modeling_utils.py 233 KB
Newer Older
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
16
import collections
17
import copy
18
import functools
19
import gc
20
import importlib.metadata
Yih-Dar's avatar
Yih-Dar committed
21
import inspect
22
import itertools
Sylvain Gugger's avatar
Sylvain Gugger committed
23
import json
24
import os
25
import re
Sylvain Gugger's avatar
Sylvain Gugger committed
26
27
import shutil
import tempfile
28
import warnings
29
from contextlib import contextmanager
30
from dataclasses import dataclass
31
from functools import partial, wraps
32
from threading import Thread
33
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
34
from zipfile import is_zipfile
35
36

import torch
37
from packaging import version
Sylvain Gugger's avatar
Sylvain Gugger committed
38
from torch import Tensor, nn
39
from torch.nn import CrossEntropyLoss, Identity
40
from torch.utils.checkpoint import checkpoint
41

42
from .activations import get_activation
43
from .configuration_utils import PretrainedConfig
44
from .dynamic_module_utils import custom_object_save
45
from .generation import GenerationConfig, GenerationMixin
46
from .integrations import PeftAdapterMixin, deepspeed_config, is_deepspeed_zero3_enabled
47
48
49
50
from .pytorch_utils import (  # noqa: F401
    Conv1D,
    apply_chunking_to_forward,
    find_pruneable_heads_and_indices,
Thomas Wang's avatar
Thomas Wang committed
51
    id_tensor_storage,
52
    is_torch_greater_or_equal_than_1_13,
53
54
55
56
    prune_conv1d_layer,
    prune_layer,
    prune_linear_layer,
)
57
from .quantizers import AutoHfQuantizer, HfQuantizer
58
from .quantizers.quantizers_utils import get_module_from_name
59
from .safetensors_conversion import auto_conversion
60
from .utils import (
61
62
    ADAPTER_SAFE_WEIGHTS_NAME,
    ADAPTER_WEIGHTS_NAME,
63
    CONFIG_NAME,
Aymeric Augustin's avatar
Aymeric Augustin committed
64
    DUMMY_INPUTS,
65
    FLAX_WEIGHTS_NAME,
66
67
    SAFE_WEIGHTS_INDEX_NAME,
    SAFE_WEIGHTS_NAME,
68
69
    TF2_WEIGHTS_NAME,
    TF_WEIGHTS_NAME,
Sylvain Gugger's avatar
Sylvain Gugger committed
70
    WEIGHTS_INDEX_NAME,
71
    WEIGHTS_NAME,
72
    ContextManagers,
73
    ModelOutput,
Sylvain Gugger's avatar
Sylvain Gugger committed
74
    PushToHubMixin,
75
    cached_file,
76
    copy_func,
77
    download_url,
78
    extract_commit_hash,
79
    has_file,
80
    is_accelerate_available,
81
    is_bitsandbytes_available,
82
    is_flash_attn_2_available,
83
    is_offline_mode,
84
    is_optimum_available,
85
    is_peft_available,
86
    is_remote_url,
87
    is_safetensors_available,
88
    is_torch_sdpa_available,
89
    is_torch_xla_available,
90
    logging,
Sylvain Gugger's avatar
Sylvain Gugger committed
91
    replace_return_docstrings,
92
    strtobool,
93
)
94
from .utils.hub import convert_file_size_to_int, create_and_tag_model_card, get_checkpoint_shard_files
95
96
97
98
99
100
from .utils.import_utils import (
    ENV_VARS_TRUE_VALUES,
    is_sagemaker_mp_enabled,
    is_torch_fx_proxy,
    is_torchdynamo_compiling,
)
101
from .utils.quantization_config import BitsAndBytesConfig, QuantizationMethod
102

Aymeric Augustin's avatar
Aymeric Augustin committed
103

104
105
106
XLA_USE_BF16 = os.environ.get("XLA_USE_BF16", "0").upper()
XLA_DOWNCAST_BF16 = os.environ.get("XLA_DOWNCAST_BF16", "0").upper()

107
108
if is_accelerate_available():
    from accelerate import dispatch_model, infer_auto_device_map, init_empty_weights
109
    from accelerate.hooks import add_hook_to_module
110
    from accelerate.utils import (
111
        check_tied_parameters_on_same_device,
112
        extract_model_from_parallel,
113
        find_tied_parameters,
114
        get_balanced_memory,
Marc Sun's avatar
Marc Sun committed
115
        get_max_memory,
116
117
118
119
120
121
        load_offloaded_weights,
        offload_weight,
        save_offload_index,
        set_module_tensor_to_device,
    )

122
123
124
125
if is_safetensors_available():
    from safetensors import safe_open
    from safetensors.torch import load_file as safe_load_file
    from safetensors.torch import save_file as safe_save_file
126

Lysandre Debut's avatar
Lysandre Debut committed
127
logger = logging.get_logger(__name__)
128

129
130
131
132

_init_weights = True


133
def is_fsdp_enabled():
134
135
136
137
    return (
        torch.distributed.is_available()
        and torch.distributed.is_initialized()
        and strtobool(os.environ.get("ACCELERATE_USE_FSDP", "False")) == 1
138
        and strtobool(os.environ.get("FSDP_CPU_RAM_EFFICIENT_LOADING", "False")) == 1
139
    )
140
141


142
143
144
145
146
147
def is_local_dist_rank_0():
    return (
        torch.distributed.is_available()
        and torch.distributed.is_initialized()
        and int(os.environ.get("LOCAL_RANK", -1)) == 0
    )
148
149


150
151
152
153
154
155
156
157
if is_sagemaker_mp_enabled():
    import smdistributed.modelparallel.torch as smp
    from smdistributed.modelparallel import __version__ as SMP_VERSION

    IS_SAGEMAKER_MP_POST_1_10 = version.parse(SMP_VERSION) >= version.parse("1.10")
else:
    IS_SAGEMAKER_MP_POST_1_10 = False

158
159
160
if is_peft_available():
    from .utils import find_adapter_config_file

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
TORCH_INIT_FUNCTIONS = {
    "uniform_": nn.init.uniform_,
    "normal_": nn.init.normal_,
    "trunc_normal_": nn.init.trunc_normal_,
    "constant_": nn.init.constant_,
    "xavier_uniform_": nn.init.xavier_uniform_,
    "xavier_normal_": nn.init.xavier_normal_,
    "kaiming_uniform_": nn.init.kaiming_uniform_,
    "kaiming_normal_": nn.init.kaiming_normal_,
    "uniform": nn.init.uniform,
    "normal": nn.init.normal,
    "xavier_uniform": nn.init.xavier_uniform,
    "xavier_normal": nn.init.xavier_normal,
    "kaiming_uniform": nn.init.kaiming_uniform,
    "kaiming_normal": nn.init.kaiming_normal,
}

178

179
180
181
182
183
184
185
186
@contextmanager
def no_init_weights(_enable=True):
    """
    Context manager to globally disable weight initialization to speed up loading large models.

    TODO(Patrick): Delete safety argument `_enable=True` at next major version. .
    """
    global _init_weights
187
    old_init_weights = _init_weights
188

189
190
    if _enable:
        _init_weights = False
191
192
193
194
195
196
197

        def _skip_init(*args, **kwargs):
            pass

        # # Save the original initialization functions
        for name, init_func in TORCH_INIT_FUNCTIONS.items():
            setattr(torch.nn.init, name, _skip_init)
198
199
200
    try:
        yield
    finally:
201
        _init_weights = old_init_weights
202
203
204
205
        if _enable:
            # # Restore the original initialization functions
            for name, init_func in TORCH_INIT_FUNCTIONS.items():
                setattr(torch.nn.init, name, init_func)
206
207


Lysandre Debut's avatar
Lysandre Debut committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
def get_parameter_device(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    try:
        return next(parameter.parameters()).device
    except StopIteration:
        # For nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].device


223
224
225
226
def get_first_parameter_dtype(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    """
    Returns the first parameter dtype (can be non-floating) or asserts if none were found.
    """
Lysandre Debut's avatar
Lysandre Debut committed
227
228
229
    try:
        return next(parameter.parameters()).dtype
    except StopIteration:
Sylvain Gugger's avatar
Sylvain Gugger committed
230
        # For nn.DataParallel compatibility in PyTorch > 1.5
Lysandre Debut's avatar
Lysandre Debut committed
231
232
233
234
235
236
237
238
239
240

        def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].dtype


241
242
def get_parameter_dtype(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
243
    Returns the first found floating dtype in parameters if there is one, otherwise returns the last dtype it found.
244
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
245
246
247
248
    last_dtype = None
    for t in parameter.parameters():
        last_dtype = t.dtype
        if t.is_floating_point():
249
250
251
            # Adding fix for https://github.com/pytorch/xla/issues/4152
            # Fixes issue where the model code passes a value that is out of range for XLA_USE_BF16=1
            # and XLA_DOWNCAST_BF16=1 so the conversion would cast it to -inf
252
253
            # NOTE: `is_torch_xla_available()` is checked last as it induces a graph break in torch dynamo
            if XLA_USE_BF16 in ENV_VARS_TRUE_VALUES and is_torch_xla_available():
254
                return torch.bfloat16
255
            if XLA_DOWNCAST_BF16 in ENV_VARS_TRUE_VALUES and is_torch_xla_available():
256
                if t.dtype == torch.float:
257
                    return torch.bfloat16
258
259
                if t.dtype == torch.double:
                    return torch.float32
Sylvain Gugger's avatar
Sylvain Gugger committed
260
            return t.dtype
261

Sylvain Gugger's avatar
Sylvain Gugger committed
262
263
264
    if last_dtype is not None:
        # if no floating dtype was found return whatever the first dtype is
        return last_dtype
265

266
267
268
269
270
271
272
273
274
275
276
277
278
    # For nn.DataParallel compatibility in PyTorch > 1.5
    def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
        tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
        return tuples

    gen = parameter._named_members(get_members_fn=find_tensor_attributes)
    last_tuple = None
    for tuple in gen:
        last_tuple = tuple
        if tuple[1].is_floating_point():
            return tuple[1].dtype

    if last_tuple is not None:
279
280
        # fallback to the last dtype
        return last_tuple[1].dtype
281

282
283
284
285
286
287
288
    # fallback to buffer dtype
    for t in parameter.buffers():
        last_dtype = t.dtype
        if t.is_floating_point():
            return t.dtype
    return last_dtype

289
290
291
292
293
294
295
296
297
298
299
300
301
302

def get_state_dict_float_dtype(state_dict):
    """
    Returns the first found floating dtype in `state_dict` or asserts if none were found.
    """
    for t in state_dict.values():
        if t.is_floating_point():
            return t.dtype

    raise ValueError("couldn't find any floating point dtypes in state_dict")


def get_state_dict_dtype(state_dict):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
303
    Returns the first found floating dtype in `state_dict` if there is one, otherwise returns the first dtype.
304
305
306
307
308
309
310
    """
    for t in state_dict.values():
        if t.is_floating_point():
            return t.dtype

    # if no floating dtype was found return whatever the first dtype is
    else:
Sylvain Gugger's avatar
Sylvain Gugger committed
311
        return next(state_dict.values()).dtype
312
313


Sylvain Gugger's avatar
Sylvain Gugger committed
314
315
316
317
318
319
320
321
322
323
324
325
326
def dtype_byte_size(dtype):
    """
    Returns the size (in bytes) occupied by one parameter of type `dtype`.

    Example:

    ```py
    >>> dtype_byte_size(torch.float32)
    4
    ```
    """
    if dtype == torch.bool:
        return 1 / 8
327
    bit_search = re.search(r"[^\d](\d+)_?", str(dtype))
Sylvain Gugger's avatar
Sylvain Gugger committed
328
329
330
331
332
333
    if bit_search is None:
        raise ValueError(f"`dtype` is not a valid dtype: {dtype}.")
    bit_size = int(bit_search.groups()[0])
    return bit_size // 8


334
335
336
def shard_checkpoint(
    state_dict: Dict[str, torch.Tensor], max_shard_size: Union[int, str] = "10GB", weights_name: str = WEIGHTS_NAME
):
Sylvain Gugger's avatar
Sylvain Gugger committed
337
338
339
340
341
342
343
344
345
346
347
    """
    Splits a model state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a
    given size.

    The sub-checkpoints are determined by iterating through the `state_dict` in the order of its keys, so there is no
    optimization made to make each sub-checkpoint as close as possible to the maximum size passed. For example, if the
    limit is 10GB and we have weights of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as [6GB], [6+2GB],
    [6+2+2GB] and not [6+2+2GB], [6+2GB], [6GB].

    <Tip warning={true}>

Alan Ji's avatar
Alan Ji committed
348
    If one of the model's weight is bigger than `max_shard_size`, it will end up in its own sub-checkpoint which will
Sylvain Gugger's avatar
Sylvain Gugger committed
349
350
351
352
353
354
355
356
357
    have a size greater than `max_shard_size`.

    </Tip>

    Args:
        state_dict (`Dict[str, torch.Tensor]`): The state dictionary of a model to save.
        max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
            The maximum size of each sub-checkpoint. If expressed as a string, needs to be digits followed by a unit
            (like `"5MB"`).
358
359
        weights_name (`str`, *optional*, defaults to `"pytorch_model.bin"`):
            The name of the model save file.
Sylvain Gugger's avatar
Sylvain Gugger committed
360
361
362
    """
    max_shard_size = convert_file_size_to_int(max_shard_size)

Thomas Wang's avatar
Thomas Wang committed
363
364
    sharded_state_dicts = [{}]
    last_block_size = 0
Sylvain Gugger's avatar
Sylvain Gugger committed
365
    total_size = 0
Thomas Wang's avatar
Thomas Wang committed
366
    storage_id_to_block = {}
Sylvain Gugger's avatar
Sylvain Gugger committed
367
368

    for key, weight in state_dict.items():
369
370
371
372
373
374
        # when bnb serialization is used the weights in the state dict can be strings
        # check: https://github.com/huggingface/transformers/pull/24416 for more details
        if isinstance(weight, str):
            continue
        else:
            storage_id = id_tensor_storage(weight)
Thomas Wang's avatar
Thomas Wang committed
375
376
377
378
379
380
381

        # If a `weight` shares the same underlying storage as another tensor, we put `weight` in the same `block`
        if storage_id in storage_id_to_block:
            block_id = storage_id_to_block[storage_id]
            sharded_state_dicts[block_id][key] = weight
            continue

Sylvain Gugger's avatar
Sylvain Gugger committed
382
383
        weight_size = weight.numel() * dtype_byte_size(weight.dtype)

Sylvain Gugger's avatar
Sylvain Gugger committed
384
385
386
        # If this weight is going to tip up over the maximal size, we split, but only if we have put at least one
        # weight in the current shard.
        if last_block_size + weight_size > max_shard_size and len(sharded_state_dicts[-1]) > 0:
Thomas Wang's avatar
Thomas Wang committed
387
388
            sharded_state_dicts.append({})
            last_block_size = 0
Sylvain Gugger's avatar
Sylvain Gugger committed
389

Thomas Wang's avatar
Thomas Wang committed
390
391
        sharded_state_dicts[-1][key] = weight
        last_block_size += weight_size
Sylvain Gugger's avatar
Sylvain Gugger committed
392
        total_size += weight_size
Thomas Wang's avatar
Thomas Wang committed
393
        storage_id_to_block[storage_id] = len(sharded_state_dicts) - 1
Sylvain Gugger's avatar
Sylvain Gugger committed
394
395
396

    # If we only have one shard, we return it
    if len(sharded_state_dicts) == 1:
397
        return {weights_name: sharded_state_dicts[0]}, None
Sylvain Gugger's avatar
Sylvain Gugger committed
398
399
400
401
402

    # Otherwise, let's build the index
    weight_map = {}
    shards = {}
    for idx, shard in enumerate(sharded_state_dicts):
403
404
405
406
        shard_file = weights_name.replace(".bin", f"-{idx+1:05d}-of-{len(sharded_state_dicts):05d}.bin")
        shard_file = shard_file.replace(
            ".safetensors", f"-{idx + 1:05d}-of-{len(sharded_state_dicts):05d}.safetensors"
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
407
408
409
410
411
412
413
414
415
416
        shards[shard_file] = shard
        for key in shard.keys():
            weight_map[key] = shard_file

    # Add the metadata
    metadata = {"total_size": total_size}
    index = {"metadata": metadata, "weight_map": weight_map}
    return shards, index


417
def load_sharded_checkpoint(model, folder, strict=True, prefer_safe=True):
418
419
420
421
422
423
424
425
426
427
428
429
430
    """
    This is the same as
    [`torch.nn.Module.load_state_dict`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html?highlight=load_state_dict#torch.nn.Module.load_state_dict)
    but for a sharded checkpoint.

    This load is performed efficiently: each checkpoint shard is loaded one by one in RAM and deleted after being
    loaded in the model.

    Args:
        model (`torch.nn.Module`): The model in which to load the checkpoint.
        folder (`str` or `os.PathLike`): A path to a folder containing the sharded checkpoint.
        strict (`bool`, *optional`, defaults to `True`):
            Whether to strictly enforce that the keys in the model state dict match the keys in the sharded checkpoint.
431
432
433
        prefer_safe (`bool`, *optional*, defaults to `False`)
            If both safetensors and PyTorch save files are present in checkpoint and `prefer_safe` is True, the
            safetensors files will be loaded. Otherwise, PyTorch files are always loaded when possible.
434
435
436
437
438
439
440
441

    Returns:
        `NamedTuple`: A named tuple with `missing_keys` and `unexpected_keys` fields
            - `missing_keys` is a list of str containing the missing keys
            - `unexpected_keys` is a list of str containing the unexpected keys
    """
    # Load the index
    index_file = os.path.join(folder, WEIGHTS_INDEX_NAME)
442
    safe_index_file = os.path.join(folder, SAFE_WEIGHTS_INDEX_NAME)
443

444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
    index_present = os.path.isfile(index_file)
    safe_index_present = os.path.isfile(safe_index_file)

    if not index_present and not (safe_index_present and is_safetensors_available()):
        filenames = (
            (WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_INDEX_NAME) if is_safetensors_available() else (WEIGHTS_INDEX_NAME,)
        )
        raise ValueError(f"Can't find a checkpoint index ({' or '.join(filenames)}) in {folder}.")

    load_safe = False
    if safe_index_present:
        if prefer_safe:
            if is_safetensors_available():
                load_safe = True  # load safe due to preference
            else:
                logger.warning(
                    f"Cannot load sharded checkpoint at {folder} safely since safetensors is not installed!"
                )
        elif not index_present:
            load_safe = True  # load safe since we have no other choice

    load_index = safe_index_file if load_safe else index_file

    with open(load_index, "r", encoding="utf-8") as f:
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
        index = json.load(f)

    shard_files = list(set(index["weight_map"].values()))

    # If strict=True, error before loading any of the state dicts.
    loaded_keys = index["weight_map"].keys()
    model_keys = model.state_dict().keys()
    missing_keys = [key for key in model_keys if key not in loaded_keys]
    unexpected_keys = [key for key in loaded_keys if key not in model_keys]
    if strict and (len(missing_keys) > 0 or len(unexpected_keys) > 0):
        error_message = f"Error(s) in loading state_dict for {model.__class__.__name__}"
        if len(missing_keys) > 0:
            str_missing_keys = ",".join([f'"{k}"' for k in missing_keys])
            error_message += f"\nMissing key(s): {str_missing_keys}."
        if len(unexpected_keys) > 0:
            str_unexpected_keys = ",".join([f'"{k}"' for k in unexpected_keys])
            error_message += f"\nMissing key(s): {str_unexpected_keys}."
        raise RuntimeError(error_message)

Yih-Dar's avatar
Yih-Dar committed
487
488
    weights_only_kwarg = {"weights_only": True} if is_torch_greater_or_equal_than_1_13 else {}
    loader = safe_load_file if load_safe else partial(torch.load, map_location="cpu", **weights_only_kwarg)
489

490
    for shard_file in shard_files:
491
        state_dict = loader(os.path.join(folder, shard_file))
492
493
        model.load_state_dict(state_dict, strict=False)

494
        # Make sure memory is freed before we load the next state dict.
495
496
497
498
499
500
501
        del state_dict
        gc.collect()

    # Return the same thing as PyTorch load_state_dict function.
    return torch.nn.modules.module._IncompatibleKeys(missing_keys, unexpected_keys)


502
def load_state_dict(checkpoint_file: Union[str, os.PathLike], is_quantized: bool = False):
Sylvain Gugger's avatar
Sylvain Gugger committed
503
504
505
    """
    Reads a PyTorch checkpoint file, returning properly formatted errors if they arise.
    """
506
507
508
509
    if checkpoint_file.endswith(".safetensors") and is_safetensors_available():
        # Check format of the archive
        with safe_open(checkpoint_file, framework="pt") as f:
            metadata = f.metadata()
510
        if metadata.get("format") not in ["pt", "tf", "flax", "mlx"]:
511
512
513
514
515
            raise OSError(
                f"The safetensors archive passed at {checkpoint_file} does not contain the valid metadata. Make sure "
                "you save your model with the `save_pretrained` method."
            )
        return safe_load_file(checkpoint_file)
Sylvain Gugger's avatar
Sylvain Gugger committed
516
    try:
517
        if (
518
519
520
            (is_deepspeed_zero3_enabled() and torch.distributed.is_initialized() and torch.distributed.get_rank() > 0)
            or (is_fsdp_enabled() and not is_local_dist_rank_0())
        ) and not is_quantized:
521
522
523
            map_location = "meta"
        else:
            map_location = "cpu"
524
525
526
527
528
529
530
531
532
        extra_args = {}
        # mmap can only be used with files serialized with zipfile-based format.
        if (
            isinstance(checkpoint_file, str)
            and map_location != "meta"
            and version.parse(torch.__version__) >= version.parse("2.1.0")
            and is_zipfile(checkpoint_file)
        ):
            extra_args = {"mmap": True}
Yih-Dar's avatar
Yih-Dar committed
533
        weights_only_kwarg = {"weights_only": True} if is_torch_greater_or_equal_than_1_13 else {}
534
535
536
        return torch.load(
            checkpoint_file,
            map_location=map_location,
Yih-Dar's avatar
Yih-Dar committed
537
            **weights_only_kwarg,
538
539
            **extra_args,
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
540
541
542
    except Exception as e:
        try:
            with open(checkpoint_file) as f:
543
                if f.read(7) == "version":
Sylvain Gugger's avatar
Sylvain Gugger committed
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
                    raise OSError(
                        "You seem to have cloned a repository without having git-lfs installed. Please install "
                        "git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
                        "you cloned."
                    )
                else:
                    raise ValueError(
                        f"Unable to locate the file {checkpoint_file} which is necessary to load this pretrained "
                        "model. Make sure you have saved the model properly."
                    ) from e
        except (UnicodeDecodeError, ValueError):
            raise OSError(
                f"Unable to load weights from pytorch checkpoint file for '{checkpoint_file}' "
                f"at '{checkpoint_file}'. "
                "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True."
            )


562
563
564
565
566
def set_initialized_submodules(model, state_dict_keys):
    """
    Sets the `_is_hf_initialized` flag in all submodules of a given model when all its weights are in the loaded state
    dict.
    """
567
    not_initialized_submodules = {}
568
    for module_name, module in model.named_modules():
569
570
        loaded_keys = {k.replace(f"{module_name}.", "") for k in state_dict_keys if k.startswith(f"{module_name}.")}
        if loaded_keys.issuperset(module.state_dict()):
571
            module._is_hf_initialized = True
572
573
574
        else:
            not_initialized_submodules[module_name] = module
    return not_initialized_submodules
575
576


577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
def _end_ptr(tensor: torch.Tensor) -> int:
    # extract the end of the pointer if the tensor is a slice of a bigger tensor
    if tensor.nelement():
        stop = tensor.view(-1)[-1].data_ptr() + tensor.element_size()
    else:
        stop = tensor.data_ptr()
    return stop


def _get_tied_weight_keys(module: nn.Module, prefix=""):
    tied_weight_keys = []
    if getattr(module, "_tied_weights_keys", None) is not None:
        names = [f"{prefix}.{k}" if prefix else k for k in module._tied_weights_keys]
        tied_weight_keys.extend(names)
    if getattr(module, "_dynamic_tied_weights_keys", None) is not None:
        names = [f"{prefix}.{k}" if prefix else k for k in module._dynamic_tied_weights_keys]
        tied_weight_keys.extend(names)
    for name, submodule in module.named_children():
        local_prefix = f"{prefix}.{name}" if prefix else name
        tied_weight_keys.extend(_get_tied_weight_keys(submodule, prefix=local_prefix))
    return tied_weight_keys


def _find_disjoint(tensors: List[Set[str]], state_dict: Dict[str, torch.Tensor]) -> Tuple[List[Set[str]], List[str]]:
    filtered_tensors = []
    for shared in tensors:
        if len(shared) < 2:
            filtered_tensors.append(shared)
            continue

        areas = []
        for name in shared:
            tensor = state_dict[name]
            areas.append((tensor.data_ptr(), _end_ptr(tensor), name))
        areas.sort()

        _, last_stop, last_name = areas[0]
        filtered_tensors.append({last_name})
        for start, stop, name in areas[1:]:
            if start >= last_stop:
                filtered_tensors.append({name})
            else:
                filtered_tensors[-1].add(name)
            last_stop = stop
    disjoint_tensors = []
    shared_tensors = []
    for tensors in filtered_tensors:
        if len(tensors) == 1:
            disjoint_tensors.append(tensors.pop())
        else:
            shared_tensors.append(tensors)
    return shared_tensors, disjoint_tensors


def _find_identical(tensors: List[Set[str]], state_dict: Dict[str, torch.Tensor]) -> Tuple[List[Set[str]], Set[str]]:
    shared_tensors = []
    identical = []
    for shared in tensors:
        if len(shared) < 2:
            continue

        areas = collections.defaultdict(set)
        for name in shared:
            tensor = state_dict[name]
            area = (tensor.device, tensor.data_ptr(), _end_ptr(tensor))
            areas[area].add(name)
        if len(areas) == 1:
            identical.append(shared)
        else:
            shared_tensors.append(shared)
    return shared_tensors, identical


Sylvain Gugger's avatar
Sylvain Gugger committed
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
def _load_state_dict_into_model(model_to_load, state_dict, start_prefix):
    # Convert old format to new format if needed from a PyTorch state_dict
    old_keys = []
    new_keys = []
    for key in state_dict.keys():
        new_key = None
        if "gamma" in key:
            new_key = key.replace("gamma", "weight")
        if "beta" in key:
            new_key = key.replace("beta", "bias")
        if new_key:
            old_keys.append(key)
            new_keys.append(new_key)
    for old_key, new_key in zip(old_keys, new_keys):
        state_dict[new_key] = state_dict.pop(old_key)

    # copy state_dict so _load_from_state_dict can modify it
    metadata = getattr(state_dict, "_metadata", None)
    state_dict = state_dict.copy()
    if metadata is not None:
        state_dict._metadata = metadata

    error_msgs = []

    # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
    # so we need to apply the function recursively.
676
    def load(module: nn.Module, state_dict, prefix=""):
Sylvain Gugger's avatar
Sylvain Gugger committed
677
        local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
678
        args = (state_dict, prefix, local_metadata, True, [], [], error_msgs)
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
        # Parameters of module and children will start with prefix. We can exit early if there are none in this
        # state_dict
        if len([key for key in state_dict if key.startswith(prefix)]) > 0:
            if is_deepspeed_zero3_enabled():
                import deepspeed

                # In sharded models, each shard has only part of the full state_dict, so only gather
                # parameters that are in the current state_dict.
                named_parameters = dict(module.named_parameters(prefix=prefix[:-1], recurse=False))
                params_to_gather = [named_parameters[k] for k in state_dict.keys() if k in named_parameters]
                if len(params_to_gather) > 0:
                    # because zero3 puts placeholders in model params, this context
                    # manager gathers (unpartitions) the params of the current layer, then loads from
                    # the state dict and then re-partitions them again
                    with deepspeed.zero.GatheredParameters(params_to_gather, modifier_rank=0):
                        if torch.distributed.get_rank() == 0:
                            module._load_from_state_dict(*args)
            else:
                module._load_from_state_dict(*args)
Sylvain Gugger's avatar
Sylvain Gugger committed
698
699
700

        for name, child in module._modules.items():
            if child is not None:
701
                load(child, state_dict, prefix + name + ".")
Sylvain Gugger's avatar
Sylvain Gugger committed
702

703
704
705
706
    load(model_to_load, state_dict, prefix=start_prefix)
    # Delete `state_dict` so it could be collected by GC earlier. Note that `state_dict` is a copy of the argument, so
    # it's safe to delete it.
    del state_dict
Sylvain Gugger's avatar
Sylvain Gugger committed
707
708
709
710

    return error_msgs


711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
def find_submodule_and_param_name(model, long_key, start_prefix):
    """
    A helper util to find the last sub-module and the param/buffer name. If `start_prefix` is supplied it'll be removed
    from the start of the key
    """

    if len(start_prefix) > 0 and long_key.startswith(start_prefix):
        long_key = ".".join(long_key.split(".")[1:])

    split_key = long_key.split(".")
    submodule = model
    while len(split_key) > 1:
        if hasattr(submodule, split_key[0]):
            submodule = getattr(submodule, split_key[0])
            del split_key[0]
        else:
            submodule = None
            break
    if submodule == model:
        submodule = None
    return submodule, split_key[0]


def _move_model_to_meta(model, loaded_state_dict_keys, start_prefix):
    """
    Moves `loaded_state_dict_keys` in model to meta device which frees up the memory taken by those params.

    `start_prefix` is used for models which insert their name into model keys, e.g. `bert` in
    `bert.pooler.dense.weight`

    """

    # dematerialize param storage for keys that are going to be replaced by state_dict, by
    # putting those on the meta device
    for k in loaded_state_dict_keys:
        submodule, param_name = find_submodule_and_param_name(model, k, start_prefix)
        if submodule is not None:
            # selectively switch to the meta device only those params/buffers that will
            # be next replaced from state_dict. This a complex way to do p.to_("meta")
            # since we have no in-place to_ for tensors.
            new_val = getattr(submodule, param_name)
            if isinstance(new_val, torch.nn.Parameter):
                # isinstance returns False for Params on meta device, so switch after the check
                new_val = torch.nn.Parameter(new_val.to("meta"))
            else:
                new_val = new_val.to("meta")
            setattr(submodule, param_name, new_val)


760
761
762
763
764
765
766
767
768
769
770
771
def _load_state_dict_into_meta_model(
    model,
    state_dict,
    loaded_state_dict_keys,  # left for now but could be removed, see below
    start_prefix,
    expected_keys,
    device_map=None,
    offload_folder=None,
    offload_index=None,
    state_dict_folder=None,
    state_dict_index=None,
    dtype=None,
772
    hf_quantizer=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
773
    is_safetensors=False,
774
    keep_in_fp32_modules=None,
775
    unexpected_keys=None,  # passing `unexpected` for cleanup from quantization items
776
):
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
    """
    This is somewhat similar to `_load_state_dict_into_model`, but deals with a model that has some or all of its
    params on a `meta` device. It replaces the model params with the data from the `state_dict`, while moving the
    params back to the normal device, but only for `loaded_state_dict_keys`.

    `start_prefix` is used for models which insert their name into model keys, e.g. `bert` in
    `bert.pooler.dense.weight`

    """

    # XXX: remaining features to implement to be fully compatible with _load_state_dict_into_model
    # - deepspeed zero 3 support
    # - need to copy metadata if any - see _load_state_dict_into_model
    # - handling error_msgs - mimicking the error handling in module._load_from_state_dict()
    # - Is there a situation where some keys aren't in `loaded_state_dict_keys` and in which case
    #   they won't get loaded.

    error_msgs = []

796
797
    old_keys = []
    new_keys = []
798
    is_quantized = hf_quantizer is not None
799
800
801
802
803
804
805
806
807
808
809
    for key in state_dict.keys():
        new_key = None
        if "gamma" in key:
            new_key = key.replace("gamma", "weight")
        if "beta" in key:
            new_key = key.replace("beta", "bias")
        if new_key:
            old_keys.append(key)
            new_keys.append(new_key)
    for old_key, new_key in zip(old_keys, new_keys):
        state_dict[new_key] = state_dict.pop(old_key)
810

811
812
813
814
815
816
817
818
819
    for param_name, param in state_dict.items():
        # First part of the test is always true as load_state_dict_keys always contains state_dict keys.
        if param_name not in loaded_state_dict_keys or param_name not in expected_keys:
            continue

        if param_name.startswith(start_prefix):
            param_name = param_name[len(start_prefix) :]

        module_name = param_name
820
        set_module_kwargs = {}
821

822
        # We convert floating dtypes to the `dtype` passed. We want to keep the buffers/params
823
824
        # in int/uint/bool and not cast them.
        if dtype is not None and torch.is_floating_point(param):
825
826
            if (
                keep_in_fp32_modules is not None
827
828
829
                and any(
                    module_to_keep_in_fp32 in param_name.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules
                )
830
831
832
                and dtype == torch.float16
            ):
                param = param.to(torch.float32)
833
834
835
836
837

                # For backward compatibility with older versions of `accelerate`
                # TODO: @sgugger replace this check with version check at the next `accelerate` release
                if "dtype" in list(inspect.signature(set_module_tensor_to_device).parameters):
                    set_module_kwargs["dtype"] = torch.float32
838
839
            else:
                param = param.to(dtype)
840

841
842
843
844
845
846
847
848
849
850
851
852
        # For compatibility with PyTorch load_state_dict which converts state dict dtype to existing dtype in model, and which
        # uses `param.copy_(input_param)` that preserves the contiguity of the parameter in the model.
        # Reference: https://github.com/pytorch/pytorch/blob/db79ceb110f6646523019a59bbd7b838f43d4a86/torch/nn/modules/module.py#L2040C29-L2040C29
        old_param = model
        splits = param_name.split(".")
        for split in splits:
            old_param = getattr(old_param, split)
            if old_param is None:
                break

        if old_param is not None:
            if dtype is None:
853
                param = param.to(old_param.dtype)
854

855
856
857
            if old_param.is_contiguous():
                param = param.contiguous()

858
859
        set_module_kwargs["value"] = param

860
861
862
863
864
865
866
867
868
869
870
        if device_map is None:
            param_device = "cpu"
        else:
            # find next higher level module that is defined in device_map:
            # bert.lm_head.weight -> bert.lm_head -> bert -> ''
            while len(module_name) > 0 and module_name not in device_map:
                module_name = ".".join(module_name.split(".")[:-1])
            if module_name == "" and "" not in device_map:
                # TODO: group all errors and raise at the end.
                raise ValueError(f"{param_name} doesn't have any device set.")
            param_device = device_map[module_name]
871

872
        if param_device == "disk":
Sylvain Gugger's avatar
Sylvain Gugger committed
873
874
            if not is_safetensors:
                offload_index = offload_weight(param, param_name, offload_folder, offload_index)
875
        elif param_device == "cpu" and state_dict_index is not None:
876
            state_dict_index = offload_weight(param, param_name, state_dict_folder, state_dict_index)
877
        elif (
878
            not is_quantized
879
            or (not hf_quantizer.requires_parameters_quantization)
880
881
882
883
884
            or (
                not hf_quantizer.check_quantized_param(
                    model, param, param_name, state_dict, param_device=param_device, device_map=device_map
                )
            )
885
886
        ):
            # For backward compatibility with older versions of `accelerate` and for non-quantized params
887
            set_module_tensor_to_device(model, param_name, param_device, **set_module_kwargs)
888
        else:
889
            hf_quantizer.create_quantized_param(model, param, param_name, param_device, state_dict, unexpected_keys)
890
891
892
893
894
895
896
897
            # For quantized modules with FSDP/DeepSpeed Stage 3, we need to quantize the parameter on the GPU
            # and then cast it to CPU to avoid excessive memory usage on each GPU
            # in comparison to the sharded model across GPUs.
            if is_fsdp_enabled() or is_deepspeed_zero3_enabled():
                module, tensor_name = get_module_from_name(model, param_name)
                value = getattr(module, tensor_name)
                value = type(value)(value.data.to("cpu"), **value.__dict__)
                setattr(module, tensor_name, value)
898
            # TODO: consider removing used param_parts from state_dict before return
899
900

    return error_msgs, offload_index, state_dict_index
901
902


903
904
905
906
907
908
909
910
911
def _add_variant(weights_name: str, variant: Optional[str] = None) -> str:
    if variant is not None:
        splits = weights_name.split(".")
        splits = splits[:-1] + [variant] + splits[-1:]
        weights_name = ".".join(splits)

    return weights_name


912
class ModuleUtilsMixin:
Julien Chaumond's avatar
Julien Chaumond committed
913
    """
914
    A few utilities for `torch.nn.Modules`, to be used as a mixin.
Julien Chaumond's avatar
Julien Chaumond committed
915
916
    """

917
918
919
920
    @staticmethod
    def _hook_rss_memory_pre_forward(module, *args, **kwargs):
        try:
            import psutil
Sylvain Gugger's avatar
Sylvain Gugger committed
921
        except ImportError:
922
923
924
925
926
927
928
929
930
931
932
            raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")

        process = psutil.Process(os.getpid())
        mem = process.memory_info()
        module.mem_rss_pre_forward = mem.rss
        return None

    @staticmethod
    def _hook_rss_memory_post_forward(module, *args, **kwargs):
        try:
            import psutil
Sylvain Gugger's avatar
Sylvain Gugger committed
933
        except ImportError:
934
935
936
937
938
939
940
941
942
943
            raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")

        process = psutil.Process(os.getpid())
        mem = process.memory_info()
        module.mem_rss_post_forward = mem.rss
        mem_rss_diff = module.mem_rss_post_forward - module.mem_rss_pre_forward
        module.mem_rss_diff = mem_rss_diff + (module.mem_rss_diff if hasattr(module, "mem_rss_diff") else 0)
        return None

    def add_memory_hooks(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
944
945
946
        """
        Add a memory hook before and after each sub-module forward pass to record increase in memory consumption.

Sylvain Gugger's avatar
Sylvain Gugger committed
947
948
        Increase in memory consumption is stored in a `mem_rss_diff` attribute for each module and can be reset to zero
        with `model.reset_memory_hooks_state()`.
949
950
951
952
953
954
955
        """
        for module in self.modules():
            module.register_forward_pre_hook(self._hook_rss_memory_pre_forward)
            module.register_forward_hook(self._hook_rss_memory_post_forward)
        self.reset_memory_hooks_state()

    def reset_memory_hooks_state(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
956
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
957
        Reset the `mem_rss_diff` attribute of each module (see [`~modeling_utils.ModuleUtilsMixin.add_memory_hooks`]).
Sylvain Gugger's avatar
Sylvain Gugger committed
958
        """
959
960
961
962
963
        for module in self.modules():
            module.mem_rss_diff = 0
            module.mem_rss_post_forward = 0
            module.mem_rss_pre_forward = 0

964
    @property
Sylvain Gugger's avatar
Sylvain Gugger committed
965
    def device(self) -> torch.device:
966
        """
967
        `torch.device`: The device on which the module is (assuming that all the module parameters are on the same
968
        device).
969
        """
Lysandre Debut's avatar
Lysandre Debut committed
970
        return get_parameter_device(self)
971

972
    @property
973
    def dtype(self) -> torch.dtype:
974
        """
975
        `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
976
        """
Lysandre Debut's avatar
Lysandre Debut committed
977
        return get_parameter_dtype(self)
978
979

    def invert_attention_mask(self, encoder_attention_mask: Tensor) -> Tensor:
Sylvain Gugger's avatar
Sylvain Gugger committed
980
981
982
983
        """
        Invert an attention mask (e.g., switches 0. and 1.).

        Args:
984
            encoder_attention_mask (`torch.Tensor`): An attention mask.
Sylvain Gugger's avatar
Sylvain Gugger committed
985
986

        Returns:
987
            `torch.Tensor`: The inverted attention mask.
Sylvain Gugger's avatar
Sylvain Gugger committed
988
        """
989
990
991
992
993
994
995
996
997
998
        if encoder_attention_mask.dim() == 3:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
        if encoder_attention_mask.dim() == 2:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
        # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
        # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
        # /transformer/transformer_layers.py#L270
        # encoder_extended_attention_mask = (encoder_extended_attention_mask ==
        # encoder_extended_attention_mask.transpose(-1, -2))
        encoder_extended_attention_mask = encoder_extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
Yih-Dar's avatar
Yih-Dar committed
999
        encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * torch.finfo(self.dtype).min
1000

1001
1002
        return encoder_extended_attention_mask

1003
    @staticmethod
1004
1005
1006
1007
1008
1009
1010
    def create_extended_attention_mask_for_decoder(input_shape, attention_mask, device=None):
        if device is not None:
            warnings.warn(
                "The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
            )
        else:
            device = attention_mask.device
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
        batch_size, seq_length = input_shape
        seq_ids = torch.arange(seq_length, device=device)
        causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
        # in case past_key_values are used we need to add a prefix ones mask to the causal mask
        # causal and attention masks must have same type with pytorch version < 1.3
        causal_mask = causal_mask.to(attention_mask.dtype)

        if causal_mask.shape[1] < attention_mask.shape[1]:
            prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
            causal_mask = torch.cat(
                [
                    torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype),
                    causal_mask,
                ],
                axis=-1,
            )

        extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
        return extended_attention_mask

1031
    def get_extended_attention_mask(
1032
        self, attention_mask: Tensor, input_shape: Tuple[int], device: torch.device = None, dtype: torch.float = None
1033
    ) -> Tensor:
Sylvain Gugger's avatar
Sylvain Gugger committed
1034
1035
        """
        Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
1036
1037

        Arguments:
1038
            attention_mask (`torch.Tensor`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1039
                Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
1040
            input_shape (`Tuple[int]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1041
                The shape of the input to the model.
1042
1043

        Returns:
1044
            `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
1045
        """
Yih-Dar's avatar
Yih-Dar committed
1046
1047
1048
        if dtype is None:
            dtype = self.dtype

1049
1050
1051
1052
1053
1054
        if not (attention_mask.dim() == 2 and self.config.is_decoder):
            # show warning only if it won't be shown in `create_extended_attention_mask_for_decoder`
            if device is not None:
                warnings.warn(
                    "The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
                )
1055
1056
1057
1058
1059
1060
1061
1062
1063
        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        if attention_mask.dim() == 3:
            extended_attention_mask = attention_mask[:, None, :, :]
        elif attention_mask.dim() == 2:
            # Provided a padding mask of dimensions [batch_size, seq_length]
            # - if the model is a decoder, apply a causal mask in addition to the padding mask
            # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
            if self.config.is_decoder:
1064
                extended_attention_mask = ModuleUtilsMixin.create_extended_attention_mask_for_decoder(
1065
1066
                    input_shape, attention_mask, device
                )
1067
1068
1069
1070
            else:
                extended_attention_mask = attention_mask[:, None, None, :]
        else:
            raise ValueError(
1071
                f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})"
1072
1073
1074
1075
            )

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
1076
        # positions we want to attend and the dtype's smallest value for masked positions.
1077
1078
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
Yih-Dar's avatar
Yih-Dar committed
1079
1080
        extended_attention_mask = extended_attention_mask.to(dtype=dtype)  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(dtype).min
1081
1082
        return extended_attention_mask

Sylvain Gugger's avatar
Sylvain Gugger committed
1083
1084
1085
    def get_head_mask(
        self, head_mask: Optional[Tensor], num_hidden_layers: int, is_attention_chunked: bool = False
    ) -> Tensor:
1086
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1087
1088
1089
        Prepare the head mask if needed.

        Args:
1090
            head_mask (`torch.Tensor` with shape `[num_heads]` or `[num_hidden_layers x num_heads]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1091
                The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard).
1092
            num_hidden_layers (`int`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1093
                The number of hidden layers in the model.
1094
            is_attention_chunked (`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1095
1096
                Whether or not the attentions scores are computed by chunks or not.

1097
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
1098
1099
            `torch.Tensor` with shape `[num_hidden_layers x batch x num_heads x seq_length x seq_length]` or list with
            `[None]` for each layer.
1100
1101
1102
        """
        if head_mask is not None:
            head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
1103
1104
            if is_attention_chunked is True:
                head_mask = head_mask.unsqueeze(-1)
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
        else:
            head_mask = [None] * num_hidden_layers

        return head_mask

    def _convert_head_mask_to_5d(self, head_mask, num_hidden_layers):
        """-> [num_hidden_layers x batch x num_heads x seq_length x seq_length]"""
        if head_mask.dim() == 1:
            head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
            head_mask = head_mask.expand(num_hidden_layers, -1, -1, -1, -1)
        elif head_mask.dim() == 2:
            head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
        assert head_mask.dim() == 5, f"head_mask.dim != 5, instead {head_mask.dim()}"
1118
        head_mask = head_mask.to(dtype=self.dtype)  # switch to float if need + fp16 compatibility
1119
1120
        return head_mask

1121
1122
1123
1124
1125
    def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int:
        """
        Get number of (optionally, trainable or non-embeddings) parameters in the module.

        Args:
1126
            only_trainable (`bool`, *optional*, defaults to `False`):
1127
1128
                Whether or not to return only the number of trainable parameters

1129
            exclude_embeddings (`bool`, *optional*, defaults to `False`):
1130
1131
1132
                Whether or not to return only the number of non-embeddings parameters

        Returns:
1133
            `int`: The number of parameters.
1134
1135
        """

1136
1137
1138
1139
        if exclude_embeddings:
            embedding_param_names = [
                f"{name}.weight" for name, module_type in self.named_modules() if isinstance(module_type, nn.Embedding)
            ]
1140
            total_parameters = [
1141
1142
1143
                parameter for name, parameter in self.named_parameters() if name not in embedding_param_names
            ]
        else:
1144
1145
1146
1147
            total_parameters = list(self.parameters())

        total_numel = []
        is_loaded_in_4bit = getattr(self, "is_loaded_in_4bit", False)
1148

1149
1150
1151
1152
1153
1154
        if is_loaded_in_4bit:
            if is_bitsandbytes_available():
                import bitsandbytes as bnb
            else:
                raise ValueError(
                    "bitsandbytes is not installed but it seems that the model has been loaded in 4bit precision, something went wrong"
1155
                    " make sure to install bitsandbytes with `pip install bitsandbytes`. You also need a GPU. "
1156
1157
1158
1159
1160
1161
1162
                )

        for param in total_parameters:
            if param.requires_grad or not only_trainable:
                # For 4bit models, we need to multiply the number of parameters by 2 as half of the parameters are
                # used for the 4bit quantization (uint8 tensors are stored)
                if is_loaded_in_4bit and isinstance(param, bnb.nn.Params4bit):
1163
1164
1165
1166
1167
1168
1169
                    if hasattr(param, "element_size"):
                        num_bytes = param.element_size()
                    elif hasattr(param, "quant_storage"):
                        num_bytes = param.quant_storage.itemsize
                    else:
                        num_bytes = 1
                    total_numel.append(param.numel() * 2 * num_bytes)
1170
1171
1172
1173
                else:
                    total_numel.append(param.numel())

        return sum(total_numel)
1174
1175
1176
1177
1178
1179

    def estimate_tokens(self, input_dict: Dict[str, Union[torch.Tensor, Any]]) -> int:
        """
        Helper function to estimate the total number of tokens from the model inputs.

        Args:
1180
            inputs (`dict`): The model inputs.
1181
1182

        Returns:
1183
            `int`: The total number of tokens.
1184
        """
1185
1186
        if not hasattr(self, "warnings_issued"):
            self.warnings_issued = {}
1187
1188
        if self.main_input_name in input_dict:
            return input_dict[self.main_input_name].numel()
1189
        elif "estimate_tokens" not in self.warnings_issued:
1190
            logger.warning(
1191
1192
                "Could not estimate the number of tokens of the input, floating-point operations will not be computed"
            )
1193
1194
            self.warnings_issued["estimate_tokens"] = True
        return 0
1195
1196
1197
1198
1199
1200
1201

    def floating_point_ops(
        self, input_dict: Dict[str, Union[torch.Tensor, Any]], exclude_embeddings: bool = True
    ) -> int:
        """
        Get number of (optionally, non-embeddings) floating-point operations for the forward and backward passes of a
        batch with this transformer model. Default approximation neglects the quadratic dependency on the number of
Sylvain Gugger's avatar
Sylvain Gugger committed
1202
1203
        tokens (valid if `12 * d_model << sequence_length`) as laid out in [this
        paper](https://arxiv.org/pdf/2001.08361.pdf) section 2.1. Should be overridden for transformers with parameter
Sylvain Gugger's avatar
Sylvain Gugger committed
1204
        re-use e.g. Albert or Universal Transformers, or if doing long-range modeling with very high sequence lengths.
1205
1206

        Args:
1207
            batch_size (`int`):
1208
1209
                The batch size for the forward pass.

1210
            sequence_length (`int`):
1211
1212
                The number of tokens in each line of the batch.

1213
            exclude_embeddings (`bool`, *optional*, defaults to `True`):
1214
1215
1216
                Whether or not to count embedding and softmax operations.

        Returns:
1217
            `int`: The number of floating-point operations.
1218
1219
1220
1221
        """

        return 6 * self.estimate_tokens(input_dict) * self.num_parameters(exclude_embeddings=exclude_embeddings)

Julien Chaumond's avatar
Julien Chaumond committed
1222

1223
class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMixin, PeftAdapterMixin):
1224
1225
    r"""
    Base class for all models.
1226

Sylvain Gugger's avatar
Sylvain Gugger committed
1227
1228
    [`PreTrainedModel`] takes care of storing the configuration of the models and handles methods for loading,
    downloading and saving models as well as a few methods common to all models to:
1229

1230
1231
        - resize the input embeddings,
        - prune heads in the self-attention heads.
1232

1233
    Class attributes (overridden by derived classes):
Sylvain Gugger's avatar
Sylvain Gugger committed
1234

Sylvain Gugger's avatar
Sylvain Gugger committed
1235
1236
1237
1238
        - **config_class** ([`PretrainedConfig`]) -- A subclass of [`PretrainedConfig`] to use as configuration class
          for this model architecture.
        - **load_tf_weights** (`Callable`) -- A python *method* for loading a TensorFlow checkpoint in a PyTorch model,
          taking as arguments:
1239

Sylvain Gugger's avatar
Sylvain Gugger committed
1240
1241
            - **model** ([`PreTrainedModel`]) -- An instance of the model on which to load the TensorFlow checkpoint.
            - **config** ([`PreTrainedConfig`]) -- An instance of the configuration associated to the model.
1242
            - **path** (`str`) -- A path to the TensorFlow checkpoint.
1243

Sylvain Gugger's avatar
Sylvain Gugger committed
1244
1245
        - **base_model_prefix** (`str`) -- A string indicating the attribute associated to the base model in derived
          classes of the same architecture adding modules on top of the base model.
1246
        - **is_parallelizable** (`bool`) -- A flag indicating whether this model supports model parallelization.
Sylvain Gugger's avatar
Sylvain Gugger committed
1247
1248
        - **main_input_name** (`str`) -- The name of the principal input to the model (often `input_ids` for NLP
          models, `pixel_values` for vision models and `input_values` for speech models).
1249
    """
1250

1251
    config_class = None
1252
    base_model_prefix = ""
1253
    main_input_name = "input_ids"
1254
1255
    model_tags = None

1256
    _auto_class = None
1257
    _no_split_modules = None
1258
    _skip_keys_device_placement = None
1259
    _keep_in_fp32_modules = None
1260

1261
1262
    # a list of `re` patterns of `state_dict` keys that should be removed from the list of missing
    # keys we find (keys inside the model but not in the checkpoint) and avoid unnecessary warnings.
1263
    _keys_to_ignore_on_load_missing = None
1264
1265
1266
    # a list of `re` patterns of `state_dict` keys that should be removed from the list of
    # unexpected keys we find (keys inside the checkpoint but not the model) and avoid unnecessary
    # warnings.
1267
    _keys_to_ignore_on_load_unexpected = None
1268
1269
    # a list of `state_dict` keys to ignore when saving the model (useful for keys that aren't
    # trained, but which are either deterministic or tied variables)
1270
    _keys_to_ignore_on_save = None
Sylvain Gugger's avatar
Sylvain Gugger committed
1271
1272
    # a list of `state_dict` keys that are potentially tied to another key in the state_dict.
    _tied_weights_keys = None
1273

1274
    is_parallelizable = False
1275
    supports_gradient_checkpointing = False
1276

1277
1278
1279
    # Flash Attention 2 support
    _supports_flash_attn_2 = False

1280
1281
1282
    # SDPA support
    _supports_sdpa = False

1283
1284
1285
    # Has support for a `Cache` instance as `past_key_values`
    _supports_cache_class = False

1286
    @property
1287
    def dummy_inputs(self) -> Dict[str, torch.Tensor]:
1288
        """
1289
        `Dict[str, torch.Tensor]`: Dummy inputs to do a forward pass in the network.
1290
        """
1291
        return {"input_ids": torch.tensor(DUMMY_INPUTS)}
1292

1293
1294
1295
1296
1297
1298
1299
    @property
    def framework(self) -> str:
        """
        :str: Identifies that this is a PyTorch model.
        """
        return "pt"

1300
    def __init__(self, config: PretrainedConfig, *inputs, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
1301
        super().__init__()
1302
1303
        if not isinstance(config, PretrainedConfig):
            raise ValueError(
1304
1305
1306
                f"Parameter config in `{self.__class__.__name__}(config)` should be an instance of class "
                "`PretrainedConfig`. To create a model from a pretrained model use "
                f"`model = {self.__class__.__name__}.from_pretrained(PRETRAINED_MODEL_NAME)`"
1307
            )
1308
        # Save config and origin of the pretrained weights if given in model
1309
1310
1311
        config = self._autoset_attn_implementation(
            config, torch_dtype=torch.get_default_dtype(), check_device_map=False
        )
1312
        self.config = config
1313

1314
        self.name_or_path = config.name_or_path
1315
        self.warnings_issued = {}
1316
        self.generation_config = GenerationConfig.from_model_config(config) if self.can_generate() else None
1317
1318
1319
1320
        # Overwrite the class attribute to make it an instance attribute, so models like
        # `InstructBlipForConditionalGeneration` can dynamically update it without modifying the class attribute
        # when a different component (e.g. language_model) is used.
        self._keep_in_fp32_modules = copy.copy(self.__class__._keep_in_fp32_modules)
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334

    def post_init(self):
        """
        A method executed at the end of each Transformer model initialization, to execute code that needs the model's
        modules properly initialized (such as weight initialization).
        """
        self.init_weights()
        self._backward_compatibility_gradient_checkpointing()

    def _backward_compatibility_gradient_checkpointing(self):
        if self.supports_gradient_checkpointing and getattr(self.config, "gradient_checkpointing", False):
            self.gradient_checkpointing_enable()
            # Remove the attribute now that is has been consumed, so it's no saved in the config.
            delattr(self.config, "gradient_checkpointing")
1335

1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
    def add_model_tags(self, tags: Union[List[str], str]) -> None:
        r"""
        Add custom tags into the model that gets pushed to the Hugging Face Hub. Will
        not overwrite existing tags in the model.

        Args:
            tags (`Union[List[str], str]`):
                The desired tags to inject in the model

        Examples:

        ```python
        from transformers import AutoModel

1350
        model = AutoModel.from_pretrained("google-bert/bert-base-cased")
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367

        model.add_model_tags(["custom", "custom-bert"])

        # Push the model to your namespace with the name "my-custom-bert".
        model.push_to_hub("my-custom-bert")
        ```
        """
        if isinstance(tags, str):
            tags = [tags]

        if self.model_tags is None:
            self.model_tags = []

        for tag in tags:
            if tag not in self.model_tags:
                self.model_tags.append(tag)

1368
1369
1370
1371
1372
1373
    @classmethod
    def _from_config(cls, config, **kwargs):
        """
        All context managers that the model should be initialized under go here.

        Args:
1374
1375
            torch_dtype (`torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model under this dtype.
1376
1377
        """
        torch_dtype = kwargs.pop("torch_dtype", None)
1378
        use_flash_attention_2 = kwargs.pop("use_flash_attention_2", False)
1379
1380
1381
1382
1383
1384

        # override default dtype if needed
        dtype_orig = None
        if torch_dtype is not None:
            dtype_orig = cls._set_default_torch_dtype(torch_dtype)

1385
1386
1387
        config = copy.deepcopy(config)  # We do not want to modify the config inplace in _from_config.
        config._attn_implementation = kwargs.pop("attn_implementation", None)
        config = cls._autoset_attn_implementation(
1388
1389
1390
1391
            config,
            use_flash_attention_2=use_flash_attention_2,
            check_device_map=False,
            torch_dtype=torch_dtype,
1392
        )
1393

1394
1395
1396
1397
1398
1399
        if is_deepspeed_zero3_enabled():
            import deepspeed

            logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
            # this immediately partitions the model across all gpus, to avoid the overhead in time
            # and memory copying it on CPU or each GPU first
1400
            with deepspeed.zero.Init(config_dict_or_path=deepspeed_config()):
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
                model = cls(config, **kwargs)
        else:
            model = cls(config, **kwargs)

        # restore default dtype if it was modified
        if dtype_orig is not None:
            torch.set_default_dtype(dtype_orig)

        return model

1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
    @classmethod
    def _autoset_attn_implementation(
        cls,
        config,
        use_flash_attention_2: bool = False,
        torch_dtype: Optional[torch.dtype] = None,
        device_map: Optional[Union[str, Dict[str, int]]] = None,
        check_device_map: bool = True,
    ):
        """
        Automatically checks and dispatches to a default attention implementation. In order of priority:
            1. An implementation specified in `config._attn_implementation` (due for example to the argument attn_implementation="sdpa" in from_pretrained).
            2. DEPRECATED: if use_flash_attention_2 is set to `True` and `flash_attn` is available, flash attention. (`LlamaFlashAttention` for example)
            3. SDPA implementation, if available and supported by the model type. (`LlamaSdpaAttention` for example)
            4. The default model's implementation otherwise (`LlamaAttention` for example) .
        """
        # Here we use config._attn_implementation_internal to check whether the attention implementation was explicitely set by the user.
        # The property `PretrainedConfig._attn_implementation` is never `None`, for backward compatibility (always fall back on "eager").
        # The `hasattr` here is used as some Transformers tests for some reason do not call PretrainedConfig __init__ (e.g. test_no_super_init_config_and_model)
1430
        requested_attn_implementation = None
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
        if hasattr(config, "_attn_implementation_internal") and config._attn_implementation_internal is not None:
            if config._attn_implementation != "flash_attention_2" and use_flash_attention_2:
                raise ValueError(
                    f'Both attn_implementation="{config._attn_implementation}" and `use_flash_attention_2=True` were used when loading the model, which are not compatible.'
                    ' We recommend to just use `attn_implementation="flash_attention_2"` when loading the model.'
                )

            if config._attn_implementation not in ["eager", "sdpa", "flash_attention_2"]:
                message = f'Specified `attn_implementation="{config._attn_implementation}"` is not supported. The only possible arguments are `attn_implementation="eager"` (manual attention implementation)'
                if cls._supports_flash_attn_2:
                    message += ', `"attn_implementation=flash_attention_2"` (implementation using flash attention 2)'
                if cls._supports_sdpa:
                    message += ', `"attn_implementation=sdpa"` (implementation using torch.nn.functional.scaled_dot_product_attention)'
                raise ValueError(message + ".")

            # If a config is passed with a preset attn_implementation, we skip the automatic dispatch and use the user-provided config, with hard checks that the requested attention implementation is available.
1447
            requested_attn_implementation = config._attn_implementation_internal
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459

        if use_flash_attention_2:
            logger.warning_once(
                'The model was loaded with use_flash_attention_2=True, which is deprecated and may be removed in a future release. Please use `attn_implementation="flash_attention_2"` instead.'
            )
            config._attn_implementation = "flash_attention_2"

        if config._attn_implementation == "flash_attention_2":
            cls._check_and_enable_flash_attn_2(
                config,
                torch_dtype=torch_dtype,
                device_map=device_map,
1460
                hard_check_only=False,
1461
1462
                check_device_map=check_device_map,
            )
1463
        elif requested_attn_implementation in [None, "sdpa"] and not is_torch_xla_available():
1464
            # use_flash_attention_2 takes priority over SDPA, hence SDPA treated in this elif.
1465
            config = cls._check_and_enable_sdpa(
1466
1467
                config,
                hard_check_only=False if requested_attn_implementation is None else True,
1468
1469
            )
        else:
1470
1471
1472
1473
            config._attn_implementation = "eager"

        return config

1474
1475
1476
1477
1478
1479
1480
    @classmethod
    def _set_default_torch_dtype(cls, dtype: torch.dtype) -> torch.dtype:
        """
        Change the default dtype and return the previous one. This is needed when wanting to instantiate the model
        under specific dtype.

        Args:
1481
            dtype (`torch.dtype`):
1482
1483
1484
                a floating dtype to set to.

        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
1485
1486
            `torch.dtype`: the original `dtype` that can be used to restore `torch.set_default_dtype(dtype)` if it was
            modified. If it wasn't, returns `None`.
1487

1488
1489
        Note `set_default_dtype` currently only works with floating-point types and asserts if for example,
        `torch.int64` is passed. So if a non-float `dtype` is passed this functions will throw an exception.
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
        """
        if not dtype.is_floating_point:
            raise ValueError(
                f"Can't instantiate {cls.__name__} model under dtype={dtype} since it is not a floating point dtype"
            )

        logger.info(f"Instantiating {cls.__name__} model under default dtype {dtype}.")
        dtype_orig = torch.get_default_dtype()
        torch.set_default_dtype(dtype)
        return dtype_orig

1501
    @property
1502
1503
    def base_model(self) -> nn.Module:
        """
1504
        `torch.nn.Module`: The main body of the model.
1505
        """
1506
        return getattr(self, self.base_model_prefix, self)
thomwolf's avatar
thomwolf committed
1507

1508
1509
    @classmethod
    def can_generate(cls) -> bool:
1510
1511
1512
1513
1514
1515
        """
        Returns whether this model can generate sequences with `.generate()`.

        Returns:
            `bool`: Whether this model can generate sequences with `.generate()`.
        """
1516
1517
1518
        # Detects whether `prepare_inputs_for_generation` has been overwritten, which is a requirement for generation.
        # Alternativelly, the model can also have a custom `generate` function.
        if "GenerationMixin" in str(cls.prepare_inputs_for_generation) and "GenerationMixin" in str(cls.generate):
1519
1520
1521
            return False
        return True

1522
1523
    @classmethod
    def _check_and_enable_flash_attn_2(
1524
1525
1526
1527
1528
1529
        cls,
        config,
        torch_dtype: Optional[torch.dtype] = None,
        device_map: Optional[Union[str, Dict[str, int]]] = None,
        check_device_map: bool = True,
        hard_check_only: bool = False,
1530
1531
    ) -> PretrainedConfig:
        """
1532
        Checks the availability of Flash Attention 2 and compatibility with the current model.
1533

1534
        If all checks pass and `hard_check_only` is False, the method will set the config attribute `attn_implementation` to "flash_attention_2" so that the model can initialize the correct attention module.
1535
1536
1537
        """
        if not cls._supports_flash_attn_2:
            raise ValueError(
1538
1539
1540
                f"{cls.__name__} does not support Flash Attention 2.0 yet. Please request to add support where"
                f" the model is hosted, on its model hub page: https://huggingface.co/{config._name_or_path}/discussions/new"
                " or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new"
1541
1542
            )

1543
        if not is_flash_attn_2_available():
1544
1545
1546
            preface = "FlashAttention2 has been toggled on, but it cannot be used due to the following error:"
            install_message = "Please refer to the documentation of https://huggingface.co/docs/transformers/perf_infer_gpu_one#flashattention-2 to install Flash Attention 2."

1547
1548
1549
1550
1551
            if importlib.util.find_spec("flash_attn") is None:
                raise ImportError(f"{preface} the package flash_attn seems to be not installed. {install_message}")

            flash_attention_version = version.parse(importlib.metadata.version("flash_attn"))
            if torch.version.cuda:
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
                if flash_attention_version < version.parse("2.1.0"):
                    raise ImportError(
                        f"{preface} you need flash_attn package version to be greater or equal than 2.1.0. Detected version {flash_attention_version}. {install_message}"
                    )
                else:
                    raise ImportError(f"{preface} Flash Attention 2 is not available. {install_message}")
            elif torch.version.hip:
                if flash_attention_version < version.parse("2.0.4"):
                    raise ImportError(
                        f"{preface} you need flash_attn package version to be greater or equal than 2.0.4. Make sure to have that version installed - detected version {flash_attention_version}. {install_message}"
                    )
                else:
                    raise ImportError(f"{preface} Flash Attention 2 is not available. {install_message}")
1565
1566
1567
1568
1569
1570
1571
1572
1573

        _is_bettertransformer = getattr(cls, "use_bettertransformer", False)

        if _is_bettertransformer:
            raise ValueError(
                "Flash Attention 2 and BetterTransformer API are not compatible. Please make sure to disable BetterTransformers by doing model.reverse_bettertransformer()"
            )

        if torch_dtype is None:
1574
            logger.warning_once(
1575
1576
1577
                "You are attempting to use Flash Attention 2.0 without specifying a torch dtype. This might lead to unexpected behaviour"
            )
        elif torch_dtype is not None and torch_dtype not in [torch.float16, torch.bfloat16]:
1578
1579
1580
1581
            logger.warning_once(
                "Flash Attention 2.0 only supports torch.float16 and torch.bfloat16 dtypes, but"
                f" the current dype in {cls.__name__} is {torch_dtype}. You should run training or inference using Automatic Mixed-Precision via the `with torch.autocast(device_type='torch_device'):` decorator,"
                ' or load the model with the `torch_dtype` argument. Example: `model = AutoModel.from_pretrained("openai/whisper-tiny", attn_implementation="flash_attention_2", torch_dtype=torch.float16)`'
1582
1583
            )

1584
1585
1586
        # The check `torch.empty(0).device.type != "cuda"` is needed as the model may be initialized after `torch.set_default_device` has been called,
        # or the model may be initialized under the context manager `with torch.device("cuda"):`.
        if check_device_map and device_map is None and torch.empty(0).device.type != "cuda":
1587
            if torch.cuda.is_available():
1588
                logger.warning_once(
1589
                    "You are attempting to use Flash Attention 2.0 with a model not initialized on GPU. Make sure to move the model to GPU"
1590
1591
1592
1593
                    " after initializing it on CPU with `model.to('cuda')`."
                )
            else:
                raise ValueError(
1594
                    "You are attempting to use Flash Attention 2.0 with a model not initialized on GPU and with no GPU available. "
1595
1596
1597
1598
                    "This is not supported yet. Please make sure to have access to a GPU and either initialise the model on a GPU by passing a device_map "
                    "or initialising the model on CPU and then moving it to GPU."
                )
        elif (
1599
1600
            check_device_map
            and device_map is not None
1601
1602
1603
1604
1605
1606
1607
            and isinstance(device_map, dict)
            and ("cpu" in device_map.values() or "disk" in device_map.values())
        ):
            raise ValueError(
                "You are attempting to use Flash Attention 2.0 with a model dispatched on CPU or disk. This is not supported. Please make sure to "
                "initialise the model on a GPU by passing a device_map that contains only GPU devices as keys."
            )
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
        if not hard_check_only:
            config._attn_implementation = "flash_attention_2"
        return config

    @classmethod
    def _check_and_enable_sdpa(cls, config, hard_check_only: bool = False) -> PretrainedConfig:
        """
        Checks the availability of SDPA for a given model.

        If all checks pass and `hard_check_only` is False, the method will set the config attribute `_attn_implementation` to "flash_attention_2" so that the model can initialize the correct attention module.
        """
        if hard_check_only:
            if not cls._supports_sdpa:
                raise ValueError(
1622
1623
1624
                    f"{cls.__name__} does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet."
                    " Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe"
                    ' this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation="eager"` meanwhile. Example: `model = AutoModel.from_pretrained("openai/whisper-tiny", attn_implementation="eager")`'
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
                )
            if not is_torch_sdpa_available():
                raise ImportError(
                    "PyTorch SDPA requirements in Transformers are not met. Please install torch>=2.1.1."
                )

        if not is_torch_sdpa_available() or not cls._supports_sdpa:
            return config

        _is_bettertransformer = getattr(cls, "use_bettertransformer", False)
        if _is_bettertransformer:
            return config

        if not hard_check_only:
            config._attn_implementation = "sdpa"
1640
1641
        return config

1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
    def enable_input_require_grads(self):
        """
        Enables the gradients for the input embeddings. This is useful for fine-tuning adapter weights while keeping
        the model weights fixed.
        """

        def make_inputs_require_grads(module, input, output):
            output.requires_grad_(True)

        self._require_grads_hook = self.get_input_embeddings().register_forward_hook(make_inputs_require_grads)

    def disable_input_require_grads(self):
        """
        Removes the `_require_grads_hook`.
        """
        self._require_grads_hook.remove()

1659
    def get_input_embeddings(self) -> nn.Module:
1660
1661
1662
1663
        """
        Returns the model's input embeddings.

        Returns:
1664
            `nn.Module`: A torch module mapping vocabulary to hidden states.
thomwolf's avatar
thomwolf committed
1665
        """
1666
        base_model = getattr(self, self.base_model_prefix, self)
thomwolf's avatar
thomwolf committed
1667
1668
1669
1670
        if base_model is not self:
            return base_model.get_input_embeddings()
        else:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
1671

1672
    def set_input_embeddings(self, value: nn.Module):
1673
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1674
        Set model's input embeddings.
1675
1676

        Args:
1677
            value (`nn.Module`): A module mapping vocabulary to hidden states.
thomwolf's avatar
thomwolf committed
1678
1679
1680
1681
1682
1683
        """
        base_model = getattr(self, self.base_model_prefix, self)
        if base_model is not self:
            base_model.set_input_embeddings(value)
        else:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
1684

1685
    def get_output_embeddings(self) -> nn.Module:
1686
1687
1688
1689
        """
        Returns the model's output embeddings.

        Returns:
1690
            `nn.Module`: A torch module mapping hidden states to vocabulary.
thomwolf's avatar
thomwolf committed
1691
        """
1692
        return None  # Overwrite for models with output embeddings
thomwolf's avatar
thomwolf committed
1693

1694
1695
    def _init_weights(self, module):
        """
1696
1697
1698
1699
        Initialize the weights. This method should be overridden by derived class and is
        the only initialization method that will be called when loading a checkpoint
        using `from_pretrained`. Any attempt to initialize outside of this function
        will be useless as the torch.nn.init function are all replaced with skip.
1700
        """
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
        pass

    def _initialize_weights(self, module):
        """
        Initialize the weights if they are not already initialized.
        """
        if getattr(module, "_is_hf_initialized", False):
            return
        self._init_weights(module)
        module._is_hf_initialized = True
1711

1712
    def tie_weights(self):
1713
1714
        """
        Tie the weights between the input embeddings and the output embeddings.
1715

Sylvain Gugger's avatar
Sylvain Gugger committed
1716
1717
        If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the
        weights instead.
thomwolf's avatar
thomwolf committed
1718
        """
1719
1720
1721
1722
        if getattr(self.config, "tie_word_embeddings", True):
            output_embeddings = self.get_output_embeddings()
            if output_embeddings is not None:
                self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings())
thomwolf's avatar
thomwolf committed
1723

1724
        if getattr(self.config, "is_encoder_decoder", False) and getattr(self.config, "tie_encoder_decoder", False):
Weizhen's avatar
Weizhen committed
1725
1726
            if hasattr(self, self.base_model_prefix):
                self = getattr(self, self.base_model_prefix)
1727
1728
1729
1730
1731
1732
1733
            tied_weights = self._tie_encoder_decoder_weights(
                self.encoder, self.decoder, self.base_model_prefix, "encoder"
            )
            # Setting a dynamic variable instead of `_tied_weights_keys` because it's a class
            # attributed not an instance member, therefore modifying it will modify the entire class
            # Leading to issues on subsequent calls by different tests or subsequent calls.
            self._dynamic_tied_weights_keys = tied_weights
1734

Sylvain Gugger's avatar
Sylvain Gugger committed
1735
1736
1737
1738
        for module in self.modules():
            if hasattr(module, "_tie_weights"):
                module._tie_weights()

1739
    @staticmethod
1740
1741
1742
    def _tie_encoder_decoder_weights(
        encoder: nn.Module, decoder: nn.Module, base_model_prefix: str, base_encoder_name: str
    ):
1743
        uninitialized_encoder_weights: List[str] = []
1744
        tied_weights: List[str] = []
Weizhen's avatar
Weizhen committed
1745
1746
        if decoder.__class__ != encoder.__class__:
            logger.info(
Sylvain Gugger's avatar
Sylvain Gugger committed
1747
1748
                f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder"
                " weights are correctly initialized."
Weizhen's avatar
Weizhen committed
1749
            )
1750
1751
1752
1753
1754

        def tie_encoder_to_decoder_recursively(
            decoder_pointer: nn.Module,
            encoder_pointer: nn.Module,
            module_name: str,
1755
            base_encoder_name: str,
1756
1757
            uninitialized_encoder_weights: List[str],
            depth=0,
1758
1759
            total_decoder_name="",
            total_encoder_name="",
1760
1761
1762
        ):
            assert isinstance(decoder_pointer, nn.Module) and isinstance(
                encoder_pointer, nn.Module
1763
            ), f"{decoder_pointer} and {encoder_pointer} have to be of type nn.Module"
1764
1765
1766
            if hasattr(decoder_pointer, "weight"):
                assert hasattr(encoder_pointer, "weight")
                encoder_pointer.weight = decoder_pointer.weight
1767
                tied_weights.append(f"{base_encoder_name}{total_encoder_name}.weight")
1768
1769
                if hasattr(decoder_pointer, "bias"):
                    assert hasattr(encoder_pointer, "bias")
1770
                    tied_weights.append(f"{base_encoder_name}{total_encoder_name}.bias")
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
                    encoder_pointer.bias = decoder_pointer.bias
                return

            encoder_modules = encoder_pointer._modules
            decoder_modules = decoder_pointer._modules
            if len(decoder_modules) > 0:
                assert (
                    len(encoder_modules) > 0
                ), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"

1781
                all_encoder_weights = {module_name + "/" + sub_name for sub_name in encoder_modules.keys()}
1782
1783
1784
1785
1786
                encoder_layer_pos = 0
                for name, module in decoder_modules.items():
                    if name.isdigit():
                        encoder_name = str(int(name) + encoder_layer_pos)
                        decoder_name = name
Weizhen's avatar
Weizhen committed
1787
1788
1789
                        if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len(
                            encoder_modules
                        ) != len(decoder_modules):
1790
1791
                            # this can happen if the name corresponds to the position in a list module list of layers
                            # in this case the decoder has added a cross-attention that the encoder does not have
1792
                            # thus skip this step and subtract one layer pos from encoder
1793
1794
1795
1796
1797
1798
                            encoder_layer_pos -= 1
                            continue
                    elif name not in encoder_modules:
                        continue
                    elif depth > 500:
                        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1799
1800
                            "Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is"
                            " a circular dependency between two or more `nn.Modules` of your model."
1801
1802
1803
1804
1805
1806
1807
                        )
                    else:
                        decoder_name = encoder_name = name
                    tie_encoder_to_decoder_recursively(
                        decoder_modules[decoder_name],
                        encoder_modules[encoder_name],
                        module_name + "/" + name,
1808
                        base_encoder_name,
1809
1810
                        uninitialized_encoder_weights,
                        depth=depth + 1,
1811
1812
                        total_encoder_name=f"{total_encoder_name}.{encoder_name}",
                        total_decoder_name=f"{total_decoder_name}.{decoder_name}",
1813
1814
1815
1816
1817
1818
                    )
                    all_encoder_weights.remove(module_name + "/" + encoder_name)

                uninitialized_encoder_weights += list(all_encoder_weights)

        # tie weights recursively
1819
1820
1821
1822
        tie_encoder_to_decoder_recursively(
            decoder, encoder, base_model_prefix, base_encoder_name, uninitialized_encoder_weights
        )

1823
1824
1825
1826
        if len(uninitialized_encoder_weights) > 0:
            logger.warning(
                f"The following encoder weights were not tied to the decoder {uninitialized_encoder_weights}"
            )
1827
        return tied_weights
1828

1829
    def _tie_or_clone_weights(self, output_embeddings, input_embeddings):
Lysandre's avatar
Lysandre committed
1830
        """Tie or clone module weights depending of whether we are using TorchScript or not"""
thomwolf's avatar
thomwolf committed
1831
        if self.config.torchscript:
1832
            output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone())
thomwolf's avatar
thomwolf committed
1833
        else:
1834
            output_embeddings.weight = input_embeddings.weight
thomwolf's avatar
thomwolf committed
1835

Sam Shleifer's avatar
Sam Shleifer committed
1836
        if getattr(output_embeddings, "bias", None) is not None:
1837
            output_embeddings.bias.data = nn.functional.pad(
1838
                output_embeddings.bias.data,
Lysandre's avatar
Lysandre committed
1839
1840
1841
1842
                (
                    0,
                    output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0],
                ),
1843
1844
                "constant",
                0,
1845
            )
1846
        if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"):
1847
            output_embeddings.out_features = input_embeddings.num_embeddings
1848

Marc Sun's avatar
Marc Sun committed
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
    def _get_no_split_modules(self, device_map: str):
        """
        Get the modules of the model that should not be spit when using device_map. We iterate through the modules to
        get the underlying `_no_split_modules`.

        Args:
            device_map (`str`):
                The device map value. Options are ["auto", "balanced", "balanced_low_0", "sequential"]

        Returns:
            `List[str]`: List of modules that should not be split
        """
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
        _no_split_modules = set()
        modules_to_check = [self]
        while len(modules_to_check) > 0:
            module = modules_to_check.pop(-1)
            # if the module does not appear in _no_split_modules, we also check the children
            if module.__class__.__name__ not in _no_split_modules:
                if isinstance(module, PreTrainedModel):
                    if module._no_split_modules is None:
                        raise ValueError(
                            f"{module.__class__.__name__} does not support `device_map='{device_map}'`. To implement support, the model "
                            "class needs to implement the `_no_split_modules` attribute."
                        )
                    else:
                        _no_split_modules = _no_split_modules | set(module._no_split_modules)
                modules_to_check += list(module.children())
Marc Sun's avatar
Marc Sun committed
1876
1877
        return list(_no_split_modules)

1878
1879
1880
    def resize_token_embeddings(
        self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None
    ) -> nn.Embedding:
1881
        """
1882
        Resizes input token embeddings matrix of the model if `new_num_tokens != config.vocab_size`.
1883

1884
        Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
thomwolf's avatar
thomwolf committed
1885

1886
        Arguments:
1887
            new_num_tokens (`int`, *optional*):
1888
                The new number of tokens in the embedding matrix. Increasing the size will add newly initialized
Sylvain Gugger's avatar
Sylvain Gugger committed
1889
1890
                vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
                returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything.
1891
            pad_to_multiple_of (`int`, *optional*):
Arthur's avatar
Arthur committed
1892
1893
                If set will pad the embedding matrix to a multiple of the provided value.If `new_num_tokens` is set to
                `None` will just pad the embedding to a multiple of `pad_to_multiple_of`.
1894
1895
1896
1897
1898

                This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
                `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more
                details about this, or help on choosing the correct value for resizing, refer to this guide:
                https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc
1899
1900

        Return:
1901
            `torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model.
thomwolf's avatar
thomwolf committed
1902
        """
1903
        model_embeds = self._resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
Arthur's avatar
Arthur committed
1904
        if new_num_tokens is None and pad_to_multiple_of is None:
thomwolf's avatar
thomwolf committed
1905
            return model_embeds
thomwolf's avatar
thomwolf committed
1906
1907

        # Update base model and current model config
Arthur's avatar
Arthur committed
1908
1909
        self.config.vocab_size = model_embeds.weight.shape[0]
        self.vocab_size = model_embeds.weight.shape[0]
thomwolf's avatar
thomwolf committed
1910
1911

        # Tie weights again if needed
1912
        self.tie_weights()
thomwolf's avatar
thomwolf committed
1913

thomwolf's avatar
thomwolf committed
1914
1915
        return model_embeds

1916
    def _resize_token_embeddings(self, new_num_tokens, pad_to_multiple_of=None):
thomwolf's avatar
thomwolf committed
1917
        old_embeddings = self.get_input_embeddings()
1918
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens, pad_to_multiple_of)
1919
1920
1921
        if hasattr(old_embeddings, "_hf_hook"):
            hook = old_embeddings._hf_hook
            add_hook_to_module(new_embeddings, hook)
1922
1923
        old_embeddings_requires_grad = old_embeddings.weight.requires_grad
        new_embeddings.requires_grad_(old_embeddings_requires_grad)
thomwolf's avatar
thomwolf committed
1924
        self.set_input_embeddings(new_embeddings)
1925
        is_quantized = hasattr(self, "hf_quantizer") and self.hf_quantizer is not None
1926

1927
1928
        # Update new_num_tokens with the actual size of new_embeddings
        if pad_to_multiple_of is not None:
1929
            if is_deepspeed_zero3_enabled() and not is_quantized:
1930
1931
1932
1933
1934
1935
1936
                import deepspeed

                with deepspeed.zero.GatheredParameters(new_embeddings.weight, modifier_rank=None):
                    new_num_tokens = new_embeddings.weight.shape[0]
            else:
                new_num_tokens = new_embeddings.weight.shape[0]

1937
1938
1939
        # if word embeddings are not tied, make sure that lm head is resized as well
        if self.get_output_embeddings() is not None and not self.config.tie_word_embeddings:
            old_lm_head = self.get_output_embeddings()
1940
1941
1942
1943
            if isinstance(old_lm_head, torch.nn.Embedding):
                new_lm_head = self._get_resized_embeddings(old_lm_head, new_num_tokens)
            else:
                new_lm_head = self._get_resized_lm_head(old_lm_head, new_num_tokens)
1944
1945
1946
            if hasattr(old_lm_head, "_hf_hook"):
                hook = old_lm_head._hf_hook
                add_hook_to_module(new_lm_head, hook)
1947
1948
            old_lm_head_requires_grad = old_lm_head.weight.requires_grad
            new_lm_head.requires_grad_(old_lm_head_requires_grad)
1949
1950
            self.set_output_embeddings(new_lm_head)

thomwolf's avatar
thomwolf committed
1951
        return self.get_input_embeddings()
1952

1953
    def _get_resized_embeddings(
1954
1955
1956
1957
        self,
        old_embeddings: nn.Embedding,
        new_num_tokens: Optional[int] = None,
        pad_to_multiple_of: Optional[int] = None,
1958
    ) -> nn.Embedding:
1959
1960
1961
        """
        Build a resized Embedding Module from a provided token Embedding Module. Increasing the size will add newly
        initialized vectors at the end. Reducing the size will remove vectors from the end
1962
1963

        Args:
1964
            old_embeddings (`torch.nn.Embedding`):
1965
                Old embeddings to be resized.
1966
            new_num_tokens (`int`, *optional*):
1967
                New number of tokens in the embedding matrix.
1968
1969

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
1970
                vectors from the end. If not provided or `None`, just returns a pointer to the input tokens
1971
                `torch.nn.Embedding` module of the model without doing anything.
1972
            pad_to_multiple_of (`int`, *optional*):
Arthur's avatar
Arthur committed
1973
1974
                If set will pad the embedding matrix to a multiple of the provided value. If `new_num_tokens` is set to
                `None` will just pad the embedding to a multiple of `pad_to_multiple_of`.
1975
1976
1977
1978
1979
1980

                This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
                `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more
                details about this, or help on choosing the correct value for resizing, refer to this guide:
                https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc

1981
1982

        Return:
1983
1984
            `torch.nn.Embedding`: Pointer to the resized Embedding Module or the old Embedding Module if
            `new_num_tokens` is `None`
1985
        """
1986
1987
1988
1989
1990
1991
1992
1993

        if pad_to_multiple_of is not None:
            if not isinstance(pad_to_multiple_of, int):
                raise ValueError(
                    f"Asking to pad the embedding matrix to a multiple of `{pad_to_multiple_of}`, which is not and integer. Please make sure to pass an integer"
                )
            if new_num_tokens is None:
                new_num_tokens = old_embeddings.weight.shape[0]
1994
            new_num_tokens = ((new_num_tokens + pad_to_multiple_of - 1) // pad_to_multiple_of) * pad_to_multiple_of
1995
        else:
1996
            logger.info(
1997
                "You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding"
1998
                f" dimension will be {new_num_tokens}. This might induce some performance reduction as *Tensor Cores* will not be available."
1999
                " For more details about this, or help on choosing the correct value for resizing, refer to this guide:"
2000
2001
2002
                " https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc"
            )

2003
2004
2005
        if new_num_tokens is None:
            return old_embeddings

2006
2007
        is_quantized = hasattr(self, "hf_quantizer") and self.hf_quantizer is not None
        if is_deepspeed_zero3_enabled() and not is_quantized:
2008
2009
2010
2011
2012
2013
2014
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_embeddings.weight, modifier_rank=None):
                old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
        else:
            old_num_tokens, old_embedding_dim = old_embeddings.weight.size()

2015
        if old_num_tokens == new_num_tokens and not is_deepspeed_zero3_enabled():
2016
2017
            return old_embeddings

2018
2019
        if not isinstance(old_embeddings, nn.Embedding):
            raise TypeError(
Sylvain Gugger's avatar
Sylvain Gugger committed
2020
2021
2022
                f"Old embeddings are of type {type(old_embeddings)}, which is not an instance of {nn.Embedding}. You"
                " should either use a different resize function or make sure that `old_embeddings` are an instance of"
                f" {nn.Embedding}."
2023
2024
            )

2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
        # Build new embeddings

        # When using DeepSpeed ZeRO-3, we shouldn't create new embeddings with DeepSpeed init
        # because the shape of the new embedding layer is used across various modeling files
        # as well as to update config vocab size. Shape will be 0 when using DeepSpeed init leading
        # to errors when training.
        new_embeddings = nn.Embedding(
            new_num_tokens,
            old_embedding_dim,
            device=old_embeddings.weight.device,
            dtype=old_embeddings.weight.dtype,
        )

        # initialize all new embeddings (in particular added tokens)
        self._init_weights(new_embeddings)

        # Copy token embeddings from the previous weights

2043
2044
        # numbers of tokens to copy
        n = min(old_num_tokens, new_num_tokens)
2045

2046
        if is_deepspeed_zero3_enabled() and not is_quantized:
2047
2048
            import deepspeed

2049
2050
2051
            params = [old_embeddings.weight, new_embeddings.weight]
            with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
                new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :]
2052
2053
        else:
            new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :]
2054
2055
2056

        return new_embeddings

2057
    def _get_resized_lm_head(
2058
2059
        self, old_lm_head: nn.Linear, new_num_tokens: Optional[int] = None, transposed: Optional[bool] = False
    ) -> nn.Linear:
2060
2061
2062
2063
2064
        """
        Build a resized Linear Module from a provided old Linear Module. Increasing the size will add newly initialized
        vectors at the end. Reducing the size will remove vectors from the end

        Args:
2065
            old_lm_head (`torch.nn.Linear`):
2066
                Old lm head liner layer to be resized.
2067
            new_num_tokens (`int`, *optional*):
2068
2069
2070
                New number of tokens in the linear matrix.

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
2071
                vectors from the end. If not provided or `None`, just returns a pointer to the input tokens
2072
2073
2074
                `torch.nn.Linear` module of the model without doing anything. transposed (`bool`, *optional*, defaults
                to `False`): Whether `old_lm_head` is transposed or not. If True `old_lm_head.size()` is `lm_head_dim,
                vocab_size` else `vocab_size, lm_head_dim`.
2075
2076

        Return:
Sylvain Gugger's avatar
Sylvain Gugger committed
2077
2078
            `torch.nn.Linear`: Pointer to the resized Linear Module or the old Linear Module if `new_num_tokens` is
            `None`
2079
2080
2081
2082
        """
        if new_num_tokens is None:
            return old_lm_head

2083
2084
        is_quantized = hasattr(self, "hf_quantizer") and self.hf_quantizer is not None
        if is_deepspeed_zero3_enabled() and not is_quantized:
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_lm_head.weight, modifier_rank=None):
                old_num_tokens, old_lm_head_dim = (
                    old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
                )
        else:
            old_num_tokens, old_lm_head_dim = (
                old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
            )
2095

2096
        if old_num_tokens == new_num_tokens and not is_deepspeed_zero3_enabled():
2097
2098
2099
2100
            return old_lm_head

        if not isinstance(old_lm_head, nn.Linear):
            raise TypeError(
Sylvain Gugger's avatar
Sylvain Gugger committed
2101
2102
2103
                f"Old language model head is of type {type(old_lm_head)}, which is not an instance of {nn.Linear}. You"
                " should either use a different resize function or make sure that `old_lm_head` are an instance of"
                f" {nn.Linear}."
2104
2105
2106
2107
2108
2109
            )

        # Build new lm head
        new_lm_head_shape = (old_lm_head_dim, new_num_tokens) if not transposed else (new_num_tokens, old_lm_head_dim)
        has_new_lm_head_bias = old_lm_head.bias is not None

2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
        # When using DeepSpeed ZeRO-3, we shouldn't create new embeddings with DeepSpeed init
        # because the shape of the new embedding layer is used across various modeling files
        # as well as to update config vocab size. Shape will be 0 when using DeepSpeed init leading
        # to errors when training.
        new_lm_head = nn.Linear(
            *new_lm_head_shape,
            bias=has_new_lm_head_bias,
            device=old_lm_head.weight.device,
            dtype=old_lm_head.weight.dtype,
        )

        # initialize new lm head (in particular added tokens)
        self._init_weights(new_lm_head)

2124
2125
        num_tokens_to_copy = min(old_num_tokens, new_num_tokens)

2126
        if is_deepspeed_zero3_enabled() and not is_quantized:
2127
2128
            import deepspeed

2129
2130
            params = [old_lm_head.weight, old_lm_head.bias, new_lm_head.weight, new_lm_head.bias]
            with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
2131
2132
2133
                self._copy_lm_head_original_to_resized(
                    new_lm_head, old_lm_head, num_tokens_to_copy, transposed, has_new_lm_head_bias
                )
2134
        else:
2135
2136
            self._copy_lm_head_original_to_resized(
                new_lm_head, old_lm_head, num_tokens_to_copy, transposed, has_new_lm_head_bias
2137
            )
2138
2139
2140

        return new_lm_head

2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
    def _copy_lm_head_original_to_resized(
        self, new_lm_head, old_lm_head, num_tokens_to_copy, transposed, has_new_lm_head_bias
    ):
        # Copy old lm head weights to new lm head
        if not transposed:
            new_lm_head.weight.data[:num_tokens_to_copy, :] = old_lm_head.weight.data[:num_tokens_to_copy, :]
        else:
            new_lm_head.weight.data[:, :num_tokens_to_copy] = old_lm_head.weight.data[:, :num_tokens_to_copy]

        # Copy bias weights to new lm head
        if has_new_lm_head_bias:
            new_lm_head.bias.data[:num_tokens_to_copy] = old_lm_head.bias.data[:num_tokens_to_copy]

2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
    def resize_position_embeddings(self, new_num_position_embeddings: int):
        raise NotImplementedError(
            f"`resize_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should "
            f"overwrite this method in the class {self.__class__} in `modeling_{self.__class__.__module__}.py`"
        )

    def get_position_embeddings(self) -> Union[nn.Embedding, Tuple[nn.Embedding]]:
        raise NotImplementedError(
            f"`get_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should "
            f"overwrite this method in the class {self.__class__} in `modeling_{self.__class__.__module__}.py`"
        )

2166
    def init_weights(self):
2167
        """
2168
2169
        If needed prunes and maybe initializes weights. If using a custom `PreTrainedModel`, you need to implement any
        initialization logic in `_init_weights`.
2170
        """
2171
2172
2173
2174
        # Prune heads if needed
        if self.config.pruned_heads:
            self.prune_heads(self.config.pruned_heads)

2175
2176
        if _init_weights:
            # Initialize weights
2177
            self.apply(self._initialize_weights)
2178
2179
2180
2181

            # Tie weights should be skipped when not initializing all weights
            # since from_pretrained(...) calls tie weights anyways
            self.tie_weights()
2182

2183
2184
2185
    def prune_heads(self, heads_to_prune: Dict[int, List[int]]):
        """
        Prunes heads of the base model.
2186

2187
        Arguments:
2188
            heads_to_prune (`Dict[int, List[int]]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2189
2190
2191
                Dictionary with keys being selected layer indices (`int`) and associated values being the list of heads
                to prune in said layer (list of `int`). For instance {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on
                layer 1 and heads 2 and 3 on layer 2.
thomwolf's avatar
thomwolf committed
2192
        """
2193
        # save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads
2194
        for layer, heads in heads_to_prune.items():
2195
2196
2197
            union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads)
            self.config.pruned_heads[layer] = list(union_heads)  # Unfortunately we have to store it as list for JSON

2198
        self.base_model._prune_heads(heads_to_prune)
thomwolf's avatar
thomwolf committed
2199

2200
    def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None):
2201
2202
2203
2204
2205
        """
        Activates gradient checkpointing for the current model.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
2206
2207
2208
2209
2210
2211
2212

        We pass the `__call__` method of the modules instead of `forward` because `__call__` attaches all the hooks of
        the module. https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2

        Args:
            gradient_checkpointing_kwargs (dict, *optional*):
                Additional keyword arguments passed along to the `torch.utils.checkpoint.checkpoint` function.
2213
2214
2215
        """
        if not self.supports_gradient_checkpointing:
            raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
2216
2217

        if gradient_checkpointing_kwargs is None:
2218
            gradient_checkpointing_kwargs = {"use_reentrant": True}
2219

2220
        gradient_checkpointing_func = functools.partial(checkpoint, **gradient_checkpointing_kwargs)
2221

2222
        # For old GC format (transformers < 4.35.0) for models that live on the Hub
Stas Bekman's avatar
Stas Bekman committed
2223
        # we will fall back to the overwritten `_set_gradient_checkpointing` method
2224
2225
2226
2227
2228
2229
        _is_using_old_format = "value" in inspect.signature(self._set_gradient_checkpointing).parameters

        if not _is_using_old_format:
            self._set_gradient_checkpointing(enable=True, gradient_checkpointing_func=gradient_checkpointing_func)
        else:
            self.apply(partial(self._set_gradient_checkpointing, value=True))
2230
            logger.warning(
2231
2232
2233
                "You are using an old version of the checkpointing format that is deprecated (We will also silently ignore `gradient_checkpointing_kwargs` in case you passed it)."
                "Please update to the new format on your modeling file. To use the new format, you need to completely remove the definition of the method `_set_gradient_checkpointing` in your model."
            )
2234

2235
2236
2237
2238
2239
2240
2241
        if getattr(self, "_hf_peft_config_loaded", False):
            # When using PEFT + gradient checkpointing + Trainer we need to make sure the input has requires_grad=True
            # we do it also on PEFT: https://github.com/huggingface/peft/blob/85013987aa82aa1af3da1236b6902556ce3e483e/src/peft/peft_model.py#L334
            # When training with PEFT, only LoRA layers will have requires grad set to True, but the output of frozen layers need to propagate
            # the gradients to make sure the gradient flows.
            self.enable_input_require_grads()

2242
    def _set_gradient_checkpointing(self, enable: bool = True, gradient_checkpointing_func: Callable = checkpoint):
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
        is_gradient_checkpointing_set = False

        # Apply it on the top-level module in case the top-level modules supports it
        # for example, LongT5Stack inherits from `PreTrainedModel`.
        if hasattr(self, "gradient_checkpointing"):
            self._gradient_checkpointing_func = gradient_checkpointing_func
            self.gradient_checkpointing = enable
            is_gradient_checkpointing_set = True

        for module in self.modules():
            if hasattr(module, "gradient_checkpointing"):
                module._gradient_checkpointing_func = gradient_checkpointing_func
                module.gradient_checkpointing = enable
                is_gradient_checkpointing_set = True

        if not is_gradient_checkpointing_set:
            raise ValueError(
                f"{self.__class__.__name__} is not compatible with gradient checkpointing. Make sure all the architecture support it by setting a boolean attribute"
                " `gradient_checkpointing` to modules of the model that uses checkpointing."
            )

2264
    def gradient_checkpointing_disable(self):
2265
2266
2267
2268
2269
2270
2271
        """
        Deactivates gradient checkpointing for the current model.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        if self.supports_gradient_checkpointing:
2272
2273
2274
2275
2276
2277
            # For old GC format (transformers < 4.35.0) for models that live on the Hub
            # we will fall back to the overwritten `_set_gradient_checkpointing` methid
            _is_using_old_format = "value" in inspect.signature(self._set_gradient_checkpointing).parameters
            if not _is_using_old_format:
                self._set_gradient_checkpointing(enable=False)
            else:
2278
                logger.warning(
2279
2280
2281
2282
                    "You are using an old version of the checkpointing format that is deprecated (We will also silently ignore `gradient_checkpointing_kwargs` in case you passed it)."
                    "Please update to the new format on your modeling file. To use the new format, you need to completely remove the definition of the method `_set_gradient_checkpointing` in your model."
                )
                self.apply(partial(self._set_gradient_checkpointing, value=False))
2283

2284
2285
2286
        if getattr(self, "_hf_peft_config_loaded", False):
            self.disable_input_require_grads()

2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
    @property
    def is_gradient_checkpointing(self) -> bool:
        """
        Whether gradient checkpointing is activated for this model or not.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules())

2297
2298
2299
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
2300
        is_main_process: bool = True,
2301
2302
        state_dict: Optional[dict] = None,
        save_function: Callable = torch.save,
Sylvain Gugger's avatar
Sylvain Gugger committed
2303
        push_to_hub: bool = False,
2304
        max_shard_size: Union[int, str] = "5GB",
2305
        safe_serialization: bool = True,
2306
        variant: Optional[str] = None,
2307
        token: Optional[Union[str, bool]] = None,
2308
        save_peft_format: bool = True,
Sylvain Gugger's avatar
Sylvain Gugger committed
2309
        **kwargs,
2310
    ):
2311
2312
        """
        Save a model and its configuration file to a directory, so that it can be re-loaded using the
2313
        [`~PreTrainedModel.from_pretrained`] class method.
2314

2315
        Arguments:
2316
            save_directory (`str` or `os.PathLike`):
2317
                Directory to which to save. Will be created if it doesn't exist.
2318
2319
2320
2321
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful when in distributed training like
                TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on
                the main process to avoid race conditions.
2322
            state_dict (nested dictionary of `torch.Tensor`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2323
2324
2325
                The state dictionary of the model to save. Will default to `self.state_dict()`, but can be used to only
                save parts of the model or if special precautions need to be taken when recovering the state dictionary
                of a model (like when using model parallelism).
2326
            save_function (`Callable`):
2327
                The function to use to save the state dictionary. Useful on distributed training like TPUs when one
2328
2329
                need to replace `torch.save` by another method.
            push_to_hub (`bool`, *optional*, defaults to `False`):
2330
2331
2332
                Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
2333
            max_shard_size (`int` or `str`, *optional*, defaults to `"5GB"`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2334
2335
                The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size
                lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`).
2336
2337
                We default it to 5GB in order for models to be able to run easily on free-tier google colab instances
                without CPU OOM issues.
Sylvain Gugger's avatar
Sylvain Gugger committed
2338
2339
2340
2341
2342
2343
2344
2345

                <Tip warning={true}>

                If a single weight of the model is bigger than `max_shard_size`, it will be in its own checkpoint shard
                which will be bigger than `max_shard_size`.

                </Tip>

2346
            safe_serialization (`bool`, *optional*, defaults to `True`):
2347
                Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
2348
2349
            variant (`str`, *optional*):
                If specified, weights are saved in the format pytorch_model.<variant>.bin.
2350
2351
2352
            token (`str` or `bool`, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
                the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
2353
2354
2355
2356
            save_peft_format (`bool`, *optional*, defaults to `True`):
                For backward compatibility with PEFT library, in case adapter weights are attached to the model, all
                keys of the state dict of adapters needs to be pre-pended with `base_model.model`. Advanced users can
                disable this behaviours by setting `save_peft_format` to `False`.
2357
            kwargs (`Dict[str, Any]`, *optional*):
2358
                Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
2359
        """
2360
        use_auth_token = kwargs.pop("use_auth_token", None)
2361
        ignore_metadata_errors = kwargs.pop("ignore_metadata_errors", False)
2362
2363
2364

        if use_auth_token is not None:
            warnings.warn(
2365
2366
                "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
                FutureWarning,
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
            )
            if token is not None:
                raise ValueError(
                    "`token` and `use_auth_token` are both specified. Please set only the argument `token`."
                )
            token = use_auth_token

        if token is not None:
            kwargs["token"] = token

Younes Belkada's avatar
Younes Belkada committed
2377
2378
        _hf_peft_config_loaded = getattr(self, "_hf_peft_config_loaded", False)

2379
2380
2381
2382
        hf_quantizer = getattr(self, "hf_quantizer", None)
        quantization_serializable = (
            hf_quantizer is not None and isinstance(hf_quantizer, HfQuantizer) and hf_quantizer.is_serializable
        )
2383

2384
2385
2386
2387
        if hf_quantizer is not None and not _hf_peft_config_loaded and not quantization_serializable:
            raise ValueError(
                f"The model is quantized with {hf_quantizer.quantization_config.quant_method} and is not serializable - check out the warnings from"
                " the logger on the traceback to understand the reason why the quantized model is not serializable."
2388
2389
            )

2390
2391
2392
2393
2394
        if "save_config" in kwargs:
            warnings.warn(
                "`save_config` is deprecated and will be removed in v5 of Transformers. Use `is_main_process` instead."
            )
            is_main_process = kwargs.pop("save_config")
2395
2396
        if safe_serialization and not is_safetensors_available():
            raise ImportError("`safe_serialization` requires the `safetensors library: `pip install safetensors`.")
2397

2398
        if os.path.isfile(save_directory):
2399
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
2400
            return
2401

2402
2403
        os.makedirs(save_directory, exist_ok=True)

2404
2405
        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
2406
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
2407
            repo_id = self._create_repo(repo_id, **kwargs)
2408
            files_timestamps = self._get_files_timestamps(save_directory)
2409

Julien Chaumond's avatar
Julien Chaumond committed
2410
        # Only save the model itself if we are using distributed training
2411
        model_to_save = unwrap_model(self)
2412

2413
2414
2415
2416
2417
        # save the string version of dtype to the config, e.g. convert torch.float32 => "float32"
        # we currently don't use this setting automatically, but may start to use with v5
        dtype = get_parameter_dtype(model_to_save)
        model_to_save.config.torch_dtype = str(dtype).split(".")[1]

Julien Chaumond's avatar
Julien Chaumond committed
2418
2419
2420
        # Attach architecture to the config
        model_to_save.config.architectures = [model_to_save.__class__.__name__]

2421
2422
2423
2424
2425
        # If we have a custom model, we copy the file defining it in the folder and set the attributes so it can be
        # loaded from the Hub.
        if self._auto_class is not None:
            custom_object_save(self, save_directory, config=self.config)

2426
        # Save the config
2427
        if is_main_process:
2428
2429
            if not _hf_peft_config_loaded:
                model_to_save.config.save_pretrained(save_directory)
2430
            if self.can_generate():
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
                # generation config built from the model config + the model config holds generation kwargs -> generate
                # may revert to legacy behavior if the two don't match
                if (
                    model_to_save.generation_config._from_model_config
                    and model_to_save.config._has_non_default_generation_parameters()
                ):
                    new_generation_config = GenerationConfig.from_model_config(model_to_save.config)
                    if new_generation_config != model_to_save.generation_config:
                        logger.warning(
                            "Your generation config was originally created from the model config, but the model "
                            "config has changed since then. Unless you pass the `generation_config` argument to this "
                            "model's `generate` calls, they will revert to the legacy behavior where the base "
                            "`generate` parameterization is loaded from the model config instead. "
                            "To avoid this behavior and this warning, we recommend you to overwrite the generation "
                            "config model attribute before calling the model's `save_pretrained`, preferably also "
                            "removing any generation kwargs from the model config. This warning will be raised to an "
                            "exception in v4.41."
                        )
2449
                model_to_save.generation_config.save_pretrained(save_directory)
2450

2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
            if _hf_peft_config_loaded:
                logger.info(
                    "Detected adapters on the model, saving the model in the PEFT format, only adapter weights will be saved."
                )
                state_dict = model_to_save.get_adapter_state_dict()

                if save_peft_format:
                    logger.info(
                        "To match the expected format of the PEFT library, all keys of the state dict of adapters will be pre-pended with `base_model.model`."
                    )
                    peft_state_dict = {}
                    for key, value in state_dict.items():
                        peft_state_dict[f"base_model.model.{key}"] = value
                    state_dict = peft_state_dict

2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
                active_adapter = self.active_adapters()

                if len(active_adapter) > 1:
                    raise ValueError(
                        "Multiple active adapters detected, saving multiple active adapters is not supported yet. You can save adapters separately one by one "
                        "by iteratively calling `model.set_adapter(adapter_name)` then `model.save_pretrained(...)`"
                    )
                active_adapter = active_adapter[0]

                current_peft_config = self.peft_config[active_adapter]
2476
2477
                current_peft_config.save_pretrained(save_directory)

2478
2479
2480
        # Save the model
        if state_dict is None:
            state_dict = model_to_save.state_dict()
2481

2482
2483
2484
2485
2486
        # Translate state_dict from smp to hf if saving with smp >= 1.10
        if IS_SAGEMAKER_MP_POST_1_10:
            for smp_to_hf, _ in smp.state.module_manager.translate_functions:
                state_dict = smp_to_hf(state_dict)

2487
        # Handle the case where some state_dict keys shouldn't be saved
2488
        if self._keys_to_ignore_on_save is not None:
2489
            for ignore_key in self._keys_to_ignore_on_save:
2490
2491
                if ignore_key in state_dict.keys():
                    del state_dict[ignore_key]
2492
2493
2494
2495
2496
        if safe_serialization:
            # Safetensors does not allow tensor aliasing.
            # We're going to remove aliases before saving
            ptrs = collections.defaultdict(list)
            for name, tensor in state_dict.items():
2497
2498
2499
2500
2501
2502
2503
                # Sometimes in the state_dict we have non-tensor objects.
                # e.g. in bitsandbytes we have some `str` objects in the state_dict
                if isinstance(tensor, torch.Tensor):
                    ptrs[id_tensor_storage(tensor)].append(name)
                else:
                    # In the non-tensor case, fall back to the pointer of the object itself
                    ptrs[id(tensor)].append(name)
2504
2505
2506

            # These are all the pointers of shared tensors.
            shared_ptrs = {ptr: names for ptr, names in ptrs.items() if len(names) > 1}
2507
2508
2509
2510
            error_names = []
            to_delete_names = set()
            # Recursively descend to find tied weight keys
            _tied_weights_keys = _get_tied_weight_keys(self)
2511
2512
2513
            for names in shared_ptrs.values():
                # Removing the keys which are declared as known duplicates on
                # load. This allows to make sure the name which is kept is consistent.
2514
                if _tied_weights_keys is not None:
2515
2516
                    found = 0
                    for name in sorted(names):
2517
                        matches_pattern = any(re.search(pat, name) for pat in _tied_weights_keys)
2518
                        if matches_pattern and name in state_dict:
2519
2520
                            found += 1
                            if found < len(names):
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
                                to_delete_names.add(name)
            # We are entering a place where the weights and the transformers configuration do NOT match.
            shared_names, disjoint_names = _find_disjoint(shared_ptrs.values(), state_dict)
            # Those are actually tensor sharing but disjoint from each other, we can safely clone them
            # Reloaded won't have the same property, but it shouldn't matter in any meaningful way.
            for name in disjoint_names:
                state_dict[name] = state_dict[name].clone()

            # When not all duplicates have been cleaned, still remove those keys, but put a clear warning.
            # If the link between tensors was done at runtime then `from_pretrained` will not get
            # the key back leading to random tensor. A proper warning will be shown
            # during reload (if applicable), but since the file is not necessarily compatible with
            # the config, better show a proper warning.
            shared_names, identical_names = _find_identical(shared_names, state_dict)
            # delete tensors that have identical storage
            for inames in identical_names:
                known = inames.intersection(to_delete_names)
                for name in known:
                    del state_dict[name]
                unknown = inames.difference(to_delete_names)
                if len(unknown) > 1:
                    error_names.append(unknown)

            if shared_names:
                error_names.append(set(shared_names))

            if len(error_names) > 0:
                raise RuntimeError(
                    f"The weights trying to be saved contained shared tensors {error_names} that are mismatching the transformers base configuration. Try saving using `safe_serialization=False` or remove this tensor sharing.",
2550
                )
2551

Sylvain Gugger's avatar
Sylvain Gugger committed
2552
        # Shard the model if it is too big.
2553
2554
2555
2556
2557
        if not _hf_peft_config_loaded:
            weights_name = SAFE_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME
            weights_name = _add_variant(weights_name, variant)
        else:
            weights_name = ADAPTER_SAFE_WEIGHTS_NAME if safe_serialization else ADAPTER_WEIGHTS_NAME
2558

2559
        shards, index = shard_checkpoint(state_dict, max_shard_size=max_shard_size, weights_name=weights_name)
Sylvain Gugger's avatar
Sylvain Gugger committed
2560
2561
2562
2563

        # Clean the folder from a previous save
        for filename in os.listdir(save_directory):
            full_filename = os.path.join(save_directory, filename)
2564
2565
            # If we have a shard file that is not going to be replaced, we delete it, but only from the main process
            # in distributed settings to avoid race conditions.
2566
            weights_no_suffix = weights_name.replace(".bin", "").replace(".safetensors", "")
2567
2568
2569

            # make sure that file to be deleted matches format of sharded file, e.g. pytorch_model-00001-of-00005
            filename_no_suffix = filename.replace(".bin", "").replace(".safetensors", "")
2570
            reg = re.compile(r"(.*?)-\d{5}-of-\d{5}")
2571

2572
            if (
2573
                filename.startswith(weights_no_suffix)
2574
2575
2576
                and os.path.isfile(full_filename)
                and filename not in shards.keys()
                and is_main_process
2577
                and reg.fullmatch(filename_no_suffix) is not None
2578
            ):
Sylvain Gugger's avatar
Sylvain Gugger committed
2579
                os.remove(full_filename)
2580

Sylvain Gugger's avatar
Sylvain Gugger committed
2581
2582
        # Save the model
        for shard_file, shard in shards.items():
2583
2584
2585
2586
2587
2588
            if safe_serialization:
                # At some point we will need to deal better with save_function (used for TPU and other distributed
                # joyfulness), but for now this enough.
                safe_save_file(shard, os.path.join(save_directory, shard_file), metadata={"format": "pt"})
            else:
                save_function(shard, os.path.join(save_directory, shard_file))
Sylvain Gugger's avatar
Sylvain Gugger committed
2589
2590

        if index is None:
2591
            path_to_weights = os.path.join(save_directory, weights_name)
2592
            logger.info(f"Model weights saved in {path_to_weights}")
Sylvain Gugger's avatar
Sylvain Gugger committed
2593
        else:
2594
            save_index_file = SAFE_WEIGHTS_INDEX_NAME if safe_serialization else WEIGHTS_INDEX_NAME
2595
            save_index_file = os.path.join(save_directory, _add_variant(save_index_file, variant))
Sylvain Gugger's avatar
Sylvain Gugger committed
2596
2597
2598
2599
2600
2601
2602
2603
2604
            # Save the index as well
            with open(save_index_file, "w", encoding="utf-8") as f:
                content = json.dumps(index, indent=2, sort_keys=True) + "\n"
                f.write(content)
            logger.info(
                f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be "
                f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the "
                f"index located at {save_index_file}."
            )
2605

Sylvain Gugger's avatar
Sylvain Gugger committed
2606
        if push_to_hub:
2607
2608
2609
2610
2611
2612
2613
2614
            # Eventually create an empty model card
            model_card = create_and_tag_model_card(
                repo_id, self.model_tags, token=token, ignore_metadata_errors=ignore_metadata_errors
            )

            # Update model card if needed:
            model_card.save(os.path.join(save_directory, "README.md"))

2615
            self._upload_modified_files(
2616
2617
2618
2619
                save_directory,
                repo_id,
                files_timestamps,
                commit_message=commit_message,
2620
                token=token,
2621
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
2622

2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
    @wraps(PushToHubMixin.push_to_hub)
    def push_to_hub(self, *args, **kwargs):
        tags = self.model_tags if self.model_tags is not None else []

        tags_kwargs = kwargs.get("tags", [])
        if isinstance(tags_kwargs, str):
            tags_kwargs = [tags_kwargs]

        for tag in tags_kwargs:
            if tag not in tags:
                tags.append(tag)

        if tags:
            kwargs["tags"] = tags
        return super().push_to_hub(*args, **kwargs)

2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
    def get_memory_footprint(self, return_buffers=True):
        r"""
        Get the memory footprint of a model. This will return the memory footprint of the current model in bytes.
        Useful to benchmark the memory footprint of the current model and design some tests. Solution inspired from the
        PyTorch discussions: https://discuss.pytorch.org/t/gpu-memory-that-model-uses/56822/2

        Arguments:
            return_buffers (`bool`, *optional*, defaults to `True`):
                Whether to return the size of the buffer tensors in the computation of the memory footprint. Buffers
                are tensors that do not require gradients and not registered as parameters. E.g. mean and std in batch
                norm layers. Please see: https://discuss.pytorch.org/t/what-pytorch-means-by-buffers/120266/2
        """
        mem = sum([param.nelement() * param.element_size() for param in self.parameters()])
        if return_buffers:
            mem_bufs = sum([buf.nelement() * buf.element_size() for buf in self.buffers()])
            mem = mem + mem_bufs
        return mem

2657
    @wraps(torch.nn.Module.cuda)
2658
2659
    def cuda(self, *args, **kwargs):
        # Checks if the model has been loaded in 8-bit
Marc Sun's avatar
Marc Sun committed
2660
        if getattr(self, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES:
2661
2662
2663
2664
2665
2666
2667
            raise ValueError(
                "Calling `cuda()` is not supported for `4-bit` or `8-bit` quantized models. Please use the model as it is, since the"
                " model has already been set to the correct devices and casted to the correct `dtype`."
            )
        else:
            return super().cuda(*args, **kwargs)

2668
    @wraps(torch.nn.Module.to)
2669
2670
    def to(self, *args, **kwargs):
        # Checks if the model has been loaded in 8-bit
Marc Sun's avatar
Marc Sun committed
2671
        if getattr(self, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES:
2672
            raise ValueError(
Marc Sun's avatar
Marc Sun committed
2673
                "`.to` is not supported for `4-bit` or `8-bit` bitsandbytes models. Please use the model as it is, since the"
2674
2675
                " model has already been set to the correct devices and casted to the correct `dtype`."
            )
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
        elif getattr(self, "quantization_method", None) == QuantizationMethod.GPTQ:
            # For GPTQ models, we prevent users from casting the model to another dytpe to restrict unwanted behaviours.
            # the correct API should be to load the model with the desired dtype directly through `from_pretrained`.
            dtype_present_in_args = False

            if "dtype" not in kwargs:
                for arg in args:
                    if isinstance(arg, torch.dtype):
                        dtype_present_in_args = True
                        break
            else:
                dtype_present_in_args = True

            if dtype_present_in_args:
                raise ValueError(
                    "You cannot cast a GPTQ model in a new `dtype`. Make sure to load the model using `from_pretrained` using the desired"
                    " `dtype` by passing the correct `torch_dtype` argument."
                )
        return super().to(*args, **kwargs)
2695
2696

    def half(self, *args):
Marc Sun's avatar
Marc Sun committed
2697
        # Checks if the model is quantized
2698
        if getattr(self, "is_quantized", False):
2699
            raise ValueError(
Marc Sun's avatar
Marc Sun committed
2700
                "`.half()` is not supported for quantized model. Please use the model as it is, since the"
2701
2702
2703
2704
2705
2706
                " model has already been casted to the correct `dtype`."
            )
        else:
            return super().half(*args)

    def float(self, *args):
Marc Sun's avatar
Marc Sun committed
2707
        # Checks if the model is quantized
2708
        if getattr(self, "is_quantized", False):
2709
            raise ValueError(
Marc Sun's avatar
Marc Sun committed
2710
                "`.float()` is not supported for quantized model. Please use the model as it is, since the"
2711
2712
2713
2714
2715
                " model has already been casted to the correct `dtype`."
            )
        else:
            return super().float(*args)

2716
    @classmethod
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
    def from_pretrained(
        cls,
        pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
        *model_args,
        config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
        cache_dir: Optional[Union[str, os.PathLike]] = None,
        ignore_mismatched_sizes: bool = False,
        force_download: bool = False,
        local_files_only: bool = False,
        token: Optional[Union[str, bool]] = None,
        revision: str = "main",
        use_safetensors: bool = None,
        **kwargs,
    ):
2731
2732
        r"""
        Instantiate a pretrained pytorch model from a pre-trained model configuration.
2733

Sylvain Gugger's avatar
Sylvain Gugger committed
2734
2735
        The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
        the model, you should first set it back in training mode with `model.train()`.
2736

2737
        The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
2738
2739
        pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
        task.
2740

2741
        The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
2742
        weights are discarded.
2743

2744
        Parameters:
2745
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
2746
2747
                Can be either:

2748
2749
2750
2751
                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
                    - A path to a *directory* containing model weights saved using
                      [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
                    - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
Sylvain Gugger's avatar
Sylvain Gugger committed
2752
2753
2754
                      this case, `from_tf` should be set to `True` and a configuration object should be provided as
                      `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
                      PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
2755
                    - A path or url to a model folder containing a *flax checkpoint file* in *.msgpack* format (e.g,
Sylvain Gugger's avatar
Sylvain Gugger committed
2756
2757
                      `./flax_model/` containing `flax_model.msgpack`). In this case, `from_flax` should be set to
                      `True`.
2758
2759
2760
2761
2762
                    - `None` if you are both providing the configuration and state dictionary (resp. with keyword
                      arguments `config` and `state_dict`).
            model_args (sequence of positional arguments, *optional*):
                All remaining positional arguments will be passed to the underlying model's `__init__` method.
            config (`Union[PretrainedConfig, str, os.PathLike]`, *optional*):
2763
2764
                Can be either:

2765
2766
                    - an instance of a class derived from [`PretrainedConfig`],
                    - a string or path valid as input to [`~PretrainedConfig.from_pretrained`].
2767

2768
                Configuration for the model to use instead of an automatically loaded configuration. Configuration can
2769
2770
                be automatically loaded when:

2771
                    - The model is a model provided by the library (loaded with the *model id* string of a pretrained
2772
                      model).
Sylvain Gugger's avatar
Sylvain Gugger committed
2773
2774
                    - The model was saved using [`~PreTrainedModel.save_pretrained`] and is reloaded by supplying the
                      save directory.
2775
2776
2777
                    - The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a
                      configuration JSON file named *config.json* is found in the directory.
            state_dict (`Dict[str, torch.Tensor]`, *optional*):
2778
2779
2780
                A state dictionary to use instead of a state dictionary loaded from saved weights file.

                This option can be used if you want to create a model from a pretrained configuration but load your own
Sylvain Gugger's avatar
Sylvain Gugger committed
2781
                weights. In this case though, you should check if using [`~PreTrainedModel.save_pretrained`] and
2782
2783
                [`~PreTrainedModel.from_pretrained`] is not a simpler option.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
2784
2785
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
2786
            from_tf (`bool`, *optional*, defaults to `False`):
2787
                Load the model weights from a TensorFlow checkpoint save file (see docstring of
2788
2789
                `pretrained_model_name_or_path` argument).
            from_flax (`bool`, *optional*, defaults to `False`):
2790
                Load the model weights from a Flax checkpoint save file (see docstring of
2791
2792
                `pretrained_model_name_or_path` argument).
            ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`):
2793
2794
2795
                Whether or not to raise an error if some of the weights from the checkpoint do not have the same size
                as the weights of the model (if for instance, you are instantiating a model with 10 labels from a
                checkpoint with 3 labels).
2796
            force_download (`bool`, *optional*, defaults to `False`):
2797
2798
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
2799
            resume_download (`bool`, *optional*, defaults to `False`):
2800
2801
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
2802
            proxies (`Dict[str, str]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2803
2804
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
2805
            output_loading_info(`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2806
                Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
2807
            local_files_only(`bool`, *optional*, defaults to `False`):
Stas Bekman's avatar
Stas Bekman committed
2808
                Whether or not to only look at local files (i.e., do not try to download the model).
2809
            token (`str` or `bool`, *optional*):
2810
2811
                The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
                the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
2812
            revision (`str`, *optional*, defaults to `"main"`):
Julien Chaumond's avatar
Julien Chaumond committed
2813
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
2814
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
Julien Chaumond's avatar
Julien Chaumond committed
2815
                identifier allowed by git.
2816
2817
2818
2819
2820
2821
2822

                <Tip>

                To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>".

                </Tip>

2823
            mirror (`str`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2824
2825
2826
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information.
2827
            _fast_init(`bool`, *optional*, defaults to `True`):
2828
2829
                Whether or not to disable fast initialization.

2830
2831
                <Tip warning={true}>

Sylvain Gugger's avatar
Sylvain Gugger committed
2832
2833
2834
                One should only disable *_fast_init* to ensure backwards compatibility with `transformers.__version__ <
                4.6.0` for seeded model initialization. This argument will be removed at the next major version. See
                [pull request 11471](https://github.com/huggingface/transformers/pull/11471) for more information.
2835

2836
                </Tip>
2837
2838
            attn_implementation (`str`, *optional*):
                The attention implementation to use in the model (if relevant). Can be any of `"eager"` (manual implementation of the attention), `"sdpa"` (using [`F.scaled_dot_product_attention`](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention.html)), or `"flash_attention_2"` (using [Dao-AILab/flash-attention](https://github.com/Dao-AILab/flash-attention)). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual `"eager"` implementation.
2839

2840
2841
2842
            > Parameters for big model inference

            low_cpu_mem_usage(`bool`, *optional*):
2843
2844
2845
                Tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                This is an experimental feature and a subject to change at any moment.
            torch_dtype (`str` or `torch.dtype`, *optional*):
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
                Override the default `torch.dtype` and load the model under a specific `dtype`. The different options
                are:

                1. `torch.float16` or `torch.bfloat16` or `torch.float`: load in a specified
                  `dtype`, ignoring the model's `config.torch_dtype` if one exists. If not specified
                  - the model will get loaded in `torch.float` (fp32).

                2. `"auto"` - A `torch_dtype` entry in the `config.json` file of the model will be
                  attempted to be used. If this entry isn't found then next check the `dtype` of the first weight in
                  the checkpoint that's of a floating point type and use that as `dtype`. This will load the model
                  using the `dtype` it was saved in at the end of the training. It can't be used as an indicator of how
                  the model was trained. Since it could be trained in one of half precision dtypes, but saved in fp32.

                <Tip>

                For some models the `dtype` they were trained in is unknown - you may try to check the model's paper or
                reach out to the authors and ask them to add this information to the model's card and to insert the
                `torch_dtype` entry in `config.json` on the hub.

                </Tip>

2867
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]` or `int` or `torch.device`, *optional*):
2868
2869
                A map that specifies where each submodule should go. It doesn't need to be refined to each
                parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the
2870
2871
2872
                same device. If we only pass the device (*e.g.*, `"cpu"`, `"cuda:1"`, `"mps"`, or a GPU ordinal rank
                like `1`) on which the model will be allocated, the device map will map the entire model to this
                device. Passing `device_map = 0` means put the whole model on GPU 0.
2873

2874
2875
                To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For
                more information about each option see [designing a device
Patrick von Platen's avatar
Patrick von Platen committed
2876
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
2877
2878
2879
            max_memory (`Dict`, *optional*):
                A dictionary device identifier to maximum memory. Will default to the maximum memory available for each
                GPU and the available CPU RAM if unset.
2880
2881
            offload_folder (`str` or `os.PathLike`, *optional*):
                If the `device_map` contains any value `"disk"`, the folder where we will offload weights.
2882
            offload_state_dict (`bool`, *optional*):
2883
                If `True`, will temporarily offload the CPU state dict to the hard drive to avoid getting out of CPU
2884
2885
                RAM if the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to
                `True` when there is some disk offload.
2886
2887
            offload_buffers (`bool`, *optional*):
                Whether or not to offload the buffers with the model parameters.
Marc Sun's avatar
Marc Sun committed
2888
2889
            quantization_config (`Union[QuantizationConfigMixin,Dict]`, *optional*):
                A dictionary of configuration parameters or a QuantizationConfigMixin object for quantization (e.g
2890
2891
2892
2893
                bitsandbytes, gptq). There may be other quantization-related kwargs, including `load_in_4bit` and
                `load_in_8bit`, which are parsed by QuantizationConfigParser. Supported only for bitsandbytes
                quantizations and not preferred. consider inserting all such arguments into quantization_config
                instead.
2894
2895
2896
            subfolder (`str`, *optional*, defaults to `""`):
                In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
                specify the folder name here.
2897
2898
2899
            variant (`str`, *optional*):
                If specified load weights from `variant` filename, *e.g.* pytorch_model.<variant>.bin. `variant` is
                ignored when using `from_tf` or `from_flax`.
2900
2901
2902
            use_safetensors (`bool`, *optional*, defaults to `None`):
                Whether or not to use `safetensors` checkpoints. Defaults to `None`. If not specified and `safetensors`
                is not installed, it will be set to `False`.
2903

2904
            kwargs (remaining dictionary of keyword arguments, *optional*):
2905
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
2906
                `output_attentions=True`). Behaves differently depending on whether a `config` is provided or
2907
2908
                automatically loaded:

2909
2910
                    - If a configuration is provided with `config`, `**kwargs` will be directly passed to the
                      underlying model's `__init__` method (we assume all relevant updates to the configuration have
2911
                      already been done)
2912
                    - If a configuration is not provided, `kwargs` will be first passed to the configuration class
Sylvain Gugger's avatar
Sylvain Gugger committed
2913
2914
2915
2916
                      initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that
                      corresponds to a configuration attribute will be used to override said attribute with the
                      supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute
                      will be passed to the underlying model's `__init__` function.
2917
2918
2919

        <Tip>

Sylvain Gugger's avatar
Sylvain Gugger committed
2920
2921
        Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to
        use this method in a firewalled environment.
2922
2923
2924
2925
2926
2927
2928

        </Tip>

        Examples:

        ```python
        >>> from transformers import BertConfig, BertModel
Sylvain Gugger's avatar
Sylvain Gugger committed
2929

2930
        >>> # Download model and configuration from huggingface.co and cache.
2931
        >>> model = BertModel.from_pretrained("google-bert/bert-base-uncased")
2932
        >>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable).
Sylvain Gugger's avatar
Sylvain Gugger committed
2933
        >>> model = BertModel.from_pretrained("./test/saved_model/")
2934
        >>> # Update configuration during loading.
2935
        >>> model = BertModel.from_pretrained("google-bert/bert-base-uncased", output_attentions=True)
2936
2937
        >>> assert model.config.output_attentions == True
        >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable).
Sylvain Gugger's avatar
Sylvain Gugger committed
2938
2939
        >>> config = BertConfig.from_json_file("./tf_model/my_tf_model_config.json")
        >>> model = BertModel.from_pretrained("./tf_model/my_tf_checkpoint.ckpt.index", from_tf=True, config=config)
2940
        >>> # Loading from a Flax checkpoint file instead of a PyTorch model (slower)
2941
        >>> model = BertModel.from_pretrained("google-bert/bert-base-uncased", from_flax=True)
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
        ```

        * `low_cpu_mem_usage` algorithm:

        This is an experimental function that loads the model using ~1x model size CPU memory

        Here is how it works:

        1. save which state_dict keys we have
        2. drop state_dict before the model is created, since the latter takes 1x model size CPU memory
        3. after the model has been instantiated switch to the meta device all params/buffers that
        are going to be replaced from the loaded state_dict
        4. load state_dict 2nd time
        5. replace the params/buffers from the state_dict

        Currently, it can't handle deepspeed ZeRO stage 3 and ignores loading errors

        """
2960
2961
        state_dict = kwargs.pop("state_dict", None)
        from_tf = kwargs.pop("from_tf", False)
2962
        from_flax = kwargs.pop("from_flax", False)
2963
2964
2965
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        output_loading_info = kwargs.pop("output_loading_info", False)
2966
        use_auth_token = kwargs.pop("use_auth_token", None)
2967
        trust_remote_code = kwargs.pop("trust_remote_code", None)
Sylvain Gugger's avatar
Sylvain Gugger committed
2968
        _ = kwargs.pop("mirror", None)
2969
2970
        from_pipeline = kwargs.pop("_from_pipeline", None)
        from_auto_class = kwargs.pop("_from_auto", False)
2971
        _fast_init = kwargs.pop("_fast_init", True)
2972
        torch_dtype = kwargs.pop("torch_dtype", None)
2973
2974
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", None)
        device_map = kwargs.pop("device_map", None)
2975
        max_memory = kwargs.pop("max_memory", None)
2976
        offload_folder = kwargs.pop("offload_folder", None)
2977
        offload_state_dict = kwargs.pop("offload_state_dict", False)
2978
        offload_buffers = kwargs.pop("offload_buffers", False)
2979
        load_in_8bit = kwargs.pop("load_in_8bit", False)
2980
        load_in_4bit = kwargs.pop("load_in_4bit", False)
2981
        quantization_config = kwargs.pop("quantization_config", None)
2982
        subfolder = kwargs.pop("subfolder", "")
2983
        commit_hash = kwargs.pop("_commit_hash", None)
2984
        variant = kwargs.pop("variant", None)
2985
        adapter_kwargs = kwargs.pop("adapter_kwargs", {})
2986
        adapter_name = kwargs.pop("adapter_name", "default")
2987
        use_flash_attention_2 = kwargs.pop("use_flash_attention_2", False)
2988

2989
2990
2991
        if is_fsdp_enabled():
            low_cpu_mem_usage = True

2992
2993
        if use_auth_token is not None:
            warnings.warn(
2994
2995
                "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
                FutureWarning,
2996
2997
2998
2999
3000
3001
3002
            )
            if token is not None:
                raise ValueError(
                    "`token` and `use_auth_token` are both specified. Please set only the argument `token`."
                )
            token = use_auth_token

3003
        if token is not None and adapter_kwargs is not None and "token" not in adapter_kwargs:
3004
3005
            adapter_kwargs["token"] = token

3006
3007
        if use_safetensors is None and not is_safetensors_available():
            use_safetensors = False
3008
3009
3010
3011
3012
        if trust_remote_code is True:
            logger.warning(
                "The argument `trust_remote_code` is to be used with Auto classes. It has no effect here and is"
                " ignored."
            )
3013

3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
        if commit_hash is None:
            if not isinstance(config, PretrainedConfig):
                # We make a call to the config file first (which may be absent) to get the commit hash as soon as possible
                resolved_config_file = cached_file(
                    pretrained_model_name_or_path,
                    CONFIG_NAME,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    token=token,
                    revision=revision,
                    subfolder=subfolder,
3028
                    _raise_exceptions_for_gated_repo=False,
3029
3030
3031
3032
3033
3034
3035
                    _raise_exceptions_for_missing_entries=False,
                    _raise_exceptions_for_connection_errors=False,
                )
                commit_hash = extract_commit_hash(resolved_config_file, commit_hash)
            else:
                commit_hash = getattr(config, "_commit_hash", None)

3036
        if is_peft_available():
3037
3038
            _adapter_model_path = adapter_kwargs.pop("_adapter_model_path", None)

3039
3040
3041
3042
3043
3044
3045
3046
3047
            if _adapter_model_path is None:
                _adapter_model_path = find_adapter_config_file(
                    pretrained_model_name_or_path,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    _commit_hash=commit_hash,
3048
                    **adapter_kwargs,
3049
3050
                )
            if _adapter_model_path is not None and os.path.isfile(_adapter_model_path):
3051
                with open(_adapter_model_path, "r", encoding="utf-8") as f:
3052
                    _adapter_model_path = pretrained_model_name_or_path
3053
                    pretrained_model_name_or_path = json.load(f)["base_model_name_or_path"]
3054
3055
        else:
            _adapter_model_path = None
3056

3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
        # change device_map into a map if we passed an int, a str or a torch.device
        if isinstance(device_map, torch.device):
            device_map = {"": device_map}
        elif isinstance(device_map, str) and device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
            try:
                device_map = {"": torch.device(device_map)}
            except RuntimeError:
                raise ValueError(
                    "When passing device_map as a string, the value needs to be a device name (e.g. cpu, cuda:0) or "
                    f"'auto', 'balanced', 'balanced_low_0', 'sequential' but found {device_map}."
                )
        elif isinstance(device_map, int):
            if device_map < 0:
                raise ValueError(
                    "You can't pass device_map as a negative int. If you want to put the model on the cpu, pass device_map = 'cpu' "
                )
            else:
                device_map = {"": device_map}

3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
        if device_map is not None:
            if low_cpu_mem_usage is None:
                low_cpu_mem_usage = True
            elif not low_cpu_mem_usage:
                raise ValueError("Passing along a `device_map` requires `low_cpu_mem_usage=True`")

        if low_cpu_mem_usage:
            if is_deepspeed_zero3_enabled():
                raise ValueError(
                    "DeepSpeed Zero-3 is not compatible with `low_cpu_mem_usage=True` or with passing a `device_map`."
                )
            elif not is_accelerate_available():
                raise ImportError(
                    "Using `low_cpu_mem_usage=True` or a `device_map` requires Accelerate: `pip install accelerate`"
                )
3091

3092
3093
3094
        # handling bnb config from kwargs, remove after `load_in_{4/8}bit` deprecation.
        if load_in_4bit or load_in_8bit:
            if quantization_config is not None:
3095
                raise ValueError(
3096
                    "You can't pass `load_in_4bit`or `load_in_8bit` as a kwarg when passing "
3097
3098
3099
                    "`quantization_config` argument at the same time."
                )

3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
            # preparing BitsAndBytesConfig from kwargs
            config_dict = {k: v for k, v in kwargs.items() if k in inspect.signature(BitsAndBytesConfig).parameters}
            config_dict = {**config_dict, "load_in_4bit": load_in_4bit, "load_in_8bit": load_in_8bit}
            quantization_config, kwargs = BitsAndBytesConfig.from_dict(
                config_dict=config_dict, return_unused_kwargs=True, **kwargs
            )
            logger.warning(
                "The `load_in_4bit` and `load_in_8bit` arguments are deprecated and will be removed in the future versions. "
                "Please, pass a `BitsAndBytesConfig` object in `quantization_config` argument instead."
            )
3110

3111
        from_pt = not (from_tf | from_flax)
3112

3113
3114
3115
        user_agent = {"file_type": "model", "framework": "pytorch", "from_auto_class": from_auto_class}
        if from_pipeline is not None:
            user_agent["using_pipeline"] = from_pipeline
thomwolf's avatar
thomwolf committed
3116

3117
3118
3119
3120
        if is_offline_mode() and not local_files_only:
            logger.info("Offline mode: forcing local_files_only=True")
            local_files_only = True

3121
3122
3123
        # Load config if we don't provide a configuration
        if not isinstance(config, PretrainedConfig):
            config_path = config if config is not None else pretrained_model_name_or_path
3124
            config, model_kwargs = cls.config_class.from_pretrained(
3125
3126
3127
                config_path,
                cache_dir=cache_dir,
                return_unused_kwargs=True,
3128
                force_download=force_download,
3129
                resume_download=resume_download,
3130
                proxies=proxies,
3131
                local_files_only=local_files_only,
3132
                token=token,
Julien Chaumond's avatar
Julien Chaumond committed
3133
                revision=revision,
3134
                subfolder=subfolder,
3135
3136
                _from_auto=from_auto_class,
                _from_pipeline=from_pipeline,
3137
                **kwargs,
3138
3139
            )
        else:
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
            # In case one passes a config to `from_pretrained` + "attn_implementation"
            # override the `_attn_implementation` attribute to `attn_implementation` of the kwargs
            # Please see: https://github.com/huggingface/transformers/issues/28038

            # Overwrite `config._attn_implementation` by the one from the kwargs --> in auto-factory
            # we pop attn_implementation from the kwargs but this handles the case where users
            # passes manually the config to `from_pretrained`.
            config = copy.deepcopy(config)

            kwarg_attn_imp = kwargs.pop("attn_implementation", None)
3150
            if kwarg_attn_imp is not None:
3151
                config._attn_implementation = kwarg_attn_imp
3152
            model_kwargs = kwargs
3153

3154
3155
3156
3157
3158
        pre_quantized = getattr(config, "quantization_config", None) is not None
        if pre_quantized or quantization_config is not None:
            if pre_quantized:
                config.quantization_config = AutoHfQuantizer.merge_quantization_configs(
                    config.quantization_config, quantization_config
Marc Sun's avatar
Marc Sun committed
3159
3160
3161
                )
            else:
                config.quantization_config = quantization_config
3162
3163
3164
            hf_quantizer = AutoHfQuantizer.from_config(config.quantization_config, pre_quantized=pre_quantized)
        else:
            hf_quantizer = None
3165

3166
3167
3168
3169
3170
3171
        if hf_quantizer is not None:
            hf_quantizer.validate_environment(
                torch_dtype=torch_dtype, from_tf=from_tf, from_flax=from_flax, device_map=device_map
            )
            torch_dtype = hf_quantizer.update_torch_dtype(torch_dtype)
            device_map = hf_quantizer.update_device_map(device_map)
3172

3173
3174
3175
            # In order to ensure popular quantization methods are supported. Can be disable with `disable_telemetry`
            user_agent["quant"] = hf_quantizer.quantization_config.quant_method.value

3176
3177
3178
            # Force-set to `True` for more mem efficiency
            if low_cpu_mem_usage is None:
                low_cpu_mem_usage = True
3179
                logger.warning("`low_cpu_mem_usage` was None, now set to True since model is quantized.")
3180
        is_quantized = hf_quantizer is not None
3181

Sylvain Gugger's avatar
Sylvain Gugger committed
3182
3183
3184
3185
        # This variable will flag if we're loading a sharded checkpoint. In this case the archive file is just the
        # index of the files.
        is_sharded = False
        sharded_metadata = None
thomwolf's avatar
thomwolf committed
3186
        # Load model
Yih-Dar's avatar
Yih-Dar committed
3187
3188
        loading_info = None

3189
3190
3191
3192
        # Keep in fp32 modules
        keep_in_fp32_modules = None
        use_keep_in_fp32_modules = False

thomwolf's avatar
thomwolf committed
3193
        if pretrained_model_name_or_path is not None:
3194
            pretrained_model_name_or_path = str(pretrained_model_name_or_path)
3195
3196
            is_local = os.path.isdir(pretrained_model_name_or_path)
            if is_local:
3197
3198
3199
                if from_tf and os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index")
                ):
3200
                    # Load from a TF 1.0 checkpoint in priority if from_tf
3201
3202
3203
3204
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index")
                elif from_tf and os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME)
                ):
3205
                    # Load from a TF 2.0 checkpoint in priority if from_tf
3206
3207
3208
3209
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME)
                elif from_flax and os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)
                ):
3210
                    # Load from a Flax checkpoint in priority if from_flax
3211
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)
3212
                elif use_safetensors is not False and os.path.isfile(
3213
                    os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_NAME, variant))
3214
3215
                ):
                    # Load from a safetensors checkpoint
3216
3217
3218
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_NAME, variant)
                    )
3219
                elif use_safetensors is not False and os.path.isfile(
3220
3221
3222
                    os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)
                    )
3223
3224
                ):
                    # Load from a sharded safetensors checkpoint
3225
3226
3227
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)
                    )
3228
                    is_sharded = True
3229
3230
3231
                elif os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_NAME, variant))
                ):
thomwolf's avatar
thomwolf committed
3232
                    # Load from a PyTorch checkpoint
3233
3234
3235
3236
3237
3238
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_NAME, variant)
                    )
                elif os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_INDEX_NAME, variant))
                ):
Sylvain Gugger's avatar
Sylvain Gugger committed
3239
                    # Load from a sharded PyTorch checkpoint
3240
3241
3242
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_INDEX_NAME, variant)
                    )
Sylvain Gugger's avatar
Sylvain Gugger committed
3243
                    is_sharded = True
3244
3245
                # At this stage we don't have a weight file so we will raise an error.
                elif os.path.isfile(
3246
3247
                    os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index")
                ) or os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME)):
3248
                    raise EnvironmentError(
3249
3250
3251
                        f"Error no file named {_add_variant(WEIGHTS_NAME, variant)} found in directory"
                        f" {pretrained_model_name_or_path} but there is a file for TensorFlow weights. Use"
                        " `from_tf=True` to load this model from those weights."
3252
                    )
3253
                elif os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)):
3254
                    raise EnvironmentError(
3255
3256
3257
                        f"Error no file named {_add_variant(WEIGHTS_NAME, variant)} found in directory"
                        f" {pretrained_model_name_or_path} but there is a file for Flax weights. Use `from_flax=True`"
                        " to load this model from those weights."
3258
                    )
3259
3260
3261
3262
3263
                elif use_safetensors:
                    raise EnvironmentError(
                        f"Error no file named {_add_variant(SAFE_WEIGHTS_NAME, variant)} found in directory"
                        f" {pretrained_model_name_or_path}."
                    )
thomwolf's avatar
thomwolf committed
3264
                else:
3265
                    raise EnvironmentError(
3266
3267
3268
                        f"Error no file named {_add_variant(WEIGHTS_NAME, variant)}, {TF2_WEIGHTS_NAME},"
                        f" {TF_WEIGHTS_NAME + '.index'} or {FLAX_WEIGHTS_NAME} found in directory"
                        f" {pretrained_model_name_or_path}."
3269
                    )
3270
            elif os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path)):
3271
                archive_file = pretrained_model_name_or_path
3272
                is_local = True
3273
            elif os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path + ".index")):
3274
3275
3276
3277
3278
                if not from_tf:
                    raise ValueError(
                        f"We found a TensorFlow checkpoint at {pretrained_model_name_or_path + '.index'}, please set "
                        "from_tf to True to load from this checkpoint."
                    )
3279
                archive_file = os.path.join(subfolder, pretrained_model_name_or_path + ".index")
3280
                is_local = True
3281
            elif is_remote_url(pretrained_model_name_or_path):
3282
                filename = pretrained_model_name_or_path
3283
                resolved_archive_file = download_url(pretrained_model_name_or_path)
3284
            else:
3285
3286
3287
3288
3289
                # set correct filename
                if from_tf:
                    filename = TF2_WEIGHTS_NAME
                elif from_flax:
                    filename = FLAX_WEIGHTS_NAME
3290
                elif use_safetensors is not False:
3291
                    filename = _add_variant(SAFE_WEIGHTS_NAME, variant)
3292
                else:
3293
                    filename = _add_variant(WEIGHTS_NAME, variant)
3294

3295
3296
                try:
                    # Load from URL or cache if already cached
3297
3298
3299
3300
3301
3302
                    cached_file_kwargs = {
                        "cache_dir": cache_dir,
                        "force_download": force_download,
                        "proxies": proxies,
                        "resume_download": resume_download,
                        "local_files_only": local_files_only,
3303
                        "token": token,
3304
3305
3306
                        "user_agent": user_agent,
                        "revision": revision,
                        "subfolder": subfolder,
3307
                        "_raise_exceptions_for_gated_repo": False,
3308
3309
3310
                        "_raise_exceptions_for_missing_entries": False,
                        "_commit_hash": commit_hash,
                    }
3311
                    resolved_archive_file = cached_file(pretrained_model_name_or_path, filename, **cached_file_kwargs)
3312

3313
                    # Since we set _raise_exceptions_for_missing_entries=False, we don't get an exception but a None
3314
                    # result when internet is up, the repo and revision exist, but the file does not.
3315
                    if resolved_archive_file is None and filename == _add_variant(SAFE_WEIGHTS_NAME, variant):
3316
3317
                        # Maybe the checkpoint is sharded, we try to grab the index name in this case.
                        resolved_archive_file = cached_file(
3318
3319
3320
                            pretrained_model_name_or_path,
                            _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant),
                            **cached_file_kwargs,
3321
3322
3323
                        )
                        if resolved_archive_file is not None:
                            is_sharded = True
3324
                        elif use_safetensors:
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
                            if revision == "main":
                                resolved_archive_file, revision, is_sharded = auto_conversion(
                                    pretrained_model_name_or_path, **cached_file_kwargs
                                )
                            cached_file_kwargs["revision"] = revision
                            if resolved_archive_file is None:
                                raise EnvironmentError(
                                    f"{pretrained_model_name_or_path} does not appear to have a file named"
                                    f" {_add_variant(SAFE_WEIGHTS_NAME, variant)} or {_add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)} "
                                    "and thus cannot be loaded with `safetensors`. Please make sure that the model has "
                                    "been saved with `safe_serialization=True` or do not set `use_safetensors=True`."
                                )
3337
3338
                        else:
                            # This repo has no safetensors file of any kind, we switch to PyTorch.
3339
                            filename = _add_variant(WEIGHTS_NAME, variant)
3340
                            resolved_archive_file = cached_file(
3341
                                pretrained_model_name_or_path, filename, **cached_file_kwargs
3342
                            )
3343
                    if resolved_archive_file is None and filename == _add_variant(WEIGHTS_NAME, variant):
Sylvain Gugger's avatar
Sylvain Gugger committed
3344
                        # Maybe the checkpoint is sharded, we try to grab the index name in this case.
3345
                        resolved_archive_file = cached_file(
3346
3347
3348
                            pretrained_model_name_or_path,
                            _add_variant(WEIGHTS_INDEX_NAME, variant),
                            **cached_file_kwargs,
3349
                        )
3350
3351
                        if resolved_archive_file is not None:
                            is_sharded = True
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384

                    if resolved_archive_file is not None:
                        if filename in [WEIGHTS_NAME, WEIGHTS_INDEX_NAME]:
                            # If the PyTorch file was found, check if there is a safetensors file on the repository
                            # If there is no safetensors file on the repositories, start an auto conversion
                            safe_weights_name = SAFE_WEIGHTS_INDEX_NAME if is_sharded else SAFE_WEIGHTS_NAME
                            has_file_kwargs = {
                                "revision": revision,
                                "proxies": proxies,
                                "token": token,
                            }
                            cached_file_kwargs = {
                                "cache_dir": cache_dir,
                                "force_download": force_download,
                                "resume_download": resume_download,
                                "local_files_only": local_files_only,
                                "user_agent": user_agent,
                                "subfolder": subfolder,
                                "_raise_exceptions_for_gated_repo": False,
                                "_raise_exceptions_for_missing_entries": False,
                                "_commit_hash": commit_hash,
                                **has_file_kwargs,
                            }
                            if not has_file(pretrained_model_name_or_path, safe_weights_name, **has_file_kwargs):
                                Thread(
                                    target=auto_conversion,
                                    args=(pretrained_model_name_or_path,),
                                    kwargs={"ignore_errors_during_conversion": True, **cached_file_kwargs},
                                    name="Thread-autoconversion",
                                ).start()
                    else:
                        # Otherwise, no PyTorch file was found, maybe there is a TF or Flax model file.
                        # We try those to give a helpful error message.
Sylvain Gugger's avatar
Sylvain Gugger committed
3385
3386
3387
                        has_file_kwargs = {
                            "revision": revision,
                            "proxies": proxies,
3388
                            "token": token,
Sylvain Gugger's avatar
Sylvain Gugger committed
3389
3390
3391
                        }
                        if has_file(pretrained_model_name_or_path, TF2_WEIGHTS_NAME, **has_file_kwargs):
                            raise EnvironmentError(
Sylvain Gugger's avatar
Sylvain Gugger committed
3392
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
3393
3394
                                f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file for TensorFlow weights."
                                " Use `from_tf=True` to load this model from those weights."
Sylvain Gugger's avatar
Sylvain Gugger committed
3395
3396
3397
                            )
                        elif has_file(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME, **has_file_kwargs):
                            raise EnvironmentError(
Sylvain Gugger's avatar
Sylvain Gugger committed
3398
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
                                f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file for Flax weights. Use"
                                " `from_flax=True` to load this model from those weights."
                            )
                        elif variant is not None and has_file(
                            pretrained_model_name_or_path, WEIGHTS_NAME, **has_file_kwargs
                        ):
                            raise EnvironmentError(
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
                                f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file without the variant"
                                f" {variant}. Use `variant=None` to load this model from those weights."
Sylvain Gugger's avatar
Sylvain Gugger committed
3409
3410
3411
                            )
                        else:
                            raise EnvironmentError(
3412
3413
3414
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
                                f" {_add_variant(WEIGHTS_NAME, variant)}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or"
                                f" {FLAX_WEIGHTS_NAME}."
Sylvain Gugger's avatar
Sylvain Gugger committed
3415
                            )
3416
3417
3418
3419
                except EnvironmentError:
                    # Raise any environment error raise by `cached_file`. It will have a helpful error message adapted
                    # to the original exception.
                    raise
3420
                except Exception as e:
3421
                    # For any other exception, we throw a generic error.
3422
                    raise EnvironmentError(
3423
3424
3425
                        f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it"
                        " from 'https://huggingface.co/models', make sure you don't have a local directory with the"
                        f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a"
3426
3427
                        f" directory containing a file named {_add_variant(WEIGHTS_NAME, variant)},"
                        f" {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or {FLAX_WEIGHTS_NAME}."
3428
                    ) from e
3429

3430
            if is_local:
3431
                logger.info(f"loading weights file {archive_file}")
3432
                resolved_archive_file = archive_file
3433
            else:
3434
                logger.info(f"loading weights file {filename} from cache at {resolved_archive_file}")
3435
        else:
thomwolf's avatar
thomwolf committed
3436
            resolved_archive_file = None
3437

Sylvain Gugger's avatar
Sylvain Gugger committed
3438
3439
        # We'll need to download and cache each checkpoint shard if the checkpoint is sharded.
        if is_sharded:
3440
            # rsolved_archive_file becomes a list of files that point to the different checkpoint shards in this case.
Sylvain Gugger's avatar
Sylvain Gugger committed
3441
3442
3443
3444
3445
3446
3447
3448
            resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(
                pretrained_model_name_or_path,
                resolved_archive_file,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                resume_download=resume_download,
                local_files_only=local_files_only,
3449
                token=token,
Sylvain Gugger's avatar
Sylvain Gugger committed
3450
3451
                user_agent=user_agent,
                revision=revision,
3452
                subfolder=subfolder,
3453
                _commit_hash=commit_hash,
Sylvain Gugger's avatar
Sylvain Gugger committed
3454
3455
            )

3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
        if (
            is_safetensors_available()
            and isinstance(resolved_archive_file, str)
            and resolved_archive_file.endswith(".safetensors")
        ):
            with safe_open(resolved_archive_file, framework="pt") as f:
                metadata = f.metadata()

            if metadata.get("format") == "pt":
                pass
            elif metadata.get("format") == "tf":
                from_tf = True
                logger.info("A TensorFlow safetensors file is being loaded in a PyTorch model.")
            elif metadata.get("format") == "flax":
                from_flax = True
                logger.info("A Flax safetensors file is being loaded in a PyTorch model.")
3472
3473
3474
            elif metadata.get("format") == "mlx":
                # This is a mlx file, we assume weights are compatible with pt
                pass
3475
3476
            else:
                raise ValueError(
3477
                    f"Incompatible safetensors file. File metadata is not ['pt', 'tf', 'flax', 'mlx'] but {metadata.get('format')}"
3478
3479
3480
3481
                )

        from_pt = not (from_tf | from_flax)

3482
3483
        # load pt weights early so that we know which dtype to init the model under
        if from_pt:
3484
            if not is_sharded and state_dict is None:
Sylvain Gugger's avatar
Sylvain Gugger committed
3485
3486
                # Time to load the checkpoint
                state_dict = load_state_dict(resolved_archive_file)
3487

3488
3489
3490
            # set dtype to instantiate the model under:
            # 1. If torch_dtype is not None, we use that dtype
            # 2. If torch_dtype is "auto", we auto-detect dtype from the loaded state_dict, by checking its first
3491
            #    weights entry that is of a floating type - we assume all floating dtype weights are of the same dtype
3492
3493
            # we also may have config.torch_dtype available, but we won't rely on it till v5
            dtype_orig = None
3494

3495
3496
3497
            if torch_dtype is not None:
                if isinstance(torch_dtype, str):
                    if torch_dtype == "auto":
3498
3499
3500
                        if hasattr(config, "torch_dtype") and config.torch_dtype is not None:
                            torch_dtype = config.torch_dtype
                            logger.info(f"Will use torch_dtype={torch_dtype} as defined in model's config object")
Sylvain Gugger's avatar
Sylvain Gugger committed
3501
                        else:
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
                            if is_sharded and "dtype" in sharded_metadata:
                                torch_dtype = sharded_metadata["dtype"]
                            elif not is_sharded:
                                torch_dtype = get_state_dict_dtype(state_dict)
                            else:
                                one_state_dict = load_state_dict(resolved_archive_file[0])
                                torch_dtype = get_state_dict_dtype(one_state_dict)
                                del one_state_dict  # free CPU memory
                            logger.info(
                                "Since the `torch_dtype` attribute can't be found in model's config object, "
                                "will use torch_dtype={torch_dtype} as derived from model's weights"
                            )
3514
3515
                    else:
                        raise ValueError(
3516
                            f'`torch_dtype` can be either `torch.dtype` or `"auto"`, but received {torch_dtype}'
3517
3518
3519
                        )
                dtype_orig = cls._set_default_torch_dtype(torch_dtype)

3520
            # Check if `_keep_in_fp32_modules` is not None
3521
            use_keep_in_fp32_modules = (cls._keep_in_fp32_modules is not None) and (
3522
                (torch_dtype == torch.float16) or hasattr(hf_quantizer, "use_keep_in_fp32_modules")
3523
3524
            )

3525
3526
3527
            if is_sharded:
                loaded_state_dict_keys = sharded_metadata["all_checkpoint_keys"]
            else:
3528
                loaded_state_dict_keys = list(state_dict.keys())
3529
3530
3531
3532
            if low_cpu_mem_usage or (use_keep_in_fp32_modules and is_accelerate_available()):
                # In case some weights need to be kept in float32 and accelerate is not installed,
                # we later on want to take the path where state_dict is not None, that is the one
                # that do not require accelerate.
3533
                state_dict = None
3534

3535
3536
        config.name_or_path = pretrained_model_name_or_path

3537
        # Instantiate model.
3538
3539
        init_contexts = [no_init_weights(_enable=_fast_init)]

3540
        if is_deepspeed_zero3_enabled() and not is_quantized:
3541
3542
3543
            import deepspeed

            logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
3544
            init_contexts = [deepspeed.zero.Init(config_dict_or_path=deepspeed_config())] + init_contexts
3545
        elif low_cpu_mem_usage:
3546
3547
            init_contexts.append(init_empty_weights())

3548
3549
3550
3551
        config = copy.deepcopy(config)  # We do not want to modify the config inplace in from_pretrained.
        config = cls._autoset_attn_implementation(
            config, use_flash_attention_2=use_flash_attention_2, torch_dtype=torch_dtype, device_map=device_map
        )
3552

3553
        with ContextManagers(init_contexts):
3554
            # Let's make sure we don't run the init function of buffer modules
3555
3556
            model = cls(config, *model_args, **model_kwargs)

3557
3558
3559
        # make sure we use the model's config since the __init__ call might have copied it
        config = model.config

3560
3561
        # Check first if we are `from_pt`
        if use_keep_in_fp32_modules:
3562
            if is_accelerate_available() and not is_deepspeed_zero3_enabled():
3563
                low_cpu_mem_usage = True
3564
3565
3566
3567
            keep_in_fp32_modules = model._keep_in_fp32_modules
        else:
            keep_in_fp32_modules = []

3568
3569
3570
        if hf_quantizer is not None:
            hf_quantizer.preprocess_model(
                model=model, device_map=device_map, keep_in_fp32_modules=keep_in_fp32_modules
3571
            )
3572

3573
3574
3575
3576
3577
3578
            # We store the original dtype for quantized models as we cannot easily retrieve it
            # once the weights have been quantized
            # Note that once you have loaded a quantized model, you can't change its dtype so this will
            # remain a single source of truth
            config._pre_quantization_dtype = torch_dtype

3579
        if isinstance(device_map, str):
3580
            special_dtypes = {}
3581
3582
3583

            if hf_quantizer is not None:
                special_dtypes.update(hf_quantizer.get_special_dtypes_update(model, torch_dtype))
3584
3585
3586
3587
3588
3589
3590
3591
3592

            special_dtypes.update(
                {
                    name: torch.float32
                    for name, _ in model.named_parameters()
                    if any(m in name for m in keep_in_fp32_modules)
                }
            )

3593
3594
            target_dtype = torch_dtype

3595
3596
            if hf_quantizer is not None:
                target_dtype = hf_quantizer.adjust_target_dtype(target_dtype)
3597

Marc Sun's avatar
Marc Sun committed
3598
            no_split_modules = model._get_no_split_modules(device_map)
3599
3600
3601
3602
3603
            if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
                raise ValueError(
                    "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or "
                    "'sequential'."
                )
3604

3605
            device_map_kwargs = {"no_split_module_classes": no_split_modules}
3606
            if "special_dtypes" in inspect.signature(infer_auto_device_map).parameters:
3607
                device_map_kwargs["special_dtypes"] = special_dtypes
3608
            elif len(special_dtypes) > 0:
3609
                logger.warning(
3610
3611
3612
                    "This model has some weights that should be kept in higher precision, you need to upgrade "
                    "`accelerate` to properly deal with them (`pip install --upgrade accelerate`)."
                )
3613
            if device_map != "sequential":
3614
3615
                max_memory = get_balanced_memory(
                    model,
3616
                    dtype=target_dtype,
3617
                    low_zero=(device_map == "balanced_low_0"),
3618
                    max_memory=max_memory,
3619
                    **device_map_kwargs,
3620
                )
Marc Sun's avatar
Marc Sun committed
3621
3622
            else:
                max_memory = get_max_memory(max_memory)
3623
3624
            if hf_quantizer is not None:
                max_memory = hf_quantizer.adjust_max_memory(max_memory)
3625
            device_map_kwargs["max_memory"] = max_memory
Marc Sun's avatar
Marc Sun committed
3626

3627
3628
            # Make sure tied weights are tied before creating the device map.
            model.tie_weights()
3629
            device_map = infer_auto_device_map(model, dtype=target_dtype, **device_map_kwargs)
3630

3631
3632
            if hf_quantizer is not None:
                hf_quantizer.validate_environment(device_map=device_map)
3633

3634
3635
3636
3637
        elif device_map is not None:
            model.tie_weights()
            tied_params = find_tied_parameters(model)
            # check if we don't have tied param in different devices
3638
            check_tied_parameters_on_same_device(tied_params, device_map)
3639

3640
        if from_tf:
3641
            if resolved_archive_file.endswith(".index"):
3642
3643
3644
3645
3646
                # Load from a TensorFlow 1.X checkpoint - provided by original authors
                model = cls.load_tf_weights(model, config, resolved_archive_file[:-6])  # Remove the '.index'
            else:
                # Load from our TensorFlow 2.0 checkpoints
                try:
3647
                    from .modeling_tf_pytorch_utils import load_tf2_checkpoint_in_pytorch_model
3648

Yih-Dar's avatar
Yih-Dar committed
3649
3650
3651
                    model, loading_info = load_tf2_checkpoint_in_pytorch_model(
                        model, resolved_archive_file, allow_missing_keys=True, output_loading_info=True
                    )
3652
                except ImportError:
3653
                    logger.error(
Sylvain Gugger's avatar
Sylvain Gugger committed
3654
3655
3656
                        "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed."
                        " Please see https://pytorch.org/ and https://www.tensorflow.org/install/ for installation"
                        " instructions."
3657
                    )
3658
                    raise
3659
3660
3661
3662
3663
3664
3665
        elif from_flax:
            try:
                from .modeling_flax_pytorch_utils import load_flax_checkpoint_in_pytorch_model

                model = load_flax_checkpoint_in_pytorch_model(model, resolved_archive_file)
            except ImportError:
                logger.error(
Sylvain Gugger's avatar
Sylvain Gugger committed
3666
3667
3668
                    "Loading a Flax model in PyTorch, requires both PyTorch and Flax to be installed. Please see"
                    " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for"
                    " installation instructions."
3669
3670
                )
                raise
3671
        elif from_pt:
3672
3673
3674
            # restore default dtype
            if dtype_orig is not None:
                torch.set_default_dtype(dtype_orig)
Sylvain Gugger's avatar
Sylvain Gugger committed
3675
3676
3677
3678
3679
3680
3681
3682
            (
                model,
                missing_keys,
                unexpected_keys,
                mismatched_keys,
                offload_index,
                error_msgs,
            ) = cls._load_pretrained_model(
3683
3684
3685
3686
3687
3688
3689
3690
3691
                model,
                state_dict,
                loaded_state_dict_keys,  # XXX: rename?
                resolved_archive_file,
                pretrained_model_name_or_path,
                ignore_mismatched_sizes=ignore_mismatched_sizes,
                sharded_metadata=sharded_metadata,
                _fast_init=_fast_init,
                low_cpu_mem_usage=low_cpu_mem_usage,
3692
3693
3694
3695
                device_map=device_map,
                offload_folder=offload_folder,
                offload_state_dict=offload_state_dict,
                dtype=torch_dtype,
3696
                hf_quantizer=hf_quantizer,
3697
                keep_in_fp32_modules=keep_in_fp32_modules,
3698
            )
3699

3700
3701
        # make sure token embedding weights are still tied if needed
        model.tie_weights()
3702

3703
        # Set model in evaluation mode to deactivate DropOut modules by default
3704
3705
        model.eval()

3706
        # If it is a model with generation capabilities, attempt to load the generation config
3707
        if model.can_generate() and pretrained_model_name_or_path is not None:
3708
3709
3710
3711
3712
3713
3714
3715
            try:
                model.generation_config = GenerationConfig.from_pretrained(
                    pretrained_model_name_or_path,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
3716
                    token=token,
3717
3718
3719
3720
3721
3722
                    revision=revision,
                    subfolder=subfolder,
                    _from_auto=from_auto_class,
                    _from_pipeline=from_pipeline,
                    **kwargs,
                )
3723
            except OSError:
3724
3725
3726
3727
3728
                logger.info(
                    "Generation config file not found, using a generation config created from the model config."
                )
                pass

3729
3730
        # Dispatch model with hooks on all devices if necessary
        if device_map is not None:
3731
3732
3733
3734
            device_map_kwargs = {
                "device_map": device_map,
                "offload_dir": offload_folder,
                "offload_index": offload_index,
3735
                "offload_buffers": offload_buffers,
3736
            }
3737
            if "skip_keys" in inspect.signature(dispatch_model).parameters:
3738
                device_map_kwargs["skip_keys"] = model._skip_keys_device_placement
3739
3740
            if not is_fsdp_enabled() and not is_deepspeed_zero3_enabled():
                dispatch_model(model, **device_map_kwargs)
3741

3742
3743
3744
        if hf_quantizer is not None:
            hf_quantizer.postprocess_model(model)
            model.hf_quantizer = hf_quantizer
Marc Sun's avatar
Marc Sun committed
3745

3746
        if _adapter_model_path is not None:
3747
            model.load_adapter(
3748
                _adapter_model_path,
3749
3750
                adapter_name=adapter_name,
                token=token,
3751
                adapter_kwargs=adapter_kwargs,
3752
3753
            )

thomwolf's avatar
thomwolf committed
3754
        if output_loading_info:
Yih-Dar's avatar
Yih-Dar committed
3755
3756
3757
3758
3759
3760
3761
            if loading_info is None:
                loading_info = {
                    "missing_keys": missing_keys,
                    "unexpected_keys": unexpected_keys,
                    "mismatched_keys": mismatched_keys,
                    "error_msgs": error_msgs,
                }
thomwolf's avatar
thomwolf committed
3762
3763
            return model, loading_info

3764
3765
        return model

3766
    @classmethod
Sylvain Gugger's avatar
Sylvain Gugger committed
3767
3768
3769
3770
    def _load_pretrained_model(
        cls,
        model,
        state_dict,
3771
        loaded_keys,
Sylvain Gugger's avatar
Sylvain Gugger committed
3772
3773
3774
3775
3776
        resolved_archive_file,
        pretrained_model_name_or_path,
        ignore_mismatched_sizes=False,
        sharded_metadata=None,
        _fast_init=True,
3777
        low_cpu_mem_usage=False,
3778
3779
        device_map=None,
        offload_folder=None,
3780
        offload_state_dict=None,
3781
        dtype=None,
3782
        hf_quantizer=None,
3783
        keep_in_fp32_modules=None,
3784
    ):
Sylvain Gugger's avatar
Sylvain Gugger committed
3785
        is_safetensors = False
3786
        is_quantized = hf_quantizer is not None
3787

Sylvain Gugger's avatar
Sylvain Gugger committed
3788
        if device_map is not None and "disk" in device_map.values():
Sylvain Gugger's avatar
Sylvain Gugger committed
3789
3790
3791
3792
3793
            archive_file = (
                resolved_archive_file[0] if isinstance(resolved_archive_file, (list, tuple)) else resolved_archive_file
            )
            is_safetensors = archive_file.endswith(".safetensors")
            if offload_folder is None and not is_safetensors:
Sylvain Gugger's avatar
Sylvain Gugger committed
3794
3795
                raise ValueError(
                    "The current `device_map` had weights offloaded to the disk. Please provide an `offload_folder`"
Sylvain Gugger's avatar
Sylvain Gugger committed
3796
3797
                    " for them. Alternatively, make sure you have `safetensors` installed if the model you are using"
                    " offers the weights in this format."
Sylvain Gugger's avatar
Sylvain Gugger committed
3798
                )
Sylvain Gugger's avatar
Sylvain Gugger committed
3799
3800
            if offload_folder is not None:
                os.makedirs(offload_folder, exist_ok=True)
3801
3802
3803
            if offload_state_dict is None:
                offload_state_dict = True

3804
        is_sharded_safetensors = is_safetensors and sharded_metadata is not None
Patrick von Platen's avatar
Patrick von Platen committed
3805
3806
3807
3808

        # tie the model weights before retrieving the state_dict
        model.tie_weights()

3809
        # Retrieve missing & unexpected_keys
3810
3811
        model_state_dict = model.state_dict()
        expected_keys = list(model_state_dict.keys())
3812
3813
        prefix = model.base_model_prefix

Sylvain Gugger's avatar
Sylvain Gugger committed
3814
3815
3816
3817
3818
3819
3820
        def _fix_key(key):
            if "beta" in key:
                return key.replace("beta", "bias")
            if "gamma" in key:
                return key.replace("gamma", "weight")
            return key

3821
        original_loaded_keys = loaded_keys
Sylvain Gugger's avatar
Sylvain Gugger committed
3822
3823
        loaded_keys = [_fix_key(key) for key in loaded_keys]

3824
3825
3826
3827
3828
3829
        if len(prefix) > 0:
            has_prefix_module = any(s.startswith(prefix) for s in loaded_keys)
            expects_prefix_module = any(s.startswith(prefix) for s in expected_keys)
        else:
            has_prefix_module = False
            expects_prefix_module = False
Patrick von Platen's avatar
Patrick von Platen committed
3830
3831
3832

        # key re-naming operations are never done on the keys
        # that are loaded, but always on the keys of the newly initialized model
3833
3834
        remove_prefix_from_model = not has_prefix_module and expects_prefix_module
        add_prefix_to_model = has_prefix_module and not expects_prefix_module
3835

3836
        if remove_prefix_from_model:
3837
3838
3839
            _prefix = f"{prefix}."
            expected_keys_not_prefixed = [s for s in expected_keys if not s.startswith(_prefix)]
            expected_keys = [s[len(_prefix) :] if s.startswith(_prefix) else s for s in expected_keys]
3840
        elif add_prefix_to_model:
3841
3842
            expected_keys = [".".join([prefix, s]) for s in expected_keys]

3843
        missing_keys = sorted(set(expected_keys) - set(loaded_keys))
Sylvain Gugger's avatar
Sylvain Gugger committed
3844
3845
3846
3847
3848
3849
3850
3851
        unexpected_keys = set(loaded_keys) - set(expected_keys)
        # Remove nonpersistent buffers from unexpected keys: they are not in the state dict but will be in the model
        # buffers
        model_buffers = {n for n, _ in model.named_buffers()}
        if remove_prefix_from_model:
            model_buffers = {key[len(_prefix) :] if key.startswith(_prefix) else key for key in model_buffers}
        elif add_prefix_to_model:
            model_buffers = {".".join([prefix, key]) for key in model_buffers}
3852
        unexpected_keys = sorted(unexpected_keys - model_buffers)
3853

3854
        model.tie_weights()
3855
        if device_map is None and not is_fsdp_enabled() and not is_deepspeed_zero3_enabled():
3856
3857
3858
3859
            ptrs = collections.defaultdict(list)
            for name, tensor in model.state_dict().items():
                id_tensor = id_tensor_storage(tensor)
                ptrs[id_tensor].append(name)
Sylvain Gugger's avatar
Sylvain Gugger committed
3860

3861
3862
3863
3864
3865
            # These are all the pointers of shared tensors.
            tied_params = [names for _, names in ptrs.items() if len(names) > 1]
        else:
            # id function doesn't work for meta tensor so we need this function
            tied_params = find_tied_parameters(model)
Sylvain Gugger's avatar
Sylvain Gugger committed
3866
3867

        for group in tied_params:
Sylvain Gugger's avatar
Sylvain Gugger committed
3868
3869
3870
3871
            if remove_prefix_from_model:
                group = [key[len(_prefix) :] if key.startswith(_prefix) else key for key in group]
            elif add_prefix_to_model:
                group = [".".join([prefix, key]) for key in group]
Sylvain Gugger's avatar
Sylvain Gugger committed
3872
3873
3874
            missing_in_group = [k for k in missing_keys if k in group]
            if len(missing_in_group) > 0 and len(missing_in_group) < len(group):
                missing_keys = [k for k in missing_keys if k not in missing_in_group]
3875

3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
        # Some models may have keys that are not in the state by design, removing them before needlessly warning
        # the user.
        if cls._keys_to_ignore_on_load_missing is not None:
            for pat in cls._keys_to_ignore_on_load_missing:
                missing_keys = [k for k in missing_keys if re.search(pat, k) is None]

        if cls._keys_to_ignore_on_load_unexpected is not None:
            for pat in cls._keys_to_ignore_on_load_unexpected:
                unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

3886
3887
3888
        if hf_quantizer is not None:
            missing_keys = hf_quantizer.update_missing_keys(model, missing_keys, prefix)

3889
3890
3891
3892
        # retrieve weights on meta device and put them back on CPU.
        # This is not ideal in terms of memory, but if we don't do that not, we can't initialize them in the next step
        if low_cpu_mem_usage:
            for key in missing_keys:
Susnato Dhar's avatar
Susnato Dhar committed
3893
3894
                if key in list(model_state_dict.keys()):
                    key = key
3895
3896
                elif f"{prefix}.{key}" in list(model_state_dict.keys()):
                    key = f"{prefix}.{key}"
Susnato Dhar's avatar
Susnato Dhar committed
3897
                elif key.startswith(prefix) and ".".join(key.split(".")[1:]) in list(model_state_dict.keys()):
3898
3899
                    key = ".".join(key.split(".")[1:])
                param = model_state_dict[key]
3900
3901
3902
3903
3904
3905

                # upcast in fp32 if any
                target_dtype = dtype
                if (
                    keep_in_fp32_modules is not None
                    and dtype == torch.float16
3906
3907
3908
                    and any(
                        module_to_keep_in_fp32 in key.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules
                    )
3909
3910
3911
                ):
                    target_dtype = torch.float32

3912
                if param.device == torch.device("meta"):
3913
                    value = torch.empty(*param.size(), dtype=target_dtype)
3914
                    if (
3915
                        not is_quantized
3916
3917
3918
3919
                        or getattr(hf_quantizer, "requires_parameters_quantization", False)
                        or not hf_quantizer.check_quantized_param(
                            model, param_value=value, param_name=key, state_dict={}
                        )
3920
3921
                    ):
                        set_module_tensor_to_device(model, key, "cpu", value)
3922
                    else:
3923
                        hf_quantizer.create_quantized_param(model, value, key, "cpu", state_dict, unexpected_keys)
3924

3925
        # retrieve uninitialized modules and initialize before maybe overriding that with the pretrained weights.
3926
        if _fast_init:
3927
3928
3929
3930
3931
3932
3933
            if not ignore_mismatched_sizes:
                if remove_prefix_from_model:
                    _loaded_keys = [f"{prefix}.{k}" for k in loaded_keys]
                elif add_prefix_to_model:
                    _loaded_keys = [k[len(prefix) + 1 :] for k in loaded_keys]
                else:
                    _loaded_keys = loaded_keys
3934
                not_initialized_submodules = set_initialized_submodules(model, _loaded_keys)
3935
                # If we're about to tie the output embeds to the input embeds we don't need to init them
3936
3937
3938
                if hasattr(model.config, "tie_word_embeddings") and model.config.tie_word_embeddings:
                    output_embeddings = model.get_output_embeddings()
                    if output_embeddings is not None:
3939
3940
3941
                        # Still need to initialize if there is a bias term since biases are not tied.
                        if not hasattr(output_embeddings, "bias") or output_embeddings.bias is None:
                            output_embeddings._is_hf_initialized = True
3942
3943
            else:
                not_initialized_submodules = dict(model.named_modules())
3944
            # This will only initialize submodules that are not marked as initialized by the line above.
3945
            if is_deepspeed_zero3_enabled() and not is_quantized:
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
                import deepspeed

                not_initialized_parameters = list(
                    set(
                        itertools.chain.from_iterable(
                            submodule.parameters(recurse=False) for submodule in not_initialized_submodules.values()
                        )
                    )
                )
                with deepspeed.zero.GatheredParameters(not_initialized_parameters, modifier_rank=0):
                    model.apply(model._initialize_weights)
            else:
                model.apply(model._initialize_weights)
3959

3960
3961
3962
        # Set some modules to fp32 if any
        if keep_in_fp32_modules is not None:
            for name, param in model.named_parameters():
3963
                if any(module_to_keep_in_fp32 in name.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules):
3964
3965
                    # param = param.to(torch.float32) does not work here as only in the local scope.
                    param.data = param.data.to(torch.float32)
3966

3967
3968
3969
        # Make sure we are able to load base models as well as derived models (with heads)
        start_prefix = ""
        model_to_load = model
3970
        if len(cls.base_model_prefix) > 0 and not hasattr(model, cls.base_model_prefix) and has_prefix_module:
3971
            start_prefix = cls.base_model_prefix + "."
3972
        if len(cls.base_model_prefix) > 0 and hasattr(model, cls.base_model_prefix) and not has_prefix_module:
3973
            model_to_load = getattr(model, cls.base_model_prefix)
Sylvain Gugger's avatar
Sylvain Gugger committed
3974
3975
            base_model_expected_keys = list(model_to_load.state_dict().keys())
            if any(key in expected_keys_not_prefixed and key not in base_model_expected_keys for key in loaded_keys):
3976
                raise ValueError(
3977
                    "The state dictionary of the model you are trying to load is corrupted. Are you sure it was "
3978
3979
                    "properly saved?"
                )
3980
3981
            if device_map is not None:
                device_map = {k.replace(f"{cls.base_model_prefix}.", ""): v for k, v in device_map.items()}
3982

3983
3984
3985
3986
3987
3988
3989
3990
        def _find_mismatched_keys(
            state_dict,
            model_state_dict,
            loaded_keys,
            add_prefix_to_model,
            remove_prefix_from_model,
            ignore_mismatched_sizes,
        ):
Sylvain Gugger's avatar
Sylvain Gugger committed
3991
3992
3993
            mismatched_keys = []
            if ignore_mismatched_sizes:
                for checkpoint_key in loaded_keys:
3994
3995
3996
                    # If the checkpoint is sharded, we may not have the key here.
                    if checkpoint_key not in state_dict:
                        continue
Sylvain Gugger's avatar
Sylvain Gugger committed
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
                    model_key = checkpoint_key
                    if remove_prefix_from_model:
                        # The model key starts with `prefix` but `checkpoint_key` doesn't so we add it.
                        model_key = f"{prefix}.{checkpoint_key}"
                    elif add_prefix_to_model:
                        # The model key doesn't start with `prefix` but `checkpoint_key` does so we remove it.
                        model_key = ".".join(checkpoint_key.split(".")[1:])

                    if (
                        model_key in model_state_dict
                        and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
                    ):
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
                        if (
                            state_dict[checkpoint_key].shape[-1] == 1
                            and state_dict[checkpoint_key].numel() * 2 == model_state_dict[model_key].numel()
                        ):
                            # This skips size mismatches for 4-bit weights. Two 4-bit values share an 8-bit container, causing size differences.
                            # Without matching with module type or paramter type it seems like a practical way to detect valid 4bit weights.
                            pass
                        else:
                            mismatched_keys.append(
                                (checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
                            )
                            del state_dict[checkpoint_key]
4021
4022
            return mismatched_keys

4023
4024
4025
4026
        if resolved_archive_file is not None:
            folder = os.path.sep.join(resolved_archive_file[0].split(os.path.sep)[:-1])
        else:
            folder = None
Sylvain Gugger's avatar
Sylvain Gugger committed
4027
        if device_map is not None and is_safetensors:
4028
            param_device_map = expand_device_map(device_map, original_loaded_keys, start_prefix)
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
            str_dtype = str(dtype).replace("torch.", "") if dtype is not None else "float32"
            if sharded_metadata is None:
                archive_file = (
                    resolved_archive_file[0]
                    if isinstance(resolved_archive_file, (list, tuple))
                    else resolved_archive_file
                )
                weight_map = {p: archive_file for p in original_loaded_keys}
            else:
                weight_map = {p: os.path.join(folder, f) for p, f in sharded_metadata["weight_map"].items()}
Sylvain Gugger's avatar
Sylvain Gugger committed
4039
            offload_index = {
4040
                p[len(start_prefix) :]: {"safetensors_file": f, "weight_name": p, "dtype": str_dtype}
4041
                for p, f in weight_map.items()
4042
                if p.startswith(start_prefix) and param_device_map[p[len(start_prefix) :]] == "disk"
Sylvain Gugger's avatar
Sylvain Gugger committed
4043
4044
            }

4045
4046
4047
4048
4049
        if state_dict is not None:
            # Whole checkpoint
            mismatched_keys = _find_mismatched_keys(
                state_dict,
                model_state_dict,
4050
                original_loaded_keys,
4051
4052
4053
4054
                add_prefix_to_model,
                remove_prefix_from_model,
                ignore_mismatched_sizes,
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
4055
            error_msgs = _load_state_dict_into_model(model_to_load, state_dict, start_prefix)
Sylvain Gugger's avatar
Sylvain Gugger committed
4056
            offload_index = None
Sylvain Gugger's avatar
Sylvain Gugger committed
4057
        else:
4058
4059
            # Sharded checkpoint or whole but low_cpu_mem_usage==True

Sylvain Gugger's avatar
Sylvain Gugger committed
4060
4061
4062
4063
4064
            # This should always be a list but, just to be sure.
            if not isinstance(resolved_archive_file, list):
                resolved_archive_file = [resolved_archive_file]

            error_msgs = []
4065
            mismatched_keys = []
Sylvain Gugger's avatar
Sylvain Gugger committed
4066
4067
            if not is_safetensors:
                offload_index = {} if device_map is not None and "disk" in device_map.values() else None
4068
4069
4070
4071
4072
4073
4074
            if offload_state_dict:
                state_dict_folder = tempfile.mkdtemp()
                state_dict_index = {}
            else:
                state_dict_folder = None
                state_dict_index = None

4075
            if is_sharded_safetensors:
4076
4077
4078
                disk_only_shard_files = get_disk_only_shard_files(
                    device_map, sharded_metadata=sharded_metadata, start_prefix=start_prefix
                )
Sylvain Gugger's avatar
Sylvain Gugger committed
4079
4080
4081
4082
                disk_only_shard_files = [os.path.join(folder, f) for f in disk_only_shard_files]
            else:
                disk_only_shard_files = []

4083
4084
            if len(resolved_archive_file) > 1:
                resolved_archive_file = logging.tqdm(resolved_archive_file, desc="Loading checkpoint shards")
Sylvain Gugger's avatar
Sylvain Gugger committed
4085
            for shard_file in resolved_archive_file:
Sylvain Gugger's avatar
Sylvain Gugger committed
4086
4087
4088
                # Skip the load for shards that only contain disk-offloaded weights when using safetensors for the offload.
                if shard_file in disk_only_shard_files:
                    continue
4089
                state_dict = load_state_dict(shard_file, is_quantized=is_quantized)
4090

Sylvain Gugger's avatar
Sylvain Gugger committed
4091
4092
                # Mistmatched keys contains tuples key/shape1/shape2 of weights in the checkpoint that have a shape not
                # matching the weights in the model.
4093
4094
4095
                mismatched_keys += _find_mismatched_keys(
                    state_dict,
                    model_state_dict,
4096
                    original_loaded_keys,
4097
4098
4099
4100
                    add_prefix_to_model,
                    remove_prefix_from_model,
                    ignore_mismatched_sizes,
                )
4101
                if low_cpu_mem_usage:
4102
                    if is_fsdp_enabled() and not is_local_dist_rank_0() and not is_quantized:
4103
4104
                        for key, param in model_to_load.state_dict().items():
                            if param.device == torch.device("meta"):
4105
4106
4107
                                set_module_tensor_to_device(
                                    model_to_load, key, "cpu", torch.empty(*param.size(), dtype=dtype)
                                )
4108
                    else:
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
                        new_error_msgs, offload_index, state_dict_index = _load_state_dict_into_meta_model(
                            model_to_load,
                            state_dict,
                            loaded_keys,
                            start_prefix,
                            expected_keys,
                            device_map=device_map,
                            offload_folder=offload_folder,
                            offload_index=offload_index,
                            state_dict_folder=state_dict_folder,
                            state_dict_index=state_dict_index,
                            dtype=dtype,
4121
                            hf_quantizer=hf_quantizer,
4122
4123
                            is_safetensors=is_safetensors,
                            keep_in_fp32_modules=keep_in_fp32_modules,
4124
                            unexpected_keys=unexpected_keys,
4125
4126
                        )
                        error_msgs += new_error_msgs
4127
4128
                else:
                    error_msgs += _load_state_dict_into_model(model_to_load, state_dict, start_prefix)
4129

4130
4131
4132
4133
                # force memory release
                del state_dict
                gc.collect()

4134
            if offload_index is not None and len(offload_index) > 0:
Sylvain Gugger's avatar
Sylvain Gugger committed
4135
4136
4137
                if model != model_to_load:
                    # We need to add the prefix of the base model
                    prefix = cls.base_model_prefix
Sylvain Gugger's avatar
Sylvain Gugger committed
4138
4139
4140
4141
4142
4143
                    if not is_safetensors:
                        for weight_name in offload_index:
                            shutil.move(
                                os.path.join(offload_folder, f"{weight_name}.dat"),
                                os.path.join(offload_folder, f"{prefix}.{weight_name}.dat"),
                            )
Sylvain Gugger's avatar
Sylvain Gugger committed
4144
                    offload_index = {f"{prefix}.{key}": value for key, value in offload_index.items()}
Sylvain Gugger's avatar
Sylvain Gugger committed
4145
4146
4147
                if not is_safetensors:
                    save_offload_index(offload_index, offload_folder)
                    offload_index = None
4148
4149
4150

            if offload_state_dict:
                # Load back temporarily offloaded state dict
4151
                load_offloaded_weights(model_to_load, state_dict_index, state_dict_folder)
4152
4153
                shutil.rmtree(state_dict_folder)

4154
4155
        if len(error_msgs) > 0:
            error_msg = "\n\t".join(error_msgs)
4156
4157
4158
4159
            if "size mismatch" in error_msg:
                error_msg += (
                    "\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
                )
4160
4161
            raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")

4162
        if len(unexpected_keys) > 0:
Sylvain Gugger's avatar
Sylvain Gugger committed
4163
            archs = [] if model.config.architectures is None else model.config.architectures
4164
            warner = logger.warning if model.__class__.__name__ in archs else logger.info
Sylvain Gugger's avatar
Sylvain Gugger committed
4165
            warner(
Sylvain Gugger's avatar
Sylvain Gugger committed
4166
4167
4168
4169
4170
4171
4172
                f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
                f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
                f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task or"
                " with another architecture (e.g. initializing a BertForSequenceClassification model from a"
                " BertForPreTraining model).\n- This IS NOT expected if you are initializing"
                f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly identical"
                " (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
4173
4174
4175
4176
4177
            )
        else:
            logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
        if len(missing_keys) > 0:
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
4178
4179
4180
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
                " TRAIN this model on a down-stream task to be able to use it for predictions and inference."
4181
            )
4182
        elif len(mismatched_keys) == 0:
4183
            logger.info(
Sylvain Gugger's avatar
Sylvain Gugger committed
4184
4185
4186
4187
                f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the checkpoint"
                f" was trained on, you can already use {model.__class__.__name__} for predictions without further"
                " training."
4188
            )
4189
4190
4191
4192
4193
4194
4195
4196
        if len(mismatched_keys) > 0:
            mismatched_warning = "\n".join(
                [
                    f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
                    for key, shape1, shape2 in mismatched_keys
                ]
            )
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
4197
4198
4199
4200
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
                f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be able"
                " to use it for predictions and inference."
4201
            )
4202

Sylvain Gugger's avatar
Sylvain Gugger committed
4203
        return model, missing_keys, unexpected_keys, mismatched_keys, offload_index, error_msgs
4204
4205

    def retrieve_modules_from_names(self, names, add_prefix=False, remove_prefix=False):
4206
        module_keys = {".".join(key.split(".")[:-1]) for key in names}
4207

Patrick von Platen's avatar
Patrick von Platen committed
4208
4209
        # torch.nn.ParameterList is a special case where two parameter keywords
        # are appended to the module name, *e.g.* bert.special_embeddings.0
4210
        module_keys = module_keys.union(
4211
            {".".join(key.split(".")[:-2]) for key in names if len(key) > 0 and key[-1].isdigit()}
4212
        )
Patrick von Platen's avatar
Patrick von Platen committed
4213

4214
4215
4216
4217
        retrieved_modules = []
        # retrieve all modules that has at least one missing weight name
        for name, module in self.named_modules():
            if remove_prefix:
4218
4219
                _prefix = f"{self.base_model_prefix}."
                name = name[len(_prefix) :] if name.startswith(_prefix) else name
4220
            elif add_prefix:
Patrick von Platen's avatar
Patrick von Platen committed
4221
                name = ".".join([self.base_model_prefix, name]) if len(name) > 0 else self.base_model_prefix
4222
4223
4224
4225
4226
4227

            if name in module_keys:
                retrieved_modules.append(module)

        return retrieved_modules

4228
    @staticmethod
4229
4230
4231
    def _load_pretrained_model_low_mem(
        model, loaded_state_dict_keys, resolved_archive_file, start_prefix="", hf_quantizer=None
    ):
4232
4233
4234
        """
        This is an experimental function that loads the model using ~1.x model size CPU memory

4235
        Before you call it do:
4236

4237
        1. save which state_dict keys are available
4238
4239
4240
4241
4242
4243
4244
4245
        2. drop state_dict before model is created, since the latter takes 1x model size memory

        Here then we continue:

        3. switch to the meta device all params/buffers that are going to be replaced from the loaded state_dict
        4. load state_dict 2nd time
        5. replace the params/buffers from the state_dict

4246
4247
        Currently, it doesn't handle missing_keys, unexpected_keys, mismatched_keys. It can't handle deepspeed. To
        handle bitsandbytes, needs non-empty hf_quantizer argument.
4248
4249
        """

4250
4251
        _move_model_to_meta(model, loaded_state_dict_keys, start_prefix)
        state_dict = load_state_dict(resolved_archive_file)
4252
4253
4254
4255
4256
4257
4258
4259
4260
        expected_keys = loaded_state_dict_keys  # plug for missing expected_keys. TODO: replace with proper keys
        error_msgs = _load_state_dict_into_meta_model(
            model,
            state_dict,
            loaded_state_dict_keys,
            start_prefix,
            expected_keys=expected_keys,
            hf_quantizer=hf_quantizer,
        )
4261
        return error_msgs
4262

4263
4264
4265
4266
4267
4268
    @classmethod
    def register_for_auto_class(cls, auto_class="AutoModel"):
        """
        Register this class with a given auto class. This should only be used for custom models as the ones in the
        library are already mapped with an auto class.

4269
4270
4271
4272
4273
4274
        <Tip warning={true}>

        This API is experimental and may have some slight breaking changes in the next releases.

        </Tip>

4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
        Args:
            auto_class (`str` or `type`, *optional*, defaults to `"AutoModel"`):
                The auto class to register this new model with.
        """
        if not isinstance(auto_class, str):
            auto_class = auto_class.__name__

        import transformers.models.auto as auto_module

        if not hasattr(auto_module, auto_class):
            raise ValueError(f"{auto_class} is not a valid auto class.")

        cls._auto_class = auto_class

4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
    def to_bettertransformer(self) -> "PreTrainedModel":
        """
        Converts the model to use [PyTorch's native attention
        implementation](https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html), integrated to
        Transformers through [Optimum library](https://huggingface.co/docs/optimum/bettertransformer/overview). Only a
        subset of all Transformers models are supported.

        PyTorch's attention fastpath allows to speed up inference through kernel fusions and the use of [nested
        tensors](https://pytorch.org/docs/stable/nested.html). Detailed benchmarks can be found in [this blog
        post](https://medium.com/pytorch/bettertransformer-out-of-the-box-performance-for-huggingface-transformers-3fbe27d50ab2).

        Returns:
            [`PreTrainedModel`]: The model converted to BetterTransformer.
        """
        if not is_optimum_available():
            raise ImportError("The package `optimum` is required to use Better Transformer.")

        from optimum.version import __version__ as optimum_version

        if version.parse(optimum_version) < version.parse("1.7.0"):
            raise ImportError(
                f"Please install optimum>=1.7.0 to use Better Transformer. The version {optimum_version} was found."
            )

        from optimum.bettertransformer import BetterTransformer

        return BetterTransformer.transform(self)

    def reverse_bettertransformer(self):
        """
        Reverts the transformation from [`~PreTrainedModel.to_bettertransformer`] so that the original modeling is
        used, for example in order to save the model.

        Returns:
            [`PreTrainedModel`]: The model converted back to the original modeling.
        """
        if not is_optimum_available():
            raise ImportError("The package `optimum` is required to use Better Transformer.")

        from optimum.version import __version__ as optimum_version

        if version.parse(optimum_version) < version.parse("1.7.0"):
            raise ImportError(
                f"Please install optimum>=1.7.0 to use Better Transformer. The version {optimum_version} was found."
            )

        from optimum.bettertransformer import BetterTransformer

        return BetterTransformer.reverse(self)

4339
4340
4341
4342
    def warn_if_padding_and_no_attention_mask(self, input_ids, attention_mask):
        """
        Shows a one-time warning if the input_ids appear to contain padding and no attention mask was given.
        """
4343
4344

        # Skip the check during tracing.
4345
        if is_torch_fx_proxy(input_ids) or torch.jit.is_tracing() or is_torchdynamo_compiling():
4346
4347
            return

4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
        if (attention_mask is not None) or (self.config.pad_token_id is None):
            return

        # Check only the first and last input IDs to reduce overhead.
        if self.config.pad_token_id in input_ids[:, [-1, 0]]:
            warn_string = (
                "We strongly recommend passing in an `attention_mask` since your input_ids may be padded. See "
                "https://huggingface.co/docs/transformers/troubleshooting"
                "#incorrect-output-when-padding-tokens-arent-masked."
            )

            # If the pad token is equal to either BOS, EOS, or SEP, we do not know whether the user should use an
            # attention_mask or not. In this case, we should still show a warning because this is a rare case.
            if (
                (self.config.bos_token_id is not None and self.config.bos_token_id == self.config.pad_token_id)
                or (self.config.eos_token_id is not None and self.config.eos_token_id == self.config.pad_token_id)
                or (self.config.sep_token_id is not None and self.config.sep_token_id == self.config.pad_token_id)
            ):
                warn_string += (
                    f"\nYou may ignore this warning if your `pad_token_id` ({self.config.pad_token_id}) is identical "
                    f"to the `bos_token_id` ({self.config.bos_token_id}), `eos_token_id` ({self.config.eos_token_id}), "
                    f"or the `sep_token_id` ({self.config.sep_token_id}), and your input is not padded."
                )

            logger.warning_once(warn_string)

4374
4375
    @property
    def _is_quantized_training_enabled(self):
4376
        warnings.warn(
4377
4378
4379
4380
4381
4382
4383
4384
4385
            "`_is_quantized_training_enabled` is going to be deprecated in transformers 4.39.0. Please use `model.hf_quantizer.is_trainable` instead",
            FutureWarning,
        )

        if not hasattr(self, "hf_quantizer"):
            return False

        return self.hf_quantizer.is_trainable

thomwolf's avatar
thomwolf committed
4386

4387
PreTrainedModel.push_to_hub = copy_func(PreTrainedModel.push_to_hub)
4388
4389
4390
4391
if PreTrainedModel.push_to_hub.__doc__ is not None:
    PreTrainedModel.push_to_hub.__doc__ = PreTrainedModel.push_to_hub.__doc__.format(
        object="model", object_class="AutoModel", object_files="model file"
    )
4392
4393


thomwolf's avatar
thomwolf committed
4394
class PoolerStartLogits(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
4395
4396
    """
    Compute SQuAD start logits from sequence hidden states.
4397

Sylvain Gugger's avatar
Sylvain Gugger committed
4398
    Args:
4399
4400
        config ([`PretrainedConfig`]):
            The config used by the model, will be used to grab the `hidden_size` of the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
4401
4402
4403
    """

    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
4404
        super().__init__()
thomwolf's avatar
thomwolf committed
4405
4406
        self.dense = nn.Linear(config.hidden_size, 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
4407
4408
4409
4410
4411
    def forward(
        self, hidden_states: torch.FloatTensor, p_mask: Optional[torch.FloatTensor] = None
    ) -> torch.FloatTensor:
        """
        Args:
4412
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
4413
                The final hidden states of the model.
4414
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4415
4416
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
Sylvain Gugger's avatar
Sylvain Gugger committed
4417
4418

        Returns:
4419
            `torch.FloatTensor`: The start logits for SQuAD.
thomwolf's avatar
thomwolf committed
4420
        """
thomwolf's avatar
thomwolf committed
4421
4422
4423
        x = self.dense(hidden_states).squeeze(-1)

        if p_mask is not None:
Lysandre Debut's avatar
Lysandre Debut committed
4424
            if get_parameter_dtype(self) == torch.float16:
4425
4426
4427
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask
thomwolf's avatar
thomwolf committed
4428
4429
4430
4431
4432
4433

        return x


class PoolerEndLogits(nn.Module):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
4434
    Compute SQuAD end logits from sequence hidden states.
4435

Sylvain Gugger's avatar
Sylvain Gugger committed
4436
    Args:
4437
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
4438
4439
            The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps`
            to use.
Sylvain Gugger's avatar
Sylvain Gugger committed
4440
4441
4442
    """

    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
4443
        super().__init__()
thomwolf's avatar
thomwolf committed
4444
4445
4446
4447
4448
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dense_1 = nn.Linear(config.hidden_size, 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
4449
4450
4451
4452
4453
4454
4455
4456
4457
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        start_states: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        p_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
        """
        Args:
4458
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
4459
                The final hidden states of the model.
4460
            start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4461
                The hidden states of the first tokens for the labeled span.
4462
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4463
                The position of the first token for the labeled span.
4464
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4465
4466
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
Sylvain Gugger's avatar
Sylvain Gugger committed
4467

4468
        <Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
4469

Stas Bekman's avatar
Stas Bekman committed
4470
4471
        One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides
        `start_states`.
4472
4473

        </Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
4474
4475

        Returns:
4476
            `torch.FloatTensor`: The end logits for SQuAD.
thomwolf's avatar
thomwolf committed
4477
        """
4478
4479
4480
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
thomwolf's avatar
thomwolf committed
4481
        if start_positions is not None:
4482
            slen, hsz = hidden_states.shape[-2:]
4483
4484
4485
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions)  # shape (bsz, 1, hsz)
            start_states = start_states.expand(-1, slen, -1)  # shape (bsz, slen, hsz)
thomwolf's avatar
thomwolf committed
4486
4487
4488
4489
4490
4491
4492

        x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1))
        x = self.activation(x)
        x = self.LayerNorm(x)
        x = self.dense_1(x).squeeze(-1)

        if p_mask is not None:
Lysandre Debut's avatar
Lysandre Debut committed
4493
            if get_parameter_dtype(self) == torch.float16:
4494
4495
4496
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask
thomwolf's avatar
thomwolf committed
4497
4498
4499
4500
4501

        return x


class PoolerAnswerClass(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
4502
4503
4504
4505
    """
    Compute SQuAD 2.0 answer class from classification and start tokens hidden states.

    Args:
4506
4507
        config ([`PretrainedConfig`]):
            The config used by the model, will be used to grab the `hidden_size` of the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
4508
    """
4509

thomwolf's avatar
thomwolf committed
4510
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
4511
        super().__init__()
thomwolf's avatar
thomwolf committed
4512
4513
4514
4515
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False)

Sylvain Gugger's avatar
Sylvain Gugger committed
4516
4517
4518
4519
4520
4521
4522
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        start_states: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        cls_index: Optional[torch.LongTensor] = None,
    ) -> torch.FloatTensor:
4523
4524
        """
        Args:
4525
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
4526
                The final hidden states of the model.
4527
            start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4528
                The hidden states of the first tokens for the labeled span.
4529
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4530
                The position of the first token for the labeled span.
4531
4532
4533
4534
            cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
                Position of the CLS token for each sentence in the batch. If `None`, takes the last token.

        <Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
4535

Stas Bekman's avatar
Stas Bekman committed
4536
4537
        One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides
        `start_states`.
Sylvain Gugger's avatar
Sylvain Gugger committed
4538

4539
        </Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
4540
4541

        Returns:
4542
            `torch.FloatTensor`: The SQuAD 2.0 answer class.
thomwolf's avatar
thomwolf committed
4543
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
4544
        # No dependency on end_feature so that we can obtain one single `cls_logits` for each sample.
4545
        hsz = hidden_states.shape[-1]
4546
4547
4548
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
thomwolf's avatar
thomwolf committed
4549
        if start_positions is not None:
4550
4551
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions).squeeze(-2)  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
4552
4553

        if cls_index is not None:
4554
4555
            cls_index = cls_index[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
4556
        else:
4557
            cls_token_state = hidden_states[:, -1, :]  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
4558
4559
4560
4561
4562
4563
4564
4565

        x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1))
        x = self.activation(x)
        x = self.dense_1(x).squeeze(-1)

        return x


4566
4567
4568
@dataclass
class SquadHeadOutput(ModelOutput):
    """
4569
    Base class for outputs of question answering models using a [`~modeling_utils.SQuADHead`].
4570
4571

    Args:
4572
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned if both `start_positions` and `end_positions` are provided):
Sylvain Gugger's avatar
Sylvain Gugger committed
4573
4574
            Classification loss as the sum of start token, end token (and is_impossible if provided) classification
            losses.
4575
        start_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
4576
            Log probabilities for the top config.start_n_top start token possibilities (beam-search).
4577
        start_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
4578
            Indices for the top config.start_n_top start token possibilities (beam-search).
4579
4580
        end_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Log probabilities for the top `config.start_n_top * config.end_n_top` end token possibilities
Sylvain Gugger's avatar
Sylvain Gugger committed
4581
            (beam-search).
4582
4583
4584
4585
        end_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Indices for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search).
        cls_logits (`torch.FloatTensor` of shape `(batch_size,)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Log probabilities for the `is_impossible` label of the answers.
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596

    """

    loss: Optional[torch.FloatTensor] = None
    start_top_log_probs: Optional[torch.FloatTensor] = None
    start_top_index: Optional[torch.LongTensor] = None
    end_top_log_probs: Optional[torch.FloatTensor] = None
    end_top_index: Optional[torch.LongTensor] = None
    cls_logits: Optional[torch.FloatTensor] = None


thomwolf's avatar
thomwolf committed
4597
class SQuADHead(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
4598
4599
    r"""
    A SQuAD head inspired by XLNet.
4600

Sylvain Gugger's avatar
Sylvain Gugger committed
4601
    Args:
4602
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
4603
4604
            The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps`
            to use.
thomwolf's avatar
thomwolf committed
4605
    """
4606

thomwolf's avatar
thomwolf committed
4607
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
4608
        super().__init__()
thomwolf's avatar
thomwolf committed
4609
4610
4611
4612
4613
4614
4615
        self.start_n_top = config.start_n_top
        self.end_n_top = config.end_n_top

        self.start_logits = PoolerStartLogits(config)
        self.end_logits = PoolerEndLogits(config)
        self.answer_class = PoolerAnswerClass(config)

Sylvain Gugger's avatar
Sylvain Gugger committed
4616
    @replace_return_docstrings(output_type=SquadHeadOutput, config_class=PretrainedConfig)
4617
    def forward(
4618
        self,
Sylvain Gugger's avatar
Sylvain Gugger committed
4619
4620
4621
4622
4623
4624
        hidden_states: torch.FloatTensor,
        start_positions: Optional[torch.LongTensor] = None,
        end_positions: Optional[torch.LongTensor] = None,
        cls_index: Optional[torch.LongTensor] = None,
        is_impossible: Optional[torch.LongTensor] = None,
        p_mask: Optional[torch.FloatTensor] = None,
4625
        return_dict: bool = False,
Sylvain Gugger's avatar
Sylvain Gugger committed
4626
4627
    ) -> Union[SquadHeadOutput, Tuple[torch.FloatTensor]]:
        """
Lysandre's avatar
Lysandre committed
4628
        Args:
4629
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Lysandre's avatar
Lysandre committed
4630
                Final hidden states of the model on the sequence tokens.
4631
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
4632
                Positions of the first token for the labeled span.
4633
            end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
4634
                Positions of the last token for the labeled span.
4635
4636
4637
            cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
                Position of the CLS token for each sentence in the batch. If `None`, takes the last token.
            is_impossible (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
4638
                Whether the question has a possible answer in the paragraph or not.
4639
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4640
4641
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
4642
            return_dict (`bool`, *optional*, defaults to `False`):
4643
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Sylvain Gugger's avatar
Sylvain Gugger committed
4644

Lysandre's avatar
Lysandre committed
4645
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
4646
        """
thomwolf's avatar
thomwolf committed
4647
        start_logits = self.start_logits(hidden_states, p_mask=p_mask)
thomwolf's avatar
thomwolf committed
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670

        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, let's remove the dimension added by batch splitting
            for x in (start_positions, end_positions, cls_index, is_impossible):
                if x is not None and x.dim() > 1:
                    x.squeeze_(-1)

            # during training, compute the end logits based on the ground truth of the start position
            end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)

            loss_fct = CrossEntropyLoss()
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

            if cls_index is not None and is_impossible is not None:
                # Predict answerability from the representation of CLS and START
                cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
                loss_fct_cls = nn.BCEWithLogitsLoss()
                cls_loss = loss_fct_cls(cls_logits, is_impossible)

                # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss
                total_loss += cls_loss * 0.5
4671

4672
            return SquadHeadOutput(loss=total_loss) if return_dict else (total_loss,)
thomwolf's avatar
thomwolf committed
4673
4674
4675
4676

        else:
            # during inference, compute the end logits based on beam search
            bsz, slen, hsz = hidden_states.size()
4677
            start_log_probs = nn.functional.softmax(start_logits, dim=-1)  # shape (bsz, slen)
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688

            start_top_log_probs, start_top_index = torch.topk(
                start_log_probs, self.start_n_top, dim=-1
            )  # shape (bsz, start_n_top)
            start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz)  # shape (bsz, start_n_top, hsz)
            start_states = torch.gather(hidden_states, -2, start_top_index_exp)  # shape (bsz, start_n_top, hsz)
            start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1)  # shape (bsz, slen, start_n_top, hsz)

            hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(
                start_states
            )  # shape (bsz, slen, start_n_top, hsz)
thomwolf's avatar
thomwolf committed
4689
4690
            p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
            end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
4691
            end_log_probs = nn.functional.softmax(end_logits, dim=1)  # shape (bsz, slen, start_n_top)
thomwolf's avatar
thomwolf committed
4692

4693
4694
4695
            end_top_log_probs, end_top_index = torch.topk(
                end_log_probs, self.end_n_top, dim=1
            )  # shape (bsz, end_n_top, start_n_top)
thomwolf's avatar
thomwolf committed
4696
4697
4698
4699
4700
4701
            end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
            end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)

            start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs)
            cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index)

4702
            if not return_dict:
4703
4704
4705
4706
4707
4708
4709
4710
4711
                return (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits)
            else:
                return SquadHeadOutput(
                    start_top_log_probs=start_top_log_probs,
                    start_top_index=start_top_index,
                    end_top_log_probs=end_top_log_probs,
                    end_top_index=end_top_index,
                    cls_logits=cls_logits,
                )
thomwolf's avatar
thomwolf committed
4712
4713
4714


class SequenceSummary(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
4715
4716
4717
4718
    r"""
    Compute a single vector summary of a sequence hidden states.

    Args:
4719
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
4720
4721
            The config used by the model. Relevant arguments in the config class of the model are (refer to the actual
            config class of your model for the default values it uses):
Sylvain Gugger's avatar
Sylvain Gugger committed
4722

4723
            - **summary_type** (`str`) -- The method to use to make this summary. Accepted values are:
Sylvain Gugger's avatar
Sylvain Gugger committed
4724

4725
4726
4727
4728
4729
                - `"last"` -- Take the last token hidden state (like XLNet)
                - `"first"` -- Take the first token hidden state (like Bert)
                - `"mean"` -- Take the mean of all tokens hidden states
                - `"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2)
                - `"attn"` -- Not implemented now, use multi-head attention
Sylvain Gugger's avatar
Sylvain Gugger committed
4730

4731
            - **summary_use_proj** (`bool`) -- Add a projection after the vector extraction.
Sylvain Gugger's avatar
Sylvain Gugger committed
4732
4733
4734
4735
4736
4737
            - **summary_proj_to_labels** (`bool`) -- If `True`, the projection outputs to `config.num_labels` classes
              (otherwise to `config.hidden_size`).
            - **summary_activation** (`Optional[str]`) -- Set to `"tanh"` to add a tanh activation to the output,
              another string or `None` will add no activation.
            - **summary_first_dropout** (`float`) -- Optional dropout probability before the projection and activation.
            - **summary_last_dropout** (`float`)-- Optional dropout probability after the projection and activation.
thomwolf's avatar
thomwolf committed
4738
    """
4739

4740
    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
4741
        super().__init__()
thomwolf's avatar
thomwolf committed
4742

4743
        self.summary_type = getattr(config, "summary_type", "last")
4744
        if self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
4745
4746
4747
4748
4749
            # We should use a standard multi-head attention module with absolute positional embedding for that.
            # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
            # We can probably just use the multi-head attention module of PyTorch >=1.1.0
            raise NotImplementedError

thomwolf's avatar
thomwolf committed
4750
        self.summary = Identity()
4751
4752
        if hasattr(config, "summary_use_proj") and config.summary_use_proj:
            if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0:
4753
                num_classes = config.num_labels
thomwolf's avatar
thomwolf committed
4754
4755
4756
4757
            else:
                num_classes = config.hidden_size
            self.summary = nn.Linear(config.hidden_size, num_classes)

4758
        activation_string = getattr(config, "summary_activation", None)
Lysandre's avatar
Lysandre committed
4759
        self.activation: Callable = get_activation(activation_string) if activation_string else Identity()
thomwolf's avatar
thomwolf committed
4760

thomwolf's avatar
thomwolf committed
4761
        self.first_dropout = Identity()
4762
        if hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0:
4763
4764
            self.first_dropout = nn.Dropout(config.summary_first_dropout)

thomwolf's avatar
thomwolf committed
4765
        self.last_dropout = Identity()
4766
        if hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0:
4767
            self.last_dropout = nn.Dropout(config.summary_last_dropout)
thomwolf's avatar
thomwolf committed
4768

Sylvain Gugger's avatar
Sylvain Gugger committed
4769
4770
4771
4772
4773
4774
4775
    def forward(
        self, hidden_states: torch.FloatTensor, cls_index: Optional[torch.LongTensor] = None
    ) -> torch.FloatTensor:
        """
        Compute a single vector summary of a sequence hidden states.

        Args:
4776
            hidden_states (`torch.FloatTensor` of shape `[batch_size, seq_len, hidden_size]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
4777
                The hidden states of the last layer.
4778
            cls_index (`torch.LongTensor` of shape `[batch_size]` or `[batch_size, ...]` where ... are optional leading dimensions of `hidden_states`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4779
                Used if `summary_type == "cls_index"` and takes the last token of the sequence as classification token.
Sylvain Gugger's avatar
Sylvain Gugger committed
4780
4781

        Returns:
4782
            `torch.FloatTensor`: The summary of the sequence hidden states.
thomwolf's avatar
thomwolf committed
4783
        """
4784
        if self.summary_type == "last":
thomwolf's avatar
thomwolf committed
4785
            output = hidden_states[:, -1]
4786
        elif self.summary_type == "first":
thomwolf's avatar
thomwolf committed
4787
            output = hidden_states[:, 0]
4788
        elif self.summary_type == "mean":
thomwolf's avatar
thomwolf committed
4789
            output = hidden_states.mean(dim=1)
4790
        elif self.summary_type == "cls_index":
thomwolf's avatar
thomwolf committed
4791
            if cls_index is None:
Lysandre's avatar
Lysandre committed
4792
4793
4794
4795
4796
                cls_index = torch.full_like(
                    hidden_states[..., :1, :],
                    hidden_states.shape[-2] - 1,
                    dtype=torch.long,
                )
thomwolf's avatar
thomwolf committed
4797
            else:
thomwolf's avatar
thomwolf committed
4798
                cls_index = cls_index.unsqueeze(-1).unsqueeze(-1)
4799
                cls_index = cls_index.expand((-1,) * (cls_index.dim() - 1) + (hidden_states.size(-1),))
thomwolf's avatar
thomwolf committed
4800
            # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
4801
4802
            output = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, XX, hidden_size)
        elif self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
4803
4804
            raise NotImplementedError

4805
        output = self.first_dropout(output)
thomwolf's avatar
thomwolf committed
4806
4807
        output = self.summary(output)
        output = self.activation(output)
4808
        output = self.last_dropout(output)
thomwolf's avatar
thomwolf committed
4809
4810
4811
4812

        return output


4813
def unwrap_model(model: nn.Module, recursive: bool = False) -> nn.Module:
4814
4815
4816
4817
    """
    Recursively unwraps a model from potential containers (as used in distributed training).

    Args:
4818
        model (`torch.nn.Module`): The model to unwrap.
4819
4820
4821
        recursive (`bool`, *optional*, defaults to `False`):
            Whether to recursively extract all cases of `module.module` from `model` as well as unwrap child sublayers
            recursively, not just the top-level distributed containers.
4822
    """
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
    # Use accelerate implementation if available (should always be the case when using torch)
    # This is for pytorch, as we also have to handle things like dynamo
    if is_accelerate_available():
        kwargs = {}
        if recursive:
            if not is_accelerate_available("0.29.0"):
                raise RuntimeError(
                    "Setting `recursive=True` to `unwrap_model` requires `accelerate` v0.29.0. Please upgrade your version of accelerate"
                )
            else:
                kwargs["recursive"] = recursive
        return extract_model_from_parallel(model, **kwargs)
4835
    else:
4836
4837
4838
4839
4840
        # since there could be multiple levels of wrapping, unwrap recursively
        if hasattr(model, "module"):
            return unwrap_model(model.module)
        else:
            return model
Sylvain Gugger's avatar
Sylvain Gugger committed
4841
4842


4843
def expand_device_map(device_map, param_names, start_prefix):
Sylvain Gugger's avatar
Sylvain Gugger committed
4844
4845
4846
4847
    """
    Expand a device map to return the correspondance parameter name to device.
    """
    new_device_map = {}
4848
    param_names = [p[len(start_prefix) :] for p in param_names if p.startswith(start_prefix)]
Sylvain Gugger's avatar
Sylvain Gugger committed
4849
    for module, device in device_map.items():
4850
4851
4852
        new_device_map.update(
            {p: device for p in param_names if p == module or p.startswith(f"{module}.") or module == ""}
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
4853
4854
4855
    return new_device_map


4856
def get_disk_only_shard_files(device_map, sharded_metadata, start_prefix):
Sylvain Gugger's avatar
Sylvain Gugger committed
4857
4858
4859
    """
    Returns the list of shard files containing only weights offloaded to disk.
    """
4860
4861
4862
4863

    weight_map = {
        p[len(start_prefix) :]: v for p, v in sharded_metadata["weight_map"].items() if p.startswith(start_prefix)
    }
Sylvain Gugger's avatar
Sylvain Gugger committed
4864
    files_content = collections.defaultdict(list)
4865
    for weight_name, filename in weight_map.items():
Sylvain Gugger's avatar
Sylvain Gugger committed
4866
4867
4868
4869
4870
        while len(weight_name) > 0 and weight_name not in device_map:
            weight_name = ".".join(weight_name.split(".")[:-1])
        files_content[filename].append(device_map[weight_name])

    return [fname for fname, devices in files_content.items() if set(devices) == {"disk"}]