinstance(weight, str):
            continue
        else:
            storage_id = id_tensor_storage(weight)
Thomas Wang's avatar
Thomas Wang committed
417
418

        # If a `weight` shares the same underlying storage as another tensor, we put `weight` in the same `block`
419
        if storage_id in storage_id_to_block and weight.device != torch.device("meta"):
Thomas Wang's avatar
Thomas Wang committed
420
421
422
423
            block_id = storage_id_to_block[storage_id]
            sharded_state_dicts[block_id][key] = weight
            continue

Sylvain Gugger's avatar
Sylvain Gugger committed
424
        weight_size = weight.numel() * dtype_byte_size(weight.dtype)
Sylvain Gugger's avatar
Sylvain Gugger committed
425
426
427
        # If this weight is going to tip up over the maximal size, we split, but only if we have put at least one
        # weight in the current shard.
        if last_block_size + weight_size > max_shard_size and len(sharded_state_dicts[-1]) > 0:
Thomas Wang's avatar
Thomas Wang committed
428
429
            sharded_state_dicts.append({})
            last_block_size = 0
Sylvain Gugger's avatar
Sylvain Gugger committed
430

Thomas Wang's avatar
Thomas Wang committed
431
432
        sharded_state_dicts[-1][key] = weight
        last_block_size += weight_size
Sylvain Gugger's avatar
Sylvain Gugger committed
433
        total_size += weight_size
Thomas Wang's avatar
Thomas Wang committed
434
        storage_id_to_block[storage_id] = len(sharded_state_dicts) - 1
Sylvain Gugger's avatar
Sylvain Gugger committed
435
436
437

    # If we only have one shard, we return it
    if len(sharded_state_dicts) == 1:
438
        return {weights_name: sharded_state_dicts[0]}, None
Sylvain Gugger's avatar
Sylvain Gugger committed
439
440
441
442
443

    # Otherwise, let's build the index
    weight_map = {}
    shards = {}
    for idx, shard in enumerate(sharded_state_dicts):
444
445
446
447
        shard_file = weights_name.replace(".bin", f"-{idx+1:05d}-of-{len(sharded_state_dicts):05d}.bin")
        shard_file = shard_file.replace(
            ".safetensors", f"-{idx + 1:05d}-of-{len(sharded_state_dicts):05d}.safetensors"
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
448
449
450
451
452
453
454
455
456
457
        shards[shard_file] = shard
        for key in shard.keys():
            weight_map[key] = shard_file

    # Add the metadata
    metadata = {"total_size": total_size}
    index = {"metadata": metadata, "weight_map": weight_map}
    return shards, index


458
def load_sharded_checkpoint(model, folder, strict=True, prefer_safe=True):
459
460
461
462
463
464
465
466
467
468
469
470
471
    """
    This is the same as
    [`torch.nn.Module.load_state_dict`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html?highlight=load_state_dict#torch.nn.Module.load_state_dict)
    but for a sharded checkpoint.

    This load is performed efficiently: each checkpoint shard is loaded one by one in RAM and deleted after being
    loaded in the model.

    Args:
        model (`torch.nn.Module`): The model in which to load the checkpoint.
        folder (`str` or `os.PathLike`): A path to a folder containing the sharded checkpoint.
        strict (`bool`, *optional`, defaults to `True`):
            Whether to strictly enforce that the keys in the model state dict match the keys in the sharded checkpoint.
472
473
474
        prefer_safe (`bool`, *optional*, defaults to `False`)
            If both safetensors and PyTorch save files are present in checkpoint and `prefer_safe` is True, the
            safetensors files will be loaded. Otherwise, PyTorch files are always loaded when possible.
475
476
477
478
479
480
481
482

    Returns:
        `NamedTuple`: A named tuple with `missing_keys` and `unexpected_keys` fields
            - `missing_keys` is a list of str containing the missing keys
            - `unexpected_keys` is a list of str containing the unexpected keys
    """
    # Load the index
    index_file = os.path.join(folder, WEIGHTS_INDEX_NAME)
483
    safe_index_file = os.path.join(folder, SAFE_WEIGHTS_INDEX_NAME)
484

485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
    index_present = os.path.isfile(index_file)
    safe_index_present = os.path.isfile(safe_index_file)

    if not index_present and not (safe_index_present and is_safetensors_available()):
        filenames = (
            (WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_INDEX_NAME) if is_safetensors_available() else (WEIGHTS_INDEX_NAME,)
        )
        raise ValueError(f"Can't find a checkpoint index ({' or '.join(filenames)}) in {folder}.")

    load_safe = False
    if safe_index_present:
        if prefer_safe:
            if is_safetensors_available():
                load_safe = True  # load safe due to preference
            else:
                logger.warning(
                    f"Cannot load sharded checkpoint at {folder} safely since safetensors is not installed!"
                )
        elif not index_present:
            load_safe = True  # load safe since we have no other choice

    load_index = safe_index_file if load_safe else index_file

    with open(load_index, "r", encoding="utf-8") as f:
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
        index = json.load(f)

    shard_files = list(set(index["weight_map"].values()))

    # If strict=True, error before loading any of the state dicts.
    loaded_keys = index["weight_map"].keys()
    model_keys = model.state_dict().keys()
    missing_keys = [key for key in model_keys if key not in loaded_keys]
    unexpected_keys = [key for key in loaded_keys if key not in model_keys]
    if strict and (len(missing_keys) > 0 or len(unexpected_keys) > 0):
        error_message = f"Error(s) in loading state_dict for {model.__class__.__name__}"
        if len(missing_keys) > 0:
            str_missing_keys = ",".join([f'"{k}"' for k in missing_keys])
            error_message += f"\nMissing key(s): {str_missing_keys}."
        if len(unexpected_keys) > 0:
            str_unexpected_keys = ",".join([f'"{k}"' for k in unexpected_keys])
            error_message += f"\nMissing key(s): {str_unexpected_keys}."
        raise RuntimeError(error_message)

Yih-Dar's avatar
Yih-Dar committed
528
529
    weights_only_kwarg = {"weights_only": True} if is_torch_greater_or_equal_than_1_13 else {}
    loader = safe_load_file if load_safe else partial(torch.load, map_location="cpu", **weights_only_kwarg)
530

531
    for shard_file in shard_files:
532
        state_dict = loader(os.path.join(folder, shard_file))
533
534
        model.load_state_dict(state_dict, strict=False)

535
        # Make sure memory is freed before we load the next state dict.
536
537
538
539
540
541
542
        del state_dict
        gc.collect()

    # Return the same thing as PyTorch load_state_dict function.
    return torch.nn.modules.module._IncompatibleKeys(missing_keys, unexpected_keys)


543
def load_state_dict(checkpoint_file: Union[str, os.PathLike], is_quantized: bool = False):
Sylvain Gugger's avatar
Sylvain Gugger committed
544
545
546
    """
    Reads a PyTorch checkpoint file, returning properly formatted errors if they arise.
    """
547
548
549
550
    if checkpoint_file.endswith(".safetensors") and is_safetensors_available():
        # Check format of the archive
        with safe_open(checkpoint_file, framework="pt") as f:
            metadata = f.metadata()
551
        if metadata.get("format") not in ["pt", "tf", "flax", "mlx"]:
552
553
554
555
556
            raise OSError(
                f"The safetensors archive passed at {checkpoint_file} does not contain the valid metadata. Make sure "
                "you save your model with the `save_pretrained` method."
            )
        return safe_load_file(checkpoint_file)
Sylvain Gugger's avatar
Sylvain Gugger committed
557
    try:
558
        if (
559
560
561
            (is_deepspeed_zero3_enabled() and torch.distributed.is_initialized() and torch.distributed.get_rank() > 0)
            or (is_fsdp_enabled() and not is_local_dist_rank_0())
        ) and not is_quantized:
562
563
564
            map_location = "meta"
        else:
            map_location = "cpu"
565
566
567
568
569
570
571
572
573
        extra_args = {}
        # mmap can only be used with files serialized with zipfile-based format.
        if (
            isinstance(checkpoint_file, str)
            and map_location != "meta"
            and version.parse(torch.__version__) >= version.parse("2.1.0")
            and is_zipfile(checkpoint_file)
        ):
            extra_args = {"mmap": True}
Yih-Dar's avatar
Yih-Dar committed
574
        weights_only_kwarg = {"weights_only": True} if is_torch_greater_or_equal_than_1_13 else {}
575
576
577
        return torch.load(
            checkpoint_file,
            map_location=map_location,
Yih-Dar's avatar
Yih-Dar committed
578
            **weights_only_kwarg,
579
580
            **extra_args,
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
581
582
583
    except Exception as e:
        try:
            with open(checkpoint_file) as f:
584
                if f.read(7) == "version":
Sylvain Gugger's avatar
Sylvain Gugger committed
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
                    raise OSError(
                        "You seem to have cloned a repository without having git-lfs installed. Please install "
                        "git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
                        "you cloned."
                    )
                else:
                    raise ValueError(
                        f"Unable to locate the file {checkpoint_file} which is necessary to load this pretrained "
                        "model. Make sure you have saved the model properly."
                    ) from e
        except (UnicodeDecodeError, ValueError):
            raise OSError(
                f"Unable to load weights from pytorch checkpoint file for '{checkpoint_file}' "
                f"at '{checkpoint_file}'. "
                "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True."
            )


603
604
605
606
607
def set_initialized_submodules(model, state_dict_keys):
    """
    Sets the `_is_hf_initialized` flag in all submodules of a given model when all its weights are in the loaded state
    dict.
    """
608
    not_initialized_submodules = {}
609
    for module_name, module in model.named_modules():
610
611
        loaded_keys = {k.replace(f"{module_name}.", "") for k in state_dict_keys if k.startswith(f"{module_name}.")}
        if loaded_keys.issuperset(module.state_dict()):
612
            module._is_hf_initialized = True
613
614
615
        else:
            not_initialized_submodules[module_name] = module
    return not_initialized_submodules
616
617


618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
def _end_ptr(tensor: torch.Tensor) -> int:
    # extract the end of the pointer if the tensor is a slice of a bigger tensor
    if tensor.nelement():
        stop = tensor.view(-1)[-1].data_ptr() + tensor.element_size()
    else:
        stop = tensor.data_ptr()
    return stop


def _get_tied_weight_keys(module: nn.Module, prefix=""):
    tied_weight_keys = []
    if getattr(module, "_tied_weights_keys", None) is not None:
        names = [f"{prefix}.{k}" if prefix else k for k in module._tied_weights_keys]
        tied_weight_keys.extend(names)
    if getattr(module, "_dynamic_tied_weights_keys", None) is not None:
        names = [f"{prefix}.{k}" if prefix else k for k in module._dynamic_tied_weights_keys]
        tied_weight_keys.extend(names)
    for name, submodule in module.named_children():
        local_prefix = f"{prefix}.{name}" if prefix else name
        tied_weight_keys.extend(_get_tied_weight_keys(submodule, prefix=local_prefix))
    return tied_weight_keys


def _find_disjoint(tensors: List[Set[str]], state_dict: Dict[str, torch.Tensor]) -> Tuple[List[Set[str]], List[str]]:
    filtered_tensors = []
    for shared in tensors:
        if len(shared) < 2:
            filtered_tensors.append(shared)
            continue

        areas = []
        for name in shared:
            tensor = state_dict[name]
            areas.append((tensor.data_ptr(), _end_ptr(tensor), name))
        areas.sort()

        _, last_stop, last_name = areas[0]
        filtered_tensors.append({last_name})
        for start, stop, name in areas[1:]:
            if start >= last_stop:
                filtered_tensors.append({name})
            else:
                filtered_tensors[-1].add(name)
            last_stop = stop
    disjoint_tensors = []
    shared_tensors = []
    for tensors in filtered_tensors:
        if len(tensors) == 1:
            disjoint_tensors.append(tensors.pop())
        else:
            shared_tensors.append(tensors)
    return shared_tensors, disjoint_tensors


def _find_identical(tensors: List[Set[str]], state_dict: Dict[str, torch.Tensor]) -> Tuple[List[Set[str]], Set[str]]:
    shared_tensors = []
    identical = []
    for shared in tensors:
        if len(shared) < 2:
            continue

        areas = collections.defaultdict(set)
        for name in shared:
            tensor = state_dict[name]
            area = (tensor.device, tensor.data_ptr(), _end_ptr(tensor))
            areas[area].add(name)
        if len(areas) == 1:
            identical.append(shared)
        else:
            shared_tensors.append(shared)
    return shared_tensors, identical


691
def _load_state_dict_into_model(model_to_load, state_dict, start_prefix, assign_to_params_buffers=False):
Sylvain Gugger's avatar
Sylvain Gugger committed
692
693
694
695
696
697
    # Convert old format to new format if needed from a PyTorch state_dict
    old_keys = []
    new_keys = []
    for key in state_dict.keys():
        new_key = None
        if "gamma" in key:
698
            logger.warning(PARAM_RENAME_WARNING.format("gamma", "weight"))
Sylvain Gugger's avatar
Sylvain Gugger committed
699
700
            new_key = key.replace("gamma", "weight")
        if "beta" in key:
701
            logger.warning(PARAM_RENAME_WARNING.format("beta", "bias"))
Sylvain Gugger's avatar
Sylvain Gugger committed
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
            new_key = key.replace("beta", "bias")
        if new_key:
            old_keys.append(key)
            new_keys.append(new_key)
    for old_key, new_key in zip(old_keys, new_keys):
        state_dict[new_key] = state_dict.pop(old_key)

    # copy state_dict so _load_from_state_dict can modify it
    metadata = getattr(state_dict, "_metadata", None)
    state_dict = state_dict.copy()
    if metadata is not None:
        state_dict._metadata = metadata

    error_msgs = []

    # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
    # so we need to apply the function recursively.
719
    def load(module: nn.Module, state_dict, prefix="", assign_to_params_buffers=False):
Sylvain Gugger's avatar
Sylvain Gugger committed
720
        local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
721
722
        local_metadata["assign_to_params_buffers"] = assign_to_params_buffers

723
        args = (state_dict, prefix, local_metadata, True, [], [], error_msgs)
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
        # Parameters of module and children will start with prefix. We can exit early if there are none in this
        # state_dict
        if len([key for key in state_dict if key.startswith(prefix)]) > 0:
            if is_deepspeed_zero3_enabled():
                import deepspeed

                # In sharded models, each shard has only part of the full state_dict, so only gather
                # parameters that are in the current state_dict.
                named_parameters = dict(module.named_parameters(prefix=prefix[:-1], recurse=False))
                params_to_gather = [named_parameters[k] for k in state_dict.keys() if k in named_parameters]
                if len(params_to_gather) > 0:
                    # because zero3 puts placeholders in model params, this context
                    # manager gathers (unpartitions) the params of the current layer, then loads from
                    # the state dict and then re-partitions them again
                    with deepspeed.zero.GatheredParameters(params_to_gather, modifier_rank=0):
                        if torch.distributed.get_rank() == 0:
                            module._load_from_state_dict(*args)
            else:
                module._load_from_state_dict(*args)
Sylvain Gugger's avatar
Sylvain Gugger committed
743
744
745

        for name, child in module._modules.items():
            if child is not None:
746
                load(child, state_dict, prefix + name + ".", assign_to_params_buffers)
Sylvain Gugger's avatar
Sylvain Gugger committed
747

748
    load(model_to_load, state_dict, prefix=start_prefix, assign_to_params_buffers=assign_to_params_buffers)
749
750
751
    # Delete `state_dict` so it could be collected by GC earlier. Note that `state_dict` is a copy of the argument, so
    # it's safe to delete it.
    del state_dict
Sylvain Gugger's avatar
Sylvain Gugger committed
752
753
754
755

    return error_msgs


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
def find_submodule_and_param_name(model, long_key, start_prefix):
    """
    A helper util to find the last sub-module and the param/buffer name. If `start_prefix` is supplied it'll be removed
    from the start of the key
    """

    if len(start_prefix) > 0 and long_key.startswith(start_prefix):
        long_key = ".".join(long_key.split(".")[1:])

    split_key = long_key.split(".")
    submodule = model
    while len(split_key) > 1:
        if hasattr(submodule, split_key[0]):
            submodule = getattr(submodule, split_key[0])
            del split_key[0]
        else:
            submodule = None
            break
    if submodule == model:
        submodule = None
    return submodule, split_key[0]


def _move_model_to_meta(model, loaded_state_dict_keys, start_prefix):
    """
    Moves `loaded_state_dict_keys` in model to meta device which frees up the memory taken by those params.

    `start_prefix` is used for models which insert their name into model keys, e.g. `bert` in
    `bert.pooler.dense.weight`

    """

    # dematerialize param storage for keys that are going to be replaced by state_dict, by
    # putting those on the meta device
    for k in loaded_state_dict_keys:
        submodule, param_name = find_submodule_and_param_name(model, k, start_prefix)
        if submodule is not None:
            # selectively switch to the meta device only those params/buffers that will
            # be next replaced from state_dict. This a complex way to do p.to_("meta")
            # since we have no in-place to_ for tensors.
            new_val = getattr(submodule, param_name)
            if isinstance(new_val, torch.nn.Parameter):
                # isinstance returns False for Params on meta device, so switch after the check
                new_val = torch.nn.Parameter(new_val.to("meta"))
            else:
                new_val = new_val.to("meta")
            setattr(submodule, param_name, new_val)


805
806
807
808
809
810
811
812
813
814
815
816
def _load_state_dict_into_meta_model(
    model,
    state_dict,
    loaded_state_dict_keys,  # left for now but could be removed, see below
    start_prefix,
    expected_keys,
    device_map=None,
    offload_folder=None,
    offload_index=None,
    state_dict_folder=None,
    state_dict_index=None,
    dtype=None,
817
    hf_quantizer=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
818
    is_safetensors=False,
819
    keep_in_fp32_modules=None,
820
    unexpected_keys=None,  # passing `unexpected` for cleanup from quantization items
821
):
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
    """
    This is somewhat similar to `_load_state_dict_into_model`, but deals with a model that has some or all of its
    params on a `meta` device. It replaces the model params with the data from the `state_dict`, while moving the
    params back to the normal device, but only for `loaded_state_dict_keys`.

    `start_prefix` is used for models which insert their name into model keys, e.g. `bert` in
    `bert.pooler.dense.weight`

    """

    # XXX: remaining features to implement to be fully compatible with _load_state_dict_into_model
    # - deepspeed zero 3 support
    # - need to copy metadata if any - see _load_state_dict_into_model
    # - handling error_msgs - mimicking the error handling in module._load_from_state_dict()
    # - Is there a situation where some keys aren't in `loaded_state_dict_keys` and in which case
    #   they won't get loaded.

    error_msgs = []

841
842
    old_keys = []
    new_keys = []
843
    is_quantized = hf_quantizer is not None
844
845
846
    for key in state_dict.keys():
        new_key = None
        if "gamma" in key:
847
            logger.warning(PARAM_RENAME_WARNING.format("gamma", "weight"))
848
849
            new_key = key.replace("gamma", "weight")
        if "beta" in key:
850
            logger.warning(PARAM_RENAME_WARNING.format("beta", "bias"))
851
852
853
854
855
856
            new_key = key.replace("beta", "bias")
        if new_key:
            old_keys.append(key)
            new_keys.append(new_key)
    for old_key, new_key in zip(old_keys, new_keys):
        state_dict[new_key] = state_dict.pop(old_key)
857

858
859
    is_torch_e4m3fn_available = hasattr(torch, "float8_e4m3fn")

860
861
862
863
864
865
866
867
868
    for param_name, param in state_dict.items():
        # First part of the test is always true as load_state_dict_keys always contains state_dict keys.
        if param_name not in loaded_state_dict_keys or param_name not in expected_keys:
            continue

        if param_name.startswith(start_prefix):
            param_name = param_name[len(start_prefix) :]

        module_name = param_name
869
        set_module_kwargs = {}
870

871
        # We convert floating dtypes to the `dtype` passed except for float8_e4m3fn type. We also want to keep the buffers/params
872
        # in int/uint/bool and not cast them.
873
874
        is_param_float8_e4m3fn = is_torch_e4m3fn_available and param.dtype == torch.float8_e4m3fn
        if dtype is not None and torch.is_floating_point(param) and not is_param_float8_e4m3fn:
875
876
            if (
                keep_in_fp32_modules is not None
877
878
879
                and any(
                    module_to_keep_in_fp32 in param_name.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules
                )
880
881
882
                and dtype == torch.float16
            ):
                param = param.to(torch.float32)
883
884
885
886
887

                # For backward compatibility with older versions of `accelerate`
                # TODO: @sgugger replace this check with version check at the next `accelerate` release
                if "dtype" in list(inspect.signature(set_module_tensor_to_device).parameters):
                    set_module_kwargs["dtype"] = torch.float32
888
889
            else:
                param = param.to(dtype)
890

891
892
893
894
895
896
897
898
899
900
901
        # For compatibility with PyTorch load_state_dict which converts state dict dtype to existing dtype in model, and which
        # uses `param.copy_(input_param)` that preserves the contiguity of the parameter in the model.
        # Reference: https://github.com/pytorch/pytorch/blob/db79ceb110f6646523019a59bbd7b838f43d4a86/torch/nn/modules/module.py#L2040C29-L2040C29
        old_param = model
        splits = param_name.split(".")
        for split in splits:
            old_param = getattr(old_param, split)
            if old_param is None:
                break
        if old_param is not None:
            if dtype is None:
902
                param = param.to(old_param.dtype)
903

904
905
906
            if old_param.is_contiguous():
                param = param.contiguous()

907
908
        set_module_kwargs["value"] = param

909
910
911
912
913
914
915
916
917
918
919
        if device_map is None:
            param_device = "cpu"
        else:
            # find next higher level module that is defined in device_map:
            # bert.lm_head.weight -> bert.lm_head -> bert -> ''
            while len(module_name) > 0 and module_name not in device_map:
                module_name = ".".join(module_name.split(".")[:-1])
            if module_name == "" and "" not in device_map:
                # TODO: group all errors and raise at the end.
                raise ValueError(f"{param_name} doesn't have any device set.")
            param_device = device_map[module_name]
920

921
        if param_device == "disk":
Sylvain Gugger's avatar
Sylvain Gugger committed
922
923
            if not is_safetensors:
                offload_index = offload_weight(param, param_name, offload_folder, offload_index)
924
        elif param_device == "cpu" and state_dict_index is not None:
925
            state_dict_index = offload_weight(param, param_name, state_dict_folder, state_dict_index)
926
        elif (
927
            not is_quantized
928
            or (not hf_quantizer.requires_parameters_quantization)
929
930
931
932
933
            or (
                not hf_quantizer.check_quantized_param(
                    model, param, param_name, state_dict, param_device=param_device, device_map=device_map
                )
            )
934
935
        ):
            # For backward compatibility with older versions of `accelerate` and for non-quantized params
936
            set_module_tensor_to_device(model, param_name, param_device, **set_module_kwargs)
937
        else:
938
            hf_quantizer.create_quantized_param(model, param, param_name, param_device, state_dict, unexpected_keys)
939
940
941
942
943
944
945
946
            # For quantized modules with FSDP/DeepSpeed Stage 3, we need to quantize the parameter on the GPU
            # and then cast it to CPU to avoid excessive memory usage on each GPU
            # in comparison to the sharded model across GPUs.
            if is_fsdp_enabled() or is_deepspeed_zero3_enabled():
                module, tensor_name = get_module_from_name(model, param_name)
                value = getattr(module, tensor_name)
                value = type(value)(value.data.to("cpu"), **value.__dict__)
                setattr(module, tensor_name, value)
947
            # TODO: consider removing used param_parts from state_dict before return
948
949

    return error_msgs, offload_index, state_dict_index
950
951


952
953
954
955
956
957
958
959
960
def _add_variant(weights_name: str, variant: Optional[str] = None) -> str:
    if variant is not None:
        splits = weights_name.split(".")
        splits = splits[:-1] + [variant] + splits[-1:]
        weights_name = ".".join(splits)

    return weights_name


961
class ModuleUtilsMixin:
Julien Chaumond's avatar
Julien Chaumond committed
962
    """
963
    A few utilities for `torch.nn.Modules`, to be used as a mixin.
Julien Chaumond's avatar
Julien Chaumond committed
964
965
    """

966
967
968
969
    @staticmethod
    def _hook_rss_memory_pre_forward(module, *args, **kwargs):
        try:
            import psutil
Sylvain Gugger's avatar
Sylvain Gugger committed
970
        except ImportError:
971
972
973
974
975
976
977
978
979
980
981
            raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")

        process = psutil.Process(os.getpid())
        mem = process.memory_info()
        module.mem_rss_pre_forward = mem.rss
        return None

    @staticmethod
    def _hook_rss_memory_post_forward(module, *args, **kwargs):
        try:
            import psutil
Sylvain Gugger's avatar
Sylvain Gugger committed
982
        except ImportError:
983
984
985
986
987
988
989
990
991
992
            raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")

        process = psutil.Process(os.getpid())
        mem = process.memory_info()
        module.mem_rss_post_forward = mem.rss
        mem_rss_diff = module.mem_rss_post_forward - module.mem_rss_pre_forward
        module.mem_rss_diff = mem_rss_diff + (module.mem_rss_diff if hasattr(module, "mem_rss_diff") else 0)
        return None

    def add_memory_hooks(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
993
994
995
        """
        Add a memory hook before and after each sub-module forward pass to record increase in memory consumption.

Sylvain Gugger's avatar
Sylvain Gugger committed
996
997
        Increase in memory consumption is stored in a `mem_rss_diff` attribute for each module and can be reset to zero
        with `model.reset_memory_hooks_state()`.
998
999
1000
1001
1002
1003
1004
        """
        for module in self.modules():
            module.register_forward_pre_hook(self._hook_rss_memory_pre_forward)
            module.register_forward_hook(self._hook_rss_memory_post_forward)
        self.reset_memory_hooks_state()

    def reset_memory_hooks_state(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
1005
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1006
        Reset the `mem_rss_diff` attribute of each module (see [`~modeling_utils.ModuleUtilsMixin.add_memory_hooks`]).
Sylvain Gugger's avatar
Sylvain Gugger committed
1007
        """
1008
1009
1010
1011
1012
        for module in self.modules():
            module.mem_rss_diff = 0
            module.mem_rss_post_forward = 0
            module.mem_rss_pre_forward = 0

1013
    @property
Sylvain Gugger's avatar
Sylvain Gugger committed
1014
    def device(self) -> torch.device:
1015
        """
1016
        `torch.device`: The device on which the module is (assuming that all the module parameters are on the same
1017
        device).
1018
        """
Lysandre Debut's avatar
Lysandre Debut committed
1019
        return get_parameter_device(self)
1020

1021
    @property
1022
    def dtype(self) -> torch.dtype:
1023
        """
1024
        `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
1025
        """
Lysandre Debut's avatar
Lysandre Debut committed
1026
        return get_parameter_dtype(self)
1027
1028

    def invert_attention_mask(self, encoder_attention_mask: Tensor) -> Tensor:
Sylvain Gugger's avatar
Sylvain Gugger committed
1029
1030
1031
1032
        """
        Invert an attention mask (e.g., switches 0. and 1.).

        Args:
1033
            encoder_attention_mask (`torch.Tensor`): An attention mask.
Sylvain Gugger's avatar
Sylvain Gugger committed
1034
1035

        Returns:
1036
            `torch.Tensor`: The inverted attention mask.
Sylvain Gugger's avatar
Sylvain Gugger committed
1037
        """
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
        if encoder_attention_mask.dim() == 3:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
        if encoder_attention_mask.dim() == 2:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
        # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
        # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
        # /transformer/transformer_layers.py#L270
        # encoder_extended_attention_mask = (encoder_extended_attention_mask ==
        # encoder_extended_attention_mask.transpose(-1, -2))
        encoder_extended_attention_mask = encoder_extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
Yih-Dar's avatar
Yih-Dar committed
1048
        encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * torch.finfo(self.dtype).min
1049

1050
1051
        return encoder_extended_attention_mask

1052
    @staticmethod
1053
1054
1055
1056
1057
1058
1059
    def create_extended_attention_mask_for_decoder(input_shape, attention_mask, device=None):
        if device is not None:
            warnings.warn(
                "The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
            )
        else:
            device = attention_mask.device
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
        batch_size, seq_length = input_shape
        seq_ids = torch.arange(seq_length, device=device)
        causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
        # in case past_key_values are used we need to add a prefix ones mask to the causal mask
        # causal and attention masks must have same type with pytorch version < 1.3
        causal_mask = causal_mask.to(attention_mask.dtype)

        if causal_mask.shape[1] < attention_mask.shape[1]:
            prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
            causal_mask = torch.cat(
                [
                    torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype),
                    causal_mask,
                ],
                axis=-1,
            )

        extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
        return extended_attention_mask

1080
    def get_extended_attention_mask(
1081
        self, attention_mask: Tensor, input_shape: Tuple[int], device: torch.device = None, dtype: torch.float = None
1082
    ) -> Tensor:
Sylvain Gugger's avatar
Sylvain Gugger committed
1083
1084
        """
        Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
1085
1086

        Arguments:
1087
            attention_mask (`torch.Tensor`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1088
                Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
1089
            input_shape (`Tuple[int]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1090
                The shape of the input to the model.
1091
1092

        Returns:
1093
            `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
1094
        """
Yih-Dar's avatar
Yih-Dar committed
1095
1096
1097
        if dtype is None:
            dtype = self.dtype

1098
1099
1100
1101
1102
1103
        if not (attention_mask.dim() == 2 and self.config.is_decoder):
            # show warning only if it won't be shown in `create_extended_attention_mask_for_decoder`
            if device is not None:
                warnings.warn(
                    "The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
                )
1104
1105
1106
1107
1108
1109
1110
1111
1112
        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        if attention_mask.dim() == 3:
            extended_attention_mask = attention_mask[:, None, :, :]
        elif attention_mask.dim() == 2:
            # Provided a padding mask of dimensions [batch_size, seq_length]
            # - if the model is a decoder, apply a causal mask in addition to the padding mask
            # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
            if self.config.is_decoder:
1113
                extended_attention_mask = ModuleUtilsMixin.create_extended_attention_mask_for_decoder(
1114
1115
                    input_shape, attention_mask, device
                )
1116
1117
1118
1119
            else:
                extended_attention_mask = attention_mask[:, None, None, :]
        else:
            raise ValueError(
1120
                f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})"
1121
1122
1123
1124
            )

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
1125
        # positions we want to attend and the dtype's smallest value for masked positions.
1126
1127
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
Yih-Dar's avatar
Yih-Dar committed
1128
1129
        extended_attention_mask = extended_attention_mask.to(dtype=dtype)  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(dtype).min
1130
1131
        return extended_attention_mask

Sylvain Gugger's avatar
Sylvain Gugger committed
1132
1133
1134
    def get_head_mask(
        self, head_mask: Optional[Tensor], num_hidden_layers: int, is_attention_chunked: bool = False
    ) -> Tensor:
1135
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1136
1137
1138
        Prepare the head mask if needed.

        Args:
1139
            head_mask (`torch.Tensor` with shape `[num_heads]` or `[num_hidden_layers x num_heads]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1140
                The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard).
1141
            num_hidden_layers (`int`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1142
                The number of hidden layers in the model.
1143
            is_attention_chunked (`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1144
1145
                Whether or not the attentions scores are computed by chunks or not.

1146
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
1147
1148
            `torch.Tensor` with shape `[num_hidden_layers x batch x num_heads x seq_length x seq_length]` or list with
            `[None]` for each layer.
1149
1150
1151
        """
        if head_mask is not None:
            head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
1152
1153
            if is_attention_chunked is True:
                head_mask = head_mask.unsqueeze(-1)
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
        else:
            head_mask = [None] * num_hidden_layers

        return head_mask

    def _convert_head_mask_to_5d(self, head_mask, num_hidden_layers):
        """-> [num_hidden_layers x batch x num_heads x seq_length x seq_length]"""
        if head_mask.dim() == 1:
            head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
            head_mask = head_mask.expand(num_hidden_layers, -1, -1, -1, -1)
        elif head_mask.dim() == 2:
            head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
        assert head_mask.dim() == 5, f"head_mask.dim != 5, instead {head_mask.dim()}"
1167
        head_mask = head_mask.to(dtype=self.dtype)  # switch to float if need + fp16 compatibility
1168
1169
        return head_mask

1170
1171
1172
1173
1174
    def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int:
        """
        Get number of (optionally, trainable or non-embeddings) parameters in the module.

        Args:
1175
            only_trainable (`bool`, *optional*, defaults to `False`):
1176
1177
                Whether or not to return only the number of trainable parameters

1178
            exclude_embeddings (`bool`, *optional*, defaults to `False`):
1179
1180
1181
                Whether or not to return only the number of non-embeddings parameters

        Returns:
1182
            `int`: The number of parameters.
1183
1184
        """

1185
1186
1187
1188
        if exclude_embeddings:
            embedding_param_names = [
                f"{name}.weight" for name, module_type in self.named_modules() if isinstance(module_type, nn.Embedding)
            ]
1189
            total_parameters = [
1190
1191
1192
                parameter for name, parameter in self.named_parameters() if name not in embedding_param_names
            ]
        else:
1193
1194
1195
1196
            total_parameters = list(self.parameters())

        total_numel = []
        is_loaded_in_4bit = getattr(self, "is_loaded_in_4bit", False)
1197

1198
1199
1200
1201
1202
1203
        if is_loaded_in_4bit:
            if is_bitsandbytes_available():
                import bitsandbytes as bnb
            else:
                raise ValueError(
                    "bitsandbytes is not installed but it seems that the model has been loaded in 4bit precision, something went wrong"
1204
                    " make sure to install bitsandbytes with `pip install bitsandbytes`. You also need a GPU. "
1205
1206
1207
1208
1209
1210
1211
                )

        for param in total_parameters:
            if param.requires_grad or not only_trainable:
                # For 4bit models, we need to multiply the number of parameters by 2 as half of the parameters are
                # used for the 4bit quantization (uint8 tensors are stored)
                if is_loaded_in_4bit and isinstance(param, bnb.nn.Params4bit):
1212
1213
1214
1215
1216
1217
1218
                    if hasattr(param, "element_size"):
                        num_bytes = param.element_size()
                    elif hasattr(param, "quant_storage"):
                        num_bytes = param.quant_storage.itemsize
                    else:
                        num_bytes = 1
                    total_numel.append(param.numel() * 2 * num_bytes)
1219
1220
1221
1222
                else:
                    total_numel.append(param.numel())

        return sum(total_numel)
1223
1224
1225
1226
1227
1228

    def estimate_tokens(self, input_dict: Dict[str, Union[torch.Tensor, Any]]) -> int:
        """
        Helper function to estimate the total number of tokens from the model inputs.

        Args:
1229
            inputs (`dict`): The model inputs.
1230
1231

        Returns:
1232
            `int`: The total number of tokens.
1233
        """
1234
1235
        if not hasattr(self, "warnings_issued"):
            self.warnings_issued = {}
1236
1237
        if self.main_input_name in input_dict:
            return input_dict[self.main_input_name].numel()
1238
        elif "estimate_tokens" not in self.warnings_issued:
1239
            logger.warning(
1240
1241
                "Could not estimate the number of tokens of the input, floating-point operations will not be computed"
            )
1242
1243
            self.warnings_issued["estimate_tokens"] = True
        return 0
1244
1245
1246
1247
1248
1249
1250

    def floating_point_ops(
        self, input_dict: Dict[str, Union[torch.Tensor, Any]], exclude_embeddings: bool = True
    ) -> int:
        """
        Get number of (optionally, non-embeddings) floating-point operations for the forward and backward passes of a
        batch with this transformer model. Default approximation neglects the quadratic dependency on the number of
Sylvain Gugger's avatar
Sylvain Gugger committed
1251
1252
        tokens (valid if `12 * d_model << sequence_length`) as laid out in [this
        paper](https://arxiv.org/pdf/2001.08361.pdf) section 2.1. Should be overridden for transformers with parameter
Sylvain Gugger's avatar
Sylvain Gugger committed
1253
        re-use e.g. Albert or Universal Transformers, or if doing long-range modeling with very high sequence lengths.
1254
1255

        Args:
1256
            batch_size (`int`):
1257
1258
                The batch size for the forward pass.

1259
            sequence_length (`int`):
1260
1261
                The number of tokens in each line of the batch.

1262
            exclude_embeddings (`bool`, *optional*, defaults to `True`):
1263
1264
1265
                Whether or not to count embedding and softmax operations.

        Returns:
1266
            `int`: The number of floating-point operations.
1267
1268
1269
1270
        """

        return 6 * self.estimate_tokens(input_dict) * self.num_parameters(exclude_embeddings=exclude_embeddings)

Julien Chaumond's avatar
Julien Chaumond committed
1271

1272
class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMixin, PeftAdapterMixin):
1273
1274
    r"""
    Base class for all models.
1275

Sylvain Gugger's avatar
Sylvain Gugger committed
1276
1277
    [`PreTrainedModel`] takes care of storing the configuration of the models and handles methods for loading,
    downloading and saving models as well as a few methods common to all models to:
1278

1279
1280
        - resize the input embeddings,
        - prune heads in the self-attention heads.
1281

1282
    Class attributes (overridden by derived classes):
Sylvain Gugger's avatar
Sylvain Gugger committed
1283

Sylvain Gugger's avatar
Sylvain Gugger committed
1284
1285
1286
1287
        - **config_class** ([`PretrainedConfig`]) -- A subclass of [`PretrainedConfig`] to use as configuration class
          for this model architecture.
        - **load_tf_weights** (`Callable`) -- A python *method* for loading a TensorFlow checkpoint in a PyTorch model,
          taking as arguments:
1288

Sylvain Gugger's avatar
Sylvain Gugger committed
1289
1290
            - **model** ([`PreTrainedModel`]) -- An instance of the model on which to load the TensorFlow checkpoint.
            - **config** ([`PreTrainedConfig`]) -- An instance of the configuration associated to the model.
1291
            - **path** (`str`) -- A path to the TensorFlow checkpoint.
1292

Sylvain Gugger's avatar
Sylvain Gugger committed
1293
1294
        - **base_model_prefix** (`str`) -- A string indicating the attribute associated to the base model in derived
          classes of the same architecture adding modules on top of the base model.
1295
        - **is_parallelizable** (`bool`) -- A flag indicating whether this model supports model parallelization.
Sylvain Gugger's avatar
Sylvain Gugger committed
1296
1297
        - **main_input_name** (`str`) -- The name of the principal input to the model (often `input_ids` for NLP
          models, `pixel_values` for vision models and `input_values` for speech models).
1298
    """
1299

1300
    config_class = None
1301
    base_model_prefix = ""
1302
    main_input_name = "input_ids"
1303
1304
    model_tags = None

1305
    _auto_class = None
1306
    _no_split_modules = None
1307
    _skip_keys_device_placement = None
1308
    _keep_in_fp32_modules = None
1309

1310
1311
    # a list of `re` patterns of `state_dict` keys that should be removed from the list of missing
    # keys we find (keys inside the model but not in the checkpoint) and avoid unnecessary warnings.
1312
    _keys_to_ignore_on_load_missing = None
1313
1314
1315
    # a list of `re` patterns of `state_dict` keys that should be removed from the list of
    # unexpected keys we find (keys inside the checkpoint but not the model) and avoid unnecessary
    # warnings.
1316
    _keys_to_ignore_on_load_unexpected = None
1317
1318
    # a list of `state_dict` keys to ignore when saving the model (useful for keys that aren't
    # trained, but which are either deterministic or tied variables)
1319
    _keys_to_ignore_on_save = None
Sylvain Gugger's avatar
Sylvain Gugger committed
1320
1321
    # a list of `state_dict` keys that are potentially tied to another key in the state_dict.
    _tied_weights_keys = None
1322

1323
    is_parallelizable = False
1324
    supports_gradient_checkpointing = False
1325
    _is_stateful = False
1326

1327
1328
1329
    # Flash Attention 2 support
    _supports_flash_attn_2 = False

1330
1331
1332
    # SDPA support
    _supports_sdpa = False

1333
    # Has support for a `Cache` instance as `past_key_values`? Does it support a `StaticCache`?
1334
    _supports_cache_class = False
1335
    _supports_static_cache = False
1336

1337
1338
1339
    # Has support for a `QuantoQuantizedCache` instance as `past_key_values`
    _supports_quantized_cache = False

1340
    @property
1341
    def dummy_inputs(self) -> Dict[str, torch.Tensor]:
1342
        """
1343
        `Dict[str, torch.Tensor]`: Dummy inputs to do a forward pass in the network.
1344
        """
1345
        return {"input_ids": torch.tensor(DUMMY_INPUTS)}
1346

1347
1348
1349
1350
1351
1352
1353
    @property
    def framework(self) -> str:
        """
        :str: Identifies that this is a PyTorch model.
        """
        return "pt"

1354
    def __init__(self, config: PretrainedConfig, *inputs, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
1355
        super().__init__()
1356
1357
        if not isinstance(config, PretrainedConfig):
            raise ValueError(
1358
1359
1360
                f"Parameter config in `{self.__class__.__name__}(config)` should be an instance of class "
                "`PretrainedConfig`. To create a model from a pretrained model use "
                f"`model = {self.__class__.__name__}.from_pretrained(PRETRAINED_MODEL_NAME)`"
1361
            )
1362
        # Save config and origin of the pretrained weights if given in model
1363
1364
1365
        config = self._autoset_attn_implementation(
            config, torch_dtype=torch.get_default_dtype(), check_device_map=False
        )
1366
        self.config = config
1367

1368
        self.name_or_path = config.name_or_path
1369
        self.warnings_issued = {}
1370
        self.generation_config = GenerationConfig.from_model_config(config) if self.can_generate() else None
1371
1372
1373
1374
        # Overwrite the class attribute to make it an instance attribute, so models like
        # `InstructBlipForConditionalGeneration` can dynamically update it without modifying the class attribute
        # when a different component (e.g. language_model) is used.
        self._keep_in_fp32_modules = copy.copy(self.__class__._keep_in_fp32_modules)
1375
1376
1377
1378
1379
1380
1381
1382
1383

    def post_init(self):
        """
        A method executed at the end of each Transformer model initialization, to execute code that needs the model's
        modules properly initialized (such as weight initialization).
        """
        self.init_weights()
        self._backward_compatibility_gradient_checkpointing()

1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
    def dequantize(self):
        """
        Potentially dequantize the model in case it has been quantized by a quantization method that support
        dequantization.
        """
        hf_quantizer = getattr(self, "hf_quantizer", None)

        if hf_quantizer is None:
            raise ValueError("You need to first quantize your model in order to dequantize it")

        return hf_quantizer.dequantize(self)

1396
1397
1398
1399
1400
    def _backward_compatibility_gradient_checkpointing(self):
        if self.supports_gradient_checkpointing and getattr(self.config, "gradient_checkpointing", False):
            self.gradient_checkpointing_enable()
            # Remove the attribute now that is has been consumed, so it's no saved in the config.
            delattr(self.config, "gradient_checkpointing")
1401

1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
    def add_model_tags(self, tags: Union[List[str], str]) -> None:
        r"""
        Add custom tags into the model that gets pushed to the Hugging Face Hub. Will
        not overwrite existing tags in the model.

        Args:
            tags (`Union[List[str], str]`):
                The desired tags to inject in the model

        Examples:

        ```python
        from transformers import AutoModel

1416
        model = AutoModel.from_pretrained("google-bert/bert-base-cased")
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433

        model.add_model_tags(["custom", "custom-bert"])

        # Push the model to your namespace with the name "my-custom-bert".
        model.push_to_hub("my-custom-bert")
        ```
        """
        if isinstance(tags, str):
            tags = [tags]

        if self.model_tags is None:
            self.model_tags = []

        for tag in tags:
            if tag not in self.model_tags:
                self.model_tags.append(tag)

1434
1435
1436
1437
1438
1439
    @classmethod
    def _from_config(cls, config, **kwargs):
        """
        All context managers that the model should be initialized under go here.

        Args:
1440
1441
            torch_dtype (`torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model under this dtype.
1442
1443
        """
        torch_dtype = kwargs.pop("torch_dtype", None)
1444
        use_flash_attention_2 = kwargs.pop("use_flash_attention_2", False)
1445
1446
1447
1448
1449
1450

        # override default dtype if needed
        dtype_orig = None
        if torch_dtype is not None:
            dtype_orig = cls._set_default_torch_dtype(torch_dtype)

1451
1452
1453
        config = copy.deepcopy(config)  # We do not want to modify the config inplace in _from_config.
        config._attn_implementation = kwargs.pop("attn_implementation", None)
        config = cls._autoset_attn_implementation(
1454
1455
1456
1457
            config,
            use_flash_attention_2=use_flash_attention_2,
            check_device_map=False,
            torch_dtype=torch_dtype,
1458
        )
1459

1460
1461
1462
1463
1464
1465
        if is_deepspeed_zero3_enabled():
            import deepspeed

            logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
            # this immediately partitions the model across all gpus, to avoid the overhead in time
            # and memory copying it on CPU or each GPU first
1466
            with deepspeed.zero.Init(config_dict_or_path=deepspeed_config()):
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
                model = cls(config, **kwargs)
        else:
            model = cls(config, **kwargs)

        # restore default dtype if it was modified
        if dtype_orig is not None:
            torch.set_default_dtype(dtype_orig)

        return model

1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
    @classmethod
    def _autoset_attn_implementation(
        cls,
        config,
        use_flash_attention_2: bool = False,
        torch_dtype: Optional[torch.dtype] = None,
        device_map: Optional[Union[str, Dict[str, int]]] = None,
        check_device_map: bool = True,
    ):
        """
        Automatically checks and dispatches to a default attention implementation. In order of priority:
            1. An implementation specified in `config._attn_implementation` (due for example to the argument attn_implementation="sdpa" in from_pretrained).
            2. DEPRECATED: if use_flash_attention_2 is set to `True` and `flash_attn` is available, flash attention. (`LlamaFlashAttention` for example)
            3. SDPA implementation, if available and supported by the model type. (`LlamaSdpaAttention` for example)
            4. The default model's implementation otherwise (`LlamaAttention` for example) .
        """
        # Here we use config._attn_implementation_internal to check whether the attention implementation was explicitely set by the user.
        # The property `PretrainedConfig._attn_implementation` is never `None`, for backward compatibility (always fall back on "eager").
        # The `hasattr` here is used as some Transformers tests for some reason do not call PretrainedConfig __init__ (e.g. test_no_super_init_config_and_model)
1496
        requested_attn_implementation = None
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
        if hasattr(config, "_attn_implementation_internal") and config._attn_implementation_internal is not None:
            if config._attn_implementation != "flash_attention_2" and use_flash_attention_2:
                raise ValueError(
                    f'Both attn_implementation="{config._attn_implementation}" and `use_flash_attention_2=True` were used when loading the model, which are not compatible.'
                    ' We recommend to just use `attn_implementation="flash_attention_2"` when loading the model.'
                )

            if config._attn_implementation not in ["eager", "sdpa", "flash_attention_2"]:
                message = f'Specified `attn_implementation="{config._attn_implementation}"` is not supported. The only possible arguments are `attn_implementation="eager"` (manual attention implementation)'
                if cls._supports_flash_attn_2:
                    message += ', `"attn_implementation=flash_attention_2"` (implementation using flash attention 2)'
                if cls._supports_sdpa:
                    message += ', `"attn_implementation=sdpa"` (implementation using torch.nn.functional.scaled_dot_product_attention)'
                raise ValueError(message + ".")

            # If a config is passed with a preset attn_implementation, we skip the automatic dispatch and use the user-provided config, with hard checks that the requested attention implementation is available.
1513
            requested_attn_implementation = config._attn_implementation_internal
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525

        if use_flash_attention_2:
            logger.warning_once(
                'The model was loaded with use_flash_attention_2=True, which is deprecated and may be removed in a future release. Please use `attn_implementation="flash_attention_2"` instead.'
            )
            config._attn_implementation = "flash_attention_2"

        if config._attn_implementation == "flash_attention_2":
            cls._check_and_enable_flash_attn_2(
                config,
                torch_dtype=torch_dtype,
                device_map=device_map,
1526
                hard_check_only=False,
1527
1528
                check_device_map=check_device_map,
            )
1529
        elif requested_attn_implementation in [None, "sdpa"] and not is_torch_xla_available():
1530
            # use_flash_attention_2 takes priority over SDPA, hence SDPA treated in this elif.
1531
            config = cls._check_and_enable_sdpa(
1532
1533
                config,
                hard_check_only=False if requested_attn_implementation is None else True,
1534
            )
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544

            if (
                torch.version.hip is not None
                and config._attn_implementation == "sdpa"
                and torch.cuda.device_count() > 1
            ):
                logger.warning_once(
                    "Using the `SDPA` attention implementation on multi-gpu setup with ROCM may lead to performance issues due to the FA backend. Disabling it to use alternative backends."
                )
                torch.backends.cuda.enable_flash_sdp(False)
1545
        else:
1546
1547
1548
1549
            config._attn_implementation = "eager"

        return config

1550
1551
1552
1553
1554
1555
1556
    @classmethod
    def _set_default_torch_dtype(cls, dtype: torch.dtype) -> torch.dtype:
        """
        Change the default dtype and return the previous one. This is needed when wanting to instantiate the model
        under specific dtype.

        Args:
1557
            dtype (`torch.dtype`):
1558
1559
1560
                a floating dtype to set to.

        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
1561
1562
            `torch.dtype`: the original `dtype` that can be used to restore `torch.set_default_dtype(dtype)` if it was
            modified. If it wasn't, returns `None`.
1563

1564
1565
        Note `set_default_dtype` currently only works with floating-point types and asserts if for example,
        `torch.int64` is passed. So if a non-float `dtype` is passed this functions will throw an exception.
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
        """
        if not dtype.is_floating_point:
            raise ValueError(
                f"Can't instantiate {cls.__name__} model under dtype={dtype} since it is not a floating point dtype"
            )

        logger.info(f"Instantiating {cls.__name__} model under default dtype {dtype}.")
        dtype_orig = torch.get_default_dtype()
        torch.set_default_dtype(dtype)
        return dtype_orig

1577
    @property
1578
1579
    def base_model(self) -> nn.Module:
        """
1580
        `torch.nn.Module`: The main body of the model.
1581
        """
1582
        return getattr(self, self.base_model_prefix, self)
thomwolf's avatar
thomwolf committed
1583

1584
1585
    @classmethod
    def can_generate(cls) -> bool:
1586
1587
1588
1589
1590
1591
        """
        Returns whether this model can generate sequences with `.generate()`.

        Returns:
            `bool`: Whether this model can generate sequences with `.generate()`.
        """
1592
1593
1594
        # Detects whether `prepare_inputs_for_generation` has been overwritten, which is a requirement for generation.
        # Alternativelly, the model can also have a custom `generate` function.
        if "GenerationMixin" in str(cls.prepare_inputs_for_generation) and "GenerationMixin" in str(cls.generate):
1595
1596
1597
            return False
        return True

1598
1599
    @classmethod
    def _check_and_enable_flash_attn_2(
1600
1601
1602
1603
1604
1605
        cls,
        config,
        torch_dtype: Optional[torch.dtype] = None,
        device_map: Optional[Union[str, Dict[str, int]]] = None,
        check_device_map: bool = True,
        hard_check_only: bool = False,
1606
1607
    ) -> PretrainedConfig:
        """
1608
        Checks the availability of Flash Attention 2 and compatibility with the current model.
1609

1610
        If all checks pass and `hard_check_only` is False, the method will set the config attribute `attn_implementation` to "flash_attention_2" so that the model can initialize the correct attention module.
1611
1612
1613
        """
        if not cls._supports_flash_attn_2:
            raise ValueError(
1614
1615
1616
                f"{cls.__name__} does not support Flash Attention 2.0 yet. Please request to add support where"
                f" the model is hosted, on its model hub page: https://huggingface.co/{config._name_or_path}/discussions/new"
                " or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new"
1617
1618
            )

1619
        if not is_flash_attn_2_available():
1620
1621
1622
            preface = "FlashAttention2 has been toggled on, but it cannot be used due to the following error:"
            install_message = "Please refer to the documentation of https://huggingface.co/docs/transformers/perf_infer_gpu_one#flashattention-2 to install Flash Attention 2."

1623
1624
1625
1626
1627
            if importlib.util.find_spec("flash_attn") is None:
                raise ImportError(f"{preface} the package flash_attn seems to be not installed. {install_message}")

            flash_attention_version = version.parse(importlib.metadata.version("flash_attn"))
            if torch.version.cuda:
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
                if flash_attention_version < version.parse("2.1.0"):
                    raise ImportError(
                        f"{preface} you need flash_attn package version to be greater or equal than 2.1.0. Detected version {flash_attention_version}. {install_message}"
                    )
                else:
                    raise ImportError(f"{preface} Flash Attention 2 is not available. {install_message}")
            elif torch.version.hip:
                if flash_attention_version < version.parse("2.0.4"):
                    raise ImportError(
                        f"{preface} you need flash_attn package version to be greater or equal than 2.0.4. Make sure to have that version installed - detected version {flash_attention_version}. {install_message}"
                    )
                else:
                    raise ImportError(f"{preface} Flash Attention 2 is not available. {install_message}")
1641
1642
1643
1644
1645
1646
1647
1648
1649

        _is_bettertransformer = getattr(cls, "use_bettertransformer", False)

        if _is_bettertransformer:
            raise ValueError(
                "Flash Attention 2 and BetterTransformer API are not compatible. Please make sure to disable BetterTransformers by doing model.reverse_bettertransformer()"
            )

        if torch_dtype is None:
1650
            logger.warning_once(
1651
1652
1653
                "You are attempting to use Flash Attention 2.0 without specifying a torch dtype. This might lead to unexpected behaviour"
            )
        elif torch_dtype is not None and torch_dtype not in [torch.float16, torch.bfloat16]:
1654
1655
1656
1657
            logger.warning_once(
                "Flash Attention 2.0 only supports torch.float16 and torch.bfloat16 dtypes, but"
                f" the current dype in {cls.__name__} is {torch_dtype}. You should run training or inference using Automatic Mixed-Precision via the `with torch.autocast(device_type='torch_device'):` decorator,"
                ' or load the model with the `torch_dtype` argument. Example: `model = AutoModel.from_pretrained("openai/whisper-tiny", attn_implementation="flash_attention_2", torch_dtype=torch.float16)`'
1658
1659
            )

1660
1661
1662
        # The check `torch.empty(0).device.type != "cuda"` is needed as the model may be initialized after `torch.set_default_device` has been called,
        # or the model may be initialized under the context manager `with torch.device("cuda"):`.
        if check_device_map and device_map is None and torch.empty(0).device.type != "cuda":
1663
            if torch.cuda.is_available():
1664
                logger.warning_once(
1665
                    "You are attempting to use Flash Attention 2.0 with a model not initialized on GPU. Make sure to move the model to GPU"
1666
1667
1668
1669
                    " after initializing it on CPU with `model.to('cuda')`."
                )
            else:
                raise ValueError(
1670
                    "You are attempting to use Flash Attention 2.0 with a model not initialized on GPU and with no GPU available. "
1671
1672
1673
1674
                    "This is not supported yet. Please make sure to have access to a GPU and either initialise the model on a GPU by passing a device_map "
                    "or initialising the model on CPU and then moving it to GPU."
                )
        elif (
1675
1676
            check_device_map
            and device_map is not None
1677
1678
1679
1680
1681
1682
1683
            and isinstance(device_map, dict)
            and ("cpu" in device_map.values() or "disk" in device_map.values())
        ):
            raise ValueError(
                "You are attempting to use Flash Attention 2.0 with a model dispatched on CPU or disk. This is not supported. Please make sure to "
                "initialise the model on a GPU by passing a device_map that contains only GPU devices as keys."
            )
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
        if not hard_check_only:
            config._attn_implementation = "flash_attention_2"
        return config

    @classmethod
    def _check_and_enable_sdpa(cls, config, hard_check_only: bool = False) -> PretrainedConfig:
        """
        Checks the availability of SDPA for a given model.

        If all checks pass and `hard_check_only` is False, the method will set the config attribute `_attn_implementation` to "flash_attention_2" so that the model can initialize the correct attention module.
        """
        if hard_check_only:
            if not cls._supports_sdpa:
                raise ValueError(
1698
1699
1700
                    f"{cls.__name__} does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet."
                    " Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe"
                    ' this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation="eager"` meanwhile. Example: `model = AutoModel.from_pretrained("openai/whisper-tiny", attn_implementation="eager")`'
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
                )
            if not is_torch_sdpa_available():
                raise ImportError(
                    "PyTorch SDPA requirements in Transformers are not met. Please install torch>=2.1.1."
                )

        if not is_torch_sdpa_available() or not cls._supports_sdpa:
            return config

        _is_bettertransformer = getattr(cls, "use_bettertransformer", False)
        if _is_bettertransformer:
            return config

        if not hard_check_only:
            config._attn_implementation = "sdpa"
1716
1717
        return config

1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
    def enable_input_require_grads(self):
        """
        Enables the gradients for the input embeddings. This is useful for fine-tuning adapter weights while keeping
        the model weights fixed.
        """

        def make_inputs_require_grads(module, input, output):
            output.requires_grad_(True)

        self._require_grads_hook = self.get_input_embeddings().register_forward_hook(make_inputs_require_grads)

    def disable_input_require_grads(self):
        """
        Removes the `_require_grads_hook`.
        """
        self._require_grads_hook.remove()

1735
    def get_input_embeddings(self) -> nn.Module:
1736
1737
1738
1739
        """
        Returns the model's input embeddings.

        Returns:
1740
            `nn.Module`: A torch module mapping vocabulary to hidden states.
thomwolf's avatar
thomwolf committed
1741
        """
1742
        base_model = getattr(self, self.base_model_prefix, self)
thomwolf's avatar
thomwolf committed
1743
1744
1745
1746
        if base_model is not self:
            return base_model.get_input_embeddings()
        else:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
1747

1748
    def set_input_embeddings(self, value: nn.Module):
1749
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1750
        Set model's input embeddings.
1751
1752

        Args:
1753
            value (`nn.Module`): A module mapping vocabulary to hidden states.
thomwolf's avatar
thomwolf committed
1754
1755
1756
1757
1758
1759
        """
        base_model = getattr(self, self.base_model_prefix, self)
        if base_model is not self:
            base_model.set_input_embeddings(value)
        else:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
1760

1761
    def get_output_embeddings(self) -> nn.Module:
1762
1763
1764
1765
        """
        Returns the model's output embeddings.

        Returns:
1766
            `nn.Module`: A torch module mapping hidden states to vocabulary.
thomwolf's avatar
thomwolf committed
1767
        """
1768
        return None  # Overwrite for models with output embeddings
thomwolf's avatar
thomwolf committed
1769

1770
1771
    def _init_weights(self, module):
        """
1772
1773
1774
1775
        Initialize the weights. This method should be overridden by derived class and is
        the only initialization method that will be called when loading a checkpoint
        using `from_pretrained`. Any attempt to initialize outside of this function
        will be useless as the torch.nn.init function are all replaced with skip.
1776
        """
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
        pass

    def _initialize_weights(self, module):
        """
        Initialize the weights if they are not already initialized.
        """
        if getattr(module, "_is_hf_initialized", False):
            return
        self._init_weights(module)
        module._is_hf_initialized = True
1787

1788
    def tie_weights(self):
1789
1790
        """
        Tie the weights between the input embeddings and the output embeddings.
1791

Sylvain Gugger's avatar
Sylvain Gugger committed
1792
1793
        If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the
        weights instead.
thomwolf's avatar
thomwolf committed
1794
        """
1795
1796
1797
1798
        if getattr(self.config, "tie_word_embeddings", True):
            output_embeddings = self.get_output_embeddings()
            if output_embeddings is not None:
                self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings())
thomwolf's avatar
thomwolf committed
1799

1800
        if getattr(self.config, "is_encoder_decoder", False) and getattr(self.config, "tie_encoder_decoder", False):
Weizhen's avatar
Weizhen committed
1801
1802
            if hasattr(self, self.base_model_prefix):
                self = getattr(self, self.base_model_prefix)
1803
1804
1805
1806
1807
1808
1809
            tied_weights = self._tie_encoder_decoder_weights(
                self.encoder, self.decoder, self.base_model_prefix, "encoder"
            )
            # Setting a dynamic variable instead of `_tied_weights_keys` because it's a class
            # attributed not an instance member, therefore modifying it will modify the entire class
            # Leading to issues on subsequent calls by different tests or subsequent calls.
            self._dynamic_tied_weights_keys = tied_weights
1810

Sylvain Gugger's avatar
Sylvain Gugger committed
1811
1812
1813
1814
        for module in self.modules():
            if hasattr(module, "_tie_weights"):
                module._tie_weights()

1815
    @staticmethod
1816
1817
1818
    def _tie_encoder_decoder_weights(
        encoder: nn.Module, decoder: nn.Module, base_model_prefix: str, base_encoder_name: str
    ):
1819
        uninitialized_encoder_weights: List[str] = []
1820
        tied_weights: List[str] = []
Weizhen's avatar
Weizhen committed
1821
1822
        if decoder.__class__ != encoder.__class__:
            logger.info(
Sylvain Gugger's avatar
Sylvain Gugger committed
1823
1824
                f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder"
                " weights are correctly initialized."
Weizhen's avatar
Weizhen committed
1825
            )
1826
1827
1828
1829
1830

        def tie_encoder_to_decoder_recursively(
            decoder_pointer: nn.Module,
            encoder_pointer: nn.Module,
            module_name: str,
1831
            base_encoder_name: str,
1832
1833
            uninitialized_encoder_weights: List[str],
            depth=0,
1834
1835
            total_decoder_name="",
            total_encoder_name="",
1836
1837
1838
        ):
            assert isinstance(decoder_pointer, nn.Module) and isinstance(
                encoder_pointer, nn.Module
1839
            ), f"{decoder_pointer} and {encoder_pointer} have to be of type nn.Module"
1840
1841
1842
            if hasattr(decoder_pointer, "weight"):
                assert hasattr(encoder_pointer, "weight")
                encoder_pointer.weight = decoder_pointer.weight
1843
                tied_weights.append(f"{base_encoder_name}{total_encoder_name}.weight")
1844
1845
                if hasattr(decoder_pointer, "bias"):
                    assert hasattr(encoder_pointer, "bias")
1846
                    tied_weights.append(f"{base_encoder_name}{total_encoder_name}.bias")
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
                    encoder_pointer.bias = decoder_pointer.bias
                return

            encoder_modules = encoder_pointer._modules
            decoder_modules = decoder_pointer._modules
            if len(decoder_modules) > 0:
                assert (
                    len(encoder_modules) > 0
                ), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"

1857
                all_encoder_weights = {module_name + "/" + sub_name for sub_name in encoder_modules.keys()}
1858
1859
1860
1861
1862
                encoder_layer_pos = 0
                for name, module in decoder_modules.items():
                    if name.isdigit():
                        encoder_name = str(int(name) + encoder_layer_pos)
                        decoder_name = name
Weizhen's avatar
Weizhen committed
1863
1864
1865
                        if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len(
                            encoder_modules
                        ) != len(decoder_modules):
1866
1867
                            # this can happen if the name corresponds to the position in a list module list of layers
                            # in this case the decoder has added a cross-attention that the encoder does not have
1868
                            # thus skip this step and subtract one layer pos from encoder
1869
1870
1871
1872
1873
1874
                            encoder_layer_pos -= 1
                            continue
                    elif name not in encoder_modules:
                        continue
                    elif depth > 500:
                        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1875
1876
                            "Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is"
                            " a circular dependency between two or more `nn.Modules` of your model."
1877
1878
1879
1880
1881
1882
1883
                        )
                    else:
                        decoder_name = encoder_name = name
                    tie_encoder_to_decoder_recursively(
                        decoder_modules[decoder_name],
                        encoder_modules[encoder_name],
                        module_name + "/" + name,
1884
                        base_encoder_name,
1885
1886
                        uninitialized_encoder_weights,
                        depth=depth + 1,
1887
1888
                        total_encoder_name=f"{total_encoder_name}.{encoder_name}",
                        total_decoder_name=f"{total_decoder_name}.{decoder_name}",
1889
1890
1891
1892
1893
1894
                    )
                    all_encoder_weights.remove(module_name + "/" + encoder_name)

                uninitialized_encoder_weights += list(all_encoder_weights)

        # tie weights recursively
1895
1896
1897
1898
        tie_encoder_to_decoder_recursively(
            decoder, encoder, base_model_prefix, base_encoder_name, uninitialized_encoder_weights
        )

1899
1900
1901
1902
        if len(uninitialized_encoder_weights) > 0:
            logger.warning(
                f"The following encoder weights were not tied to the decoder {uninitialized_encoder_weights}"
            )
1903
        return tied_weights
1904

1905
    def _tie_or_clone_weights(self, output_embeddings, input_embeddings):
Lysandre's avatar
Lysandre committed
1906
        """Tie or clone module weights depending of whether we are using TorchScript or not"""
thomwolf's avatar
thomwolf committed
1907
        if self.config.torchscript:
1908
            output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone())
thomwolf's avatar
thomwolf committed
1909
        else:
1910
            output_embeddings.weight = input_embeddings.weight
thomwolf's avatar
thomwolf committed
1911

Sam Shleifer's avatar
Sam Shleifer committed
1912
        if getattr(output_embeddings, "bias", None) is not None:
1913
            output_embeddings.bias.data = nn.functional.pad(
1914
                output_embeddings.bias.data,
Lysandre's avatar
Lysandre committed
1915
1916
1917
1918
                (
                    0,
                    output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0],
                ),
1919
1920
                "constant",
                0,
1921
            )
1922
        if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"):
1923
            output_embeddings.out_features = input_embeddings.num_embeddings
1924

Marc Sun's avatar
Marc Sun committed
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
    def _get_no_split_modules(self, device_map: str):
        """
        Get the modules of the model that should not be spit when using device_map. We iterate through the modules to
        get the underlying `_no_split_modules`.

        Args:
            device_map (`str`):
                The device map value. Options are ["auto", "balanced", "balanced_low_0", "sequential"]

        Returns:
            `List[str]`: List of modules that should not be split
        """
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
        _no_split_modules = set()
        modules_to_check = [self]
        while len(modules_to_check) > 0:
            module = modules_to_check.pop(-1)
            # if the module does not appear in _no_split_modules, we also check the children
            if module.__class__.__name__ not in _no_split_modules:
                if isinstance(module, PreTrainedModel):
                    if module._no_split_modules is None:
                        raise ValueError(
                            f"{module.__class__.__name__} does not support `device_map='{device_map}'`. To implement support, the model "
                            "class needs to implement the `_no_split_modules` attribute."
                        )
                    else:
                        _no_split_modules = _no_split_modules | set(module._no_split_modules)
                modules_to_check += list(module.children())
Marc Sun's avatar
Marc Sun committed
1952
1953
        return list(_no_split_modules)

1954
1955
1956
    def resize_token_embeddings(
        self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None
    ) -> nn.Embedding:
1957
        """
1958
        Resizes input token embeddings matrix of the model if `new_num_tokens != config.vocab_size`.
1959

1960
        Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
thomwolf's avatar
thomwolf committed
1961

1962
        Arguments:
1963
            new_num_tokens (`int`, *optional*):
1964
                The new number of tokens in the embedding matrix. Increasing the size will add newly initialized
Sylvain Gugger's avatar
Sylvain Gugger committed
1965
1966
                vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
                returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything.
1967
            pad_to_multiple_of (`int`, *optional*):
Arthur's avatar
Arthur committed
1968
1969
                If set will pad the embedding matrix to a multiple of the provided value.If `new_num_tokens` is set to
                `None` will just pad the embedding to a multiple of `pad_to_multiple_of`.
1970
1971
1972
1973
1974

                This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
                `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more
                details about this, or help on choosing the correct value for resizing, refer to this guide:
                https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc
1975
1976

        Return:
1977
            `torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model.
thomwolf's avatar
thomwolf committed
1978
        """
1979
        model_embeds = self._resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
Arthur's avatar
Arthur committed
1980
        if new_num_tokens is None and pad_to_multiple_of is None:
thomwolf's avatar
thomwolf committed
1981
            return model_embeds
thomwolf's avatar
thomwolf committed
1982
1983

        # Update base model and current model config
1984
1985
        if hasattr(self.config, "text_config"):
            self.config.text_config.vocab_size = model_embeds.weight.shape[0]
1986
1987
        else:
            self.config.vocab_size = model_embeds.weight.shape[0]
Arthur's avatar
Arthur committed
1988
        self.vocab_size = model_embeds.weight.shape[0]
thomwolf's avatar
thomwolf committed
1989
1990

        # Tie weights again if needed
1991
        self.tie_weights()
thomwolf's avatar
thomwolf committed
1992

thomwolf's avatar
thomwolf committed
1993
1994
        return model_embeds

1995
    def _resize_token_embeddings(self, new_num_tokens, pad_to_multiple_of=None):
thomwolf's avatar
thomwolf committed
1996
        old_embeddings = self.get_input_embeddings()
1997
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens, pad_to_multiple_of)
1998
1999
2000
        if hasattr(old_embeddings, "_hf_hook"):
            hook = old_embeddings._hf_hook
            add_hook_to_module(new_embeddings, hook)
2001
2002
        old_embeddings_requires_grad = old_embeddings.weight.requires_grad
        new_embeddings.requires_grad_(old_embeddings_requires_grad)
thomwolf's avatar
thomwolf committed
2003
        self.set_input_embeddings(new_embeddings)
2004
        is_quantized = hasattr(self, "hf_quantizer") and self.hf_quantizer is not None
2005

2006
2007
        # Update new_num_tokens with the actual size of new_embeddings
        if pad_to_multiple_of is not None:
2008
            if is_deepspeed_zero3_enabled() and not is_quantized:
2009
2010
2011
2012
2013
2014
2015
                import deepspeed

                with deepspeed.zero.GatheredParameters(new_embeddings.weight, modifier_rank=None):
                    new_num_tokens = new_embeddings.weight.shape[0]
            else:
                new_num_tokens = new_embeddings.weight.shape[0]

2016
2017
2018
        # if word embeddings are not tied, make sure that lm head is resized as well
        if self.get_output_embeddings() is not None and not self.config.tie_word_embeddings:
            old_lm_head = self.get_output_embeddings()
2019
2020
2021
2022
            if isinstance(old_lm_head, torch.nn.Embedding):
                new_lm_head = self._get_resized_embeddings(old_lm_head, new_num_tokens)
            else:
                new_lm_head = self._get_resized_lm_head(old_lm_head, new_num_tokens)
2023
2024
2025
            if hasattr(old_lm_head, "_hf_hook"):
                hook = old_lm_head._hf_hook
                add_hook_to_module(new_lm_head, hook)
2026
2027
            old_lm_head_requires_grad = old_lm_head.weight.requires_grad
            new_lm_head.requires_grad_(old_lm_head_requires_grad)
2028
2029
            self.set_output_embeddings(new_lm_head)

thomwolf's avatar
thomwolf committed
2030
        return self.get_input_embeddings()
2031

2032
    def _get_resized_embeddings(
2033
2034
2035
2036
        self,
        old_embeddings: nn.Embedding,
        new_num_tokens: Optional[int] = None,
        pad_to_multiple_of: Optional[int] = None,
2037
    ) -> nn.Embedding:
2038
2039
2040
        """
        Build a resized Embedding Module from a provided token Embedding Module. Increasing the size will add newly
        initialized vectors at the end. Reducing the size will remove vectors from the end
2041
2042

        Args:
2043
            old_embeddings (`torch.nn.Embedding`):
2044
                Old embeddings to be resized.
2045
            new_num_tokens (`int`, *optional*):
2046
                New number of tokens in the embedding matrix.
2047
2048

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
2049
                vectors from the end. If not provided or `None`, just returns a pointer to the input tokens
2050
                `torch.nn.Embedding` module of the model without doing anything.
2051
            pad_to_multiple_of (`int`, *optional*):
Arthur's avatar
Arthur committed
2052
2053
                If set will pad the embedding matrix to a multiple of the provided value. If `new_num_tokens` is set to
                `None` will just pad the embedding to a multiple of `pad_to_multiple_of`.
2054
2055
2056
2057
2058
2059

                This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
                `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more
                details about this, or help on choosing the correct value for resizing, refer to this guide:
                https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc

2060
2061

        Return:
2062
2063
            `torch.nn.Embedding`: Pointer to the resized Embedding Module or the old Embedding Module if
            `new_num_tokens` is `None`
2064
        """
2065
2066
2067
2068
2069
2070
2071
2072

        if pad_to_multiple_of is not None:
            if not isinstance(pad_to_multiple_of, int):
                raise ValueError(
                    f"Asking to pad the embedding matrix to a multiple of `{pad_to_multiple_of}`, which is not and integer. Please make sure to pass an integer"
                )
            if new_num_tokens is None:
                new_num_tokens = old_embeddings.weight.shape[0]
2073
            new_num_tokens = ((new_num_tokens + pad_to_multiple_of - 1) // pad_to_multiple_of) * pad_to_multiple_of
2074
        else:
2075
            logger.info(
2076
                "You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding"
2077
                f" dimension will be {new_num_tokens}. This might induce some performance reduction as *Tensor Cores* will not be available."
2078
                " For more details about this, or help on choosing the correct value for resizing, refer to this guide:"
2079
2080
2081
                " https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc"
            )

2082
2083
2084
        if new_num_tokens is None:
            return old_embeddings

2085
2086
        is_quantized = hasattr(self, "hf_quantizer") and self.hf_quantizer is not None
        if is_deepspeed_zero3_enabled() and not is_quantized:
2087
2088
2089
2090
2091
2092
2093
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_embeddings.weight, modifier_rank=None):
                old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
        else:
            old_num_tokens, old_embedding_dim = old_embeddings.weight.size()

2094
        if old_num_tokens == new_num_tokens and not is_deepspeed_zero3_enabled():
2095
2096
            return old_embeddings

2097
2098
        if not isinstance(old_embeddings, nn.Embedding):
            raise TypeError(
Sylvain Gugger's avatar
Sylvain Gugger committed
2099
2100
2101
                f"Old embeddings are of type {type(old_embeddings)}, which is not an instance of {nn.Embedding}. You"
                " should either use a different resize function or make sure that `old_embeddings` are an instance of"
                f" {nn.Embedding}."
2102
2103
            )

2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
        # Build new embeddings

        # When using DeepSpeed ZeRO-3, we shouldn't create new embeddings with DeepSpeed init
        # because the shape of the new embedding layer is used across various modeling files
        # as well as to update config vocab size. Shape will be 0 when using DeepSpeed init leading
        # to errors when training.
        new_embeddings = nn.Embedding(
            new_num_tokens,
            old_embedding_dim,
            device=old_embeddings.weight.device,
            dtype=old_embeddings.weight.dtype,
        )

        # initialize all new embeddings (in particular added tokens)
        self._init_weights(new_embeddings)

        # Copy token embeddings from the previous weights

2122
2123
        # numbers of tokens to copy
        n = min(old_num_tokens, new_num_tokens)
2124

2125
        if is_deepspeed_zero3_enabled() and not is_quantized:
2126
2127
            import deepspeed

2128
2129
2130
            params = [old_embeddings.weight, new_embeddings.weight]
            with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
                new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :]
2131
2132
        else:
            new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :]
2133

2134
2135
2136
        # Replace weights in old_embeddings and return to maintain the same embedding type.
        # This ensures correct functionality when a Custom Embedding class is passed as input.
        # The input and output embedding types remain consistent. (c.f. https://github.com/huggingface/transformers/pull/31979)
2137
2138
2139
2140
2141
2142
2143
        if is_deepspeed_zero3_enabled() and not is_quantized:
            import deepspeed

            params = [old_embeddings.weight, new_embeddings.weight]
            with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
                old_embeddings.weight.data = new_embeddings.weight.data
                old_embeddings.num_embeddings = new_embeddings.weight.data.shape[0]
2144

2145
2146
2147
2148
2149
2150
2151
2152
2153
                # If the new number of tokens is smaller than the original `padding_idx`, the `padding_idx`
                # will be set to `None` in the resized embeddings.
                if old_embeddings.padding_idx is not None and (new_num_tokens - 1) < old_embeddings.padding_idx:
                    old_embeddings.padding_idx = None
        else:
            old_embeddings.weight.data = new_embeddings.weight.data
            old_embeddings.num_embeddings = new_embeddings.weight.data.shape[0]
            if old_embeddings.padding_idx is not None and (new_num_tokens - 1) < old_embeddings.padding_idx:
                old_embeddings.padding_idx = None
2154
2155

        return old_embeddings
2156

2157
    def _get_resized_lm_head(
2158
2159
        self, old_lm_head: nn.Linear, new_num_tokens: Optional[int] = None, transposed: Optional[bool] = False
    ) -> nn.Linear:
2160
2161
2162
2163
2164
        """
        Build a resized Linear Module from a provided old Linear Module. Increasing the size will add newly initialized
        vectors at the end. Reducing the size will remove vectors from the end

        Args:
2165
            old_lm_head (`torch.nn.Linear`):
2166
                Old lm head liner layer to be resized.
2167
            new_num_tokens (`int`, *optional*):
2168
2169
2170
                New number of tokens in the linear matrix.

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
2171
                vectors from the end. If not provided or `None`, just returns a pointer to the input tokens
2172
2173
2174
                `torch.nn.Linear` module of the model without doing anything. transposed (`bool`, *optional*, defaults
                to `False`): Whether `old_lm_head` is transposed or not. If True `old_lm_head.size()` is `lm_head_dim,
                vocab_size` else `vocab_size, lm_head_dim`.
2175
2176

        Return:
Sylvain Gugger's avatar
Sylvain Gugger committed
2177
2178
            `torch.nn.Linear`: Pointer to the resized Linear Module or the old Linear Module if `new_num_tokens` is
            `None`
2179
2180
2181
2182
        """
        if new_num_tokens is None:
            return old_lm_head

2183
2184
        is_quantized = hasattr(self, "hf_quantizer") and self.hf_quantizer is not None
        if is_deepspeed_zero3_enabled() and not is_quantized:
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_lm_head.weight, modifier_rank=None):
                old_num_tokens, old_lm_head_dim = (
                    old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
                )
        else:
            old_num_tokens, old_lm_head_dim = (
                old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
            )
2195

2196
        if old_num_tokens == new_num_tokens and not is_deepspeed_zero3_enabled():
2197
2198
2199
2200
            return old_lm_head

        if not isinstance(old_lm_head, nn.Linear):
            raise TypeError(
Sylvain Gugger's avatar
Sylvain Gugger committed
2201
2202
2203
                f"Old language model head is of type {type(old_lm_head)}, which is not an instance of {nn.Linear}. You"
                " should either use a different resize function or make sure that `old_lm_head` are an instance of"
                f" {nn.Linear}."
2204
2205
2206
2207
2208
2209
            )

        # Build new lm head
        new_lm_head_shape = (old_lm_head_dim, new_num_tokens) if not transposed else (new_num_tokens, old_lm_head_dim)
        has_new_lm_head_bias = old_lm_head.bias is not None

2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
        # When using DeepSpeed ZeRO-3, we shouldn't create new embeddings with DeepSpeed init
        # because the shape of the new embedding layer is used across various modeling files
        # as well as to update config vocab size. Shape will be 0 when using DeepSpeed init leading
        # to errors when training.
        new_lm_head = nn.Linear(
            *new_lm_head_shape,
            bias=has_new_lm_head_bias,
            device=old_lm_head.weight.device,
            dtype=old_lm_head.weight.dtype,
        )

        # initialize new lm head (in particular added tokens)
        self._init_weights(new_lm_head)

2224
2225
        num_tokens_to_copy = min(old_num_tokens, new_num_tokens)

2226
        if is_deepspeed_zero3_enabled() and not is_quantized:
2227
2228
            import deepspeed

2229
2230
            params = [old_lm_head.weight, old_lm_head.bias, new_lm_head.weight, new_lm_head.bias]
            with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
2231
2232
2233
                self._copy_lm_head_original_to_resized(
                    new_lm_head, old_lm_head, num_tokens_to_copy, transposed, has_new_lm_head_bias
                )
2234
        else:
2235
2236
            self._copy_lm_head_original_to_resized(
                new_lm_head, old_lm_head, num_tokens_to_copy, transposed, has_new_lm_head_bias
2237
            )
2238
2239
2240

        return new_lm_head

2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
    def _copy_lm_head_original_to_resized(
        self, new_lm_head, old_lm_head, num_tokens_to_copy, transposed, has_new_lm_head_bias
    ):
        # Copy old lm head weights to new lm head
        if not transposed:
            new_lm_head.weight.data[:num_tokens_to_copy, :] = old_lm_head.weight.data[:num_tokens_to_copy, :]
        else:
            new_lm_head.weight.data[:, :num_tokens_to_copy] = old_lm_head.weight.data[:, :num_tokens_to_copy]

        # Copy bias weights to new lm head
        if has_new_lm_head_bias:
            new_lm_head.bias.data[:num_tokens_to_copy] = old_lm_head.bias.data[:num_tokens_to_copy]

2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
    def resize_position_embeddings(self, new_num_position_embeddings: int):
        raise NotImplementedError(
            f"`resize_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should "
            f"overwrite this method in the class {self.__class__} in `modeling_{self.__class__.__module__}.py`"
        )

    def get_position_embeddings(self) -> Union[nn.Embedding, Tuple[nn.Embedding]]:
        raise NotImplementedError(
            f"`get_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should "
            f"overwrite this method in the class {self.__class__} in `modeling_{self.__class__.__module__}.py`"
        )

2266
    def init_weights(self):
2267
        """
2268
2269
        If needed prunes and maybe initializes weights. If using a custom `PreTrainedModel`, you need to implement any
        initialization logic in `_init_weights`.
2270
        """
2271
2272
2273
2274
        # Prune heads if needed
        if self.config.pruned_heads:
            self.prune_heads(self.config.pruned_heads)

2275
2276
        if _init_weights:
            # Initialize weights
2277
            self.apply(self._initialize_weights)
2278
2279
2280
2281

            # Tie weights should be skipped when not initializing all weights
            # since from_pretrained(...) calls tie weights anyways
            self.tie_weights()
2282

2283
2284
2285
    def prune_heads(self, heads_to_prune: Dict[int, List[int]]):
        """
        Prunes heads of the base model.
2286

2287
        Arguments:
2288
            heads_to_prune (`Dict[int, List[int]]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2289
2290
2291
                Dictionary with keys being selected layer indices (`int`) and associated values being the list of heads
                to prune in said layer (list of `int`). For instance {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on
                layer 1 and heads 2 and 3 on layer 2.
thomwolf's avatar
thomwolf committed
2292
        """
2293
        # save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads
2294
        for layer, heads in heads_to_prune.items():
2295
2296
2297
            union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads)
            self.config.pruned_heads[layer] = list(union_heads)  # Unfortunately we have to store it as list for JSON

2298
        self.base_model._prune_heads(heads_to_prune)
thomwolf's avatar
thomwolf committed
2299

2300
    def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None):
2301
2302
2303
2304
2305
        """
        Activates gradient checkpointing for the current model.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
2306
2307
2308
2309
2310
2311
2312

        We pass the `__call__` method of the modules instead of `forward` because `__call__` attaches all the hooks of
        the module. https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2

        Args:
            gradient_checkpointing_kwargs (dict, *optional*):
                Additional keyword arguments passed along to the `torch.utils.checkpoint.checkpoint` function.
2313
2314
2315
        """
        if not self.supports_gradient_checkpointing:
            raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
2316
2317

        if gradient_checkpointing_kwargs is None:
2318
            gradient_checkpointing_kwargs = {"use_reentrant": True}
2319

2320
        gradient_checkpointing_func = functools.partial(checkpoint, **gradient_checkpointing_kwargs)
2321

2322
        # For old GC format (transformers < 4.35.0) for models that live on the Hub
Stas Bekman's avatar
Stas Bekman committed
2323
        # we will fall back to the overwritten `_set_gradient_checkpointing` method
2324
2325
2326
2327
2328
2329
        _is_using_old_format = "value" in inspect.signature(self._set_gradient_checkpointing).parameters

        if not _is_using_old_format:
            self._set_gradient_checkpointing(enable=True, gradient_checkpointing_func=gradient_checkpointing_func)
        else:
            self.apply(partial(self._set_gradient_checkpointing, value=True))
2330
            logger.warning(
2331
2332
2333
                "You are using an old version of the checkpointing format that is deprecated (We will also silently ignore `gradient_checkpointing_kwargs` in case you passed it)."
                "Please update to the new format on your modeling file. To use the new format, you need to completely remove the definition of the method `_set_gradient_checkpointing` in your model."
            )
2334

2335
2336
2337
2338
2339
2340
2341
        if getattr(self, "_hf_peft_config_loaded", False):
            # When using PEFT + gradient checkpointing + Trainer we need to make sure the input has requires_grad=True
            # we do it also on PEFT: https://github.com/huggingface/peft/blob/85013987aa82aa1af3da1236b6902556ce3e483e/src/peft/peft_model.py#L334
            # When training with PEFT, only LoRA layers will have requires grad set to True, but the output of frozen layers need to propagate
            # the gradients to make sure the gradient flows.
            self.enable_input_require_grads()

2342
    def _set_gradient_checkpointing(self, enable: bool = True, gradient_checkpointing_func: Callable = checkpoint):
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
        is_gradient_checkpointing_set = False

        # Apply it on the top-level module in case the top-level modules supports it
        # for example, LongT5Stack inherits from `PreTrainedModel`.
        if hasattr(self, "gradient_checkpointing"):
            self._gradient_checkpointing_func = gradient_checkpointing_func
            self.gradient_checkpointing = enable
            is_gradient_checkpointing_set = True

        for module in self.modules():
            if hasattr(module, "gradient_checkpointing"):
                module._gradient_checkpointing_func = gradient_checkpointing_func
                module.gradient_checkpointing = enable
                is_gradient_checkpointing_set = True

        if not is_gradient_checkpointing_set:
            raise ValueError(
                f"{self.__class__.__name__} is not compatible with gradient checkpointing. Make sure all the architecture support it by setting a boolean attribute"
                " `gradient_checkpointing` to modules of the model that uses checkpointing."
            )

2364
    def gradient_checkpointing_disable(self):
2365
2366
2367
2368
2369
2370
2371
        """
        Deactivates gradient checkpointing for the current model.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        if self.supports_gradient_checkpointing:
2372
2373
2374
2375
2376
2377
            # For old GC format (transformers < 4.35.0) for models that live on the Hub
            # we will fall back to the overwritten `_set_gradient_checkpointing` methid
            _is_using_old_format = "value" in inspect.signature(self._set_gradient_checkpointing).parameters
            if not _is_using_old_format:
                self._set_gradient_checkpointing(enable=False)
            else:
2378
                logger.warning(
2379
2380
2381
2382
                    "You are using an old version of the checkpointing format that is deprecated (We will also silently ignore `gradient_checkpointing_kwargs` in case you passed it)."
                    "Please update to the new format on your modeling file. To use the new format, you need to completely remove the definition of the method `_set_gradient_checkpointing` in your model."
                )
                self.apply(partial(self._set_gradient_checkpointing, value=False))
2383

2384
2385
2386
        if getattr(self, "_hf_peft_config_loaded", False):
            self.disable_input_require_grads()

2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
    @property
    def is_gradient_checkpointing(self) -> bool:
        """
        Whether gradient checkpointing is activated for this model or not.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules())

2397
2398
2399
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
2400
        is_main_process: bool = True,
2401
2402
        state_dict: Optional[dict] = None,
        save_function: Callable = torch.save,
Sylvain Gugger's avatar
Sylvain Gugger committed
2403
        push_to_hub: bool = False,
2404
        max_shard_size: Union[int, str] = "5GB",
2405
        safe_serialization: bool = True,
2406
        variant: Optional[str] = None,
2407
        token: Optional[Union[str, bool]] = None,
2408
        save_peft_format: bool = True,
Sylvain Gugger's avatar
Sylvain Gugger committed
2409
        **kwargs,
2410
    ):
2411
2412
        """
        Save a model and its configuration file to a directory, so that it can be re-loaded using the
2413
        [`~PreTrainedModel.from_pretrained`] class method.
2414

2415
        Arguments:
2416
            save_directory (`str` or `os.PathLike`):
2417
                Directory to which to save. Will be created if it doesn't exist.
2418
2419
2420
2421
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful when in distributed training like
                TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on
                the main process to avoid race conditions.
2422
            state_dict (nested dictionary of `torch.Tensor`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2423
2424
2425
                The state dictionary of the model to save. Will default to `self.state_dict()`, but can be used to only
                save parts of the model or if special precautions need to be taken when recovering the state dictionary
                of a model (like when using model parallelism).
2426
            save_function (`Callable`):
2427
                The function to use to save the state dictionary. Useful on distributed training like TPUs when one
2428
2429
                need to replace `torch.save` by another method.
            push_to_hub (`bool`, *optional*, defaults to `False`):
2430
2431
2432
                Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
2433
            max_shard_size (`int` or `str`, *optional*, defaults to `"5GB"`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2434
2435
                The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size
                lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`).
2436
2437
                We default it to 5GB in order for models to be able to run easily on free-tier google colab instances
                without CPU OOM issues.
Sylvain Gugger's avatar
Sylvain Gugger committed
2438
2439
2440
2441
2442
2443
2444
2445

                <Tip warning={true}>

                If a single weight of the model is bigger than `max_shard_size`, it will be in its own checkpoint shard
                which will be bigger than `max_shard_size`.

                </Tip>

2446
            safe_serialization (`bool`, *optional*, defaults to `True`):
2447
                Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
2448
2449
            variant (`str`, *optional*):
                If specified, weights are saved in the format pytorch_model.<variant>.bin.
2450
2451
2452
            token (`str` or `bool`, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
                the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
2453
2454
2455
2456
            save_peft_format (`bool`, *optional*, defaults to `True`):
                For backward compatibility with PEFT library, in case adapter weights are attached to the model, all
                keys of the state dict of adapters needs to be pre-pended with `base_model.model`. Advanced users can
                disable this behaviours by setting `save_peft_format` to `False`.
2457
            kwargs (`Dict[str, Any]`, *optional*):
2458
                Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
2459
        """
2460
        use_auth_token = kwargs.pop("use_auth_token", None)
2461
        ignore_metadata_errors = kwargs.pop("ignore_metadata_errors", False)
2462
2463
2464

        if use_auth_token is not None:
            warnings.warn(
2465
2466
                "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
                FutureWarning,
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
            )
            if token is not None:
                raise ValueError(
                    "`token` and `use_auth_token` are both specified. Please set only the argument `token`."
                )
            token = use_auth_token

        if token is not None:
            kwargs["token"] = token

Younes Belkada's avatar
Younes Belkada committed
2477
2478
        _hf_peft_config_loaded = getattr(self, "_hf_peft_config_loaded", False)

2479
2480
2481
2482
        hf_quantizer = getattr(self, "hf_quantizer", None)
        quantization_serializable = (
            hf_quantizer is not None and isinstance(hf_quantizer, HfQuantizer) and hf_quantizer.is_serializable
        )
2483

2484
2485
2486
2487
        if hf_quantizer is not None and not _hf_peft_config_loaded and not quantization_serializable:
            raise ValueError(
                f"The model is quantized with {hf_quantizer.quantization_config.quant_method} and is not serializable - check out the warnings from"
                " the logger on the traceback to understand the reason why the quantized model is not serializable."
2488
2489
            )

2490
2491
2492
2493
2494
        if "save_config" in kwargs:
            warnings.warn(
                "`save_config` is deprecated and will be removed in v5 of Transformers. Use `is_main_process` instead."
            )
            is_main_process = kwargs.pop("save_config")
2495
2496
        if safe_serialization and not is_safetensors_available():
            raise ImportError("`safe_serialization` requires the `safetensors library: `pip install safetensors`.")
2497

2498
        if os.path.isfile(save_directory):
2499
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
2500
            return
2501

2502
2503
        os.makedirs(save_directory, exist_ok=True)

2504
2505
        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
2506
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
2507
            repo_id = self._create_repo(repo_id, **kwargs)
2508
            files_timestamps = self._get_files_timestamps(save_directory)
2509

Julien Chaumond's avatar
Julien Chaumond committed
2510
        # Only save the model itself if we are using distributed training
2511
        model_to_save = unwrap_model(self)
2512

2513
2514
2515
2516
2517
        # save the string version of dtype to the config, e.g. convert torch.float32 => "float32"
        # we currently don't use this setting automatically, but may start to use with v5
        dtype = get_parameter_dtype(model_to_save)
        model_to_save.config.torch_dtype = str(dtype).split(".")[1]

Julien Chaumond's avatar
Julien Chaumond committed
2518
2519
2520
        # Attach architecture to the config
        model_to_save.config.architectures = [model_to_save.__class__.__name__]

2521
2522
2523
2524
2525
        # If we have a custom model, we copy the file defining it in the folder and set the attributes so it can be
        # loaded from the Hub.
        if self._auto_class is not None:
            custom_object_save(self, save_directory, config=self.config)

2526
        # Save the config
2527
        if is_main_process:
2528
2529
            if not _hf_peft_config_loaded:
                model_to_save.config.save_pretrained(save_directory)
2530
            if self.can_generate():
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
                # generation config built from the model config + the model config holds generation kwargs -> generate
                # may revert to legacy behavior if the two don't match
                if (
                    model_to_save.generation_config._from_model_config
                    and model_to_save.config._has_non_default_generation_parameters()
                ):
                    new_generation_config = GenerationConfig.from_model_config(model_to_save.config)
                    if new_generation_config != model_to_save.generation_config:
                        logger.warning(
                            "Your generation config was originally created from the model config, but the model "
                            "config has changed since then. Unless you pass the `generation_config` argument to this "
                            "model's `generate` calls, they will revert to the legacy behavior where the base "
                            "`generate` parameterization is loaded from the model config instead. "
                            "To avoid this behavior and this warning, we recommend you to overwrite the generation "
                            "config model attribute before calling the model's `save_pretrained`, preferably also "
                            "removing any generation kwargs from the model config. This warning will be raised to an "
                            "exception in v4.41."
                        )
2549
                model_to_save.generation_config.save_pretrained(save_directory)
2550

2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
            if _hf_peft_config_loaded:
                logger.info(
                    "Detected adapters on the model, saving the model in the PEFT format, only adapter weights will be saved."
                )
                state_dict = model_to_save.get_adapter_state_dict()

                if save_peft_format:
                    logger.info(
                        "To match the expected format of the PEFT library, all keys of the state dict of adapters will be pre-pended with `base_model.model`."
                    )
                    peft_state_dict = {}
                    for key, value in state_dict.items():
                        peft_state_dict[f"base_model.model.{key}"] = value
                    state_dict = peft_state_dict

2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
                active_adapter = self.active_adapters()

                if len(active_adapter) > 1:
                    raise ValueError(
                        "Multiple active adapters detected, saving multiple active adapters is not supported yet. You can save adapters separately one by one "
                        "by iteratively calling `model.set_adapter(adapter_name)` then `model.save_pretrained(...)`"
                    )
                active_adapter = active_adapter[0]

                current_peft_config = self.peft_config[active_adapter]
2576
2577
                current_peft_config.save_pretrained(save_directory)

2578
2579
2580
        # for offloaded modules
        module_map = {}

2581
2582
        # Save the model
        if state_dict is None:
2583
2584
2585
2586
2587
            # if any model parameters are offloaded, make module map
            if (
                hasattr(self, "hf_device_map")
                and len(set(self.hf_device_map.values())) > 1
                and ("cpu" in self.hf_device_map.values() or "disk" in self.hf_device_map.values())
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
            ):
                warnings.warn(
                    "Attempting to save a model with offloaded modules. Ensure that unallocated cpu memory exceeds the `shard_size` (5GB default)"
                )
                for name, module in model_to_save.named_modules():
                    if name == "":
                        continue
                    module_state_dict = module.state_dict()

                    for key in module_state_dict:
                        module_map[name + f".{key}"] = module
2599
            state_dict = model_to_save.state_dict()
2600

2601
2602
2603
2604
2605
        # Translate state_dict from smp to hf if saving with smp >= 1.10
        if IS_SAGEMAKER_MP_POST_1_10:
            for smp_to_hf, _ in smp.state.module_manager.translate_functions:
                state_dict = smp_to_hf(state_dict)

2606
        # Handle the case where some state_dict keys shouldn't be saved
2607
        if self._keys_to_ignore_on_save is not None:
2608
            for ignore_key in self._keys_to_ignore_on_save:
2609
2610
                if ignore_key in state_dict.keys():
                    del state_dict[ignore_key]
2611
2612
2613
2614
2615
        if safe_serialization:
            # Safetensors does not allow tensor aliasing.
            # We're going to remove aliases before saving
            ptrs = collections.defaultdict(list)
            for name, tensor in state_dict.items():
2616
2617
2618
2619
2620
2621
2622
                # Sometimes in the state_dict we have non-tensor objects.
                # e.g. in bitsandbytes we have some `str` objects in the state_dict
                if isinstance(tensor, torch.Tensor):
                    ptrs[id_tensor_storage(tensor)].append(name)
                else:
                    # In the non-tensor case, fall back to the pointer of the object itself
                    ptrs[id(tensor)].append(name)
2623

2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
            # These are all the pointers of shared tensors
            if hasattr(self, "hf_device_map"):
                # if the model has offloaded parameters, we must check using find_tied_parameters()
                tied_params = find_tied_parameters(self)
                if tied_params:
                    tied_names = tied_params[0]
                    shared_ptrs = {
                        ptr: names for ptr, names in ptrs.items() if any(name in tied_names for name in names)
                    }
                else:
                    shared_ptrs = {}
            else:
                shared_ptrs = {ptr: names for ptr, names in ptrs.items() if len(names) > 1}

2638
2639
            # Recursively descend to find tied weight keys
            _tied_weights_keys = _get_tied_weight_keys(self)
2640
2641
            error_names = []
            to_delete_names = set()
2642
2643
2644
            for names in shared_ptrs.values():
                # Removing the keys which are declared as known duplicates on
                # load. This allows to make sure the name which is kept is consistent.
2645
                if _tied_weights_keys is not None:
2646
2647
                    found = 0
                    for name in sorted(names):
2648
                        matches_pattern = any(re.search(pat, name) for pat in _tied_weights_keys)
2649
                        if matches_pattern and name in state_dict:
2650
2651
                            found += 1
                            if found < len(names):
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
                                to_delete_names.add(name)
            # We are entering a place where the weights and the transformers configuration do NOT match.
            shared_names, disjoint_names = _find_disjoint(shared_ptrs.values(), state_dict)
            # Those are actually tensor sharing but disjoint from each other, we can safely clone them
            # Reloaded won't have the same property, but it shouldn't matter in any meaningful way.
            for name in disjoint_names:
                state_dict[name] = state_dict[name].clone()

            # When not all duplicates have been cleaned, still remove those keys, but put a clear warning.
            # If the link between tensors was done at runtime then `from_pretrained` will not get
            # the key back leading to random tensor. A proper warning will be shown
            # during reload (if applicable), but since the file is not necessarily compatible with
            # the config, better show a proper warning.
            shared_names, identical_names = _find_identical(shared_names, state_dict)
            # delete tensors that have identical storage
            for inames in identical_names:
                known = inames.intersection(to_delete_names)
                for name in known:
                    del state_dict[name]
                unknown = inames.difference(to_delete_names)
                if len(unknown) > 1:
                    error_names.append(unknown)

            if shared_names:
                error_names.append(set(shared_names))

            if len(error_names) > 0:
                raise RuntimeError(
                    f"The weights trying to be saved contained shared tensors {error_names} that are mismatching the transformers base configuration. Try saving using `safe_serialization=False` or remove this tensor sharing.",
2681
                )
2682

Sylvain Gugger's avatar
Sylvain Gugger committed
2683
        # Shard the model if it is too big.
2684
2685
2686
2687
2688
        if not _hf_peft_config_loaded:
            weights_name = SAFE_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME
            weights_name = _add_variant(weights_name, variant)
        else:
            weights_name = ADAPTER_SAFE_WEIGHTS_NAME if safe_serialization else ADAPTER_WEIGHTS_NAME
2689

2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
        filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
        state_dict_split = split_torch_state_dict_into_shards(
            state_dict, filename_pattern=filename_pattern, max_shard_size=max_shard_size
        )
        # Save index if sharded
        index = None
        if state_dict_split.is_sharded:
            index = {
                "metadata": state_dict_split.metadata,
                "weight_map": state_dict_split.tensor_to_filename,
            }
Sylvain Gugger's avatar
Sylvain Gugger committed
2701
2702
2703
2704

        # Clean the folder from a previous save
        for filename in os.listdir(save_directory):
            full_filename = os.path.join(save_directory, filename)
2705
2706
            # If we have a shard file that is not going to be replaced, we delete it, but only from the main process
            # in distributed settings to avoid race conditions.
2707
            weights_no_suffix = weights_name.replace(".bin", "").replace(".safetensors", "")
2708
2709
2710

            # make sure that file to be deleted matches format of sharded file, e.g. pytorch_model-00001-of-00005
            filename_no_suffix = filename.replace(".bin", "").replace(".safetensors", "")
2711
            reg = re.compile(r"(.*?)-\d{5}-of-\d{5}")
2712

2713
            if (
2714
                filename.startswith(weights_no_suffix)
2715
                and os.path.isfile(full_filename)
2716
                and filename not in state_dict_split.filename_to_tensors.keys()
2717
                and is_main_process
2718
                and reg.fullmatch(filename_no_suffix) is not None
2719
            ):
Sylvain Gugger's avatar
Sylvain Gugger committed
2720
2721
                os.remove(full_filename)
        # Save the model
2722
2723
2724
2725
        filename_to_tensors = state_dict_split.filename_to_tensors.items()
        if module_map:
            filename_to_tensors = logging.tqdm(filename_to_tensors, desc="Saving checkpoint shards")
        for shard_file, tensors in filename_to_tensors:
2726
            shard = {tensor: state_dict[tensor] for tensor in tensors}
2727
2728
2729
2730
2731
2732
2733
2734
            # remake shard with onloaded parameters if necessary
            if module_map:
                if accelerate_version < version.parse("0.31"):
                    raise ImportError(
                        f"You need accelerate version to be greater or equal than 0.31 to save models with offloaded parameters. Detected version {accelerate_version}. "
                        f"Please upgrade accelerate with `pip install -U accelerate`"
                    )
                # init state_dict for this shard
2735
                shard_state_dict = {name: "" for name in shard}
2736
2737
2738
                for module_name in shard:
                    module = module_map[module_name]
                    # update state dict with onloaded parameters
2739
                    shard_state_dict = get_state_dict_from_offload(module, module_name, shard_state_dict)
2740
2741

                # assign shard to be the completed state dict
2742
2743
                shard = shard_state_dict
                del shard_state_dict
2744
2745
                gc.collect()

2746
2747
2748
2749
2750
2751
            if safe_serialization:
                # At some point we will need to deal better with save_function (used for TPU and other distributed
                # joyfulness), but for now this enough.
                safe_save_file(shard, os.path.join(save_directory, shard_file), metadata={"format": "pt"})
            else:
                save_function(shard, os.path.join(save_directory, shard_file))
Sylvain Gugger's avatar
Sylvain Gugger committed
2752
2753

        if index is None:
2754
            path_to_weights = os.path.join(save_directory, weights_name)
2755
            logger.info(f"Model weights saved in {path_to_weights}")
Sylvain Gugger's avatar
Sylvain Gugger committed
2756
        else:
2757
            save_index_file = SAFE_WEIGHTS_INDEX_NAME if safe_serialization else WEIGHTS_INDEX_NAME
2758
            save_index_file = os.path.join(save_directory, _add_variant(save_index_file, variant))
Sylvain Gugger's avatar
Sylvain Gugger committed
2759
2760
2761
2762
2763
2764
            # Save the index as well
            with open(save_index_file, "w", encoding="utf-8") as f:
                content = json.dumps(index, indent=2, sort_keys=True) + "\n"
                f.write(content)
            logger.info(
                f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be "
2765
                f"split in {len(state_dict_split.filename_to_tensors)} checkpoint shards. You can find where each parameters has been saved in the "
Sylvain Gugger's avatar
Sylvain Gugger committed
2766
2767
                f"index located at {save_index_file}."
            )
2768

Sylvain Gugger's avatar
Sylvain Gugger committed
2769
        if push_to_hub:
2770
2771
2772
2773
2774
2775
2776
2777
            # Eventually create an empty model card
            model_card = create_and_tag_model_card(
                repo_id, self.model_tags, token=token, ignore_metadata_errors=ignore_metadata_errors
            )

            # Update model card if needed:
            model_card.save(os.path.join(save_directory, "README.md"))

2778
            self._upload_modified_files(
2779
2780
2781
2782
                save_directory,
                repo_id,
                files_timestamps,
                commit_message=commit_message,
2783
                token=token,
2784
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
2785

2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
    @wraps(PushToHubMixin.push_to_hub)
    def push_to_hub(self, *args, **kwargs):
        tags = self.model_tags if self.model_tags is not None else []

        tags_kwargs = kwargs.get("tags", [])
        if isinstance(tags_kwargs, str):
            tags_kwargs = [tags_kwargs]

        for tag in tags_kwargs:
            if tag not in tags:
                tags.append(tag)

        if tags:
            kwargs["tags"] = tags
        return super().push_to_hub(*args, **kwargs)

2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
    def get_memory_footprint(self, return_buffers=True):
        r"""
        Get the memory footprint of a model. This will return the memory footprint of the current model in bytes.
        Useful to benchmark the memory footprint of the current model and design some tests. Solution inspired from the
        PyTorch discussions: https://discuss.pytorch.org/t/gpu-memory-that-model-uses/56822/2

        Arguments:
            return_buffers (`bool`, *optional*, defaults to `True`):
                Whether to return the size of the buffer tensors in the computation of the memory footprint. Buffers
                are tensors that do not require gradients and not registered as parameters. E.g. mean and std in batch
                norm layers. Please see: https://discuss.pytorch.org/t/what-pytorch-means-by-buffers/120266/2
        """
        mem = sum([param.nelement() * param.element_size() for param in self.parameters()])
        if return_buffers:
            mem_bufs = sum([buf.nelement() * buf.element_size() for buf in self.buffers()])
            mem = mem + mem_bufs
        return mem

2820
    @wraps(torch.nn.Module.cuda)
2821
    def cuda(self, *args, **kwargs):
2822
2823
        if getattr(self, "quantization_method", None) == QuantizationMethod.HQQ:
            raise ValueError("`.cuda` is not supported for HQQ-quantized models.")
2824
        # Checks if the model has been loaded in 8-bit
Marc Sun's avatar
Marc Sun committed
2825
        if getattr(self, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES:
2826
2827
2828
2829
2830
2831
2832
            raise ValueError(
                "Calling `cuda()` is not supported for `4-bit` or `8-bit` quantized models. Please use the model as it is, since the"
                " model has already been set to the correct devices and casted to the correct `dtype`."
            )
        else:
            return super().cuda(*args, **kwargs)

2833
    @wraps(torch.nn.Module.to)
2834
    def to(self, *args, **kwargs):
2835
2836
        if getattr(self, "quantization_method", None) == QuantizationMethod.HQQ:
            raise ValueError("`.to` is not supported for HQQ-quantized models.")
2837
        # Checks if the model has been loaded in 8-bit
Marc Sun's avatar
Marc Sun committed
2838
        if getattr(self, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES:
2839
            raise ValueError(
Marc Sun's avatar
Marc Sun committed
2840
                "`.to` is not supported for `4-bit` or `8-bit` bitsandbytes models. Please use the model as it is, since the"
2841
2842
                " model has already been set to the correct devices and casted to the correct `dtype`."
            )
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
        elif getattr(self, "quantization_method", None) == QuantizationMethod.GPTQ:
            # For GPTQ models, we prevent users from casting the model to another dytpe to restrict unwanted behaviours.
            # the correct API should be to load the model with the desired dtype directly through `from_pretrained`.
            dtype_present_in_args = False

            if "dtype" not in kwargs:
                for arg in args:
                    if isinstance(arg, torch.dtype):
                        dtype_present_in_args = True
                        break
            else:
                dtype_present_in_args = True

            if dtype_present_in_args:
                raise ValueError(
                    "You cannot cast a GPTQ model in a new `dtype`. Make sure to load the model using `from_pretrained` using the desired"
                    " `dtype` by passing the correct `torch_dtype` argument."
                )
        return super().to(*args, **kwargs)
2862
2863

    def half(self, *args):
Marc Sun's avatar
Marc Sun committed
2864
        # Checks if the model is quantized
2865
        if getattr(self, "is_quantized", False):
2866
            raise ValueError(
Marc Sun's avatar
Marc Sun committed
2867
                "`.half()` is not supported for quantized model. Please use the model as it is, since the"
2868
2869
2870
2871
2872
2873
                " model has already been casted to the correct `dtype`."
            )
        else:
            return super().half(*args)

    def float(self, *args):
Marc Sun's avatar
Marc Sun committed
2874
        # Checks if the model is quantized
2875
        if getattr(self, "is_quantized", False):
2876
            raise ValueError(
Marc Sun's avatar
Marc Sun committed
2877
                "`.float()` is not supported for quantized model. Please use the model as it is, since the"
2878
2879
2880
2881
2882
                " model has already been casted to the correct `dtype`."
            )
        else:
            return super().float(*args)

2883
    @classmethod
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
    def from_pretrained(
        cls,
        pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
        *model_args,
        config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
        cache_dir: Optional[Union[str, os.PathLike]] = None,
        ignore_mismatched_sizes: bool = False,
        force_download: bool = False,
        local_files_only: bool = False,
        token: Optional[Union[str, bool]] = None,
        revision: str = "main",
        use_safetensors: bool = None,
        **kwargs,
2897
    ) -> "PreTrainedModel":
2898
2899
        r"""
        Instantiate a pretrained pytorch model from a pre-trained model configuration.
2900

Sylvain Gugger's avatar
Sylvain Gugger committed
2901
2902
        The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
        the model, you should first set it back in training mode with `model.train()`.
2903

2904
        The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
2905
2906
        pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
        task.
2907

2908
        The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
2909
        weights are discarded.
2910

2911
2912
2913
2914
        If model weights are the same precision as the base model (and is a supported model), weights will be lazily loaded
        in using the `meta` device and brought into memory once an input is passed through that layer regardless of
        `low_cpu_mem_usage`.

2915
        Parameters:
2916
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
2917
2918
                Can be either:

2919
2920
2921
2922
                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
                    - A path to a *directory* containing model weights saved using
                      [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
                    - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
Sylvain Gugger's avatar
Sylvain Gugger committed
2923
2924
2925
                      this case, `from_tf` should be set to `True` and a configuration object should be provided as
                      `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
                      PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
2926
                    - A path or url to a model folder containing a *flax checkpoint file* in *.msgpack* format (e.g,
Sylvain Gugger's avatar
Sylvain Gugger committed
2927
2928
                      `./flax_model/` containing `flax_model.msgpack`). In this case, `from_flax` should be set to
                      `True`.
2929
2930
2931
2932
2933
                    - `None` if you are both providing the configuration and state dictionary (resp. with keyword
                      arguments `config` and `state_dict`).
            model_args (sequence of positional arguments, *optional*):
                All remaining positional arguments will be passed to the underlying model's `__init__` method.
            config (`Union[PretrainedConfig, str, os.PathLike]`, *optional*):
2934
2935
                Can be either:

2936
2937
                    - an instance of a class derived from [`PretrainedConfig`],
                    - a string or path valid as input to [`~PretrainedConfig.from_pretrained`].
2938

2939
                Configuration for the model to use instead of an automatically loaded configuration. Configuration can
2940
2941
                be automatically loaded when:

2942
                    - The model is a model provided by the library (loaded with the *model id* string of a pretrained
2943
                      model).
Sylvain Gugger's avatar
Sylvain Gugger committed
2944
2945
                    - The model was saved using [`~PreTrainedModel.save_pretrained`] and is reloaded by supplying the
                      save directory.
2946
2947
2948
                    - The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a
                      configuration JSON file named *config.json* is found in the directory.
            state_dict (`Dict[str, torch.Tensor]`, *optional*):
2949
2950
2951
                A state dictionary to use instead of a state dictionary loaded from saved weights file.

                This option can be used if you want to create a model from a pretrained configuration but load your own
Sylvain Gugger's avatar
Sylvain Gugger committed
2952
                weights. In this case though, you should check if using [`~PreTrainedModel.save_pretrained`] and
2953
2954
                [`~PreTrainedModel.from_pretrained`] is not a simpler option.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
2955
2956
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
2957
            from_tf (`bool`, *optional*, defaults to `False`):
2958
                Load the model weights from a TensorFlow checkpoint save file (see docstring of
2959
2960
                `pretrained_model_name_or_path` argument).
            from_flax (`bool`, *optional*, defaults to `False`):
2961
                Load the model weights from a Flax checkpoint save file (see docstring of
2962
2963
                `pretrained_model_name_or_path` argument).
            ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`):
2964
2965
2966
                Whether or not to raise an error if some of the weights from the checkpoint do not have the same size
                as the weights of the model (if for instance, you are instantiating a model with 10 labels from a
                checkpoint with 3 labels).
2967
            force_download (`bool`, *optional*, defaults to `False`):
2968
2969
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
2970
2971
2972
            resume_download:
                Deprecated and ignored. All downloads are now resumed by default when possible.
                Will be removed in v5 of Transformers.
2973
            proxies (`Dict[str, str]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2974
2975
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
2976
            output_loading_info(`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2977
                Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
2978
            local_files_only(`bool`, *optional*, defaults to `False`):
Stas Bekman's avatar
Stas Bekman committed
2979
                Whether or not to only look at local files (i.e., do not try to download the model).
2980
            token (`str` or `bool`, *optional*):
2981
2982
                The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
                the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
2983
            revision (`str`, *optional*, defaults to `"main"`):
Julien Chaumond's avatar
Julien Chaumond committed
2984
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
2985
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
Julien Chaumond's avatar
Julien Chaumond committed
2986
                identifier allowed by git.
2987
2988
2989
2990
2991
2992
2993

                <Tip>

                To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>".

                </Tip>

2994
            mirror (`str`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2995
2996
2997
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information.
2998
            _fast_init(`bool`, *optional*, defaults to `True`):
2999
3000
                Whether or not to disable fast initialization.

3001
3002
                <Tip warning={true}>

Sylvain Gugger's avatar
Sylvain Gugger committed
3003
3004
3005
                One should only disable *_fast_init* to ensure backwards compatibility with `transformers.__version__ <
                4.6.0` for seeded model initialization. This argument will be removed at the next major version. See
                [pull request 11471](https://github.com/huggingface/transformers/pull/11471) for more information.
3006

3007
                </Tip>
3008
3009
            attn_implementation (`str`, *optional*):
                The attention implementation to use in the model (if relevant). Can be any of `"eager"` (manual implementation of the attention), `"sdpa"` (using [`F.scaled_dot_product_attention`](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention.html)), or `"flash_attention_2"` (using [Dao-AILab/flash-attention](https://github.com/Dao-AILab/flash-attention)). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual `"eager"` implementation.
3010

3011
3012
3013
            > Parameters for big model inference

            low_cpu_mem_usage(`bool`, *optional*):
3014
                Tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
3015
                Generally should be combined with a `device_map` (such as `"auto"`) for best results.
3016
                This is an experimental feature and a subject to change at any moment.
3017
3018
3019
3020
3021
                </Tip>
                    If the model weights are in the same precision as the model loaded in, `low_cpu_mem_usage` (without
                    `device_map`) is redundant and will not provide any benefit in regards to CPU memory usage. However,
                    this should still be enabled if you are passing in a `device_map`.
                </Tip>
3022
            torch_dtype (`str` or `torch.dtype`, *optional*):
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
                Override the default `torch.dtype` and load the model under a specific `dtype`. The different options
                are:

                1. `torch.float16` or `torch.bfloat16` or `torch.float`: load in a specified
                  `dtype`, ignoring the model's `config.torch_dtype` if one exists. If not specified
                  - the model will get loaded in `torch.float` (fp32).

                2. `"auto"` - A `torch_dtype` entry in the `config.json` file of the model will be
                  attempted to be used. If this entry isn't found then next check the `dtype` of the first weight in
                  the checkpoint that's of a floating point type and use that as `dtype`. This will load the model
                  using the `dtype` it was saved in at the end of the training. It can't be used as an indicator of how
                  the model was trained. Since it could be trained in one of half precision dtypes, but saved in fp32.

3036
3037
                3. A string that is a valid `torch.dtype`. E.g. "float32" loads the model in `torch.float32`, "float16" loads in `torch.float16` etc.

3038
3039
3040
3041
3042
3043
3044
3045
                <Tip>

                For some models the `dtype` they were trained in is unknown - you may try to check the model's paper or
                reach out to the authors and ask them to add this information to the model's card and to insert the
                `torch_dtype` entry in `config.json` on the hub.

                </Tip>

3046
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]` or `int` or `torch.device`, *optional*):
3047
3048
                A map that specifies where each submodule should go. It doesn't need to be refined to each
                parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the
3049
3050
3051
                same device. If we only pass the device (*e.g.*, `"cpu"`, `"cuda:1"`, `"mps"`, or a GPU ordinal rank
                like `1`) on which the model will be allocated, the device map will map the entire model to this
                device. Passing `device_map = 0` means put the whole model on GPU 0.
3052

3053
3054
                To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For
                more information about each option see [designing a device
Patrick von Platen's avatar
Patrick von Platen committed
3055
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
3056
3057
3058
            max_memory (`Dict`, *optional*):
                A dictionary device identifier to maximum memory. Will default to the maximum memory available for each
                GPU and the available CPU RAM if unset.
3059
3060
            offload_folder (`str` or `os.PathLike`, *optional*):
                If the `device_map` contains any value `"disk"`, the folder where we will offload weights.
3061
            offload_state_dict (`bool`, *optional*):
3062
                If `True`, will temporarily offload the CPU state dict to the hard drive to avoid getting out of CPU
3063
3064
                RAM if the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to
                `True` when there is some disk offload.
3065
3066
            offload_buffers (`bool`, *optional*):
                Whether or not to offload the buffers with the model parameters.
Marc Sun's avatar
Marc Sun committed
3067
3068
            quantization_config (`Union[QuantizationConfigMixin,Dict]`, *optional*):
                A dictionary of configuration parameters or a QuantizationConfigMixin object for quantization (e.g
3069
3070
3071
3072
                bitsandbytes, gptq). There may be other quantization-related kwargs, including `load_in_4bit` and
                `load_in_8bit`, which are parsed by QuantizationConfigParser. Supported only for bitsandbytes
                quantizations and not preferred. consider inserting all such arguments into quantization_config
                instead.
3073
3074
3075
            subfolder (`str`, *optional*, defaults to `""`):
                In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
                specify the folder name here.
3076
3077
3078
            variant (`str`, *optional*):
                If specified load weights from `variant` filename, *e.g.* pytorch_model.<variant>.bin. `variant` is
                ignored when using `from_tf` or `from_flax`.
3079
3080
3081
            use_safetensors (`bool`, *optional*, defaults to `None`):
                Whether or not to use `safetensors` checkpoints. Defaults to `None`. If not specified and `safetensors`
                is not installed, it will be set to `False`.
3082

3083
            kwargs (remaining dictionary of keyword arguments, *optional*):
3084
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
3085
                `output_attentions=True`). Behaves differently depending on whether a `config` is provided or
3086
3087
                automatically loaded:

3088
3089
                    - If a configuration is provided with `config`, `**kwargs` will be directly passed to the
                      underlying model's `__init__` method (we assume all relevant updates to the configuration have
3090
                      already been done)
3091
                    - If a configuration is not provided, `kwargs` will be first passed to the configuration class
Sylvain Gugger's avatar
Sylvain Gugger committed
3092
3093
3094
3095
                      initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that
                      corresponds to a configuration attribute will be used to override said attribute with the
                      supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute
                      will be passed to the underlying model's `__init__` function.
3096
3097
3098

        <Tip>

Sylvain Gugger's avatar
Sylvain Gugger committed
3099
3100
        Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to
        use this method in a firewalled environment.
3101
3102
3103
3104
3105
3106
3107

        </Tip>

        Examples:

        ```python
        >>> from transformers import BertConfig, BertModel
Sylvain Gugger's avatar
Sylvain Gugger committed
3108

3109
        >>> # Download model and configuration from huggingface.co and cache.
3110
        >>> model = BertModel.from_pretrained("google-bert/bert-base-uncased")
3111
        >>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable).
Sylvain Gugger's avatar
Sylvain Gugger committed
3112
        >>> model = BertModel.from_pretrained("./test/saved_model/")
3113
        >>> # Update configuration during loading.
3114
        >>> model = BertModel.from_pretrained("google-bert/bert-base-uncased", output_attentions=True)
3115
3116
        >>> assert model.config.output_attentions == True
        >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable).
Sylvain Gugger's avatar
Sylvain Gugger committed
3117
3118
        >>> config = BertConfig.from_json_file("./tf_model/my_tf_model_config.json")
        >>> model = BertModel.from_pretrained("./tf_model/my_tf_checkpoint.ckpt.index", from_tf=True, config=config)
3119
        >>> # Loading from a Flax checkpoint file instead of a PyTorch model (slower)
3120
        >>> model = BertModel.from_pretrained("google-bert/bert-base-uncased", from_flax=True)
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
        ```

        * `low_cpu_mem_usage` algorithm:

        This is an experimental function that loads the model using ~1x model size CPU memory

        Here is how it works:

        1. save which state_dict keys we have
        2. drop state_dict before the model is created, since the latter takes 1x model size CPU memory
        3. after the model has been instantiated switch to the meta device all params/buffers that
        are going to be replaced from the loaded state_dict
        4. load state_dict 2nd time
        5. replace the params/buffers from the state_dict

        Currently, it can't handle deepspeed ZeRO stage 3 and ignores loading errors

        """
3139
3140
        state_dict = kwargs.pop("state_dict", None)
        from_tf = kwargs.pop("from_tf", False)
3141
        from_flax = kwargs.pop("from_flax", False)
3142
        resume_download = kwargs.pop("resume_download", None)
3143
3144
        proxies = kwargs.pop("proxies", None)
        output_loading_info = kwargs.pop("output_loading_info", False)
3145
        use_auth_token = kwargs.pop("use_auth_token", None)
3146
        trust_remote_code = kwargs.pop("trust_remote_code", None)
Sylvain Gugger's avatar
Sylvain Gugger committed
3147
        _ = kwargs.pop("mirror", None)
3148
3149
        from_pipeline = kwargs.pop("_from_pipeline", None)
        from_auto_class = kwargs.pop("_from_auto", False)
3150
        _fast_init = kwargs.pop("_fast_init", True)
3151
        torch_dtype = kwargs.pop("torch_dtype", None)
3152
3153
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", None)
        device_map = kwargs.pop("device_map", None)
3154
        max_memory = kwargs.pop("max_memory", None)
3155
        offload_folder = kwargs.pop("offload_folder", None)
3156
        offload_state_dict = kwargs.pop("offload_state_dict", False)
3157
        offload_buffers = kwargs.pop("offload_buffers", False)
3158
        load_in_8bit = kwargs.pop("load_in_8bit", False)
3159
        load_in_4bit = kwargs.pop("load_in_4bit", False)
3160
        quantization_config = kwargs.pop("quantization_config", None)
3161
        subfolder = kwargs.pop("subfolder", "")
3162
        commit_hash = kwargs.pop("_commit_hash", None)
3163
        variant = kwargs.pop("variant", None)
3164
        adapter_kwargs = kwargs.pop("adapter_kwargs", {})
3165
        adapter_name = kwargs.pop("adapter_name", "default")
3166
        use_flash_attention_2 = kwargs.pop("use_flash_attention_2", False)
3167

3168
3169
3170
3171
        gguf_file = kwargs.pop("gguf_file", None)
        # Cache path to the GGUF file
        gguf_path = None

3172
3173
3174
        if is_fsdp_enabled():
            low_cpu_mem_usage = True

3175
3176
        if use_auth_token is not None:
            warnings.warn(
3177
3178
                "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
                FutureWarning,
3179
3180
3181
3182
3183
3184
3185
            )
            if token is not None:
                raise ValueError(
                    "`token` and `use_auth_token` are both specified. Please set only the argument `token`."
                )
            token = use_auth_token

3186
        if token is not None and adapter_kwargs is not None and "token" not in adapter_kwargs:
3187
3188
            adapter_kwargs["token"] = token

3189
3190
        if use_safetensors is None and not is_safetensors_available():
            use_safetensors = False
3191
3192
3193
3194
3195
        if trust_remote_code is True:
            logger.warning(
                "The argument `trust_remote_code` is to be used with Auto classes. It has no effect here and is"
                " ignored."
            )
3196

3197
3198
3199
        if gguf_file is not None and not is_accelerate_available():
            raise ValueError("accelerate is required when loading a GGUF file `pip install accelerate`.")

3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
        if commit_hash is None:
            if not isinstance(config, PretrainedConfig):
                # We make a call to the config file first (which may be absent) to get the commit hash as soon as possible
                resolved_config_file = cached_file(
                    pretrained_model_name_or_path,
                    CONFIG_NAME,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    token=token,
                    revision=revision,
                    subfolder=subfolder,
3214
                    _raise_exceptions_for_gated_repo=False,
3215
3216
3217
3218
3219
3220
3221
                    _raise_exceptions_for_missing_entries=False,
                    _raise_exceptions_for_connection_errors=False,
                )
                commit_hash = extract_commit_hash(resolved_config_file, commit_hash)
            else:
                commit_hash = getattr(config, "_commit_hash", None)

3222
        if is_peft_available():
3223
3224
            _adapter_model_path = adapter_kwargs.pop("_adapter_model_path", None)

3225
3226
3227
3228
3229
3230
3231
3232
3233
            if _adapter_model_path is None:
                _adapter_model_path = find_adapter_config_file(
                    pretrained_model_name_or_path,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    _commit_hash=commit_hash,
3234
                    **adapter_kwargs,
3235
3236
                )
            if _adapter_model_path is not None and os.path.isfile(_adapter_model_path):
3237
                with open(_adapter_model_path, "r", encoding="utf-8") as f:
3238
                    _adapter_model_path = pretrained_model_name_or_path
3239
                    pretrained_model_name_or_path = json.load(f)["base_model_name_or_path"]
3240
3241
        else:
            _adapter_model_path = None
3242

3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
        # change device_map into a map if we passed an int, a str or a torch.device
        if isinstance(device_map, torch.device):
            device_map = {"": device_map}
        elif isinstance(device_map, str) and device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
            try:
                device_map = {"": torch.device(device_map)}
            except RuntimeError:
                raise ValueError(
                    "When passing device_map as a string, the value needs to be a device name (e.g. cpu, cuda:0) or "
                    f"'auto', 'balanced', 'balanced_low_0', 'sequential' but found {device_map}."
                )
        elif isinstance(device_map, int):
            if device_map < 0:
                raise ValueError(
                    "You can't pass device_map as a negative int. If you want to put the model on the cpu, pass device_map = 'cpu' "
                )
            else:
                device_map = {"": device_map}

3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
        if device_map is not None:
            if low_cpu_mem_usage is None:
                low_cpu_mem_usage = True
            elif not low_cpu_mem_usage:
                raise ValueError("Passing along a `device_map` requires `low_cpu_mem_usage=True`")

        if low_cpu_mem_usage:
            if is_deepspeed_zero3_enabled():
                raise ValueError(
                    "DeepSpeed Zero-3 is not compatible with `low_cpu_mem_usage=True` or with passing a `device_map`."
                )
            elif not is_accelerate_available():
                raise ImportError(
                    "Using `low_cpu_mem_usage=True` or a `device_map` requires Accelerate: `pip install accelerate`"
                )
3277

3278
3279
3280
        # handling bnb config from kwargs, remove after `load_in_{4/8}bit` deprecation.
        if load_in_4bit or load_in_8bit:
            if quantization_config is not None:
3281
                raise ValueError(
3282
                    "You can't pass `load_in_4bit`or `load_in_8bit` as a kwarg when passing "
3283
3284
3285
                    "`quantization_config` argument at the same time."
                )

3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
            # preparing BitsAndBytesConfig from kwargs
            config_dict = {k: v for k, v in kwargs.items() if k in inspect.signature(BitsAndBytesConfig).parameters}
            config_dict = {**config_dict, "load_in_4bit": load_in_4bit, "load_in_8bit": load_in_8bit}
            quantization_config, kwargs = BitsAndBytesConfig.from_dict(
                config_dict=config_dict, return_unused_kwargs=True, **kwargs
            )
            logger.warning(
                "The `load_in_4bit` and `load_in_8bit` arguments are deprecated and will be removed in the future versions. "
                "Please, pass a `BitsAndBytesConfig` object in `quantization_config` argument instead."
            )
3296

3297
        from_pt = not (from_tf | from_flax)
3298

3299
3300
3301
        user_agent = {"file_type": "model", "framework": "pytorch", "from_auto_class": from_auto_class}
        if from_pipeline is not None:
            user_agent["using_pipeline"] = from_pipeline
thomwolf's avatar
thomwolf committed
3302

3303
3304
3305
3306
        if is_offline_mode() and not local_files_only:
            logger.info("Offline mode: forcing local_files_only=True")
            local_files_only = True

3307
3308
3309
        # Load config if we don't provide a configuration
        if not isinstance(config, PretrainedConfig):
            config_path = config if config is not None else pretrained_model_name_or_path
3310
            config, model_kwargs = cls.config_class.from_pretrained(
3311
3312
3313
                config_path,
                cache_dir=cache_dir,
                return_unused_kwargs=True,
3314
                force_download=force_download,
3315
                resume_download=resume_download,
3316
                proxies=proxies,
3317
                local_files_only=local_files_only,
3318
                token=token,
Julien Chaumond's avatar
Julien Chaumond committed
3319
                revision=revision,
3320
                subfolder=subfolder,
3321
3322
                _from_auto=from_auto_class,
                _from_pipeline=from_pipeline,
3323
                **kwargs,
3324
3325
            )
        else:
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
            # In case one passes a config to `from_pretrained` + "attn_implementation"
            # override the `_attn_implementation` attribute to `attn_implementation` of the kwargs
            # Please see: https://github.com/huggingface/transformers/issues/28038

            # Overwrite `config._attn_implementation` by the one from the kwargs --> in auto-factory
            # we pop attn_implementation from the kwargs but this handles the case where users
            # passes manually the config to `from_pretrained`.
            config = copy.deepcopy(config)

            kwarg_attn_imp = kwargs.pop("attn_implementation", None)
3336
            if kwarg_attn_imp is not None:
3337
                config._attn_implementation = kwarg_attn_imp
3338

3339
            model_kwargs = kwargs
3340

3341
3342
3343
3344
3345
        pre_quantized = getattr(config, "quantization_config", None) is not None
        if pre_quantized or quantization_config is not None:
            if pre_quantized:
                config.quantization_config = AutoHfQuantizer.merge_quantization_configs(
                    config.quantization_config, quantization_config
Marc Sun's avatar
Marc Sun committed
3346
3347
3348
                )
            else:
                config.quantization_config = quantization_config
3349
3350
3351
            hf_quantizer = AutoHfQuantizer.from_config(config.quantization_config, pre_quantized=pre_quantized)
        else:
            hf_quantizer = None
3352

3353
3354
3355
3356
3357
3358
        if hf_quantizer is not None:
            hf_quantizer.validate_environment(
                torch_dtype=torch_dtype, from_tf=from_tf, from_flax=from_flax, device_map=device_map
            )
            torch_dtype = hf_quantizer.update_torch_dtype(torch_dtype)
            device_map = hf_quantizer.update_device_map(device_map)
3359

3360
3361
3362
            # In order to ensure popular quantization methods are supported. Can be disable with `disable_telemetry`
            user_agent["quant"] = hf_quantizer.quantization_config.quant_method.value

3363
3364
3365
            # Force-set to `True` for more mem efficiency
            if low_cpu_mem_usage is None:
                low_cpu_mem_usage = True
3366
                logger.warning("`low_cpu_mem_usage` was None, now set to True since model is quantized.")
3367
        is_quantized = hf_quantizer is not None
3368

Sylvain Gugger's avatar
Sylvain Gugger committed
3369
3370
3371
3372
        # This variable will flag if we're loading a sharded checkpoint. In this case the archive file is just the
        # index of the files.
        is_sharded = False
        sharded_metadata = None
thomwolf's avatar
thomwolf committed
3373
        # Load model
Yih-Dar's avatar
Yih-Dar committed
3374
3375
        loading_info = None

3376
3377
3378
3379
        # Keep in fp32 modules
        keep_in_fp32_modules = None
        use_keep_in_fp32_modules = False

3380
3381
3382
3383
3384
3385
        if gguf_file is not None and hf_quantizer is not None:
            raise ValueError(
                "You cannot combine Quantization and loading a model from a GGUF file, try again by making sure you did not passed a `quantization_config` or that you did not load a quantized model from the Hub."
            )

        if pretrained_model_name_or_path is not None and gguf_file is None:
3386
            pretrained_model_name_or_path = str(pretrained_model_name_or_path)
3387
3388
            is_local = os.path.isdir(pretrained_model_name_or_path)
            if is_local:
3389
3390
3391
                if from_tf and os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index")
                ):
3392
                    # Load from a TF 1.0 checkpoint in priority if from_tf
3393
3394
3395
3396
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index")
                elif from_tf and os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME)
                ):
3397
                    # Load from a TF 2.0 checkpoint in priority if from_tf
3398
3399
3400
3401
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME)
                elif from_flax and os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)
                ):
3402
                    # Load from a Flax checkpoint in priority if from_flax
3403
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)
3404
                elif use_safetensors is not False and os.path.isfile(
3405
                    os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_NAME, variant))
3406
3407
                ):
                    # Load from a safetensors checkpoint
3408
3409
3410
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_NAME, variant)
                    )
3411
                elif use_safetensors is not False and os.path.isfile(
3412
3413
3414
                    os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)
                    )
3415
3416
                ):
                    # Load from a sharded safetensors checkpoint
3417
3418
3419
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)
                    )
3420
                    is_sharded = True
3421
                elif not use_safetensors and os.path.isfile(
3422
3423
                    os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_NAME, variant))
                ):
thomwolf's avatar
thomwolf committed
3424
                    # Load from a PyTorch checkpoint
3425
3426
3427
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_NAME, variant)
                    )
3428
                elif not use_safetensors and os.path.isfile(
3429
3430
                    os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_INDEX_NAME, variant))
                ):
Sylvain Gugger's avatar
Sylvain Gugger committed
3431
                    # Load from a sharded PyTorch checkpoint
3432
3433
3434
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_INDEX_NAME, variant)
                    )
Sylvain Gugger's avatar
Sylvain Gugger committed
3435
                    is_sharded = True
3436
                # At this stage we don't have a weight file so we will raise an error.
3437
3438
3439
3440
                elif not use_safetensors and (
                    os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index"))
                    or os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME))
                ):
3441
                    raise EnvironmentError(
3442
3443
3444
                        f"Error no file named {_add_variant(WEIGHTS_NAME, variant)} found in directory"
                        f" {pretrained_model_name_or_path} but there is a file for TensorFlow weights. Use"
                        " `from_tf=True` to load this model from those weights."
3445
                    )
3446
3447
3448
                elif not use_safetensors and os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)
                ):
3449
                    raise EnvironmentError(
3450
3451
3452
                        f"Error no file named {_add_variant(WEIGHTS_NAME, variant)} found in directory"
                        f" {pretrained_model_name_or_path} but there is a file for Flax weights. Use `from_flax=True`"
                        " to load this model from those weights."
3453
                    )
3454
3455
3456
3457
3458
                elif use_safetensors:
                    raise EnvironmentError(
                        f"Error no file named {_add_variant(SAFE_WEIGHTS_NAME, variant)} found in directory"
                        f" {pretrained_model_name_or_path}."
                    )
thomwolf's avatar
thomwolf committed
3459
                else:
3460
                    raise EnvironmentError(
3461
3462
                        f"Error no file named {_add_variant(WEIGHTS_NAME, variant)}, {_add_variant(SAFE_WEIGHTS_NAME, variant)},"
                        f" {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME + '.index'} or {FLAX_WEIGHTS_NAME} found in directory"
3463
                        f" {pretrained_model_name_or_path}."
3464
                    )
3465
            elif os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path)):
3466
                archive_file = pretrained_model_name_or_path
3467
                is_local = True
3468
            elif os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path + ".index")):
3469
3470
3471
3472
3473
                if not from_tf:
                    raise ValueError(
                        f"We found a TensorFlow checkpoint at {pretrained_model_name_or_path + '.index'}, please set "
                        "from_tf to True to load from this checkpoint."
                    )
3474
                archive_file = os.path.join(subfolder, pretrained_model_name_or_path + ".index")
3475
                is_local = True
3476
            elif is_remote_url(pretrained_model_name_or_path):
3477
                filename = pretrained_model_name_or_path
3478
                resolved_archive_file = download_url(pretrained_model_name_or_path)
3479
            else:
3480
3481
3482
3483
3484
                # set correct filename
                if from_tf:
                    filename = TF2_WEIGHTS_NAME
                elif from_flax:
                    filename = FLAX_WEIGHTS_NAME
3485
                elif use_safetensors is not False:
3486
                    filename = _add_variant(SAFE_WEIGHTS_NAME, variant)
3487
                else:
3488
                    filename = _add_variant(WEIGHTS_NAME, variant)
3489

3490
3491
                try:
                    # Load from URL or cache if already cached
3492
3493
3494
3495
3496
3497
                    cached_file_kwargs = {
                        "cache_dir": cache_dir,
                        "force_download": force_download,
                        "proxies": proxies,
                        "resume_download": resume_download,
                        "local_files_only": local_files_only,
3498
                        "token": token,
3499
3500
3501
                        "user_agent": user_agent,
                        "revision": revision,
                        "subfolder": subfolder,
3502
                        "_raise_exceptions_for_gated_repo": False,
3503
3504
3505
                        "_raise_exceptions_for_missing_entries": False,
                        "_commit_hash": commit_hash,
                    }
3506
                    resolved_archive_file = cached_file(pretrained_model_name_or_path, filename, **cached_file_kwargs)
3507

3508
                    # Since we set _raise_exceptions_for_missing_entries=False, we don't get an exception but a None
3509
                    # result when internet is up, the repo and revision exist, but the file does not.
3510
                    if resolved_archive_file is None and filename == _add_variant(SAFE_WEIGHTS_NAME, variant):
3511
3512
                        # Maybe the checkpoint is sharded, we try to grab the index name in this case.
                        resolved_archive_file = cached_file(
3513
3514
3515
                            pretrained_model_name_or_path,
                            _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant),
                            **cached_file_kwargs,
3516
3517
3518
                        )
                        if resolved_archive_file is not None:
                            is_sharded = True
3519
                        elif use_safetensors:
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
                            if revision == "main":
                                resolved_archive_file, revision, is_sharded = auto_conversion(
                                    pretrained_model_name_or_path, **cached_file_kwargs
                                )
                            cached_file_kwargs["revision"] = revision
                            if resolved_archive_file is None:
                                raise EnvironmentError(
                                    f"{pretrained_model_name_or_path} does not appear to have a file named"
                                    f" {_add_variant(SAFE_WEIGHTS_NAME, variant)} or {_add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)} "
                                    "and thus cannot be loaded with `safetensors`. Please make sure that the model has "
                                    "been saved with `safe_serialization=True` or do not set `use_safetensors=True`."
                                )
3532
3533
                        else:
                            # This repo has no safetensors file of any kind, we switch to PyTorch.
3534
                            filename = _add_variant(WEIGHTS_NAME, variant)
3535
                            resolved_archive_file = cached_file(
3536
                                pretrained_model_name_or_path, filename, **cached_file_kwargs
3537
                            )
3538
                    if resolved_archive_file is None and filename == _add_variant(WEIGHTS_NAME, variant):
Sylvain Gugger's avatar
Sylvain Gugger committed
3539
                        # Maybe the checkpoint is sharded, we try to grab the index name in this case.
3540
                        resolved_archive_file = cached_file(
3541
3542
3543
                            pretrained_model_name_or_path,
                            _add_variant(WEIGHTS_INDEX_NAME, variant),
                            **cached_file_kwargs,
3544
                        )
3545
3546
                        if resolved_archive_file is not None:
                            is_sharded = True
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
                    if not local_files_only and not is_offline_mode():
                        if resolved_archive_file is not None:
                            if filename in [WEIGHTS_NAME, WEIGHTS_INDEX_NAME]:
                                # If the PyTorch file was found, check if there is a safetensors file on the repository
                                # If there is no safetensors file on the repositories, start an auto conversion
                                safe_weights_name = SAFE_WEIGHTS_INDEX_NAME if is_sharded else SAFE_WEIGHTS_NAME
                                has_file_kwargs = {
                                    "revision": revision,
                                    "proxies": proxies,
                                    "token": token,
3557
3558
                                    "cache_dir": cache_dir,
                                    "local_files_only": local_files_only,
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
                                }
                                cached_file_kwargs = {
                                    "cache_dir": cache_dir,
                                    "force_download": force_download,
                                    "resume_download": resume_download,
                                    "local_files_only": local_files_only,
                                    "user_agent": user_agent,
                                    "subfolder": subfolder,
                                    "_raise_exceptions_for_gated_repo": False,
                                    "_raise_exceptions_for_missing_entries": False,
                                    "_commit_hash": commit_hash,
                                    **has_file_kwargs,
                                }
                                if not has_file(pretrained_model_name_or_path, safe_weights_name, **has_file_kwargs):
                                    Thread(
                                        target=auto_conversion,
                                        args=(pretrained_model_name_or_path,),
                                        kwargs={"ignore_errors_during_conversion": True, **cached_file_kwargs},
                                        name="Thread-autoconversion",
                                    ).start()
                        else:
                            # Otherwise, no PyTorch file was found, maybe there is a TF or Flax model file.
                            # We try those to give a helpful error message.
3582
3583
3584
3585
                            has_file_kwargs = {
                                "revision": revision,
                                "proxies": proxies,
                                "token": token,
3586
3587
                                "cache_dir": cache_dir,
                                "local_files_only": local_files_only,
3588
                            }
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
                            if has_file(pretrained_model_name_or_path, TF2_WEIGHTS_NAME, **has_file_kwargs):
                                raise EnvironmentError(
                                    f"{pretrained_model_name_or_path} does not appear to have a file named"
                                    f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file for TensorFlow weights."
                                    " Use `from_tf=True` to load this model from those weights."
                                )
                            elif has_file(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME, **has_file_kwargs):
                                raise EnvironmentError(
                                    f"{pretrained_model_name_or_path} does not appear to have a file named"
                                    f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file for Flax weights. Use"
                                    " `from_flax=True` to load this model from those weights."
                                )
                            elif variant is not None and has_file(
                                pretrained_model_name_or_path, WEIGHTS_NAME, **has_file_kwargs
                            ):
                                raise EnvironmentError(
                                    f"{pretrained_model_name_or_path} does not appear to have a file named"
                                    f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file without the variant"
                                    f" {variant}. Use `variant=None` to load this model from those weights."
                                )
                            else:
                                raise EnvironmentError(
                                    f"{pretrained_model_name_or_path} does not appear to have a file named"
                                    f" {_add_variant(WEIGHTS_NAME, variant)}, {_add_variant(SAFE_WEIGHTS_NAME, variant)},"
                                    f" {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or {FLAX_WEIGHTS_NAME}."
                                )
3615

3616
3617
3618
3619
                except EnvironmentError:
                    # Raise any environment error raise by `cached_file`. It will have a helpful error message adapted
                    # to the original exception.
                    raise
3620
                except Exception as e:
3621
                    # For any other exception, we throw a generic error.
3622
                    raise EnvironmentError(
3623
3624
3625
                        f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it"
                        " from 'https://huggingface.co/models', make sure you don't have a local directory with the"
                        f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a"
3626
3627
                        f" directory containing a file named {_add_variant(WEIGHTS_NAME, variant)},"
                        f" {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or {FLAX_WEIGHTS_NAME}."
3628
                    ) from e
3629

3630
            if is_local:
3631
                logger.info(f"loading weights file {archive_file}")
3632
                resolved_archive_file = archive_file
3633
            else:
3634
                logger.info(f"loading weights file {filename} from cache at {resolved_archive_file}")
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
        elif gguf_file:
            from .modeling_gguf_pytorch_utils import load_gguf_checkpoint

            # Case 1: the GGUF file is present locally
            if os.path.isfile(gguf_file):
                gguf_path = gguf_file
            # Case 2: The GGUF path is a location on the Hub
            # Load from URL or cache if already cached
            else:
                cached_file_kwargs = {
                    "cache_dir": cache_dir,
                    "force_download": force_download,
                    "proxies": proxies,
                    "resume_download": resume_download,
                    "local_files_only": local_files_only,
                    "token": token,
                    "user_agent": user_agent,
                    "revision": revision,
                    "subfolder": subfolder,
                    "_raise_exceptions_for_gated_repo": False,
                    "_raise_exceptions_for_missing_entries": False,
                    "_commit_hash": commit_hash,
                }

                gguf_path = cached_file(pretrained_model_name_or_path, gguf_file, **cached_file_kwargs)

            state_dict = load_gguf_checkpoint(gguf_path, return_tensors=True)["tensors"]

            resolved_archive_file = None
            is_sharded = False
3665
        else:
thomwolf's avatar
thomwolf committed
3666
            resolved_archive_file = None
3667

Sylvain Gugger's avatar
Sylvain Gugger committed
3668
3669
        # We'll need to download and cache each checkpoint shard if the checkpoint is sharded.
        if is_sharded:
3670
            # resolved_archive_file becomes a list of files that point to the different checkpoint shards in this case.
Sylvain Gugger's avatar
Sylvain Gugger committed
3671
3672
3673
3674
3675
3676
3677
3678
            resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(
                pretrained_model_name_or_path,
                resolved_archive_file,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                resume_download=resume_download,
                local_files_only=local_files_only,
3679
                token=token,
Sylvain Gugger's avatar
Sylvain Gugger committed
3680
3681
                user_agent=user_agent,
                revision=revision,
3682
                subfolder=subfolder,
3683
                _commit_hash=commit_hash,
Sylvain Gugger's avatar
Sylvain Gugger committed
3684
3685
            )

3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
        if (
            is_safetensors_available()
            and isinstance(resolved_archive_file, str)
            and resolved_archive_file.endswith(".safetensors")
        ):
            with safe_open(resolved_archive_file, framework="pt") as f:
                metadata = f.metadata()

            if metadata.get("format") == "pt":
                pass
            elif metadata.get("format") == "tf":
                from_tf = True
                logger.info("A TensorFlow safetensors file is being loaded in a PyTorch model.")
            elif metadata.get("format") == "flax":
                from_flax = True
                logger.info("A Flax safetensors file is being loaded in a PyTorch model.")
3702
3703
3704
            elif metadata.get("format") == "mlx":
                # This is a mlx file, we assume weights are compatible with pt
                pass
3705
3706
            else:
                raise ValueError(
3707
                    f"Incompatible safetensors file. File metadata is not ['pt', 'tf', 'flax', 'mlx'] but {metadata.get('format')}"
3708
3709
3710
3711
                )

        from_pt = not (from_tf | from_flax)

3712
3713
        # load pt weights early so that we know which dtype to init the model under
        if from_pt:
3714
            if not is_sharded and state_dict is None:
Sylvain Gugger's avatar
Sylvain Gugger committed
3715
3716
                # Time to load the checkpoint
                state_dict = load_state_dict(resolved_archive_file)
3717

3718
3719
3720
            # set dtype to instantiate the model under:
            # 1. If torch_dtype is not None, we use that dtype
            # 2. If torch_dtype is "auto", we auto-detect dtype from the loaded state_dict, by checking its first
3721
            #    weights entry that is of a floating type - we assume all floating dtype weights are of the same dtype
3722
3723
            # we also may have config.torch_dtype available, but we won't rely on it till v5
            dtype_orig = None
3724

3725
3726
3727
            if torch_dtype is not None:
                if isinstance(torch_dtype, str):
                    if torch_dtype == "auto":
3728
3729
3730
                        if hasattr(config, "torch_dtype") and config.torch_dtype is not None:
                            torch_dtype = config.torch_dtype
                            logger.info(f"Will use torch_dtype={torch_dtype} as defined in model's config object")
Sylvain Gugger's avatar
Sylvain Gugger committed
3731
                        else:
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
                            if is_sharded and "dtype" in sharded_metadata:
                                torch_dtype = sharded_metadata["dtype"]
                            elif not is_sharded:
                                torch_dtype = get_state_dict_dtype(state_dict)
                            else:
                                one_state_dict = load_state_dict(resolved_archive_file[0])
                                torch_dtype = get_state_dict_dtype(one_state_dict)
                                del one_state_dict  # free CPU memory
                            logger.info(
                                "Since the `torch_dtype` attribute can't be found in model's config object, "
                                "will use torch_dtype={torch_dtype} as derived from model's weights"
                            )
3744
3745
                    elif hasattr(torch, torch_dtype):
                        torch_dtype = getattr(torch, torch_dtype)
3746
3747
                    else:
                        raise ValueError(
3748
                            f'`torch_dtype` can be one of: `torch.dtype`, `"auto"` or a string of a valid `torch.dtype`, but received {torch_dtype}'
3749
3750
3751
                        )
                dtype_orig = cls._set_default_torch_dtype(torch_dtype)

3752
            # Check if `_keep_in_fp32_modules` is not None
3753
            use_keep_in_fp32_modules = (cls._keep_in_fp32_modules is not None) and (
3754
                (torch_dtype == torch.float16) or hasattr(hf_quantizer, "use_keep_in_fp32_modules")
3755
3756
            )

3757
3758
3759
            if is_sharded:
                loaded_state_dict_keys = sharded_metadata["all_checkpoint_keys"]
            else:
3760
                loaded_state_dict_keys = list(state_dict.keys())
3761
3762

            if gguf_path is None and (low_cpu_mem_usage or (use_keep_in_fp32_modules and is_accelerate_available())):
3763
3764
3765
                # In case some weights need to be kept in float32 and accelerate is not installed,
                # we later on want to take the path where state_dict is not None, that is the one
                # that do not require accelerate.
3766
                state_dict = None
3767

3768
3769
        config.name_or_path = pretrained_model_name_or_path

3770
        # Instantiate model.
3771
3772
        init_contexts = [no_init_weights(_enable=_fast_init)]

3773
        if is_deepspeed_zero3_enabled() and not is_quantized:
3774
3775
3776
            import deepspeed

            logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
3777
            init_contexts = [deepspeed.zero.Init(config_dict_or_path=deepspeed_config())] + init_contexts
3778
        elif low_cpu_mem_usage:
3779
3780
            init_contexts.append(init_empty_weights())

3781
3782
3783
3784
        config = copy.deepcopy(config)  # We do not want to modify the config inplace in from_pretrained.
        config = cls._autoset_attn_implementation(
            config, use_flash_attention_2=use_flash_attention_2, torch_dtype=torch_dtype, device_map=device_map
        )
3785

3786
        with ContextManagers(init_contexts):
3787
            # Let's make sure we don't run the init function of buffer modules
3788
3789
            model = cls(config, *model_args, **model_kwargs)

3790
3791
3792
        # make sure we use the model's config since the __init__ call might have copied it
        config = model.config

3793
3794
        # Check first if we are `from_pt`
        if use_keep_in_fp32_modules:
3795
            if is_accelerate_available() and not is_deepspeed_zero3_enabled():
3796
                low_cpu_mem_usage = True
3797
3798
3799
3800
            keep_in_fp32_modules = model._keep_in_fp32_modules
        else:
            keep_in_fp32_modules = []

3801
3802
3803
        if hf_quantizer is not None:
            hf_quantizer.preprocess_model(
                model=model, device_map=device_map, keep_in_fp32_modules=keep_in_fp32_modules
3804
            )
3805

3806
3807
3808
3809
3810
3811
            # We store the original dtype for quantized models as we cannot easily retrieve it
            # once the weights have been quantized
            # Note that once you have loaded a quantized model, you can't change its dtype so this will
            # remain a single source of truth
            config._pre_quantization_dtype = torch_dtype

3812
        if isinstance(device_map, str):
3813
            special_dtypes = {}
3814
3815
3816

            if hf_quantizer is not None:
                special_dtypes.update(hf_quantizer.get_special_dtypes_update(model, torch_dtype))
3817
3818
3819
3820
3821
3822
3823
3824
3825

            special_dtypes.update(
                {
                    name: torch.float32
                    for name, _ in model.named_parameters()
                    if any(m in name for m in keep_in_fp32_modules)
                }
            )

3826
3827
            target_dtype = torch_dtype

3828
3829
            if hf_quantizer is not None:
                target_dtype = hf_quantizer.adjust_target_dtype(target_dtype)
3830

Marc Sun's avatar
Marc Sun committed
3831
            no_split_modules = model._get_no_split_modules(device_map)
3832
3833
3834
3835
3836
            if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
                raise ValueError(
                    "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or "
                    "'sequential'."
                )
3837

3838
            device_map_kwargs = {"no_split_module_classes": no_split_modules}
3839
            if "special_dtypes" in inspect.signature(infer_auto_device_map).parameters:
3840
                device_map_kwargs["special_dtypes"] = special_dtypes
3841
            elif len(special_dtypes) > 0:
3842
                logger.warning(
3843
3844
3845
                    "This model has some weights that should be kept in higher precision, you need to upgrade "
                    "`accelerate` to properly deal with them (`pip install --upgrade accelerate`)."
                )
3846
            if device_map != "sequential":
3847
3848
                max_memory = get_balanced_memory(
                    model,
3849
                    dtype=target_dtype,
3850
                    low_zero=(device_map == "balanced_low_0"),
3851
                    max_memory=max_memory,
3852
                    **device_map_kwargs,
3853
                )
Marc Sun's avatar
Marc Sun committed
3854
3855
            else:
                max_memory = get_max_memory(max_memory)
3856
3857
            if hf_quantizer is not None:
                max_memory = hf_quantizer.adjust_max_memory(max_memory)
3858
            device_map_kwargs["max_memory"] = max_memory
Marc Sun's avatar
Marc Sun committed
3859

3860
3861
            # Make sure tied weights are tied before creating the device map.
            model.tie_weights()
3862
            device_map = infer_auto_device_map(model, dtype=target_dtype, **device_map_kwargs)
3863

3864
3865
            if hf_quantizer is not None:
                hf_quantizer.validate_environment(device_map=device_map)
3866

3867
3868
3869
3870
        elif device_map is not None:
            model.tie_weights()
            tied_params = find_tied_parameters(model)
            # check if we don't have tied param in different devices
3871
            check_tied_parameters_on_same_device(tied_params, device_map)
3872

3873
        if from_tf:
3874
            if resolved_archive_file.endswith(".index"):
3875
3876
3877
3878
3879
                # Load from a TensorFlow 1.X checkpoint - provided by original authors
                model = cls.load_tf_weights(model, config, resolved_archive_file[:-6])  # Remove the '.index'
            else:
                # Load from our TensorFlow 2.0 checkpoints
                try:
3880
                    from .modeling_tf_pytorch_utils import load_tf2_checkpoint_in_pytorch_model
3881

Yih-Dar's avatar
Yih-Dar committed
3882
3883
3884
                    model, loading_info = load_tf2_checkpoint_in_pytorch_model(
                        model, resolved_archive_file, allow_missing_keys=True, output_loading_info=True
                    )
3885
                except ImportError:
3886
                    logger.error(
Sylvain Gugger's avatar
Sylvain Gugger committed
3887
3888
3889
                        "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed."
                        " Please see https://pytorch.org/ and https://www.tensorflow.org/install/ for installation"
                        " instructions."
3890
                    )
3891
                    raise
3892
3893
3894
3895
3896
3897
3898
        elif from_flax:
            try:
                from .modeling_flax_pytorch_utils import load_flax_checkpoint_in_pytorch_model

                model = load_flax_checkpoint_in_pytorch_model(model, resolved_archive_file)
            except ImportError:
                logger.error(
Sylvain Gugger's avatar
Sylvain Gugger committed
3899
3900
3901
                    "Loading a Flax model in PyTorch, requires both PyTorch and Flax to be installed. Please see"
                    " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for"
                    " installation instructions."
3902
3903
                )
                raise
3904
        elif from_pt:
3905
3906
3907
            # restore default dtype
            if dtype_orig is not None:
                torch.set_default_dtype(dtype_orig)
3908

Sylvain Gugger's avatar
Sylvain Gugger committed
3909
3910
3911
3912
3913
3914
3915
3916
            (
                model,
                missing_keys,
                unexpected_keys,
                mismatched_keys,
                offload_index,
                error_msgs,
            ) = cls._load_pretrained_model(
3917
3918
3919
3920
3921
3922
3923
3924
3925
                model,
                state_dict,
                loaded_state_dict_keys,  # XXX: rename?
                resolved_archive_file,
                pretrained_model_name_or_path,
                ignore_mismatched_sizes=ignore_mismatched_sizes,
                sharded_metadata=sharded_metadata,
                _fast_init=_fast_init,
                low_cpu_mem_usage=low_cpu_mem_usage,
3926
3927
3928
3929
                device_map=device_map,
                offload_folder=offload_folder,
                offload_state_dict=offload_state_dict,
                dtype=torch_dtype,
3930
                hf_quantizer=hf_quantizer,
3931
                keep_in_fp32_modules=keep_in_fp32_modules,
3932
                gguf_path=gguf_path,
3933
            )
3934

3935
3936
        # make sure token embedding weights are still tied if needed
        model.tie_weights()
3937

3938
        # Set model in evaluation mode to deactivate DropOut modules by default
3939
3940
        model.eval()

3941
        # If it is a model with generation capabilities, attempt to load the generation config
3942
        if model.can_generate() and pretrained_model_name_or_path is not None:
3943
3944
3945
3946
3947
3948
3949
3950
            try:
                model.generation_config = GenerationConfig.from_pretrained(
                    pretrained_model_name_or_path,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
3951
                    token=token,
3952
3953
3954
3955
3956
3957
                    revision=revision,
                    subfolder=subfolder,
                    _from_auto=from_auto_class,
                    _from_pipeline=from_pipeline,
                    **kwargs,
                )
3958
            except OSError:
3959
3960
3961
3962
3963
                logger.info(
                    "Generation config file not found, using a generation config created from the model config."
                )
                pass

3964
3965
        # Dispatch model with hooks on all devices if necessary
        if device_map is not None:
3966
3967
3968
3969
            device_map_kwargs = {
                "device_map": device_map,
                "offload_dir": offload_folder,
                "offload_index": offload_index,
3970
                "offload_buffers": offload_buffers,
3971
            }
3972
            if "skip_keys" in inspect.signature(dispatch_model).parameters:
3973
                device_map_kwargs["skip_keys"] = model._skip_keys_device_placement
3974
3975
3976
3977
3978
3979
3980
            # For HQQ method we force-set the hooks for single GPU envs
            if (
                "force_hooks" in inspect.signature(dispatch_model).parameters
                and hf_quantizer is not None
                and hf_quantizer.quantization_config.quant_method == QuantizationMethod.HQQ
            ):
                device_map_kwargs["force_hooks"] = True
Marc Sun's avatar
Marc Sun committed
3981
3982
3983
3984
3985
3986
3987
3988
            if (
                hf_quantizer is not None
                and hf_quantizer.quantization_config.quant_method == QuantizationMethod.FBGEMM_FP8
                and isinstance(device_map, dict)
                and ("cpu" in device_map.values() or "disk" in device_map.values())
            ):
                device_map_kwargs["offload_buffers"] = True

3989
3990
            if not is_fsdp_enabled() and not is_deepspeed_zero3_enabled():
                dispatch_model(model, **device_map_kwargs)
3991

3992
3993
3994
        if hf_quantizer is not None:
            hf_quantizer.postprocess_model(model)
            model.hf_quantizer = hf_quantizer
Marc Sun's avatar
Marc Sun committed
3995

3996
        if _adapter_model_path is not None:
3997
            model.load_adapter(
3998
                _adapter_model_path,
3999
4000
                adapter_name=adapter_name,
                token=token,
4001
                adapter_kwargs=adapter_kwargs,
4002
4003
            )

thomwolf's avatar
thomwolf committed
4004
        if output_loading_info:
Yih-Dar's avatar
Yih-Dar committed
4005
4006
4007
4008
4009
4010
4011
            if loading_info is None:
                loading_info = {
                    "missing_keys": missing_keys,
                    "unexpected_keys": unexpected_keys,
                    "mismatched_keys": mismatched_keys,
                    "error_msgs": error_msgs,
                }
thomwolf's avatar
thomwolf committed
4012
4013
            return model, loading_info

4014
4015
        return model

4016
    @classmethod
Sylvain Gugger's avatar
Sylvain Gugger committed
4017
4018
4019
4020
    def _load_pretrained_model(
        cls,
        model,
        state_dict,
4021
        loaded_keys,
Sylvain Gugger's avatar
Sylvain Gugger committed
4022
4023
4024
4025
4026
        resolved_archive_file,
        pretrained_model_name_or_path,
        ignore_mismatched_sizes=False,
        sharded_metadata=None,
        _fast_init=True,
4027
        low_cpu_mem_usage=False,
4028
4029
        device_map=None,
        offload_folder=None,
4030
        offload_state_dict=None,
4031
        dtype=None,
4032
        hf_quantizer=None,
4033
        keep_in_fp32_modules=None,
4034
        gguf_path=None,
4035
    ):
Sylvain Gugger's avatar
Sylvain Gugger committed
4036
        is_safetensors = False
4037
        is_quantized = hf_quantizer is not None
4038
4039
        state_dict_folder = None
        state_dict_index = None
4040

Sylvain Gugger's avatar
Sylvain Gugger committed
4041
        if device_map is not None and "disk" in device_map.values():
Sylvain Gugger's avatar
Sylvain Gugger committed
4042
4043
4044
4045
4046
            archive_file = (
                resolved_archive_file[0] if isinstance(resolved_archive_file, (list, tuple)) else resolved_archive_file
            )
            is_safetensors = archive_file.endswith(".safetensors")
            if offload_folder is None and not is_safetensors:
Sylvain Gugger's avatar
Sylvain Gugger committed
4047
4048
                raise ValueError(
                    "The current `device_map` had weights offloaded to the disk. Please provide an `offload_folder`"
Sylvain Gugger's avatar
Sylvain Gugger committed
4049
4050
                    " for them. Alternatively, make sure you have `safetensors` installed if the model you are using"
                    " offers the weights in this format."
Sylvain Gugger's avatar
Sylvain Gugger committed
4051
                )
Sylvain Gugger's avatar
Sylvain Gugger committed
4052
4053
            if offload_folder is not None:
                os.makedirs(offload_folder, exist_ok=True)
4054
4055
4056
            if offload_state_dict is None:
                offload_state_dict = True

4057
        is_sharded_safetensors = is_safetensors and sharded_metadata is not None
Patrick von Platen's avatar
Patrick von Platen committed
4058
4059
4060
4061

        # tie the model weights before retrieving the state_dict
        model.tie_weights()

4062
        # Retrieve missing & unexpected_keys
4063
4064
        model_state_dict = model.state_dict()
        expected_keys = list(model_state_dict.keys())
4065
4066
        prefix = model.base_model_prefix

Sylvain Gugger's avatar
Sylvain Gugger committed
4067
4068
4069
4070
4071
4072
4073
        def _fix_key(key):
            if "beta" in key:
                return key.replace("beta", "bias")
            if "gamma" in key:
                return key.replace("gamma", "weight")
            return key

4074
        original_loaded_keys = loaded_keys
Sylvain Gugger's avatar
Sylvain Gugger committed
4075
4076
        loaded_keys = [_fix_key(key) for key in loaded_keys]

4077
4078
4079
4080
4081
4082
        if len(prefix) > 0:
            has_prefix_module = any(s.startswith(prefix) for s in loaded_keys)
            expects_prefix_module = any(s.startswith(prefix) for s in expected_keys)
        else:
            has_prefix_module = False
            expects_prefix_module = False
Patrick von Platen's avatar
Patrick von Platen committed
4083
4084
4085

        # key re-naming operations are never done on the keys
        # that are loaded, but always on the keys of the newly initialized model
4086
4087
        remove_prefix_from_model = not has_prefix_module and expects_prefix_module
        add_prefix_to_model = has_prefix_module and not expects_prefix_module
4088

4089
        if remove_prefix_from_model:
4090
4091
4092
            _prefix = f"{prefix}."
            expected_keys_not_prefixed = [s for s in expected_keys if not s.startswith(_prefix)]
            expected_keys = [s[len(_prefix) :] if s.startswith(_prefix) else s for s in expected_keys]
4093
        elif add_prefix_to_model:
4094
4095
            expected_keys = [".".join([prefix, s]) for s in expected_keys]

4096
        missing_keys = sorted(set(expected_keys) - set(loaded_keys))
Sylvain Gugger's avatar
Sylvain Gugger committed
4097
        unexpected_keys = set(loaded_keys) - set(expected_keys)
4098

Sylvain Gugger's avatar
Sylvain Gugger committed
4099
4100
4101
4102
4103
4104
4105
        # Remove nonpersistent buffers from unexpected keys: they are not in the state dict but will be in the model
        # buffers
        model_buffers = {n for n, _ in model.named_buffers()}
        if remove_prefix_from_model:
            model_buffers = {key[len(_prefix) :] if key.startswith(_prefix) else key for key in model_buffers}
        elif add_prefix_to_model:
            model_buffers = {".".join([prefix, key]) for key in model_buffers}
4106
        unexpected_keys = sorted(unexpected_keys - model_buffers)
4107

4108
        model.tie_weights()
4109
        if device_map is None and not is_fsdp_enabled() and not is_deepspeed_zero3_enabled():
4110
4111
4112
4113
            ptrs = collections.defaultdict(list)
            for name, tensor in model.state_dict().items():
                id_tensor = id_tensor_storage(tensor)
                ptrs[id_tensor].append(name)
Sylvain Gugger's avatar
Sylvain Gugger committed
4114

4115
4116
4117
4118
4119
            # These are all the pointers of shared tensors.
            tied_params = [names for _, names in ptrs.items() if len(names) > 1]
        else:
            # id function doesn't work for meta tensor so we need this function
            tied_params = find_tied_parameters(model)
Sylvain Gugger's avatar
Sylvain Gugger committed
4120
4121

        for group in tied_params:
Sylvain Gugger's avatar
Sylvain Gugger committed
4122
4123
4124
4125
            if remove_prefix_from_model:
                group = [key[len(_prefix) :] if key.startswith(_prefix) else key for key in group]
            elif add_prefix_to_model:
                group = [".".join([prefix, key]) for key in group]
Sylvain Gugger's avatar
Sylvain Gugger committed
4126
4127
4128
            missing_in_group = [k for k in missing_keys if k in group]
            if len(missing_in_group) > 0 and len(missing_in_group) < len(group):
                missing_keys = [k for k in missing_keys if k not in missing_in_group]
4129

4130
4131
4132
4133
4134
4135
4136
4137
4138
        # Some models may have keys that are not in the state by design, removing them before needlessly warning
        # the user.
        if cls._keys_to_ignore_on_load_missing is not None:
            for pat in cls._keys_to_ignore_on_load_missing:
                missing_keys = [k for k in missing_keys if re.search(pat, k) is None]

        if cls._keys_to_ignore_on_load_unexpected is not None:
            for pat in cls._keys_to_ignore_on_load_unexpected:
                unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]
4139
4140
4141
        if hf_quantizer is not None:
            missing_keys = hf_quantizer.update_missing_keys(model, missing_keys, prefix)

4142
4143
4144
4145
        # retrieve weights on meta device and put them back on CPU.
        # This is not ideal in terms of memory, but if we don't do that not, we can't initialize them in the next step
        if low_cpu_mem_usage:
            for key in missing_keys:
Susnato Dhar's avatar
Susnato Dhar committed
4146
4147
                if key in list(model_state_dict.keys()):
                    key = key
4148
4149
                elif f"{prefix}.{key}" in list(model_state_dict.keys()):
                    key = f"{prefix}.{key}"
Susnato Dhar's avatar
Susnato Dhar committed
4150
                elif key.startswith(prefix) and ".".join(key.split(".")[1:]) in list(model_state_dict.keys()):
4151
4152
                    key = ".".join(key.split(".")[1:])
                param = model_state_dict[key]
4153
4154
4155
4156
4157
4158

                # upcast in fp32 if any
                target_dtype = dtype
                if (
                    keep_in_fp32_modules is not None
                    and dtype == torch.float16
4159
4160
4161
                    and any(
                        module_to_keep_in_fp32 in key.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules
                    )
4162
4163
4164
                ):
                    target_dtype = torch.float32

4165
                if param.device == torch.device("meta"):
4166
                    value = torch.empty(*param.size(), dtype=target_dtype)
4167
                    if (
4168
                        not is_quantized
4169
4170
4171
4172
                        or getattr(hf_quantizer, "requires_parameters_quantization", False)
                        or not hf_quantizer.check_quantized_param(
                            model, param_value=value, param_name=key, state_dict={}
                        )
4173
4174
                    ):
                        set_module_tensor_to_device(model, key, "cpu", value)
4175
                    else:
4176
                        hf_quantizer.create_quantized_param(model, value, key, "cpu", state_dict, unexpected_keys)
4177

4178
        # retrieve uninitialized modules and initialize before maybe overriding that with the pretrained weights.
4179
        if _fast_init:
4180
4181
4182
4183
4184
4185
4186
            if not ignore_mismatched_sizes:
                if remove_prefix_from_model:
                    _loaded_keys = [f"{prefix}.{k}" for k in loaded_keys]
                elif add_prefix_to_model:
                    _loaded_keys = [k[len(prefix) + 1 :] for k in loaded_keys]
                else:
                    _loaded_keys = loaded_keys
4187
                not_initialized_submodules = set_initialized_submodules(model, _loaded_keys)
4188
                # If we're about to tie the output embeds to the input embeds we don't need to init them
4189
4190
4191
                if hasattr(model.config, "tie_word_embeddings") and model.config.tie_word_embeddings:
                    output_embeddings = model.get_output_embeddings()
                    if output_embeddings is not None:
4192
4193
4194
                        # Still need to initialize if there is a bias term since biases are not tied.
                        if not hasattr(output_embeddings, "bias") or output_embeddings.bias is None:
                            output_embeddings._is_hf_initialized = True
4195
4196
            else:
                not_initialized_submodules = dict(model.named_modules())
4197
            # This will only initialize submodules that are not marked as initialized by the line above.
4198
            if is_deepspeed_zero3_enabled() and not is_quantized:
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
                import deepspeed

                not_initialized_parameters = list(
                    set(
                        itertools.chain.from_iterable(
                            submodule.parameters(recurse=False) for submodule in not_initialized_submodules.values()
                        )
                    )
                )
                with deepspeed.zero.GatheredParameters(not_initialized_parameters, modifier_rank=0):
                    model.apply(model._initialize_weights)
            else:
                model.apply(model._initialize_weights)
4212

4213
4214
4215
        # Set some modules to fp32 if any
        if keep_in_fp32_modules is not None:
            for name, param in model.named_parameters():
4216
                if any(module_to_keep_in_fp32 in name.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules):
4217
4218
                    # param = param.to(torch.float32) does not work here as only in the local scope.
                    param.data = param.data.to(torch.float32)
4219

4220
4221
4222
        # Make sure we are able to load base models as well as derived models (with heads)
        start_prefix = ""
        model_to_load = model
4223
        if len(cls.base_model_prefix) > 0 and not hasattr(model, cls.base_model_prefix) and has_prefix_module:
4224
            start_prefix = cls.base_model_prefix + "."
4225
        if len(cls.base_model_prefix) > 0 and hasattr(model, cls.base_model_prefix) and not has_prefix_module:
4226
            model_to_load = getattr(model, cls.base_model_prefix)
Sylvain Gugger's avatar
Sylvain Gugger committed
4227
4228
            base_model_expected_keys = list(model_to_load.state_dict().keys())
            if any(key in expected_keys_not_prefixed and key not in base_model_expected_keys for key in loaded_keys):
4229
                raise ValueError(
4230
                    "The state dictionary of the model you are trying to load is corrupted. Are you sure it was "
4231
4232
                    "properly saved?"
                )
4233
4234
            if device_map is not None:
                device_map = {k.replace(f"{cls.base_model_prefix}.", ""): v for k, v in device_map.items()}
4235

4236
4237
4238
4239
4240
4241
4242
4243
        def _find_mismatched_keys(
            state_dict,
            model_state_dict,
            loaded_keys,
            add_prefix_to_model,
            remove_prefix_from_model,
            ignore_mismatched_sizes,
        ):
Sylvain Gugger's avatar
Sylvain Gugger committed
4244
4245
4246
            mismatched_keys = []
            if ignore_mismatched_sizes:
                for checkpoint_key in loaded_keys:
4247
4248
4249
                    # If the checkpoint is sharded, we may not have the key here.
                    if checkpoint_key not in state_dict:
                        continue
Sylvain Gugger's avatar
Sylvain Gugger committed
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
                    model_key = checkpoint_key
                    if remove_prefix_from_model:
                        # The model key starts with `prefix` but `checkpoint_key` doesn't so we add it.
                        model_key = f"{prefix}.{checkpoint_key}"
                    elif add_prefix_to_model:
                        # The model key doesn't start with `prefix` but `checkpoint_key` does so we remove it.
                        model_key = ".".join(checkpoint_key.split(".")[1:])

                    if (
                        model_key in model_state_dict
                        and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
                    ):
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
                        if (
                            state_dict[checkpoint_key].shape[-1] == 1
                            and state_dict[checkpoint_key].numel() * 2 == model_state_dict[model_key].numel()
                        ):
                            # This skips size mismatches for 4-bit weights. Two 4-bit values share an 8-bit container, causing size differences.
                            # Without matching with module type or paramter type it seems like a practical way to detect valid 4bit weights.
                            pass
                        else:
                            mismatched_keys.append(
                                (checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
                            )
                            del state_dict[checkpoint_key]
4274
4275
            return mismatched_keys

4276
4277
4278
4279
        if resolved_archive_file is not None:
            folder = os.path.sep.join(resolved_archive_file[0].split(os.path.sep)[:-1])
        else:
            folder = None
Sylvain Gugger's avatar
Sylvain Gugger committed
4280
        if device_map is not None and is_safetensors:
4281
            param_device_map = expand_device_map(device_map, original_loaded_keys, start_prefix)
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
            str_dtype = str(dtype).replace("torch.", "") if dtype is not None else "float32"
            if sharded_metadata is None:
                archive_file = (
                    resolved_archive_file[0]
                    if isinstance(resolved_archive_file, (list, tuple))
                    else resolved_archive_file
                )
                weight_map = {p: archive_file for p in original_loaded_keys}
            else:
                weight_map = {p: os.path.join(folder, f) for p, f in sharded_metadata["weight_map"].items()}
Sylvain Gugger's avatar
Sylvain Gugger committed
4292
            offload_index = {
4293
                p[len(start_prefix) :]: {"safetensors_file": f, "weight_name": p, "dtype": str_dtype}
4294
                for p, f in weight_map.items()
4295
                if p.startswith(start_prefix) and param_device_map[p[len(start_prefix) :]] == "disk"
Sylvain Gugger's avatar
Sylvain Gugger committed
4296
            }
4297
4298
        else:
            offload_index = None
Sylvain Gugger's avatar
Sylvain Gugger committed
4299

4300
4301
4302
4303
4304
        if state_dict is not None:
            # Whole checkpoint
            mismatched_keys = _find_mismatched_keys(
                state_dict,
                model_state_dict,
4305
                original_loaded_keys,
4306
4307
4308
4309
                add_prefix_to_model,
                remove_prefix_from_model,
                ignore_mismatched_sizes,
            )
4310

4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
            # For GGUF models `state_dict` is never set to None as the state dict is always small
            if gguf_path:
                error_msgs, offload_index, state_dict_index = _load_state_dict_into_meta_model(
                    model_to_load,
                    state_dict,
                    loaded_keys,
                    start_prefix,
                    expected_keys,
                    device_map=device_map,
                    offload_folder=offload_folder,
                    offload_index=offload_index,
                    state_dict_folder=state_dict_folder,
                    state_dict_index=state_dict_index,
                    dtype=dtype,
                    hf_quantizer=hf_quantizer,
                    is_safetensors=is_safetensors,
                    keep_in_fp32_modules=keep_in_fp32_modules,
                    unexpected_keys=unexpected_keys,
                )
            else:
                # Sharded checkpoint or whole but low_cpu_mem_usage==True
4332
4333
4334
4335
4336
4337
                assign_to_params_buffers = check_support_param_buffer_assignment(
                    model_to_load, state_dict, start_prefix
                )
                error_msgs = _load_state_dict_into_model(
                    model_to_load, state_dict, start_prefix, assign_to_params_buffers
                )
4338
4339

        else:
Sylvain Gugger's avatar
Sylvain Gugger committed
4340
4341
4342
4343
4344
            # This should always be a list but, just to be sure.
            if not isinstance(resolved_archive_file, list):
                resolved_archive_file = [resolved_archive_file]

            error_msgs = []
4345
            mismatched_keys = []
Sylvain Gugger's avatar
Sylvain Gugger committed
4346
4347
            if not is_safetensors:
                offload_index = {} if device_map is not None and "disk" in device_map.values() else None
4348
4349
4350
4351
4352
4353
4354
            if offload_state_dict:
                state_dict_folder = tempfile.mkdtemp()
                state_dict_index = {}
            else:
                state_dict_folder = None
                state_dict_index = None

4355
            if is_sharded_safetensors:
4356
4357
4358
                disk_only_shard_files = get_disk_only_shard_files(
                    device_map, sharded_metadata=sharded_metadata, start_prefix=start_prefix
                )
Sylvain Gugger's avatar
Sylvain Gugger committed
4359
4360
4361
4362
                disk_only_shard_files = [os.path.join(folder, f) for f in disk_only_shard_files]
            else:
                disk_only_shard_files = []

4363
4364
            if len(resolved_archive_file) > 1:
                resolved_archive_file = logging.tqdm(resolved_archive_file, desc="Loading checkpoint shards")
4365
            assign_to_params_buffers = None
Sylvain Gugger's avatar
Sylvain Gugger committed
4366
            for shard_file in resolved_archive_file:
Sylvain Gugger's avatar
Sylvain Gugger committed
4367
4368
4369
                # Skip the load for shards that only contain disk-offloaded weights when using safetensors for the offload.
                if shard_file in disk_only_shard_files:
                    continue
4370
                state_dict = load_state_dict(shard_file, is_quantized=is_quantized)
4371

Sylvain Gugger's avatar
Sylvain Gugger committed
4372
4373
                # Mistmatched keys contains tuples key/shape1/shape2 of weights in the checkpoint that have a shape not
                # matching the weights in the model.
4374
4375
4376
                mismatched_keys += _find_mismatched_keys(
                    state_dict,
                    model_state_dict,
4377
                    original_loaded_keys,
4378
4379
4380
4381
                    add_prefix_to_model,
                    remove_prefix_from_model,
                    ignore_mismatched_sizes,
                )
4382
                if low_cpu_mem_usage:
4383
                    if is_fsdp_enabled() and not is_local_dist_rank_0() and not is_quantized:
4384
4385
                        for key, param in model_to_load.state_dict().items():
                            if param.device == torch.device("meta"):
4386
4387
4388
                                set_module_tensor_to_device(
                                    model_to_load, key, "cpu", torch.empty(*param.size(), dtype=dtype)
                                )
4389
                    else:
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
                        new_error_msgs, offload_index, state_dict_index = _load_state_dict_into_meta_model(
                            model_to_load,
                            state_dict,
                            loaded_keys,
                            start_prefix,
                            expected_keys,
                            device_map=device_map,
                            offload_folder=offload_folder,
                            offload_index=offload_index,
                            state_dict_folder=state_dict_folder,
                            state_dict_index=state_dict_index,
                            dtype=dtype,
4402
                            hf_quantizer=hf_quantizer,
4403
4404
                            is_safetensors=is_safetensors,
                            keep_in_fp32_modules=keep_in_fp32_modules,
4405
                            unexpected_keys=unexpected_keys,
4406
4407
                        )
                        error_msgs += new_error_msgs
4408
                else:
4409
4410
4411
4412
4413
4414
4415
4416
                    # Sharded checkpoint or whole but low_cpu_mem_usage==True
                    if assign_to_params_buffers is None:
                        assign_to_params_buffers = check_support_param_buffer_assignment(
                            model_to_load, state_dict, start_prefix
                        )
                    error_msgs += _load_state_dict_into_model(
                        model_to_load, state_dict, start_prefix, assign_to_params_buffers
                    )
4417

4418
4419
4420
4421
                # force memory release
                del state_dict
                gc.collect()

4422
            if offload_index is not None and len(offload_index) > 0:
Sylvain Gugger's avatar
Sylvain Gugger committed
4423
4424
4425
                if model != model_to_load:
                    # We need to add the prefix of the base model
                    prefix = cls.base_model_prefix
Sylvain Gugger's avatar
Sylvain Gugger committed
4426
4427
4428
4429
4430
4431
                    if not is_safetensors:
                        for weight_name in offload_index:
                            shutil.move(
                                os.path.join(offload_folder, f"{weight_name}.dat"),
                                os.path.join(offload_folder, f"{prefix}.{weight_name}.dat"),
                            )
Sylvain Gugger's avatar
Sylvain Gugger committed
4432
                    offload_index = {f"{prefix}.{key}": value for key, value in offload_index.items()}
Sylvain Gugger's avatar
Sylvain Gugger committed
4433
4434
4435
                if not is_safetensors:
                    save_offload_index(offload_index, offload_folder)
                    offload_index = None
4436
4437
4438

            if offload_state_dict:
                # Load back temporarily offloaded state dict
4439
                load_offloaded_weights(model_to_load, state_dict_index, state_dict_folder)
4440
4441
                shutil.rmtree(state_dict_folder)

4442
4443
        if len(error_msgs) > 0:
            error_msg = "\n\t".join(error_msgs)
4444
4445
4446
4447
            if "size mismatch" in error_msg:
                error_msg += (
                    "\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
                )
4448
4449
            raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")

4450
        if len(unexpected_keys) > 0:
Sylvain Gugger's avatar
Sylvain Gugger committed
4451
            archs = [] if model.config.architectures is None else model.config.architectures
4452
            warner = logger.warning if model.__class__.__name__ in archs else logger.info
Sylvain Gugger's avatar
Sylvain Gugger committed
4453
            warner(
Sylvain Gugger's avatar
Sylvain Gugger committed
4454
4455
4456
4457
4458
4459
4460
                f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
                f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
                f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task or"
                " with another architecture (e.g. initializing a BertForSequenceClassification model from a"
                " BertForPreTraining model).\n- This IS NOT expected if you are initializing"
                f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly identical"
                " (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
4461
4462
4463
4464
4465
            )
        else:
            logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
        if len(missing_keys) > 0:
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
4466
4467
4468
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
                " TRAIN this model on a down-stream task to be able to use it for predictions and inference."
4469
            )
4470
        elif len(mismatched_keys) == 0:
4471
            logger.info(
Sylvain Gugger's avatar
Sylvain Gugger committed
4472
4473
4474
4475
                f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the checkpoint"
                f" was trained on, you can already use {model.__class__.__name__} for predictions without further"
                " training."
4476
            )
4477
4478
4479
4480
4481
4482
4483
4484
        if len(mismatched_keys) > 0:
            mismatched_warning = "\n".join(
                [
                    f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
                    for key, shape1, shape2 in mismatched_keys
                ]
            )
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
4485
4486
4487
4488
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
                f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be able"
                " to use it for predictions and inference."
4489
            )
4490

Sylvain Gugger's avatar
Sylvain Gugger committed
4491
        return model, missing_keys, unexpected_keys, mismatched_keys, offload_index, error_msgs
4492
4493

    def retrieve_modules_from_names(self, names, add_prefix=False, remove_prefix=False):
4494
        module_keys = {".".join(key.split(".")[:-1]) for key in names}
4495

Patrick von Platen's avatar
Patrick von Platen committed
4496
4497
        # torch.nn.ParameterList is a special case where two parameter keywords
        # are appended to the module name, *e.g.* bert.special_embeddings.0
4498
        module_keys = module_keys.union(
4499
            {".".join(key.split(".")[:-2]) for key in names if len(key) > 0 and key[-1].isdigit()}
4500
        )
Patrick von Platen's avatar
Patrick von Platen committed
4501

4502
4503
4504
4505
        retrieved_modules = []
        # retrieve all modules that has at least one missing weight name
        for name, module in self.named_modules():
            if remove_prefix:
4506
4507
                _prefix = f"{self.base_model_prefix}."
                name = name[len(_prefix) :] if name.startswith(_prefix) else name
4508
            elif add_prefix:
Patrick von Platen's avatar
Patrick von Platen committed
4509
                name = ".".join([self.base_model_prefix, name]) if len(name) > 0 else self.base_model_prefix
4510
4511
4512
4513
4514
4515

            if name in module_keys:
                retrieved_modules.append(module)

        return retrieved_modules

4516
    @staticmethod
4517
4518
4519
    def _load_pretrained_model_low_mem(
        model, loaded_state_dict_keys, resolved_archive_file, start_prefix="", hf_quantizer=None
    ):
4520
4521
4522
        """
        This is an experimental function that loads the model using ~1.x model size CPU memory

4523
        Before you call it do:
4524

4525
        1. save which state_dict keys are available
4526
4527
4528
4529
4530
4531
4532
4533
        2. drop state_dict before model is created, since the latter takes 1x model size memory

        Here then we continue:

        3. switch to the meta device all params/buffers that are going to be replaced from the loaded state_dict
        4. load state_dict 2nd time
        5. replace the params/buffers from the state_dict

4534
4535
        Currently, it doesn't handle missing_keys, unexpected_keys, mismatched_keys. It can't handle deepspeed. To
        handle bitsandbytes, needs non-empty hf_quantizer argument.
4536
4537
        """

4538
4539
        _move_model_to_meta(model, loaded_state_dict_keys, start_prefix)
        state_dict = load_state_dict(resolved_archive_file)
4540
4541
4542
4543
4544
4545
4546
4547
4548
        expected_keys = loaded_state_dict_keys  # plug for missing expected_keys. TODO: replace with proper keys
        error_msgs = _load_state_dict_into_meta_model(
            model,
            state_dict,
            loaded_state_dict_keys,
            start_prefix,
            expected_keys=expected_keys,
            hf_quantizer=hf_quantizer,
        )
4549
        return error_msgs
4550

4551
4552
4553
4554
4555
4556
    @classmethod
    def register_for_auto_class(cls, auto_class="AutoModel"):
        """
        Register this class with a given auto class. This should only be used for custom models as the ones in the
        library are already mapped with an auto class.

4557
4558
4559
4560
4561
4562
        <Tip warning={true}>

        This API is experimental and may have some slight breaking changes in the next releases.

        </Tip>

4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
        Args:
            auto_class (`str` or `type`, *optional*, defaults to `"AutoModel"`):
                The auto class to register this new model with.
        """
        if not isinstance(auto_class, str):
            auto_class = auto_class.__name__

        import transformers.models.auto as auto_module

        if not hasattr(auto_module, auto_class):
            raise ValueError(f"{auto_class} is not a valid auto class.")

        cls._auto_class = auto_class

4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
    def to_bettertransformer(self) -> "PreTrainedModel":
        """
        Converts the model to use [PyTorch's native attention
        implementation](https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html), integrated to
        Transformers through [Optimum library](https://huggingface.co/docs/optimum/bettertransformer/overview). Only a
        subset of all Transformers models are supported.

        PyTorch's attention fastpath allows to speed up inference through kernel fusions and the use of [nested
        tensors](https://pytorch.org/docs/stable/nested.html). Detailed benchmarks can be found in [this blog
        post](https://medium.com/pytorch/bettertransformer-out-of-the-box-performance-for-huggingface-transformers-3fbe27d50ab2).

        Returns:
            [`PreTrainedModel`]: The model converted to BetterTransformer.
        """
        if not is_optimum_available():
            raise ImportError("The package `optimum` is required to use Better Transformer.")

        from optimum.version import __version__ as optimum_version

        if version.parse(optimum_version) < version.parse("1.7.0"):
            raise ImportError(
                f"Please install optimum>=1.7.0 to use Better Transformer. The version {optimum_version} was found."
            )

        from optimum.bettertransformer import BetterTransformer

        return BetterTransformer.transform(self)

    def reverse_bettertransformer(self):
        """
        Reverts the transformation from [`~PreTrainedModel.to_bettertransformer`] so that the original modeling is
        used, for example in order to save the model.

        Returns:
            [`PreTrainedModel`]: The model converted back to the original modeling.
        """
        if not is_optimum_available():
            raise ImportError("The package `optimum` is required to use Better Transformer.")

        from optimum.version import __version__ as optimum_version

        if version.parse(optimum_version) < version.parse("1.7.0"):
            raise ImportError(
                f"Please install optimum>=1.7.0 to use Better Transformer. The version {optimum_version} was found."
            )

        from optimum.bettertransformer import BetterTransformer

        return BetterTransformer.reverse(self)

4627
4628
4629
4630
    def warn_if_padding_and_no_attention_mask(self, input_ids, attention_mask):
        """
        Shows a one-time warning if the input_ids appear to contain padding and no attention mask was given.
        """
4631
4632

        # Skip the check during tracing.
4633
        if is_torch_fx_proxy(input_ids) or torch.jit.is_tracing() or is_torchdynamo_compiling():
4634
4635
            return

4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
        if (attention_mask is not None) or (self.config.pad_token_id is None):
            return

        # Check only the first and last input IDs to reduce overhead.
        if self.config.pad_token_id in input_ids[:, [-1, 0]]:
            warn_string = (
                "We strongly recommend passing in an `attention_mask` since your input_ids may be padded. See "
                "https://huggingface.co/docs/transformers/troubleshooting"
                "#incorrect-output-when-padding-tokens-arent-masked."
            )

            # If the pad token is equal to either BOS, EOS, or SEP, we do not know whether the user should use an
            # attention_mask or not. In this case, we should still show a warning because this is a rare case.
            if (
                (self.config.bos_token_id is not None and self.config.bos_token_id == self.config.pad_token_id)
                or (self.config.eos_token_id is not None and self.config.eos_token_id == self.config.pad_token_id)
                or (self.config.sep_token_id is not None and self.config.sep_token_id == self.config.pad_token_id)
            ):
                warn_string += (
                    f"\nYou may ignore this warning if your `pad_token_id` ({self.config.pad_token_id}) is identical "
                    f"to the `bos_token_id` ({self.config.bos_token_id}), `eos_token_id` ({self.config.eos_token_id}), "
                    f"or the `sep_token_id` ({self.config.sep_token_id}), and your input is not padded."
                )

            logger.warning_once(warn_string)

4662
4663
    @property
    def _is_quantized_training_enabled(self):
4664
        warnings.warn(
4665
4666
4667
4668
4669
4670
4671
4672
4673
            "`_is_quantized_training_enabled` is going to be deprecated in transformers 4.39.0. Please use `model.hf_quantizer.is_trainable` instead",
            FutureWarning,
        )

        if not hasattr(self, "hf_quantizer"):
            return False

        return self.hf_quantizer.is_trainable

thomwolf's avatar
thomwolf committed
4674

4675
PreTrainedModel.push_to_hub = copy_func(PreTrainedModel.push_to_hub)
4676
4677
4678
4679
if PreTrainedModel.push_to_hub.__doc__ is not None:
    PreTrainedModel.push_to_hub.__doc__ = PreTrainedModel.push_to_hub.__doc__.format(
        object="model", object_class="AutoModel", object_files="model file"
    )
4680
4681


thomwolf's avatar
thomwolf committed
4682
class PoolerStartLogits(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
4683
4684
    """
    Compute SQuAD start logits from sequence hidden states.
4685

Sylvain Gugger's avatar
Sylvain Gugger committed
4686
    Args:
4687
4688
        config ([`PretrainedConfig`]):
            The config used by the model, will be used to grab the `hidden_size` of the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
4689
4690
4691
    """

    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
4692
        super().__init__()
thomwolf's avatar
thomwolf committed
4693
4694
        self.dense = nn.Linear(config.hidden_size, 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
4695
4696
4697
4698
4699
    def forward(
        self, hidden_states: torch.FloatTensor, p_mask: Optional[torch.FloatTensor] = None
    ) -> torch.FloatTensor:
        """
        Args:
4700
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
4701
                The final hidden states of the model.
4702
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4703
4704
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
Sylvain Gugger's avatar
Sylvain Gugger committed
4705
4706

        Returns:
4707
            `torch.FloatTensor`: The start logits for SQuAD.
thomwolf's avatar
thomwolf committed
4708
        """
thomwolf's avatar
thomwolf committed
4709
4710
4711
        x = self.dense(hidden_states).squeeze(-1)

        if p_mask is not None:
Lysandre Debut's avatar
Lysandre Debut committed
4712
            if get_parameter_dtype(self) == torch.float16:
4713
4714
4715
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask
thomwolf's avatar
thomwolf committed
4716
4717
4718
4719
4720
4721

        return x


class PoolerEndLogits(nn.Module):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
4722
    Compute SQuAD end logits from sequence hidden states.
4723

Sylvain Gugger's avatar
Sylvain Gugger committed
4724
    Args:
4725
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
4726
4727
            The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps`
            to use.
Sylvain Gugger's avatar
Sylvain Gugger committed
4728
4729
4730
    """

    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
4731
        super().__init__()
thomwolf's avatar
thomwolf committed
4732
4733
4734
4735
4736
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dense_1 = nn.Linear(config.hidden_size, 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
4737
4738
4739
4740
4741
4742
4743
4744
4745
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        start_states: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        p_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
        """
        Args:
4746
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
4747
                The final hidden states of the model.
4748
            start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4749
                The hidden states of the first tokens for the labeled span.
4750
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4751
                The position of the first token for the labeled span.
4752
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4753
4754
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
Sylvain Gugger's avatar
Sylvain Gugger committed
4755

4756
        <Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
4757

Stas Bekman's avatar
Stas Bekman committed
4758
4759
        One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides
        `start_states`.
4760
4761

        </Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
4762
4763

        Returns:
4764
            `torch.FloatTensor`: The end logits for SQuAD.
thomwolf's avatar
thomwolf committed
4765
        """
4766
4767
4768
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
thomwolf's avatar
thomwolf committed
4769
        if start_positions is not None:
4770
            slen, hsz = hidden_states.shape[-2:]
4771
4772
4773
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions)  # shape (bsz, 1, hsz)
            start_states = start_states.expand(-1, slen, -1)  # shape (bsz, slen, hsz)
thomwolf's avatar
thomwolf committed
4774
4775
4776
4777
4778
4779
4780

        x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1))
        x = self.activation(x)
        x = self.LayerNorm(x)
        x = self.dense_1(x).squeeze(-1)

        if p_mask is not None:
Lysandre Debut's avatar
Lysandre Debut committed
4781
            if get_parameter_dtype(self) == torch.float16:
4782
4783
4784
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask
thomwolf's avatar
thomwolf committed
4785
4786
4787
4788
4789

        return x


class PoolerAnswerClass(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
4790
4791
4792
4793
    """
    Compute SQuAD 2.0 answer class from classification and start tokens hidden states.

    Args:
4794
4795
        config ([`PretrainedConfig`]):
            The config used by the model, will be used to grab the `hidden_size` of the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
4796
    """
4797

thomwolf's avatar
thomwolf committed
4798
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
4799
        super().__init__()
thomwolf's avatar
thomwolf committed
4800
4801
4802
4803
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False)

Sylvain Gugger's avatar
Sylvain Gugger committed
4804
4805
4806
4807
4808
4809
4810
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        start_states: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        cls_index: Optional[torch.LongTensor] = None,
    ) -> torch.FloatTensor:
4811
4812
        """
        Args:
4813
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
4814
                The final hidden states of the model.
4815
            start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4816
                The hidden states of the first tokens for the labeled span.
4817
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4818
                The position of the first token for the labeled span.
4819
4820
4821
4822
            cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
                Position of the CLS token for each sentence in the batch. If `None`, takes the last token.

        <Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
4823

Stas Bekman's avatar
Stas Bekman committed
4824
4825
        One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides
        `start_states`.
Sylvain Gugger's avatar
Sylvain Gugger committed
4826

4827
        </Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
4828
4829

        Returns:
4830
            `torch.FloatTensor`: The SQuAD 2.0 answer class.
thomwolf's avatar
thomwolf committed
4831
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
4832
        # No dependency on end_feature so that we can obtain one single `cls_logits` for each sample.
4833
        hsz = hidden_states.shape[-1]
4834
4835
4836
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
thomwolf's avatar
thomwolf committed
4837
        if start_positions is not None:
4838
4839
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions).squeeze(-2)  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
4840
4841

        if cls_index is not None:
4842
4843
            cls_index = cls_index[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
4844
        else:
4845
            cls_token_state = hidden_states[:, -1, :]  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
4846
4847
4848
4849
4850
4851
4852
4853

        x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1))
        x = self.activation(x)
        x = self.dense_1(x).squeeze(-1)

        return x


4854
4855
4856
@dataclass
class SquadHeadOutput(ModelOutput):
    """
4857
    Base class for outputs of question answering models using a [`~modeling_utils.SQuADHead`].
4858
4859

    Args:
4860
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned if both `start_positions` and `end_positions` are provided):
Sylvain Gugger's avatar
Sylvain Gugger committed
4861
4862
            Classification loss as the sum of start token, end token (and is_impossible if provided) classification
            losses.
4863
        start_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
4864
            Log probabilities for the top config.start_n_top start token possibilities (beam-search).
4865
        start_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
4866
            Indices for the top config.start_n_top start token possibilities (beam-search).
4867
4868
        end_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Log probabilities for the top `config.start_n_top * config.end_n_top` end token possibilities
Sylvain Gugger's avatar
Sylvain Gugger committed
4869
            (beam-search).
4870
4871
4872
4873
        end_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Indices for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search).
        cls_logits (`torch.FloatTensor` of shape `(batch_size,)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Log probabilities for the `is_impossible` label of the answers.
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884

    """

    loss: Optional[torch.FloatTensor] = None
    start_top_log_probs: Optional[torch.FloatTensor] = None
    start_top_index: Optional[torch.LongTensor] = None
    end_top_log_probs: Optional[torch.FloatTensor] = None
    end_top_index: Optional[torch.LongTensor] = None
    cls_logits: Optional[torch.FloatTensor] = None


thomwolf's avatar
thomwolf committed
4885
class SQuADHead(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
4886
4887
    r"""
    A SQuAD head inspired by XLNet.
4888

Sylvain Gugger's avatar
Sylvain Gugger committed
4889
    Args:
4890
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
4891
4892
            The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps`
            to use.
thomwolf's avatar
thomwolf committed
4893
    """
4894

thomwolf's avatar
thomwolf committed
4895
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
4896
        super().__init__()
thomwolf's avatar
thomwolf committed
4897
4898
4899
4900
4901
4902
4903
        self.start_n_top = config.start_n_top
        self.end_n_top = config.end_n_top

        self.start_logits = PoolerStartLogits(config)
        self.end_logits = PoolerEndLogits(config)
        self.answer_class = PoolerAnswerClass(config)

Sylvain Gugger's avatar
Sylvain Gugger committed
4904
    @replace_return_docstrings(output_type=SquadHeadOutput, config_class=PretrainedConfig)
4905
    def forward(
4906
        self,
Sylvain Gugger's avatar
Sylvain Gugger committed
4907
4908
4909
4910
4911
4912
        hidden_states: torch.FloatTensor,
        start_positions: Optional[torch.LongTensor] = None,
        end_positions: Optional[torch.LongTensor] = None,
        cls_index: Optional[torch.LongTensor] = None,
        is_impossible: Optional[torch.LongTensor] = None,
        p_mask: Optional[torch.FloatTensor] = None,
4913
        return_dict: bool = False,
Sylvain Gugger's avatar
Sylvain Gugger committed
4914
4915
    ) -> Union[SquadHeadOutput, Tuple[torch.FloatTensor]]:
        """
Lysandre's avatar
Lysandre committed
4916
        Args:
4917
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Lysandre's avatar
Lysandre committed
4918
                Final hidden states of the model on the sequence tokens.
4919
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
4920
                Positions of the first token for the labeled span.
4921
            end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
4922
                Positions of the last token for the labeled span.
4923
4924
4925
            cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
                Position of the CLS token for each sentence in the batch. If `None`, takes the last token.
            is_impossible (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
4926
                Whether the question has a possible answer in the paragraph or not.
4927
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4928
4929
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
4930
            return_dict (`bool`, *optional*, defaults to `False`):
4931
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Sylvain Gugger's avatar
Sylvain Gugger committed
4932

Lysandre's avatar
Lysandre committed
4933
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
4934
        """
thomwolf's avatar
thomwolf committed
4935
        start_logits = self.start_logits(hidden_states, p_mask=p_mask)
thomwolf's avatar
thomwolf committed
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958

        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, let's remove the dimension added by batch splitting
            for x in (start_positions, end_positions, cls_index, is_impossible):
                if x is not None and x.dim() > 1:
                    x.squeeze_(-1)

            # during training, compute the end logits based on the ground truth of the start position
            end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)

            loss_fct = CrossEntropyLoss()
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

            if cls_index is not None and is_impossible is not None:
                # Predict answerability from the representation of CLS and START
                cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
                loss_fct_cls = nn.BCEWithLogitsLoss()
                cls_loss = loss_fct_cls(cls_logits, is_impossible)

                # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss
                total_loss += cls_loss * 0.5
4959

4960
            return SquadHeadOutput(loss=total_loss) if return_dict else (total_loss,)
thomwolf's avatar
thomwolf committed
4961
4962
4963
4964

        else:
            # during inference, compute the end logits based on beam search
            bsz, slen, hsz = hidden_states.size()
4965
            start_log_probs = nn.functional.softmax(start_logits, dim=-1)  # shape (bsz, slen)
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976

            start_top_log_probs, start_top_index = torch.topk(
                start_log_probs, self.start_n_top, dim=-1
            )  # shape (bsz, start_n_top)
            start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz)  # shape (bsz, start_n_top, hsz)
            start_states = torch.gather(hidden_states, -2, start_top_index_exp)  # shape (bsz, start_n_top, hsz)
            start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1)  # shape (bsz, slen, start_n_top, hsz)

            hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(
                start_states
            )  # shape (bsz, slen, start_n_top, hsz)
thomwolf's avatar
thomwolf committed
4977
4978
            p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
            end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
4979
            end_log_probs = nn.functional.softmax(end_logits, dim=1)  # shape (bsz, slen, start_n_top)
thomwolf's avatar
thomwolf committed
4980

4981
4982
4983
            end_top_log_probs, end_top_index = torch.topk(
                end_log_probs, self.end_n_top, dim=1
            )  # shape (bsz, end_n_top, start_n_top)
thomwolf's avatar
thomwolf committed
4984
4985
4986
4987
4988
4989
            end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
            end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)

            start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs)
            cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index)

4990
            if not return_dict:
4991
4992
4993
4994
4995
4996
4997
4998
4999
                return (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits)
            else:
                return SquadHeadOutput(
                    start_top_log_probs=start_top_log_probs,
                    start_top_index=start_top_index,
                    end_top_log_probs=end_top_log_probs,
                    end_top_index=end_top_index,
                    cls_logits=cls_logits,
                )
thomwolf's avatar
thomwolf committed
5000
5001
5002


class SequenceSummary(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
5003
5004
5005
5006
    r"""
    Compute a single vector summary of a sequence hidden states.

    Args:
5007
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
5008
5009
            The config used by the model. Relevant arguments in the config class of the model are (refer to the actual
            config class of your model for the default values it uses):
Sylvain Gugger's avatar
Sylvain Gugger committed
5010

5011
            - **summary_type** (`str`) -- The method to use to make this summary. Accepted values are:
Sylvain Gugger's avatar
Sylvain Gugger committed
5012

5013
5014
5015
5016
5017
                - `"last"` -- Take the last token hidden state (like XLNet)
                - `"first"` -- Take the first token hidden state (like Bert)
                - `"mean"` -- Take the mean of all tokens hidden states
                - `"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2)
                - `"attn"` -- Not implemented now, use multi-head attention
Sylvain Gugger's avatar
Sylvain Gugger committed
5018

5019
            - **summary_use_proj** (`bool`) -- Add a projection after the vector extraction.
Sylvain Gugger's avatar
Sylvain Gugger committed
5020
5021
5022
5023
5024
5025
            - **summary_proj_to_labels** (`bool`) -- If `True`, the projection outputs to `config.num_labels` classes
              (otherwise to `config.hidden_size`).
            - **summary_activation** (`Optional[str]`) -- Set to `"tanh"` to add a tanh activation to the output,
              another string or `None` will add no activation.
            - **summary_first_dropout** (`float`) -- Optional dropout probability before the projection and activation.
            - **summary_last_dropout** (`float`)-- Optional dropout probability after the projection and activation.
thomwolf's avatar
thomwolf committed
5026
    """
5027

5028
    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
5029
        super().__init__()
thomwolf's avatar
thomwolf committed
5030

5031
        self.summary_type = getattr(config, "summary_type", "last")
5032
        if self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
5033
5034
5035
5036
5037
            # We should use a standard multi-head attention module with absolute positional embedding for that.
            # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
            # We can probably just use the multi-head attention module of PyTorch >=1.1.0
            raise NotImplementedError

thomwolf's avatar
thomwolf committed
5038
        self.summary = Identity()
5039
5040
        if hasattr(config, "summary_use_proj") and config.summary_use_proj:
            if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0:
5041
                num_classes = config.num_labels
thomwolf's avatar
thomwolf committed
5042
5043
5044
5045
            else:
                num_classes = config.hidden_size
            self.summary = nn.Linear(config.hidden_size, num_classes)

5046
        activation_string = getattr(config, "summary_activation", None)
Lysandre's avatar
Lysandre committed
5047
        self.activation: Callable = get_activation(activation_string) if activation_string else Identity()
thomwolf's avatar
thomwolf committed
5048

thomwolf's avatar
thomwolf committed
5049
        self.first_dropout = Identity()
5050
        if hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0:
5051
5052
            self.first_dropout = nn.Dropout(config.summary_first_dropout)

thomwolf's avatar
thomwolf committed
5053
        self.last_dropout = Identity()
5054
        if hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0:
5055
            self.last_dropout = nn.Dropout(config.summary_last_dropout)
thomwolf's avatar
thomwolf committed
5056

Sylvain Gugger's avatar
Sylvain Gugger committed
5057
5058
5059
5060
5061
5062
5063
    def forward(
        self, hidden_states: torch.FloatTensor, cls_index: Optional[torch.LongTensor] = None
    ) -> torch.FloatTensor:
        """
        Compute a single vector summary of a sequence hidden states.

        Args:
5064
            hidden_states (`torch.FloatTensor` of shape `[batch_size, seq_len, hidden_size]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
5065
                The hidden states of the last layer.
5066
            cls_index (`torch.LongTensor` of shape `[batch_size]` or `[batch_size, ...]` where ... are optional leading dimensions of `hidden_states`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
5067
                Used if `summary_type == "cls_index"` and takes the last token of the sequence as classification token.
Sylvain Gugger's avatar
Sylvain Gugger committed
5068
5069

        Returns:
5070
            `torch.FloatTensor`: The summary of the sequence hidden states.
thomwolf's avatar
thomwolf committed
5071
        """
5072
        if self.summary_type == "last":
thomwolf's avatar
thomwolf committed
5073
            output = hidden_states[:, -1]
5074
        elif self.summary_type == "first":
thomwolf's avatar
thomwolf committed
5075
            output = hidden_states[:, 0]
5076
        elif self.summary_type == "mean":
thomwolf's avatar
thomwolf committed
5077
            output = hidden_states.mean(dim=1)
5078
        elif self.summary_type == "cls_index":
thomwolf's avatar
thomwolf committed
5079
            if cls_index is None:
Lysandre's avatar
Lysandre committed
5080
5081
5082
5083
5084
                cls_index = torch.full_like(
                    hidden_states[..., :1, :],
                    hidden_states.shape[-2] - 1,
                    dtype=torch.long,
                )
thomwolf's avatar
thomwolf committed
5085
            else:
thomwolf's avatar
thomwolf committed
5086
                cls_index = cls_index.unsqueeze(-1).unsqueeze(-1)
5087
                cls_index = cls_index.expand((-1,) * (cls_index.dim() - 1) + (hidden_states.size(-1),))
thomwolf's avatar
thomwolf committed
5088
            # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
5089
5090
            output = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, XX, hidden_size)
        elif self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
5091
5092
            raise NotImplementedError

5093
        output = self.first_dropout(output)
thomwolf's avatar
thomwolf committed
5094
5095
        output = self.summary(output)
        output = self.activation(output)
5096
        output = self.last_dropout(output)
thomwolf's avatar
thomwolf committed
5097
5098
5099
5100

        return output


5101
def unwrap_model(model: nn.Module, recursive: bool = False) -> nn.Module:
5102
5103
5104
5105
    """
    Recursively unwraps a model from potential containers (as used in distributed training).

    Args:
5106
        model (`torch.nn.Module`): The model to unwrap.
5107
5108
5109
        recursive (`bool`, *optional*, defaults to `False`):
            Whether to recursively extract all cases of `module.module` from `model` as well as unwrap child sublayers
            recursively, not just the top-level distributed containers.
5110
    """
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
    # Use accelerate implementation if available (should always be the case when using torch)
    # This is for pytorch, as we also have to handle things like dynamo
    if is_accelerate_available():
        kwargs = {}
        if recursive:
            if not is_accelerate_available("0.29.0"):
                raise RuntimeError(
                    "Setting `recursive=True` to `unwrap_model` requires `accelerate` v0.29.0. Please upgrade your version of accelerate"
                )
            else:
                kwargs["recursive"] = recursive
        return extract_model_from_parallel(model, **kwargs)
5123
    else:
5124
5125
5126
5127
5128
        # since there could be multiple levels of wrapping, unwrap recursively
        if hasattr(model, "module"):
            return unwrap_model(model.module)
        else:
            return model
Sylvain Gugger's avatar
Sylvain Gugger committed
5129
5130


5131
def expand_device_map(device_map, param_names, start_prefix):
Sylvain Gugger's avatar
Sylvain Gugger committed
5132
5133
5134
5135
    """
    Expand a device map to return the correspondance parameter name to device.
    """
    new_device_map = {}
5136
    param_names = [p[len(start_prefix) :] for p in param_names if p.startswith(start_prefix)]
Sylvain Gugger's avatar
Sylvain Gugger committed
5137
    for module, device in device_map.items():
5138
5139
5140
        new_device_map.update(
            {p: device for p in param_names if p == module or p.startswith(f"{module}.") or module == ""}
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
5141
5142
5143
    return new_device_map


5144
def get_disk_only_shard_files(device_map, sharded_metadata, start_prefix):
Sylvain Gugger's avatar
Sylvain Gugger committed
5145
5146
5147
    """
    Returns the list of shard files containing only weights offloaded to disk.
    """
5148
5149
5150
5151

    weight_map = {
        p[len(start_prefix) :]: v for p, v in sharded_metadata["weight_map"].items() if p.startswith(start_prefix)
    }
Sylvain Gugger's avatar
Sylvain Gugger committed
5152
    files_content = collections.defaultdict(list)
5153
    for weight_name, filename in weight_map.items():
Sylvain Gugger's avatar
Sylvain Gugger committed
5154
5155
5156
5157
5158
        while len(weight_name) > 0 and weight_name not in device_map:
            weight_name = ".".join(weight_name.split(".")[:-1])
        files_content[filename].append(device_map[weight_name])

    return [fname for fname, devices in files_content.items() if set(devices) == {"disk"}]