Unverified Commit 003a0cf8 authored by zspo's avatar zspo Committed by GitHub
Browse files

Fix some docs what layerdrop does (#23691)



* Fix some docs what layerdrop does

* Update src/transformers/models/data2vec/configuration_data2vec_audio.py
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix more docs

---------
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
parent 357f281b
...@@ -253,7 +253,7 @@ class AlbertForSequenceClassificationWithPabee(AlbertPreTrainedModel): ...@@ -253,7 +253,7 @@ class AlbertForSequenceClassificationWithPabee(AlbertPreTrainedModel):
Returns: Returns:
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs:
loss: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: loss (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
Classification (or regression if config.num_labels==1) loss. Classification (or regression if config.num_labels==1) loss.
logits ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)`` logits ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)``
Classification (or regression if config.num_labels==1) scores (before SoftMax). Classification (or regression if config.num_labels==1) scores (before SoftMax).
......
...@@ -678,7 +678,7 @@ class PrefixConstrainedLogitsProcessor(LogitsProcessor): ...@@ -678,7 +678,7 @@ class PrefixConstrainedLogitsProcessor(LogitsProcessor):
generation. See [Autoregressive Entity Retrieval](https://arxiv.org/abs/2010.00904) for more information. generation. See [Autoregressive Entity Retrieval](https://arxiv.org/abs/2010.00904) for more information.
Args: Args:
prefix_allowed_tokens_fn: (`Callable[[int, torch.Tensor], List[int]]`): prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`):
This function constraints the beam search to allowed tokens only at each step. This function takes 2 This function constraints the beam search to allowed tokens only at each step. This function takes 2
arguments `inputs_ids` and the batch ID `batch_id`. It has to return a list with the allowed tokens for the arguments `inputs_ids` and the batch ID `batch_id`. It has to return a list with the allowed tokens for the
next generation step conditioned on the previously generated tokens `inputs_ids` and the batch ID next generation step conditioned on the previously generated tokens `inputs_ids` and the batch ID
......
...@@ -1522,7 +1522,7 @@ class Seq2SeqTSModelOutput(ModelOutput): ...@@ -1522,7 +1522,7 @@ class Seq2SeqTSModelOutput(ModelOutput):
scale (`torch.FloatTensor` of shape `(batch_size,)` or `(batch_size, input_size)`, *optional*): scale (`torch.FloatTensor` of shape `(batch_size,)` or `(batch_size, input_size)`, *optional*):
Scaling values of each time series' context window which is used to give the model inputs of the same Scaling values of each time series' context window which is used to give the model inputs of the same
magnitude and then used to rescale back to the original magnitude. magnitude and then used to rescale back to the original magnitude.
static_features: (`torch.FloatTensor` of shape `(batch_size, feature size)`, *optional*): static_features (`torch.FloatTensor` of shape `(batch_size, feature size)`, *optional*):
Static features of each time series' in a batch which are copied to the covariates at inference time. Static features of each time series' in a batch which are copied to the covariates at inference time.
""" """
...@@ -1593,7 +1593,7 @@ class Seq2SeqTSPredictionOutput(ModelOutput): ...@@ -1593,7 +1593,7 @@ class Seq2SeqTSPredictionOutput(ModelOutput):
scale (`torch.FloatTensor` of shape `(batch_size,)` or `(batch_size, input_size)`, *optional*): scale (`torch.FloatTensor` of shape `(batch_size,)` or `(batch_size, input_size)`, *optional*):
Scaling values of each time series' context window which is used to give the model inputs of the same Scaling values of each time series' context window which is used to give the model inputs of the same
magnitude and then used to rescale back to the original magnitude. magnitude and then used to rescale back to the original magnitude.
static_features: (`torch.FloatTensor` of shape `(batch_size, feature size)`, *optional*): static_features (`torch.FloatTensor` of shape `(batch_size, feature size)`, *optional*):
Static features of each time series' in a batch which are copied to the covariates at inference time. Static features of each time series' in a batch which are copied to the covariates at inference time.
""" """
......
...@@ -912,7 +912,7 @@ class ModuleUtilsMixin: ...@@ -912,7 +912,7 @@ class ModuleUtilsMixin:
The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard). The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard).
num_hidden_layers (`int`): num_hidden_layers (`int`):
The number of hidden layers in the model. The number of hidden layers in the model.
is_attention_chunked: (`bool`, *optional*, defaults to `False`): is_attention_chunked (`bool`, *optional*, defaults to `False`):
Whether or not the attentions scores are computed by chunks or not. Whether or not the attentions scores are computed by chunks or not.
Returns: Returns:
......
...@@ -184,7 +184,7 @@ class AlignVisionConfig(PretrainedConfig): ...@@ -184,7 +184,7 @@ class AlignVisionConfig(PretrainedConfig):
List of output channel sizes to be used in each block for convolutional layers. List of output channel sizes to be used in each block for convolutional layers.
depthwise_padding (`List[int]`, *optional*, defaults to `[]`): depthwise_padding (`List[int]`, *optional*, defaults to `[]`):
List of block indices with square padding. List of block indices with square padding.
strides: (`List[int]`, *optional*, defaults to `[1, 2, 2, 2, 1, 2, 1]`): strides (`List[int]`, *optional*, defaults to `[1, 2, 2, 2, 1, 2, 1]`):
List of stride sizes to be used in each block for convolutional layers. List of stride sizes to be used in each block for convolutional layers.
num_block_repeats (`List[int]`, *optional*, defaults to `[1, 2, 2, 3, 3, 4, 1]`): num_block_repeats (`List[int]`, *optional*, defaults to `[1, 2, 2, 3, 3, 4, 1]`):
List of the number of times each block is to repeated. List of the number of times each block is to repeated.
......
...@@ -613,7 +613,7 @@ class BlipTextModel(BlipTextPreTrainedModel): ...@@ -613,7 +613,7 @@ class BlipTextModel(BlipTextPreTrainedModel):
Mask with ones indicating tokens to attend to, zeros for tokens to ignore. Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
input_shape (`Tuple[int]`): input_shape (`Tuple[int]`):
The shape of the input to the model. The shape of the input to the model.
device: (`torch.device`): device (`torch.device`):
The device of the input to the model. The device of the input to the model.
Returns: Returns:
......
...@@ -633,7 +633,7 @@ class TFBlipTextModel(TFBlipTextPreTrainedModel): ...@@ -633,7 +633,7 @@ class TFBlipTextModel(TFBlipTextPreTrainedModel):
Mask with ones indicating tokens to attend to, zeros for tokens to ignore. Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
input_shape (`Tuple[int]`): input_shape (`Tuple[int]`):
The shape of the input to the model. The shape of the input to the model.
is_decoder: (`bool`): is_decoder (`bool`):
Whether the model is used as a decoder. Whether the model is used as a decoder.
Returns: Returns:
......
...@@ -1059,7 +1059,7 @@ class Blip2QFormerModel(Blip2PreTrainedModel): ...@@ -1059,7 +1059,7 @@ class Blip2QFormerModel(Blip2PreTrainedModel):
Mask with ones indicating tokens to attend to, zeros for tokens to ignore. Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
input_shape (`Tuple[int]`): input_shape (`Tuple[int]`):
The shape of the input to the model. The shape of the input to the model.
device: (`torch.device`): device (`torch.device`):
The device of the input to the model. The device of the input to the model.
Returns: Returns:
......
...@@ -256,7 +256,7 @@ class BloomAttention(nn.Module): ...@@ -256,7 +256,7 @@ class BloomAttention(nn.Module):
Merge heads together over the last dimenstion Merge heads together over the last dimenstion
Args: Args:
x: (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim] x (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim]
Returns: Returns:
torch.tensor: [batch_size, seq_length, num_heads * head_dim] torch.tensor: [batch_size, seq_length, num_heads * head_dim]
......
...@@ -62,6 +62,9 @@ class Data2VecAudioConfig(PretrainedConfig): ...@@ -62,6 +62,9 @@ class Data2VecAudioConfig(PretrainedConfig):
The dropout ratio for the attention probabilities. The dropout ratio for the attention probabilities.
final_dropout (`float`, *optional*, defaults to 0.1): final_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for the final projection layer of [`Data2VecAudioForCTC`]. The dropout probability for the final projection layer of [`Data2VecAudioForCTC`].
layerdrop (`float`, *optional*, defaults to 0.1):
The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more
details.
initializer_range (`float`, *optional*, defaults to 0.02): initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12): layer_norm_eps (`float`, *optional*, defaults to 1e-12):
......
...@@ -77,7 +77,7 @@ class DeformableDetrConfig(PretrainedConfig): ...@@ -77,7 +77,7 @@ class DeformableDetrConfig(PretrainedConfig):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
init_xavier_std (`float`, *optional*, defaults to 1): init_xavier_std (`float`, *optional*, defaults to 1):
The scaling factor used for the Xavier initialization gain in the HM Attention map module. The scaling factor used for the Xavier initialization gain in the HM Attention map module.
encoder_layerdrop: (`float`, *optional*, defaults to 0.0): encoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details. for more details.
auxiliary_loss (`bool`, *optional*, defaults to `False`): auxiliary_loss (`bool`, *optional*, defaults to `False`):
......
...@@ -71,7 +71,7 @@ class DetaConfig(PretrainedConfig): ...@@ -71,7 +71,7 @@ class DetaConfig(PretrainedConfig):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
init_xavier_std (`float`, *optional*, defaults to 1): init_xavier_std (`float`, *optional*, defaults to 1):
The scaling factor used for the Xavier initialization gain in the HM Attention map module. The scaling factor used for the Xavier initialization gain in the HM Attention map module.
encoder_layerdrop: (`float`, *optional*, defaults to 0.0): encoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details. for more details.
auxiliary_loss (`bool`, *optional*, defaults to `False`): auxiliary_loss (`bool`, *optional*, defaults to `False`):
......
...@@ -60,7 +60,7 @@ class EfficientNetConfig(PretrainedConfig): ...@@ -60,7 +60,7 @@ class EfficientNetConfig(PretrainedConfig):
List of output channel sizes to be used in each block for convolutional layers. List of output channel sizes to be used in each block for convolutional layers.
depthwise_padding (`List[int]`, *optional*, defaults to `[]`): depthwise_padding (`List[int]`, *optional*, defaults to `[]`):
List of block indices with square padding. List of block indices with square padding.
strides: (`List[int]`, *optional*, defaults to `[1, 2, 2, 2, 1, 2, 1]`): strides (`List[int]`, *optional*, defaults to `[1, 2, 2, 2, 1, 2, 1]`):
List of stride sizes to be used in each block for convolutional layers. List of stride sizes to be used in each block for convolutional layers.
num_block_repeats (`List[int]`, *optional*, defaults to `[1, 2, 2, 3, 3, 4, 1]`): num_block_repeats (`List[int]`, *optional*, defaults to `[1, 2, 2, 3, 3, 4, 1]`):
List of the number of times each block is to repeated. List of the number of times each block is to repeated.
......
...@@ -62,6 +62,9 @@ class HubertConfig(PretrainedConfig): ...@@ -62,6 +62,9 @@ class HubertConfig(PretrainedConfig):
The dropout ratio for the attention probabilities. The dropout ratio for the attention probabilities.
final_dropout (`float`, *optional*, defaults to 0.1): final_dropout (`float`, *optional*, defaults to 0.1):
The dropout probabilitiy for the final projection layer of [`Wav2Vec2ForCTC`]. The dropout probabilitiy for the final projection layer of [`Wav2Vec2ForCTC`].
layerdrop (`float`, *optional*, defaults to 0.1):
The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more
details.
initializer_range (`float`, *optional*, defaults to 0.02): initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12): layer_norm_eps (`float`, *optional*, defaults to 1e-12):
......
...@@ -111,7 +111,7 @@ class LxmertForQuestionAnsweringOutput(ModelOutput): ...@@ -111,7 +111,7 @@ class LxmertForQuestionAnsweringOutput(ModelOutput):
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
Total loss as the sum of the masked language modeling loss and the next sequence prediction Total loss as the sum of the masked language modeling loss and the next sequence prediction
(classification) loss.k. (classification) loss.k.
question_answering_score: (`torch.FloatTensor` of shape `(batch_size, n_qa_answers)`, *optional*): question_answering_score (`torch.FloatTensor` of shape `(batch_size, n_qa_answers)`, *optional*):
Prediction scores of question answering objective (classification). Prediction scores of question answering objective (classification).
language_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): language_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of
...@@ -153,10 +153,10 @@ class LxmertForPreTrainingOutput(ModelOutput): ...@@ -153,10 +153,10 @@ class LxmertForPreTrainingOutput(ModelOutput):
(classification) loss. (classification) loss.
prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
cross_relationship_score: (`torch.FloatTensor` of shape `(batch_size, 2)`): cross_relationship_score (`torch.FloatTensor` of shape `(batch_size, 2)`):
Prediction scores of the textual matching objective (classification) head (scores of True/False Prediction scores of the textual matching objective (classification) head (scores of True/False
continuation before SoftMax). continuation before SoftMax).
question_answering_score: (`torch.FloatTensor` of shape `(batch_size, n_qa_answers)`): question_answering_score (`torch.FloatTensor` of shape `(batch_size, n_qa_answers)`):
Prediction scores of question answering objective (classification). Prediction scores of question answering objective (classification).
language_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): language_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of
...@@ -828,12 +828,12 @@ LXMERT_INPUTS_DOCSTRING = r""" ...@@ -828,12 +828,12 @@ LXMERT_INPUTS_DOCSTRING = r"""
[`PreTrainedTokenizer.__call__`] for details. [`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids) [What are input IDs?](../glossary#input-ids)
visual_feats: (`torch.FloatTensor` of shape `(batch_size, num_visual_features, visual_feat_dim)`): visual_feats (`torch.FloatTensor` of shape `(batch_size, num_visual_features, visual_feat_dim)`):
This input represents visual features. They ROI pooled object features from bounding boxes using a This input represents visual features. They ROI pooled object features from bounding boxes using a
faster-RCNN model) faster-RCNN model)
These are currently not provided by the transformers library. These are currently not provided by the transformers library.
visual_pos: (`torch.FloatTensor` of shape `(batch_size, num_visual_features, visual_pos_dim)`): visual_pos (`torch.FloatTensor` of shape `(batch_size, num_visual_features, visual_pos_dim)`):
This input represents spacial features corresponding to their relative (via index) visual features. The This input represents spacial features corresponding to their relative (via index) visual features. The
pre-trained LXMERT model expects these spacial features to be normalized bounding boxes on a scale of 0 to pre-trained LXMERT model expects these spacial features to be normalized bounding boxes on a scale of 0 to
1. 1.
...@@ -1171,7 +1171,7 @@ class LxmertForPreTraining(LxmertPreTrainedModel): ...@@ -1171,7 +1171,7 @@ class LxmertForPreTraining(LxmertPreTrainedModel):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
obj_labels: (`Dict[Str: Tuple[Torch.FloatTensor, Torch.FloatTensor]]`, *optional*): obj_labels (`Dict[Str: Tuple[Torch.FloatTensor, Torch.FloatTensor]]`, *optional*):
each key is named after each one of the visual losses and each element of the tuple is of the shape each key is named after each one of the visual losses and each element of the tuple is of the shape
`(batch_size, num_features)` and `(batch_size, num_features, visual_feature_dim)` for each the label id and `(batch_size, num_features)` and `(batch_size, num_features, visual_feature_dim)` for each the label id and
the label score respectively the label score respectively
...@@ -1398,7 +1398,7 @@ class LxmertForQuestionAnswering(LxmertPreTrainedModel): ...@@ -1398,7 +1398,7 @@ class LxmertForQuestionAnswering(LxmertPreTrainedModel):
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
) -> Union[LxmertForQuestionAnsweringOutput, Tuple[torch.FloatTensor]]: ) -> Union[LxmertForQuestionAnsweringOutput, Tuple[torch.FloatTensor]]:
r""" r"""
labels: (`Torch.Tensor` of shape `(batch_size)`, *optional*): labels (`Torch.Tensor` of shape `(batch_size)`, *optional*):
A one-hot representation of the correct answer A one-hot representation of the correct answer
""" """
return_dict = return_dict if return_dict is not None else self.config.use_return_dict return_dict = return_dict if return_dict is not None else self.config.use_return_dict
......
...@@ -111,10 +111,10 @@ class TFLxmertForPreTrainingOutput(ModelOutput): ...@@ -111,10 +111,10 @@ class TFLxmertForPreTrainingOutput(ModelOutput):
(classification) loss. (classification) loss.
prediction_logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`): prediction_logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
cross_relationship_score: (`tf.Tensor` of shape `(batch_size, 2)`): cross_relationship_score (`tf.Tensor` of shape `(batch_size, 2)`):
Prediction scores of the textual matching objective (classification) head (scores of True/False Prediction scores of the textual matching objective (classification) head (scores of True/False
continuation before SoftMax). continuation before SoftMax).
question_answering_score: (`tf.Tensor` of shape `(batch_size, n_qa_answers)`): question_answering_score (`tf.Tensor` of shape `(batch_size, n_qa_answers)`):
Prediction scores of question answering objective (classification). Prediction scores of question answering objective (classification).
language_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): language_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for input features + one for the output of each cross-modality layer) of shape Tuple of `tf.Tensor` (one for input features + one for the output of each cross-modality layer) of shape
...@@ -873,12 +873,12 @@ LXMERT_INPUTS_DOCSTRING = r""" ...@@ -873,12 +873,12 @@ LXMERT_INPUTS_DOCSTRING = r"""
[`PreTrainedTokenizer.encode`] for details. [`PreTrainedTokenizer.encode`] for details.
[What are input IDs?](../glossary#input-ids) [What are input IDs?](../glossary#input-ids)
visual_feats: (`tf.Tensor` of shape `(batch_size, num_visual_features, visual_feat_dim)`): visual_feats (`tf.Tensor` of shape `(batch_size, num_visual_features, visual_feat_dim)`):
This input represents visual features. They ROI pooled object features from bounding boxes using a This input represents visual features. They ROI pooled object features from bounding boxes using a
faster-RCNN model) faster-RCNN model)
These are currently not provided by the transformers library. These are currently not provided by the transformers library.
visual_pos: (`tf.Tensor` of shape `(batch_size, num_visual_features, visual_feat_dim)`): visual_pos (`tf.Tensor` of shape `(batch_size, num_visual_features, visual_feat_dim)`):
This input represents spacial features corresponding to their relative (via index) visual features. The This input represents spacial features corresponding to their relative (via index) visual features. The
pre-trained LXMERT model expects these spacial features to be normalized bounding boxes on a scale of 0 to pre-trained LXMERT model expects these spacial features to be normalized bounding boxes on a scale of 0 to
1. 1.
...@@ -1297,7 +1297,7 @@ class TFLxmertForPreTraining(TFLxmertPreTrainedModel): ...@@ -1297,7 +1297,7 @@ class TFLxmertForPreTraining(TFLxmertPreTrainedModel):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
obj_labels: (`Dict[Str: Tuple[tf.Tensor, tf.Tensor]]`, *optional*, defaults to `None`): obj_labels (`Dict[Str: Tuple[tf.Tensor, tf.Tensor]]`, *optional*, defaults to `None`):
each key is named after each one of the visual losses and each element of the tuple is of the shape each key is named after each one of the visual losses and each element of the tuple is of the shape
`(batch_size, num_features)` and `(batch_size, num_features, visual_feature_dim)` for each the label id and `(batch_size, num_features)` and `(batch_size, num_features, visual_feature_dim)` for each the label id and
the label score respectively the label score respectively
......
...@@ -1767,7 +1767,7 @@ class Mask2FormerMaskedAttentionDecoder(nn.Module): ...@@ -1767,7 +1767,7 @@ class Mask2FormerMaskedAttentionDecoder(nn.Module):
of the predicted mask for each query, instead of attending to the full feature map. of the predicted mask for each query, instead of attending to the full feature map.
Args: Args:
config: (`Mask2FormerConfig`): config (`Mask2FormerConfig`):
Configuration used to instantiate Mask2FormerMaskedAttentionDecoder. Configuration used to instantiate Mask2FormerMaskedAttentionDecoder.
""" """
...@@ -2003,7 +2003,7 @@ class Mask2FormerMaskPredictor(nn.Module): ...@@ -2003,7 +2003,7 @@ class Mask2FormerMaskPredictor(nn.Module):
The feature dimension of the Mask2FormerMaskedAttentionDecoder The feature dimension of the Mask2FormerMaskedAttentionDecoder
num_heads (`int`): num_heads (`int`):
The number of heads used in the Mask2FormerMaskedAttentionDecoder The number of heads used in the Mask2FormerMaskedAttentionDecoder
mask_feature_size: (`torch.Tensor`): mask_feature_size (`torch.Tensor`):
one of the output dimensions of the predicted masks for each query one of the output dimensions of the predicted masks for each query
""" """
super().__init__() super().__init__()
......
...@@ -119,7 +119,7 @@ class MPNetTokenizer(PreTrainedTokenizer): ...@@ -119,7 +119,7 @@ class MPNetTokenizer(PreTrainedTokenizer):
This should likely be deactivated for Japanese (see this This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)). [issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents: (`bool`, *optional*): strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT). value for `lowercase` (as in the original BERT).
""" """
......
...@@ -98,7 +98,7 @@ class MPNetTokenizerFast(PreTrainedTokenizerFast): ...@@ -98,7 +98,7 @@ class MPNetTokenizerFast(PreTrainedTokenizerFast):
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this
issue](https://github.com/huggingface/transformers/issues/328)). issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents: (`bool`, *optional*): strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT). value for `lowercase` (as in the original BERT).
""" """
......
...@@ -67,7 +67,7 @@ class OPTConfig(PretrainedConfig): ...@@ -67,7 +67,7 @@ class OPTConfig(PretrainedConfig):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0): attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities. The dropout ratio for the attention probabilities.
layerdrop: (`float`, *optional*, defaults to 0.0): layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more
details. details.
init_std (`float`, *optional*, defaults to 0.02): init_std (`float`, *optional*, defaults to 0.02):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment