modeling_utils.py 111 KB
Newer Older
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
Patrick von Platen committed
17
import inspect
18
import os
19
import re
20
import warnings
21
from contextlib import contextmanager
22
from dataclasses import dataclass
23
from functools import partial
24
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
25
26

import torch
27
from torch import Tensor, device, nn
28
from torch.nn import CrossEntropyLoss
29

30
from .activations import get_activation
31
from .configuration_utils import PretrainedConfig
32
from .deepspeed import deepspeed_config, is_deepspeed_zero3_enabled
33
from .file_utils import (
Aymeric Augustin's avatar
Aymeric Augustin committed
34
    DUMMY_INPUTS,
35
    FLAX_WEIGHTS_NAME,
36
37
38
    TF2_WEIGHTS_NAME,
    TF_WEIGHTS_NAME,
    WEIGHTS_NAME,
39
    ModelOutput,
Sylvain Gugger's avatar
Sylvain Gugger committed
40
    PushToHubMixin,
41
    cached_path,
42
    copy_func,
43
    hf_bucket_url,
44
    is_offline_mode,
45
    is_remote_url,
Sylvain Gugger's avatar
Sylvain Gugger committed
46
    replace_return_docstrings,
47
)
48
from .generation_utils import GenerationMixin
Lysandre Debut's avatar
Lysandre Debut committed
49
from .utils import logging
50
from .utils.versions import require_version_core
51

Aymeric Augustin's avatar
Aymeric Augustin committed
52

Lysandre Debut's avatar
Lysandre Debut committed
53
logger = logging.get_logger(__name__)
54

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

_init_weights = True


@contextmanager
def no_init_weights(_enable=True):
    """
    Context manager to globally disable weight initialization to speed up loading large models.

    TODO(Patrick): Delete safety argument `_enable=True` at next major version. .
    """
    global _init_weights
    if _enable:
        _init_weights = False
    try:
        yield
    finally:
        _init_weights = True


thomwolf's avatar
thomwolf committed
75
76
77
78
79
try:
    from torch.nn import Identity
except ImportError:
    # Older PyTorch compatibility
    class Identity(nn.Module):
Lysandre's avatar
Lysandre committed
80
        r"""A placeholder identity operator that is argument-insensitive."""
81

thomwolf's avatar
thomwolf committed
82
        def __init__(self, *args, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
83
            super().__init__()
thomwolf's avatar
thomwolf committed
84
85
86
87

        def forward(self, input):
            return input

88

89
def find_pruneable_heads_and_indices(
Sylvain Gugger's avatar
Sylvain Gugger committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    heads: List[int], n_heads: int, head_size: int, already_pruned_heads: Set[int]
) -> Tuple[Set[int], torch.LongTensor]:
    """
    Finds the heads and their indices taking :obj:`already_pruned_heads` into account.

    Args:
        heads (:obj:`List[int]`): List of the indices of heads to prune.
        n_heads (:obj:`int`): The number of heads in the model.
        head_size (:obj:`int`): The size of each head.
        already_pruned_heads (:obj:`Set[int]`): A set of already pruned heads.

    Returns:
        :obj:`Tuple[Set[int], torch.LongTensor]`: A tuple with the remaining heads and their corresponding indices.
    """
104
105
106
107
108
109
110
111
112
113
114
    mask = torch.ones(n_heads, head_size)
    heads = set(heads) - already_pruned_heads  # Convert to set and remove already pruned heads
    for head in heads:
        # Compute how many pruned heads are before the head and move the index accordingly
        head = head - sum(1 if h < head else 0 for h in already_pruned_heads)
        mask[head] = 0
    mask = mask.view(-1).contiguous().eq(1)
    index: torch.LongTensor = torch.arange(len(mask))[mask].long()
    return heads, index


Lysandre Debut's avatar
Lysandre Debut committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
def get_parameter_device(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    try:
        return next(parameter.parameters()).device
    except StopIteration:
        # For nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].device


def get_parameter_dtype(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    try:
        return next(parameter.parameters()).dtype
    except StopIteration:
        # For nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].dtype


145
class ModuleUtilsMixin:
Julien Chaumond's avatar
Julien Chaumond committed
146
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
147
    A few utilities for :obj:`torch.nn.Modules`, to be used as a mixin.
Julien Chaumond's avatar
Julien Chaumond committed
148
149
    """

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
    @staticmethod
    def _hook_rss_memory_pre_forward(module, *args, **kwargs):
        try:
            import psutil
        except (ImportError):
            raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")

        process = psutil.Process(os.getpid())
        mem = process.memory_info()
        module.mem_rss_pre_forward = mem.rss
        return None

    @staticmethod
    def _hook_rss_memory_post_forward(module, *args, **kwargs):
        try:
            import psutil
        except (ImportError):
            raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")

        process = psutil.Process(os.getpid())
        mem = process.memory_info()
        module.mem_rss_post_forward = mem.rss
        mem_rss_diff = module.mem_rss_post_forward - module.mem_rss_pre_forward
        module.mem_rss_diff = mem_rss_diff + (module.mem_rss_diff if hasattr(module, "mem_rss_diff") else 0)
        return None

    def add_memory_hooks(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
177
178
179
180
181
        """
        Add a memory hook before and after each sub-module forward pass to record increase in memory consumption.

        Increase in memory consumption is stored in a :obj:`mem_rss_diff` attribute for each module and can be reset to
        zero with :obj:`model.reset_memory_hooks_state()`.
182
183
184
185
186
187
188
        """
        for module in self.modules():
            module.register_forward_pre_hook(self._hook_rss_memory_pre_forward)
            module.register_forward_hook(self._hook_rss_memory_post_forward)
        self.reset_memory_hooks_state()

    def reset_memory_hooks_state(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
189
190
191
192
        """
        Reset the :obj:`mem_rss_diff` attribute of each module (see
        :func:`~transformers.modeling_utils.ModuleUtilsMixin.add_memory_hooks`).
        """
193
194
195
196
197
        for module in self.modules():
            module.mem_rss_diff = 0
            module.mem_rss_post_forward = 0
            module.mem_rss_pre_forward = 0

198
    @property
199
    def device(self) -> device:
200
        """
201
202
        :obj:`torch.device`: The device on which the module is (assuming that all the module parameters are on the same
        device).
203
        """
Lysandre Debut's avatar
Lysandre Debut committed
204
        return get_parameter_device(self)
205

206
    @property
207
    def dtype(self) -> torch.dtype:
208
        """
209
        :obj:`torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
210
        """
Lysandre Debut's avatar
Lysandre Debut committed
211
        return get_parameter_dtype(self)
212
213

    def invert_attention_mask(self, encoder_attention_mask: Tensor) -> Tensor:
Sylvain Gugger's avatar
Sylvain Gugger committed
214
215
216
217
218
219
220
221
222
        """
        Invert an attention mask (e.g., switches 0. and 1.).

        Args:
            encoder_attention_mask (:obj:`torch.Tensor`): An attention mask.

        Returns:
            :obj:`torch.Tensor`: The inverted attention mask.
        """
223
224
225
226
227
228
229
230
231
232
        if encoder_attention_mask.dim() == 3:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
        if encoder_attention_mask.dim() == 2:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
        # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
        # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
        # /transformer/transformer_layers.py#L270
        # encoder_extended_attention_mask = (encoder_extended_attention_mask ==
        # encoder_extended_attention_mask.transpose(-1, -2))
        encoder_extended_attention_mask = encoder_extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
233
234
235
236
237
238
239

        if self.dtype == torch.float16:
            encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -1e4
        elif self.dtype == torch.float32:
            encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -1e9
        else:
            raise ValueError(
240
                f"{self.dtype} not recognized. `dtype` should be set to either `torch.float32` or `torch.float16`"
241
242
            )

243
244
        return encoder_extended_attention_mask

Sylvain Gugger's avatar
Sylvain Gugger committed
245
246
247
    def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device) -> Tensor:
        """
        Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
248
249

        Arguments:
Sylvain Gugger's avatar
Sylvain Gugger committed
250
251
252
253
254
255
            attention_mask (:obj:`torch.Tensor`):
                Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
            input_shape (:obj:`Tuple[int]`):
                The shape of the input to the model.
            device: (:obj:`torch.device`):
                The device of the input to the model.
256
257

        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
258
            :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
259
260
261
262
263
264
265
266
267
268
269
270
271
        """
        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        if attention_mask.dim() == 3:
            extended_attention_mask = attention_mask[:, None, :, :]
        elif attention_mask.dim() == 2:
            # Provided a padding mask of dimensions [batch_size, seq_length]
            # - if the model is a decoder, apply a causal mask in addition to the padding mask
            # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
            if self.config.is_decoder:
                batch_size, seq_length = input_shape
                seq_ids = torch.arange(seq_length, device=device)
                causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
272
                # in case past_key_values are used we need to add a prefix ones mask to the causal mask
Patrick von Platen's avatar
Patrick von Platen committed
273
274
275
                # causal and attention masks must have same type with pytorch version < 1.3
                causal_mask = causal_mask.to(attention_mask.dtype)

276
277
278
                if causal_mask.shape[1] < attention_mask.shape[1]:
                    prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
                    causal_mask = torch.cat(
Patrick von Platen's avatar
Patrick von Platen committed
279
280
281
282
283
284
285
                        [
                            torch.ones(
                                (batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype
                            ),
                            causal_mask,
                        ],
                        axis=-1,
286
287
                    )

288
289
290
291
292
                extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
            else:
                extended_attention_mask = attention_mask[:, None, None, :]
        else:
            raise ValueError(
293
                f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})"
294
295
296
297
298
299
300
301
302
303
304
            )

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
        return extended_attention_mask

Sylvain Gugger's avatar
Sylvain Gugger committed
305
306
307
    def get_head_mask(
        self, head_mask: Optional[Tensor], num_hidden_layers: int, is_attention_chunked: bool = False
    ) -> Tensor:
308
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
309
310
311
312
313
314
315
        Prepare the head mask if needed.

        Args:
            head_mask (:obj:`torch.Tensor` with shape :obj:`[num_heads]` or :obj:`[num_hidden_layers x num_heads]`, `optional`):
                The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard).
            num_hidden_layers (:obj:`int`):
                The number of hidden layers in the model.
316
            is_attention_chunked: (:obj:`bool`, `optional`, defaults to :obj:`False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
317
318
                Whether or not the attentions scores are computed by chunks or not.

319
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
320
321
            :obj:`torch.Tensor` with shape :obj:`[num_hidden_layers x batch x num_heads x seq_length x seq_length]` or
            list with :obj:`[None]` for each layer.
322
323
324
        """
        if head_mask is not None:
            head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
325
326
            if is_attention_chunked is True:
                head_mask = head_mask.unsqueeze(-1)
327
328
329
330
331
332
333
334
335
336
337
338
339
        else:
            head_mask = [None] * num_hidden_layers

        return head_mask

    def _convert_head_mask_to_5d(self, head_mask, num_hidden_layers):
        """-> [num_hidden_layers x batch x num_heads x seq_length x seq_length]"""
        if head_mask.dim() == 1:
            head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
            head_mask = head_mask.expand(num_hidden_layers, -1, -1, -1, -1)
        elif head_mask.dim() == 2:
            head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
        assert head_mask.dim() == 5, f"head_mask.dim != 5, instead {head_mask.dim()}"
340
        head_mask = head_mask.to(dtype=self.dtype)  # switch to float if need + fp16 compatibility
341
342
        return head_mask

343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
    def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int:
        """
        Get number of (optionally, trainable or non-embeddings) parameters in the module.

        Args:
            only_trainable (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to return only the number of trainable parameters

            exclude_embeddings (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to return only the number of non-embeddings parameters

        Returns:
            :obj:`int`: The number of parameters.
        """

358
359
360
361
362
363
364
365
366
367
        if exclude_embeddings:
            embedding_param_names = [
                f"{name}.weight" for name, module_type in self.named_modules() if isinstance(module_type, nn.Embedding)
            ]
            non_embedding_parameters = [
                parameter for name, parameter in self.named_parameters() if name not in embedding_param_names
            ]
            return sum(p.numel() for p in non_embedding_parameters if p.requires_grad or not only_trainable)
        else:
            return sum(p.numel() for p in self.parameters() if p.requires_grad or not only_trainable)
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393

    def estimate_tokens(self, input_dict: Dict[str, Union[torch.Tensor, Any]]) -> int:
        """
        Helper function to estimate the total number of tokens from the model inputs.

        Args:
            inputs (:obj:`dict`): The model inputs.

        Returns:
            :obj:`int`: The total number of tokens.
        """
        token_inputs = [tensor for key, tensor in input_dict.items() if "input" in key]
        if token_inputs:
            return sum([token_input.numel() for token_input in token_inputs])
        else:
            warnings.warn(
                "Could not estimate the number of tokens of the input, floating-point operations will not be computed"
            )
            return 0

    def floating_point_ops(
        self, input_dict: Dict[str, Union[torch.Tensor, Any]], exclude_embeddings: bool = True
    ) -> int:
        """
        Get number of (optionally, non-embeddings) floating-point operations for the forward and backward passes of a
        batch with this transformer model. Default approximation neglects the quadratic dependency on the number of
Sylvain Gugger's avatar
Sylvain Gugger committed
394
        tokens (valid if :obj:`12 * d_model << sequence_length`) as laid out in `this paper
395
        <https://arxiv.org/pdf/2001.08361.pdf>`__ section 2.1. Should be overridden for transformers with parameter
Sylvain Gugger's avatar
Sylvain Gugger committed
396
        re-use e.g. Albert or Universal Transformers, or if doing long-range modeling with very high sequence lengths.
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413

        Args:
            batch_size (:obj:`int`):
                The batch size for the forward pass.

            sequence_length (:obj:`int`):
                The number of tokens in each line of the batch.

            exclude_embeddings (:obj:`bool`, `optional`, defaults to :obj:`True`):
                Whether or not to count embedding and softmax operations.

        Returns:
            :obj:`int`: The number of floating-point operations.
        """

        return 6 * self.estimate_tokens(input_dict) * self.num_parameters(exclude_embeddings=exclude_embeddings)

Julien Chaumond's avatar
Julien Chaumond committed
414

Sylvain Gugger's avatar
Sylvain Gugger committed
415
class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMixin):
416
417
    r"""
    Base class for all models.
418

419
420
    :class:`~transformers.PreTrainedModel` takes care of storing the configuration of the models and handles methods
    for loading, downloading and saving models as well as a few methods common to all models to:
421

422
423
        * resize the input embeddings,
        * prune heads in the self-attention heads.
424

425
    Class attributes (overridden by derived classes):
Sylvain Gugger's avatar
Sylvain Gugger committed
426

427
428
        - **config_class** (:class:`~transformers.PretrainedConfig`) -- A subclass of
          :class:`~transformers.PretrainedConfig` to use as configuration class for this model architecture.
Sylvain Gugger's avatar
Sylvain Gugger committed
429
430
        - **load_tf_weights** (:obj:`Callable`) -- A python `method` for loading a TensorFlow checkpoint in a PyTorch
          model, taking as arguments:
431

432
433
            - **model** (:class:`~transformers.PreTrainedModel`) -- An instance of the model on which to load the
              TensorFlow checkpoint.
Sylvain Gugger's avatar
Sylvain Gugger committed
434
435
            - **config** (:class:`~transformers.PreTrainedConfig`) -- An instance of the configuration associated to
              the model.
436
437
438
439
            - **path** (:obj:`str`) -- A path to the TensorFlow checkpoint.

        - **base_model_prefix** (:obj:`str`) -- A string indicating the attribute associated to the base model in
          derived classes of the same architecture adding modules on top of the base model.
440
        - **is_parallelizable** (:obj:`bool`) -- A flag indicating whether this model supports model parallelization.
441
    """
442
    config_class = None
443
    base_model_prefix = ""
444
445
446
447
448
449
450
    # a list of re pattern of tensor names to ignore from the model when loading the model weights
    # (and avoid unnecessary warnings).
    _keys_to_ignore_on_load_missing = None
    # a list of re pattern of tensor names to ignore from the weights when loading the model weights
    # (and avoid unnecessary warnings).
    _keys_to_ignore_on_load_unexpected = None
    # a list of of tensor names to ignore when saving the model (useful for keys that aren't
451
    # trained, but which are deterministic, or tied variables)
452
    _keys_to_ignore_on_save = None
453

454
    is_parallelizable = False
455
    supports_gradient_checkpointing = False
456

457
    @property
458
    def dummy_inputs(self) -> Dict[str, torch.Tensor]:
459
460
        """
        :obj:`Dict[str, torch.Tensor]`: Dummy inputs to do a forward pass in the network.
461
        """
462
        return {"input_ids": torch.tensor(DUMMY_INPUTS)}
463

464
465
466
467
468
469
470
    @property
    def framework(self) -> str:
        """
        :str: Identifies that this is a PyTorch model.
        """
        return "pt"

471
    def __init__(self, config: PretrainedConfig, *inputs, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
472
        super().__init__()
473
474
        if not isinstance(config, PretrainedConfig):
            raise ValueError(
475
476
477
                f"Parameter config in `{self.__class__.__name__}(config)` should be an instance of class "
                "`PretrainedConfig`. To create a model from a pretrained model use "
                f"`model = {self.__class__.__name__}.from_pretrained(PRETRAINED_MODEL_NAME)`"
478
            )
479
        # Save config and origin of the pretrained weights if given in model
480
        self.config = config
481
        self.name_or_path = config.name_or_path
482
483
484
485
        if getattr(self.config, "gradient_checkpointing", False):
            self.gradient_checkpointing_enable()
            # Remove the attribute now that is has been consumed, so it's no saved in the config.
            delattr(self.config, "gradient_checkpointing")
486

487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
    @classmethod
    def _from_config(cls, config, **kwargs):
        """
        All context managers that the model should be initialized under go here.

        Args:
            torch_dtype (:obj:`torch.dtype`, `optional`):
                Override the default ``torch.dtype`` and load the model under this dtype.
        """
        torch_dtype = kwargs.pop("torch_dtype", None)

        # override default dtype if needed
        dtype_orig = None
        if torch_dtype is not None:
            dtype_orig = cls._set_default_torch_dtype(torch_dtype)

        if is_deepspeed_zero3_enabled():
            import deepspeed

            logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
            # this immediately partitions the model across all gpus, to avoid the overhead in time
            # and memory copying it on CPU or each GPU first
509
            with deepspeed.zero.Init(config_dict_or_path=deepspeed_config()):
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
                model = cls(config, **kwargs)
        else:
            model = cls(config, **kwargs)

        # restore default dtype if it was modified
        if dtype_orig is not None:
            torch.set_default_dtype(dtype_orig)

        return model

    @classmethod
    def _set_default_torch_dtype(cls, dtype: torch.dtype) -> torch.dtype:
        """
        Change the default dtype and return the previous one. This is needed when wanting to instantiate the model
        under specific dtype.

        Args:
            dtype (:obj:`torch.dtype`):
                a floating dtype to set to.

        Returns:
            :obj:`torch.dtype`: the original ``dtype`` that can be used to restore ``torch.set_default_dtype(dtype)``
            if it was modified. If it wasn't, returns :obj:`None`.

        Note ``set_default_dtype`` currently only works with floating-point types and asserts if for example,
        ``torch.int64`` is passed. So if a non-float ``dtype`` is passed this functions will throw an exception.
        """
        if not dtype.is_floating_point:
            raise ValueError(
                f"Can't instantiate {cls.__name__} model under dtype={dtype} since it is not a floating point dtype"
            )

        logger.info(f"Instantiating {cls.__name__} model under default dtype {dtype}.")
        dtype_orig = torch.get_default_dtype()
        torch.set_default_dtype(dtype)
        return dtype_orig

547
    @property
548
549
550
551
    def base_model(self) -> nn.Module:
        """
        :obj:`torch.nn.Module`: The main body of the model.
        """
552
        return getattr(self, self.base_model_prefix, self)
thomwolf's avatar
thomwolf committed
553

554
    def get_input_embeddings(self) -> nn.Module:
555
556
557
558
        """
        Returns the model's input embeddings.

        Returns:
559
            :obj:`nn.Module`: A torch module mapping vocabulary to hidden states.
thomwolf's avatar
thomwolf committed
560
        """
561
        base_model = getattr(self, self.base_model_prefix, self)
thomwolf's avatar
thomwolf committed
562
563
564
565
        if base_model is not self:
            return base_model.get_input_embeddings()
        else:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
566

567
    def set_input_embeddings(self, value: nn.Module):
568
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
569
        Set model's input embeddings.
570
571

        Args:
572
            value (:obj:`nn.Module`): A module mapping vocabulary to hidden states.
thomwolf's avatar
thomwolf committed
573
574
575
576
577
578
        """
        base_model = getattr(self, self.base_model_prefix, self)
        if base_model is not self:
            base_model.set_input_embeddings(value)
        else:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
579

580
    def get_output_embeddings(self) -> nn.Module:
581
582
583
584
        """
        Returns the model's output embeddings.

        Returns:
585
            :obj:`nn.Module`: A torch module mapping hidden states to vocabulary.
thomwolf's avatar
thomwolf committed
586
        """
587
        return None  # Overwrite for models with output embeddings
thomwolf's avatar
thomwolf committed
588

589
590
591
592
593
594
    def _init_weights(self, module):
        """
        Initialize the weights. This method should be overridden by derived class.
        """
        raise NotImplementedError(f"Make sure `_init_weigths` is implemented for {self.__class__}")

595
    def tie_weights(self):
596
597
        """
        Tie the weights between the input embeddings and the output embeddings.
598
599

        If the :obj:`torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning
600
        the weights instead.
thomwolf's avatar
thomwolf committed
601
        """
thomwolf's avatar
thomwolf committed
602
        output_embeddings = self.get_output_embeddings()
603
        if output_embeddings is not None and self.config.tie_word_embeddings:
thomwolf's avatar
thomwolf committed
604
            self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings())
thomwolf's avatar
thomwolf committed
605

606
        if self.config.is_encoder_decoder and self.config.tie_encoder_decoder:
Weizhen's avatar
Weizhen committed
607
608
            if hasattr(self, self.base_model_prefix):
                self = getattr(self, self.base_model_prefix)
609
610
            self._tie_encoder_decoder_weights(self.encoder, self.decoder, self.base_model_prefix)

Sylvain Gugger's avatar
Sylvain Gugger committed
611
612
613
614
        for module in self.modules():
            if hasattr(module, "_tie_weights"):
                module._tie_weights()

615
616
617
    @staticmethod
    def _tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str):
        uninitialized_encoder_weights: List[str] = []
Weizhen's avatar
Weizhen committed
618
619
620
621
        if decoder.__class__ != encoder.__class__:
            logger.info(
                f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder weights are correctly initialized."
            )
622
623
624
625
626
627
628
629
630
631

        def tie_encoder_to_decoder_recursively(
            decoder_pointer: nn.Module,
            encoder_pointer: nn.Module,
            module_name: str,
            uninitialized_encoder_weights: List[str],
            depth=0,
        ):
            assert isinstance(decoder_pointer, nn.Module) and isinstance(
                encoder_pointer, nn.Module
632
            ), f"{decoder_pointer} and {encoder_pointer} have to be of type nn.Module"
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
            if hasattr(decoder_pointer, "weight"):
                assert hasattr(encoder_pointer, "weight")
                encoder_pointer.weight = decoder_pointer.weight
                if hasattr(decoder_pointer, "bias"):
                    assert hasattr(encoder_pointer, "bias")
                    encoder_pointer.bias = decoder_pointer.bias
                return

            encoder_modules = encoder_pointer._modules
            decoder_modules = decoder_pointer._modules
            if len(decoder_modules) > 0:
                assert (
                    len(encoder_modules) > 0
                ), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"

                all_encoder_weights = set([module_name + "/" + sub_name for sub_name in encoder_modules.keys()])
                encoder_layer_pos = 0
                for name, module in decoder_modules.items():
                    if name.isdigit():
                        encoder_name = str(int(name) + encoder_layer_pos)
                        decoder_name = name
Weizhen's avatar
Weizhen committed
654
655
656
                        if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len(
                            encoder_modules
                        ) != len(decoder_modules):
657
658
                            # this can happen if the name corresponds to the position in a list module list of layers
                            # in this case the decoder has added a cross-attention that the encoder does not have
659
                            # thus skip this step and subtract one layer pos from encoder
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
                            encoder_layer_pos -= 1
                            continue
                    elif name not in encoder_modules:
                        continue
                    elif depth > 500:
                        raise ValueError(
                            "Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model."
                        )
                    else:
                        decoder_name = encoder_name = name
                    tie_encoder_to_decoder_recursively(
                        decoder_modules[decoder_name],
                        encoder_modules[encoder_name],
                        module_name + "/" + name,
                        uninitialized_encoder_weights,
                        depth=depth + 1,
                    )
                    all_encoder_weights.remove(module_name + "/" + encoder_name)

                uninitialized_encoder_weights += list(all_encoder_weights)

        # tie weights recursively
        tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights)
        if len(uninitialized_encoder_weights) > 0:
            logger.warning(
                f"The following encoder weights were not tied to the decoder {uninitialized_encoder_weights}"
            )

688
    def _tie_or_clone_weights(self, output_embeddings, input_embeddings):
Lysandre's avatar
Lysandre committed
689
        """Tie or clone module weights depending of whether we are using TorchScript or not"""
thomwolf's avatar
thomwolf committed
690
        if self.config.torchscript:
691
            output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone())
thomwolf's avatar
thomwolf committed
692
        else:
693
            output_embeddings.weight = input_embeddings.weight
thomwolf's avatar
thomwolf committed
694

Sam Shleifer's avatar
Sam Shleifer committed
695
        if getattr(output_embeddings, "bias", None) is not None:
696
            output_embeddings.bias.data = nn.functional.pad(
697
                output_embeddings.bias.data,
Lysandre's avatar
Lysandre committed
698
699
700
701
                (
                    0,
                    output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0],
                ),
702
703
                "constant",
                0,
704
            )
705
        if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"):
706
            output_embeddings.out_features = input_embeddings.num_embeddings
707

708
    def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding:
709
710
        """
        Resizes input token embeddings matrix of the model if :obj:`new_num_tokens != config.vocab_size`.
711

712
        Takes care of tying weights embeddings afterwards if the model class has a :obj:`tie_weights()` method.
thomwolf's avatar
thomwolf committed
713

714
715
716
717
        Arguments:
            new_num_tokens (:obj:`int`, `optional`):
                The number of new tokens in the embedding matrix. Increasing the size will add newly initialized
                vectors at the end. Reducing the size will remove vectors from the end. If not provided or :obj:`None`,
718
                just returns a pointer to the input tokens :obj:`torch.nn.Embedding` module of the model without doing
719
720
721
722
                anything.

        Return:
            :obj:`torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model.
thomwolf's avatar
thomwolf committed
723
        """
724
        model_embeds = self._resize_token_embeddings(new_num_tokens)
thomwolf's avatar
thomwolf committed
725
726
        if new_num_tokens is None:
            return model_embeds
thomwolf's avatar
thomwolf committed
727
728
729

        # Update base model and current model config
        self.config.vocab_size = new_num_tokens
730
        self.vocab_size = new_num_tokens
thomwolf's avatar
thomwolf committed
731
732

        # Tie weights again if needed
733
        self.tie_weights()
thomwolf's avatar
thomwolf committed
734

thomwolf's avatar
thomwolf committed
735
736
        return model_embeds

737
    def _resize_token_embeddings(self, new_num_tokens):
thomwolf's avatar
thomwolf committed
738
739
740
        old_embeddings = self.get_input_embeddings()
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)
        self.set_input_embeddings(new_embeddings)
741
742
743
744
745
746
747

        # if word embeddings are not tied, make sure that lm head is resized as well
        if self.get_output_embeddings() is not None and not self.config.tie_word_embeddings:
            old_lm_head = self.get_output_embeddings()
            new_lm_head = self._get_resized_lm_head(old_lm_head, new_num_tokens)
            self.set_output_embeddings(new_lm_head)

thomwolf's avatar
thomwolf committed
748
        return self.get_input_embeddings()
749

750
    def _get_resized_embeddings(
751
752
        self, old_embeddings: nn.Embedding, new_num_tokens: Optional[int] = None
    ) -> nn.Embedding:
753
754
755
        """
        Build a resized Embedding Module from a provided token Embedding Module. Increasing the size will add newly
        initialized vectors at the end. Reducing the size will remove vectors from the end
756
757

        Args:
758
            old_embeddings (:obj:`torch.nn.Embedding`):
759
                Old embeddings to be resized.
760
            new_num_tokens (:obj:`int`, `optional`):
761
                New number of tokens in the embedding matrix.
762
763
764

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
                vectors from the end. If not provided or :obj:`None`, just returns a pointer to the input tokens
765
                :obj:`torch.nn.Embedding`` module of the model without doing anything.
766
767
768
769

        Return:
            :obj:`torch.nn.Embedding`: Pointer to the resized Embedding Module or the old Embedding Module if
            :obj:`new_num_tokens` is :obj:`None`
770
771
772
773
        """
        if new_num_tokens is None:
            return old_embeddings

774
775
776
777
778
779
780
781
        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_embeddings.weight, modifier_rank=None):
                old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
        else:
            old_num_tokens, old_embedding_dim = old_embeddings.weight.size()

782
783
784
        if old_num_tokens == new_num_tokens:
            return old_embeddings

785
786
        if not isinstance(old_embeddings, nn.Embedding):
            raise TypeError(
787
                f"Old embeddings are of type {type(old_embeddings)}, which is not an instance of {nn.Embedding}. "
788
789
790
                f"You should either use a different resize function or make sure that `old_embeddings` are an instance of {nn.Embedding}."
            )

791
        # Build new embeddings
792
793
794
        new_embeddings = nn.Embedding(new_num_tokens, old_embedding_dim).to(
            self.device, dtype=old_embeddings.weight.dtype
        )
795
796
797
798

        # initialize all new embeddings (in particular added tokens)
        self._init_weights(new_embeddings)

799
        # Copy token embeddings from the previous weights
800
801
802
803
804
805
806
807
808
809
810

        # numbers of tokens to copy
        n = min(old_num_tokens, new_num_tokens)
        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_embeddings.weight, modifier_rank=0):
                if torch.distributed.get_rank() == 0:
                    new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :]
        else:
            new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :]
811
812
813

        return new_embeddings

814
    def _get_resized_lm_head(
815
816
        self, old_lm_head: nn.Linear, new_num_tokens: Optional[int] = None, transposed: Optional[bool] = False
    ) -> nn.Linear:
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
        """
        Build a resized Linear Module from a provided old Linear Module. Increasing the size will add newly initialized
        vectors at the end. Reducing the size will remove vectors from the end

        Args:
            old_lm_head (:obj:`torch.nn.Linear`):
                Old lm head liner layer to be resized.
            new_num_tokens (:obj:`int`, `optional`):
                New number of tokens in the linear matrix.

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
                vectors from the end. If not provided or :obj:`None`, just returns a pointer to the input tokens
                :obj:`torch.nn.Linear`` module of the model without doing anything.
            transposed (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether ``old_lm_head`` is transposed or not. If True ``old_lm_head.size()`` is ``lm_head_dim,
                vocab_size`` else ``vocab_size, lm_head_dim``.

        Return:
            :obj:`torch.nn.Linear`: Pointer to the resized Linear Module or the old Linear Module if
            :obj:`new_num_tokens` is :obj:`None`
        """
        if new_num_tokens is None:
            return old_lm_head

841
842
843
844
845
846
847
848
849
850
851
        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_lm_head.weight, modifier_rank=None):
                old_num_tokens, old_lm_head_dim = (
                    old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
                )
        else:
            old_num_tokens, old_lm_head_dim = (
                old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
            )
852
853
854
855
856
857

        if old_num_tokens == new_num_tokens:
            return old_lm_head

        if not isinstance(old_lm_head, nn.Linear):
            raise TypeError(
858
                f"Old language model head is of type {type(old_lm_head)}, which is not an instance of {nn.Linear}. "
859
                f"You should either use a different resize function or make sure that `old_lm_head` are an instance of {nn.Linear}."
860
861
862
863
864
865
866
867
868
869
870
871
            )

        # Build new lm head
        new_lm_head_shape = (old_lm_head_dim, new_num_tokens) if not transposed else (new_num_tokens, old_lm_head_dim)
        has_new_lm_head_bias = old_lm_head.bias is not None
        new_lm_head = nn.Linear(*new_lm_head_shape, bias=has_new_lm_head_bias).to(self.device)

        # initialize new lm head (in particular added tokens)
        self._init_weights(new_lm_head)

        num_tokens_to_copy = min(old_num_tokens, new_num_tokens)

872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
        # XXX: put the long block of code in a wrapper
        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_lm_head.weight, modifier_rank=0):
                if torch.distributed.get_rank() == 0:
                    # Copy old lm head weights to new lm head
                    if not transposed:
                        new_lm_head.weight.data[:num_tokens_to_copy, :] = old_lm_head.weight.data[
                            :num_tokens_to_copy, :
                        ]
                    else:
                        new_lm_head.weight.data[:, :num_tokens_to_copy] = old_lm_head.weight.data[
                            :, :num_tokens_to_copy
                        ]

                    # Copy bias weights to new lm head
                    if has_new_lm_head_bias:
                        new_lm_head.bias.data[:num_tokens_to_copy] = old_lm_head.bias.data[:num_tokens_to_copy]
891
        else:
892
893
894
895
896
            # Copy old lm head weights to new lm head
            if not transposed:
                new_lm_head.weight.data[:num_tokens_to_copy, :] = old_lm_head.weight.data[:num_tokens_to_copy, :]
            else:
                new_lm_head.weight.data[:, :num_tokens_to_copy] = old_lm_head.weight.data[:, :num_tokens_to_copy]
897

898
899
900
            # Copy bias weights to new lm head
            if has_new_lm_head_bias:
                new_lm_head.bias.data[:num_tokens_to_copy] = old_lm_head.bias.data[:num_tokens_to_copy]
901
902
903

        return new_lm_head

904
905
906
907
908
909
910
911
912
913
914
915
    def resize_position_embeddings(self, new_num_position_embeddings: int):
        raise NotImplementedError(
            f"`resize_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should "
            f"overwrite this method in the class {self.__class__} in `modeling_{self.__class__.__module__}.py`"
        )

    def get_position_embeddings(self) -> Union[nn.Embedding, Tuple[nn.Embedding]]:
        raise NotImplementedError(
            f"`get_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should "
            f"overwrite this method in the class {self.__class__} in `modeling_{self.__class__.__module__}.py`"
        )

916
    def init_weights(self):
917
        """
918
        If needed prunes and maybe initializes weights.
919
        """
920
921
922
923
        # Prune heads if needed
        if self.config.pruned_heads:
            self.prune_heads(self.config.pruned_heads)

924
925
926
927
928
929
930
        if _init_weights:
            # Initialize weights
            self.apply(self._init_weights)

            # Tie weights should be skipped when not initializing all weights
            # since from_pretrained(...) calls tie weights anyways
            self.tie_weights()
931

932
933
934
    def prune_heads(self, heads_to_prune: Dict[int, List[int]]):
        """
        Prunes heads of the base model.
935

936
937
        Arguments:
            heads_to_prune (:obj:`Dict[int, List[int]]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
938
939
940
                Dictionary with keys being selected layer indices (:obj:`int`) and associated values being the list of
                heads to prune in said layer (list of :obj:`int`). For instance {1: [0, 2], 2: [2, 3]} will prune heads
                0 and 2 on layer 1 and heads 2 and 3 on layer 2.
thomwolf's avatar
thomwolf committed
941
        """
942
        # save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads
943
        for layer, heads in heads_to_prune.items():
944
945
946
            union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads)
            self.config.pruned_heads[layer] = list(union_heads)  # Unfortunately we have to store it as list for JSON

947
        self.base_model._prune_heads(heads_to_prune)
thomwolf's avatar
thomwolf committed
948

949
    def gradient_checkpointing_enable(self):
950
951
952
953
954
955
956
957
958
959
        """
        Activates gradient checkpointing for the current model.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        if not self.supports_gradient_checkpointing:
            raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
        self.apply(partial(self._set_gradient_checkpointing, value=True))

960
    def gradient_checkpointing_disable(self):
961
962
963
964
965
966
967
968
969
        """
        Deactivates gradient checkpointing for the current model.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        if self.supports_gradient_checkpointing:
            self.apply(partial(self._set_gradient_checkpointing, value=False))

970
971
972
973
974
975
976
977
978
979
    @property
    def is_gradient_checkpointing(self) -> bool:
        """
        Whether gradient checkpointing is activated for this model or not.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules())

980
981
982
983
984
985
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
        save_config: bool = True,
        state_dict: Optional[dict] = None,
        save_function: Callable = torch.save,
Sylvain Gugger's avatar
Sylvain Gugger committed
986
987
        push_to_hub: bool = False,
        **kwargs,
988
    ):
989
990
991
        """
        Save a model and its configuration file to a directory, so that it can be re-loaded using the
        `:func:`~transformers.PreTrainedModel.from_pretrained`` class method.
992

993
        Arguments:
994
            save_directory (:obj:`str` or :obj:`os.PathLike`):
995
                Directory to which to save. Will be created if it doesn't exist.
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
            save_config (:obj:`bool`, `optional`, defaults to :obj:`True`):
                Whether or not to save the config of the model. Useful when in distributed training like TPUs and need
                to call this function on all processes. In this case, set :obj:`save_config=True` only on the main
                process to avoid race conditions.
            state_dict (nested dictionary of :obj:`torch.Tensor`):
                The state dictionary of the model to save. Will default to :obj:`self.state_dict()`, but can be used to
                only save parts of the model or if special precautions need to be taken when recovering the state
                dictionary of a model (like when using model parallelism).
            save_function (:obj:`Callable`):
                The function to use to save the state dictionary. Useful on distributed training like TPUs when one
                need to replace :obj:`torch.save` by another method.
Sylvain Gugger's avatar
Sylvain Gugger committed
1007
1008
            push_to_hub (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to push your model to the Hugging Face model hub after saving it.
1009
1010
1011
1012
1013
1014
1015
1016

                .. warning::

                    Using :obj:`push_to_hub=True` will synchronize the repository you are pushing to with
                    :obj:`save_directory`, which requires :obj:`save_directory` to be a local clone of the repo you are
                    pushing to if it's an existing folder. Pass along :obj:`temp_dir=True` to use a temporary directory
                    instead.

Sylvain Gugger's avatar
Sylvain Gugger committed
1017
1018
1019
            kwargs:
                Additional key word arguments passed along to the
                :meth:`~transformers.file_utils.PushToHubMixin.push_to_hub` method.
1020
        """
1021
        if os.path.isfile(save_directory):
1022
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
1023
            return
1024
1025
1026
1027
1028

        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
            repo = self._create_or_get_repo(save_directory, **kwargs)

1029
        os.makedirs(save_directory, exist_ok=True)
1030

Julien Chaumond's avatar
Julien Chaumond committed
1031
        # Only save the model itself if we are using distributed training
1032
        model_to_save = unwrap_model(self)
1033

1034
1035
1036
1037
1038
        # save the string version of dtype to the config, e.g. convert torch.float32 => "float32"
        # we currently don't use this setting automatically, but may start to use with v5
        dtype = get_parameter_dtype(model_to_save)
        model_to_save.config.torch_dtype = str(dtype).split(".")[1]

Julien Chaumond's avatar
Julien Chaumond committed
1039
1040
1041
        # Attach architecture to the config
        model_to_save.config.architectures = [model_to_save.__class__.__name__]

1042
1043
1044
1045
1046
1047
1048
        # Save the config
        if save_config:
            model_to_save.config.save_pretrained(save_directory)

        # Save the model
        if state_dict is None:
            state_dict = model_to_save.state_dict()
1049
1050

        # Handle the case where some state_dict keys shouldn't be saved
1051
1052
        if self._keys_to_ignore_on_save is not None:
            state_dict = {k: v for k, v in state_dict.items() if k not in self._keys_to_ignore_on_save}
1053

1054
1055
        # If we save using the predefined names, we can load using `from_pretrained`
        output_model_file = os.path.join(save_directory, WEIGHTS_NAME)
1056
        save_function(state_dict, output_model_file)
1057

1058
        logger.info(f"Model weights saved in {output_model_file}")
1059

Sylvain Gugger's avatar
Sylvain Gugger committed
1060
        if push_to_hub:
1061
            url = self._push_to_hub(repo, commit_message=commit_message)
Sylvain Gugger's avatar
Sylvain Gugger committed
1062
1063
            logger.info(f"Model pushed to the hub in this commit: {url}")

1064
    @classmethod
1065
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
1066
1067
        r"""
        Instantiate a pretrained pytorch model from a pre-trained model configuration.
1068

Sylvain Gugger's avatar
Sylvain Gugger committed
1069
1070
        The model is set in evaluation mode by default using ``model.eval()`` (Dropout modules are deactivated). To
        train the model, you should first set it back in training mode with ``model.train()``.
1071

1072
1073
1074
        The warning `Weights from XXX not initialized from pretrained model` means that the weights of XXX do not come
        pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
        task.
1075

1076
1077
        The warning `Weights from XXX not used in YYY` means that the layer XXX is not used by YYY, therefore those
        weights are discarded.
1078

1079
        Parameters:
1080
            pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`, `optional`):
1081
1082
                Can be either:

1083
1084
1085
                    - A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co.
                      Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under
                      a user or organization name, like ``dbmdz/bert-base-german-cased``.
1086
1087
                    - A path to a `directory` containing model weights saved using
                      :func:`~transformers.PreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``.
Sylvain Gugger's avatar
Sylvain Gugger committed
1088
                    - A path or url to a `tensorflow index checkpoint file` (e.g, ``./tf_model/model.ckpt.index``). In
1089
1090
1091
                      this case, ``from_tf`` should be set to :obj:`True` and a configuration object should be provided
                      as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in
                      a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
1092
1093
1094
                    - A path or url to a model folder containing a `flax checkpoint file` in `.msgpack` format (e.g,
                      ``./flax_model/`` containing ``flax_model.msgpack``). In this case, ``from_flax`` should be set
                      to :obj:`True`.
1095
1096
1097
                    - :obj:`None` if you are both providing the configuration and state dictionary (resp. with keyword
                      arguments ``config`` and ``state_dict``).
            model_args (sequence of positional arguments, `optional`):
1098
                All remaining positional arguments will be passed to the underlying model's ``__init__`` method.
1099
            config (:obj:`Union[PretrainedConfig, str, os.PathLike]`, `optional`):
1100
1101
1102
                Can be either:

                    - an instance of a class derived from :class:`~transformers.PretrainedConfig`,
1103
                    - a string or path valid as input to :func:`~transformers.PretrainedConfig.from_pretrained`.
1104

1105
                Configuration for the model to use instead of an automatically loaded configuration. Configuration can
1106
1107
                be automatically loaded when:

1108
1109
                    - The model is a model provided by the library (loaded with the `model id` string of a pretrained
                      model).
1110
                    - The model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded
1111
1112
                      by supplying the save directory.
                    - The model is loaded by supplying a local directory as ``pretrained_model_name_or_path`` and a
1113
1114
1115
1116
1117
1118
1119
1120
                      configuration JSON file named `config.json` is found in the directory.
            state_dict (:obj:`Dict[str, torch.Tensor]`, `optional`):
                A state dictionary to use instead of a state dictionary loaded from saved weights file.

                This option can be used if you want to create a model from a pretrained configuration but load your own
                weights. In this case though, you should check if using
                :func:`~transformers.PreTrainedModel.save_pretrained` and
                :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option.
1121
            cache_dir (:obj:`Union[str, os.PathLike]`, `optional`):
1122
1123
1124
1125
1126
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
            from_tf (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Load the model weights from a TensorFlow checkpoint save file (see docstring of
                ``pretrained_model_name_or_path`` argument).
1127
1128
1129
            from_flax (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Load the model weights from a Flax checkpoint save file (see docstring of
                ``pretrained_model_name_or_path`` argument).
qqaatw's avatar
qqaatw committed
1130
            ignore_mismatched_sizes (:obj:`bool`, `optional`, defaults to :obj:`False`):
1131
1132
1133
                Whether or not to raise an error if some of the weights from the checkpoint do not have the same size
                as the weights of the model (if for instance, you are instantiating a model with 10 labels from a
                checkpoint with 3 labels).
1134
1135
1136
1137
1138
1139
            force_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
1140
            proxies (:obj:`Dict[str, str]`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1141
1142
                A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
1143
            output_loading_info(:obj:`bool`, `optional`, defaults to :obj:`False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1144
                Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
1145
            local_files_only(:obj:`bool`, `optional`, defaults to :obj:`False`):
Stas Bekman's avatar
Stas Bekman committed
1146
                Whether or not to only look at local files (i.e., do not try to download the model).
1147
1148
1149
            use_auth_token (:obj:`str` or `bool`, `optional`):
                The token to use as HTTP bearer authorization for remote files. If :obj:`True`, will use the token
                generated when running :obj:`transformers-cli login` (stored in :obj:`~/.huggingface`).
Julien Chaumond's avatar
Julien Chaumond committed
1150
1151
1152
1153
            revision(:obj:`str`, `optional`, defaults to :obj:`"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any
                identifier allowed by git.
1154
            mirror(:obj:`str`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1155
1156
1157
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information.
1158
1159
            _fast_init(:obj:`bool`, `optional`, defaults to `:obj:`True`):
                Whether or not to disable fast initialization.
1160
1161
1162
            low_cpu_mem_usage(:obj:`bool`, `optional`, defaults to `:obj:`False`):
                Tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                This is an experimental feature and a subject to change at any moment.
1163
1164
1165
            torch_dtype (:obj:`str` or :obj:`torch.dtype`, `optional`):
                Override the default ``torch.dtype`` and load the model under this dtype. If ``"auto"`` is passed the
                dtype will be automatically derived from the model's weights.
1166
1167
1168
1169
1170
1171
1172
1173

                .. warning::

                    One should only disable `_fast_init` to ensure backwards compatibility with
                    ``transformers.__version__ < 4.6.0`` for seeded model initialization. This argument will be removed
                    at the next major version. See `pull request 11471
                    <https://github.com/huggingface/transformers/pull/11471>`__ for more information.

1174
1175
            kwargs (remaining dictionary of keyword arguments, `optional`):
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
1176
                :obj:`output_attentions=True`). Behaves differently depending on whether a ``config`` is provided or
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
                automatically loaded:

                    - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the
                      underlying model's ``__init__`` method (we assume all relevant updates to the configuration have
                      already been done)
                    - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class
                      initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of
                      ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute
                      with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration
                      attribute will be passed to the underlying model's ``__init__`` function.
1187

1188
1189
1190
1191
        .. note::

            Passing :obj:`use_auth_token=True` is required when you want to use a private model.

1192
1193
1194
1195
1196
1197
        .. note::

            Activate the special `"offline-mode"
            <https://huggingface.co/transformers/installation.html#offline-mode>`__ to use this method in a firewalled
            environment.

1198
        Examples::
thomwolf's avatar
thomwolf committed
1199

1200
            >>> from transformers import BertConfig, BertModel
1201
            >>> # Download model and configuration from huggingface.co and cache.
1202
1203
1204
1205
1206
1207
1208
1209
1210
            >>> model = BertModel.from_pretrained('bert-base-uncased')
            >>> # Model was saved using `save_pretrained('./test/saved_model/')` (for example purposes, not runnable).
            >>> model = BertModel.from_pretrained('./test/saved_model/')
            >>> # Update configuration during loading.
            >>> model = BertModel.from_pretrained('bert-base-uncased', output_attentions=True)
            >>> assert model.config.output_attentions == True
            >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable).
            >>> config = BertConfig.from_json_file('./tf_model/my_tf_model_config.json')
            >>> model = BertModel.from_pretrained('./tf_model/my_tf_checkpoint.ckpt.index', from_tf=True, config=config)
1211
1212
1213
            >>> # Loading from a Flax checkpoint file instead of a PyTorch model (slower)
            >>> model = BertModel.from_pretrained('bert-base-uncased', from_flax=True)

1214
        """
1215
1216
1217
1218
        config = kwargs.pop("config", None)
        state_dict = kwargs.pop("state_dict", None)
        cache_dir = kwargs.pop("cache_dir", None)
        from_tf = kwargs.pop("from_tf", False)
1219
        from_flax = kwargs.pop("from_flax", False)
1220
        ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
1221
1222
1223
1224
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        output_loading_info = kwargs.pop("output_loading_info", False)
1225
        local_files_only = kwargs.pop("local_files_only", False)
1226
        use_auth_token = kwargs.pop("use_auth_token", None)
Julien Chaumond's avatar
Julien Chaumond committed
1227
        revision = kwargs.pop("revision", None)
1228
        mirror = kwargs.pop("mirror", None)
1229
1230
        from_pipeline = kwargs.pop("_from_pipeline", None)
        from_auto_class = kwargs.pop("_from_auto", False)
1231
        _fast_init = kwargs.pop("_fast_init", True)
1232
        torch_dtype = kwargs.pop("torch_dtype", None)
1233
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", False)
1234
1235

        from_pt = not (from_tf | from_flax)
1236
1237
1238
1239

        user_agent = {"file_type": "model", "framework": "pytorch", "from_auto_class": from_auto_class}
        if from_pipeline is not None:
            user_agent["using_pipeline"] = from_pipeline
thomwolf's avatar
thomwolf committed
1240

1241
1242
1243
1244
        if is_offline_mode() and not local_files_only:
            logger.info("Offline mode: forcing local_files_only=True")
            local_files_only = True

1245
1246
1247
        # Load config if we don't provide a configuration
        if not isinstance(config, PretrainedConfig):
            config_path = config if config is not None else pretrained_model_name_or_path
1248
            config, model_kwargs = cls.config_class.from_pretrained(
1249
1250
1251
                config_path,
                cache_dir=cache_dir,
                return_unused_kwargs=True,
1252
                force_download=force_download,
1253
                resume_download=resume_download,
1254
                proxies=proxies,
1255
                local_files_only=local_files_only,
1256
                use_auth_token=use_auth_token,
Julien Chaumond's avatar
Julien Chaumond committed
1257
                revision=revision,
1258
1259
                _from_auto=from_auto_class,
                _from_pipeline=from_pipeline,
1260
                **kwargs,
1261
1262
1263
            )
        else:
            model_kwargs = kwargs
1264

thomwolf's avatar
thomwolf committed
1265
        # Load model
thomwolf's avatar
thomwolf committed
1266
        if pretrained_model_name_or_path is not None:
1267
            pretrained_model_name_or_path = str(pretrained_model_name_or_path)
1268
            if os.path.isdir(pretrained_model_name_or_path):
thomwolf's avatar
thomwolf committed
1269
                if from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")):
1270
                    # Load from a TF 1.0 checkpoint in priority if from_tf
thomwolf's avatar
thomwolf committed
1271
                    archive_file = os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")
thomwolf's avatar
thomwolf committed
1272
                elif from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)):
1273
                    # Load from a TF 2.0 checkpoint in priority if from_tf
thomwolf's avatar
thomwolf committed
1274
                    archive_file = os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)
1275
1276
1277
                elif from_flax and os.path.isfile(os.path.join(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME)):
                    # Load from a Flax checkpoint in priority if from_flax
                    archive_file = os.path.join(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME)
thomwolf's avatar
thomwolf committed
1278
1279
                elif os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)):
                    # Load from a PyTorch checkpoint
thomwolf's avatar
thomwolf committed
1280
                    archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
thomwolf's avatar
thomwolf committed
1281
                else:
1282
                    raise EnvironmentError(
1283
1284
                        f"Error no file named {[WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME + '.index', FLAX_WEIGHTS_NAME]} found in "
                        f"directory {pretrained_model_name_or_path} or `from_tf` and `from_flax` set to False."
1285
                    )
1286
            elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
1287
                archive_file = pretrained_model_name_or_path
1288
            elif os.path.isfile(pretrained_model_name_or_path + ".index"):
1289
1290
1291
1292
1293
                if not from_tf:
                    raise ValueError(
                        f"We found a TensorFlow checkpoint at {pretrained_model_name_or_path + '.index'}, please set "
                        "from_tf to True to load from this checkpoint."
                    )
1294
                archive_file = pretrained_model_name_or_path + ".index"
1295
            else:
1296
1297
1298
1299
1300
1301
1302
1303
                # set correct filename
                if from_tf:
                    filename = TF2_WEIGHTS_NAME
                elif from_flax:
                    filename = FLAX_WEIGHTS_NAME
                else:
                    filename = WEIGHTS_NAME

thomwolf's avatar
thomwolf committed
1304
                archive_file = hf_bucket_url(
Julien Chaumond's avatar
Julien Chaumond committed
1305
                    pretrained_model_name_or_path,
1306
                    filename=filename,
Julien Chaumond's avatar
Julien Chaumond committed
1307
                    revision=revision,
1308
                    mirror=mirror,
thomwolf's avatar
thomwolf committed
1309
                )
1310

thomwolf's avatar
thomwolf committed
1311
            try:
1312
                # Load from URL or cache if already cached
1313
1314
1315
1316
1317
1318
                resolved_archive_file = cached_path(
                    archive_file,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    resume_download=resume_download,
1319
                    local_files_only=local_files_only,
1320
                    use_auth_token=use_auth_token,
1321
                    user_agent=user_agent,
1322
                )
Julien Chaumond's avatar
Julien Chaumond committed
1323
1324
            except EnvironmentError as err:
                logger.error(err)
1325
1326
                msg = (
                    f"Can't load weights for '{pretrained_model_name_or_path}'. Make sure that:\n\n"
1327
1328
                    f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n"
                    f"  (make sure '{pretrained_model_name_or_path}' is not a path to a local directory with something else, in that case)\n\n"
1329
                    f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a file named one of {WEIGHTS_NAME}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME}\n\n"
1330
                )
1331
1332
1333
1334

                if revision is not None:
                    msg += f"- or '{revision}' is a valid git identifier (branch name, a tag name, or a commit id) that exists for this model name as listed on its model page on 'https://huggingface.co/models'\n\n"

thomwolf's avatar
thomwolf committed
1335
1336
                raise EnvironmentError(msg)

thomwolf's avatar
thomwolf committed
1337
            if resolved_archive_file == archive_file:
1338
                logger.info(f"loading weights file {archive_file}")
1339
            else:
1340
                logger.info(f"loading weights file {archive_file} from cache at {resolved_archive_file}")
1341
        else:
thomwolf's avatar
thomwolf committed
1342
            resolved_archive_file = None
1343

1344
1345
1346
1347
1348
        # load pt weights early so that we know which dtype to init the model under
        if from_pt:
            if state_dict is None:
                try:
                    state_dict = torch.load(resolved_archive_file, map_location="cpu")
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
                except Exception as e:
                    try:
                        with open(resolved_archive_file) as f:
                            if f.read().startswith("version"):
                                raise OSError(
                                    "You seem to have cloned a repository without having git-lfs installed. Please install "
                                    "git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
                                    "you cloned."
                                )
                            else:
                                raise ValueError from e
                    except (UnicodeDecodeError, ValueError):
                        raise OSError(
                            f"Unable to load weights from pytorch checkpoint file for '{pretrained_model_name_or_path}' "
1363
1364
                            f"at '{resolved_archive_file}'. "
                            "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True."
1365
                        )
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382

            # set dtype to instantiate the model under:
            # 1. If torch_dtype is not None, we use that dtype
            # 2. If torch_dtype is "auto", we auto-detect dtype from the loaded state_dict, by checking its first
            #    weights entry - we assume all weights are of the same dtype
            # we also may have config.torch_dtype available, but we won't rely on it till v5
            dtype_orig = None
            if torch_dtype is not None:
                if isinstance(torch_dtype, str):
                    if torch_dtype == "auto":
                        torch_dtype = next(iter(state_dict.values())).dtype
                    else:
                        raise ValueError(
                            f"`torch_dtype` can be either a `torch.dtype` or `auto`, but received {torch_dtype}"
                        )
                dtype_orig = cls._set_default_torch_dtype(torch_dtype)

1383
1384
1385
1386
1387
            if low_cpu_mem_usage:
                # save the keys
                loaded_state_dict_keys = [k for k in state_dict.keys()]
                del state_dict  # free CPU memory - will reload again later

1388
1389
        config.name_or_path = pretrained_model_name_or_path

1390
        # Instantiate model.
1391
1392
1393
1394
        if is_deepspeed_zero3_enabled():
            import deepspeed

            logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
1395
1396
            # this immediately partitions the model across all gpus, to avoid the overhead in time
            # and memory copying it on CPU or each GPU first
1397
            with deepspeed.zero.Init(config_dict_or_path=deepspeed_config()):
1398
1399
                with no_init_weights(_enable=_fast_init):
                    model = cls(config, *model_args, **model_kwargs)
1400
        else:
1401
1402
            with no_init_weights(_enable=_fast_init):
                model = cls(config, *model_args, **model_kwargs)
1403

1404
1405
1406
1407
1408
        if from_pt:
            # restore default dtype
            if dtype_orig is not None:
                torch.set_default_dtype(dtype_orig)

1409
        if from_tf:
1410
            if resolved_archive_file.endswith(".index"):
1411
1412
1413
1414
1415
                # Load from a TensorFlow 1.X checkpoint - provided by original authors
                model = cls.load_tf_weights(model, config, resolved_archive_file[:-6])  # Remove the '.index'
            else:
                # Load from our TensorFlow 2.0 checkpoints
                try:
1416
                    from .modeling_tf_pytorch_utils import load_tf2_checkpoint_in_pytorch_model
1417

1418
                    model = load_tf2_checkpoint_in_pytorch_model(model, resolved_archive_file, allow_missing_keys=True)
1419
                except ImportError:
1420
1421
1422
1423
                    logger.error(
                        "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed. Please see "
                        "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions."
                    )
1424
                    raise
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
        elif from_flax:
            try:
                from .modeling_flax_pytorch_utils import load_flax_checkpoint_in_pytorch_model

                model = load_flax_checkpoint_in_pytorch_model(model, resolved_archive_file)
            except ImportError:
                logger.error(
                    "Loading a Flax model in PyTorch, requires both PyTorch and Flax to be installed. Please see "
                    "https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation instructions."
                )
                raise
1436
        elif from_pt:
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447

            if low_cpu_mem_usage:
                cls._load_state_dict_into_model_low_mem(model, loaded_state_dict_keys, resolved_archive_file)
            else:
                model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_state_dict_into_model(
                    model,
                    state_dict,
                    pretrained_model_name_or_path,
                    ignore_mismatched_sizes=ignore_mismatched_sizes,
                    _fast_init=_fast_init,
                )
1448

1449
1450
        # make sure token embedding weights are still tied if needed
        model.tie_weights()
1451

1452
        # Set model in evaluation mode to deactivate DropOut modules by default
1453
1454
        model.eval()

thomwolf's avatar
thomwolf committed
1455
        if output_loading_info:
1456
1457
1458
            loading_info = {
                "missing_keys": missing_keys,
                "unexpected_keys": unexpected_keys,
1459
                "mismatched_keys": mismatched_keys,
1460
1461
                "error_msgs": error_msgs,
            }
thomwolf's avatar
thomwolf committed
1462
1463
            return model, loading_info

1464
1465
        return model

1466
    @classmethod
1467
1468
1469
    def _load_state_dict_into_model(
        cls, model, state_dict, pretrained_model_name_or_path, ignore_mismatched_sizes=False, _fast_init=True
    ):
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486

        # Convert old format to new format if needed from a PyTorch state_dict
        old_keys = []
        new_keys = []
        for key in state_dict.keys():
            new_key = None
            if "gamma" in key:
                new_key = key.replace("gamma", "weight")
            if "beta" in key:
                new_key = key.replace("beta", "bias")
            if new_key:
                old_keys.append(key)
                new_keys.append(new_key)
        for old_key, new_key in zip(old_keys, new_keys):
            state_dict[new_key] = state_dict.pop(old_key)

        # Retrieve missing & unexpected_keys
1487
1488
        model_state_dict = model.state_dict()
        expected_keys = list(model_state_dict.keys())
1489
1490
1491
1492
1493
        loaded_keys = list(state_dict.keys())
        prefix = model.base_model_prefix

        has_prefix_module = any(s.startswith(prefix) for s in loaded_keys)
        expects_prefix_module = any(s.startswith(prefix) for s in expected_keys)
Patrick von Platen's avatar
Patrick von Platen committed
1494
1495
1496

        # key re-naming operations are never done on the keys
        # that are loaded, but always on the keys of the newly initialized model
1497
1498
1499
1500
        remove_prefix = not has_prefix_module and expects_prefix_module
        add_prefix = has_prefix_module and not expects_prefix_module

        if remove_prefix:
1501
            expected_keys_not_prefixed = [s for s in expected_keys if not s.startswith(prefix)]
1502
1503
1504
1505
1506
1507
1508
            expected_keys = [".".join(s.split(".")[1:]) if s.startswith(prefix) else s for s in expected_keys]
        elif add_prefix:
            expected_keys = [".".join([prefix, s]) for s in expected_keys]

        missing_keys = list(set(expected_keys) - set(loaded_keys))
        unexpected_keys = list(set(loaded_keys) - set(expected_keys))

1509
1510
1511
1512
1513
1514
        # Mistmatched keys contains tuples key/shape1/shape2 of weights in the checkpoint that have a shape not
        # matching the weights in the model.
        mismatched_keys = []
        if ignore_mismatched_sizes:
            for checkpoint_key in loaded_keys:
                model_key = checkpoint_key
1515
                if remove_prefix:
1516
                    model_key = f"{prefix}.{checkpoint_key}"
1517
1518
                elif add_prefix:
                    model_key = ".".join(checkpoint_key.split(".")[1:])
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528

                if (
                    model_key in model_state_dict
                    and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
                ):
                    mismatched_keys.append(
                        (checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
                    )
                    del state_dict[checkpoint_key]

1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
        # Some models may have keys that are not in the state by design, removing them before needlessly warning
        # the user.
        if cls._keys_to_ignore_on_load_missing is not None:
            for pat in cls._keys_to_ignore_on_load_missing:
                missing_keys = [k for k in missing_keys if re.search(pat, k) is None]

        if cls._keys_to_ignore_on_load_unexpected is not None:
            for pat in cls._keys_to_ignore_on_load_unexpected:
                unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

1539
1540
        if _fast_init:
            # retrieve unintialized modules and initialize
1541
            uninitialized_modules = model.retrieve_modules_from_names(
1542
1543
                missing_keys, add_prefix=add_prefix, remove_prefix=remove_prefix
            )
1544
            for module in uninitialized_modules:
1545
1546
                model._init_weights(module)

1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
        # copy state_dict so _load_from_state_dict can modify it
        metadata = getattr(state_dict, "_metadata", None)
        state_dict = state_dict.copy()
        if metadata is not None:
            state_dict._metadata = metadata

        error_msgs = []

        # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
        # so we need to apply the function recursively.
        def load(module: nn.Module, prefix=""):
            local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
            args = (state_dict, prefix, local_metadata, True, [], [], error_msgs)
            if is_deepspeed_zero3_enabled():
                import deepspeed

                # because zero3 puts placeholders in model params, this context
                # manager gathers (unpartitions) the params of the current layer, then loads from
                # the state dict and then re-partitions them again
                with deepspeed.zero.GatheredParameters(list(module.parameters(recurse=False)), modifier_rank=0):
                    if torch.distributed.get_rank() == 0:
                        module._load_from_state_dict(*args)
            else:
                module._load_from_state_dict(*args)

            for name, child in module._modules.items():
                if child is not None:
                    load(child, prefix + name + ".")

        # Make sure we are able to load base models as well as derived models (with heads)
        start_prefix = ""
        model_to_load = model
        if not hasattr(model, cls.base_model_prefix) and has_prefix_module:
            start_prefix = cls.base_model_prefix + "."
        if hasattr(model, cls.base_model_prefix) and not has_prefix_module:
            model_to_load = getattr(model, cls.base_model_prefix)
1583
1584
1585
1586
1587
            if any(key in expected_keys_not_prefixed for key in loaded_keys):
                raise ValueError(
                    "The state dictionary of the model you are training to load is corrupted. Are you sure it was "
                    "properly saved?"
                )
1588
1589
1590

        load(model_to_load, prefix=start_prefix)

1591
1592
1593
1594
        if len(error_msgs) > 0:
            error_msg = "\n\t".join(error_msgs)
            raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")

1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
        if len(unexpected_keys) > 0:
            logger.warning(
                f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when "
                f"initializing {model.__class__.__name__}: {unexpected_keys}\n"
                f"- This IS expected if you are initializing {model.__class__.__name__} from the checkpoint of a model trained on another task "
                f"or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n"
                f"- This IS NOT expected if you are initializing {model.__class__.__name__} from the checkpoint of a model that you expect "
                f"to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
            )
        else:
            logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
        if len(missing_keys) > 0:
            logger.warning(
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} "
                f"and are newly initialized: {missing_keys}\n"
                f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference."
            )
1612
        elif len(mismatched_keys) == 0:
1613
1614
1615
1616
1617
            logger.info(
                f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at {pretrained_model_name_or_path}.\n"
                f"If your task is similar to the task the model of the checkpoint was trained on, "
                f"you can already use {model.__class__.__name__} for predictions without further training."
            )
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
        if len(mismatched_keys) > 0:
            mismatched_warning = "\n".join(
                [
                    f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
                    for key, shape1, shape2 in mismatched_keys
                ]
            )
            logger.warning(
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} "
                f"and are newly initialized because the shapes did not match:\n{mismatched_warning}\n"
                f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference."
            )
1630

1631
        return model, missing_keys, unexpected_keys, mismatched_keys, error_msgs
1632
1633
1634
1635

    def retrieve_modules_from_names(self, names, add_prefix=False, remove_prefix=False):
        module_keys = set([".".join(key.split(".")[:-1]) for key in names])

Patrick von Platen's avatar
Patrick von Platen committed
1636
1637
1638
1639
        # torch.nn.ParameterList is a special case where two parameter keywords
        # are appended to the module name, *e.g.* bert.special_embeddings.0
        module_keys = module_keys.union(set([".".join(key.split(".")[:-2]) for key in names if key[-1].isdigit()]))

1640
1641
1642
1643
1644
1645
        retrieved_modules = []
        # retrieve all modules that has at least one missing weight name
        for name, module in self.named_modules():
            if remove_prefix:
                name = ".".join(name.split(".")[1:]) if name.startswith(self.base_model_prefix) else name
            elif add_prefix:
Patrick von Platen's avatar
Patrick von Platen committed
1646
                name = ".".join([self.base_model_prefix, name]) if len(name) > 0 else self.base_model_prefix
1647
1648
1649
1650
1651
1652

            if name in module_keys:
                retrieved_modules.append(module)

        return retrieved_modules

1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
    @classmethod
    def _load_state_dict_into_model_low_mem(cls, model, loaded_state_dict_keys, resolved_archive_file):
        """
        This is an experimental function that loads the model using ~1.x model size CPU memory

        Before it gets called we do:

        1. save which state_dict keys we have
        2. drop state_dict before model is created, since the latter takes 1x model size memory

        Here then we continue:

        3. switch to the meta device all params/buffers that are going to be replaced from the loaded state_dict
        4. load state_dict 2nd time
        5. replace the params/buffers from the state_dict

        Currently, it doesn't handle missing_keys, unexpected_keys, mismatched_keys. It can't handle deepspeed.
        """

        require_version_core("torch>=1.9")
        if is_deepspeed_zero3_enabled():
            raise ValueError("low_cpu_mem_usage arg cannot be used with DeepSpeed ZeRO-3")

        # a helper util to find the last sub-module and the param/buffer name
        def find_submodule_and_param_name(model, long_key):
            split_key = long_key.split(".")
            submodule = model
            while len(split_key) > 1:
                if hasattr(submodule, split_key[0]):
                    submodule = getattr(submodule, split_key[0])
                    del split_key[0]
                else:
                    submodule = None
                    break
            return submodule, split_key[0]

        # dematerialize param storage for keys that are going to be replaced by state_dict, by
        # putting those on the meta device
        for k in loaded_state_dict_keys:
            submodule, param_name = find_submodule_and_param_name(model, k)
            if submodule is not None:
                # selectively switch to the meta device only those params/buffers that will
                # be next replaced from state_dict. This a complex way to do p.to_("meta")
                # since we have no in-place to_ for tensors.
                new_val = getattr(submodule, param_name)
                if isinstance(new_val, torch.nn.Parameter):
                    # isinstance returns False for Params on meta device, so switch after the check
                    new_val = torch.nn.Parameter(new_val.to("meta"))
                else:
                    new_val = new_val.to("meta")
                setattr(submodule, param_name, new_val)

        # only now can load state_dict
        state_dict = torch.load(resolved_archive_file, map_location="cpu")

        # materialize state_dict entries one by one on CPU
        for k in loaded_state_dict_keys:
            submodule, param_name = find_submodule_and_param_name(model, k)
            if submodule is not None:
                new_val = state_dict[k]
                if isinstance(getattr(submodule, param_name), torch.nn.Parameter):
                    new_val = torch.nn.Parameter(new_val)
                setattr(submodule, param_name, new_val)

        del state_dict

thomwolf's avatar
thomwolf committed
1719

1720
1721
1722
1723
1724
1725
1726
# To update the docstring, we need to copy the method, otherwise we change the original docstring.
PreTrainedModel.push_to_hub = copy_func(PreTrainedModel.push_to_hub)
PreTrainedModel.push_to_hub.__doc__ = PreTrainedModel.push_to_hub.__doc__.format(
    object="model", object_class="AutoModel", object_files="model checkpoint"
)


thomwolf's avatar
thomwolf committed
1727
class Conv1D(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
    """
    1D-convolutional layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2).

    Basically works like a linear layer but the weights are transposed.

    Args:
        nf (:obj:`int`): The number of output features.
        nx (:obj:`int`): The number of input features.
    """

thomwolf's avatar
thomwolf committed
1738
    def __init__(self, nf, nx):
Julien Chaumond's avatar
Julien Chaumond committed
1739
        super().__init__()
thomwolf's avatar
thomwolf committed
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
        self.nf = nf
        w = torch.empty(nx, nf)
        nn.init.normal_(w, std=0.02)
        self.weight = nn.Parameter(w)
        self.bias = nn.Parameter(torch.zeros(nf))

    def forward(self, x):
        size_out = x.size()[:-1] + (self.nf,)
        x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
        x = x.view(*size_out)
        return x


thomwolf's avatar
thomwolf committed
1753
class PoolerStartLogits(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
1754
1755
    """
    Compute SQuAD start logits from sequence hidden states.
1756

Sylvain Gugger's avatar
Sylvain Gugger committed
1757
1758
1759
1760
1761
1762
    Args:
        config (:class:`~transformers.PretrainedConfig`):
            The config used by the model, will be used to grab the :obj:`hidden_size` of the model.
    """

    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
1763
        super().__init__()
thomwolf's avatar
thomwolf committed
1764
1765
        self.dense = nn.Linear(config.hidden_size, 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
1766
1767
1768
1769
1770
1771
1772
1773
    def forward(
        self, hidden_states: torch.FloatTensor, p_mask: Optional[torch.FloatTensor] = None
    ) -> torch.FloatTensor:
        """
        Args:
            hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`):
                The final hidden states of the model.
            p_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1774
1775
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
Sylvain Gugger's avatar
Sylvain Gugger committed
1776
1777
1778

        Returns:
            :obj:`torch.FloatTensor`: The start logits for SQuAD.
thomwolf's avatar
thomwolf committed
1779
        """
thomwolf's avatar
thomwolf committed
1780
1781
1782
        x = self.dense(hidden_states).squeeze(-1)

        if p_mask is not None:
Lysandre Debut's avatar
Lysandre Debut committed
1783
            if get_parameter_dtype(self) == torch.float16:
1784
1785
1786
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask
thomwolf's avatar
thomwolf committed
1787
1788
1789
1790
1791
1792

        return x


class PoolerEndLogits(nn.Module):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
1793
    Compute SQuAD end logits from sequence hidden states.
1794

Sylvain Gugger's avatar
Sylvain Gugger committed
1795
1796
1797
1798
1799
1800
1801
    Args:
        config (:class:`~transformers.PretrainedConfig`):
            The config used by the model, will be used to grab the :obj:`hidden_size` of the model and the
            :obj:`layer_norm_eps` to use.
    """

    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
1802
        super().__init__()
thomwolf's avatar
thomwolf committed
1803
1804
1805
1806
1807
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dense_1 = nn.Linear(config.hidden_size, 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        start_states: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        p_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
        """
        Args:
            hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`):
                The final hidden states of the model.
            start_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`, `optional`):
                The hidden states of the first tokens for the labeled span.
            start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
                The position of the first token for the labeled span.
            p_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1824
1825
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
Sylvain Gugger's avatar
Sylvain Gugger committed
1826
1827
1828
1829
1830
1831
1832
1833

        .. note::

            One of ``start_states`` or ``start_positions`` should be not obj:`None`. If both are set,
            ``start_positions`` overrides ``start_states``.

        Returns:
            :obj:`torch.FloatTensor`: The end logits for SQuAD.
thomwolf's avatar
thomwolf committed
1834
        """
1835
1836
1837
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
thomwolf's avatar
thomwolf committed
1838
        if start_positions is not None:
1839
            slen, hsz = hidden_states.shape[-2:]
1840
1841
1842
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions)  # shape (bsz, 1, hsz)
            start_states = start_states.expand(-1, slen, -1)  # shape (bsz, slen, hsz)
thomwolf's avatar
thomwolf committed
1843
1844
1845
1846
1847
1848
1849

        x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1))
        x = self.activation(x)
        x = self.LayerNorm(x)
        x = self.dense_1(x).squeeze(-1)

        if p_mask is not None:
Lysandre Debut's avatar
Lysandre Debut committed
1850
            if get_parameter_dtype(self) == torch.float16:
1851
1852
1853
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask
thomwolf's avatar
thomwolf committed
1854
1855
1856
1857
1858

        return x


class PoolerAnswerClass(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
1859
1860
1861
1862
1863
1864
1865
    """
    Compute SQuAD 2.0 answer class from classification and start tokens hidden states.

    Args:
        config (:class:`~transformers.PretrainedConfig`):
            The config used by the model, will be used to grab the :obj:`hidden_size` of the model.
    """
1866

thomwolf's avatar
thomwolf committed
1867
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
1868
        super().__init__()
thomwolf's avatar
thomwolf committed
1869
1870
1871
1872
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False)

Sylvain Gugger's avatar
Sylvain Gugger committed
1873
1874
1875
1876
1877
1878
1879
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        start_states: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        cls_index: Optional[torch.LongTensor] = None,
    ) -> torch.FloatTensor:
1880
1881
        """
        Args:
Sylvain Gugger's avatar
Sylvain Gugger committed
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
            hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`):
                The final hidden states of the model.
            start_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`, `optional`):
                The hidden states of the first tokens for the labeled span.
            start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
                The position of the first token for the labeled span.
            cls_index (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
                Position of the CLS token for each sentence in the batch. If :obj:`None`, takes the last token.

        .. note::

            One of ``start_states`` or ``start_positions`` should be not obj:`None`. If both are set,
            ``start_positions`` overrides ``start_states``.

        Returns:
            :obj:`torch.FloatTensor`: The SQuAD 2.0 answer class.
thomwolf's avatar
thomwolf committed
1898
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1899
        # No dependency on end_feature so that we can obtain one single `cls_logits` for each sample.
1900
        hsz = hidden_states.shape[-1]
1901
1902
1903
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
thomwolf's avatar
thomwolf committed
1904
        if start_positions is not None:
1905
1906
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions).squeeze(-2)  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
1907
1908

        if cls_index is not None:
1909
1910
            cls_index = cls_index[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
1911
        else:
1912
            cls_token_state = hidden_states[:, -1, :]  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
1913
1914
1915
1916
1917
1918
1919
1920

        x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1))
        x = self.activation(x)
        x = self.dense_1(x).squeeze(-1)

        return x


1921
1922
1923
@dataclass
class SquadHeadOutput(ModelOutput):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
1924
    Base class for outputs of question answering models using a :class:`~transformers.modeling_utils.SQuADHead`.
1925
1926
1927

    Args:
        loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned if both :obj:`start_positions` and :obj:`end_positions` are provided):
Sylvain Gugger's avatar
Sylvain Gugger committed
1928
1929
            Classification loss as the sum of start token, end token (and is_impossible if provided) classification
            losses.
1930
1931
1932
1933
1934
        start_top_log_probs (``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided):
            Log probabilities for the top config.start_n_top start token possibilities (beam-search).
        start_top_index (``torch.LongTensor`` of shape ``(batch_size, config.start_n_top)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided):
            Indices for the top config.start_n_top start token possibilities (beam-search).
        end_top_log_probs (``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided):
Sylvain Gugger's avatar
Sylvain Gugger committed
1935
1936
            Log probabilities for the top ``config.start_n_top * config.end_n_top`` end token possibilities
            (beam-search).
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
        end_top_index (``torch.LongTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided):
            Indices for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search).
        cls_logits (``torch.FloatTensor`` of shape ``(batch_size,)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided):
            Log probabilities for the ``is_impossible`` label of the answers.

    """

    loss: Optional[torch.FloatTensor] = None
    start_top_log_probs: Optional[torch.FloatTensor] = None
    start_top_index: Optional[torch.LongTensor] = None
    end_top_log_probs: Optional[torch.FloatTensor] = None
    end_top_index: Optional[torch.LongTensor] = None
    cls_logits: Optional[torch.FloatTensor] = None


thomwolf's avatar
thomwolf committed
1952
class SQuADHead(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
1953
1954
    r"""
    A SQuAD head inspired by XLNet.
1955

Sylvain Gugger's avatar
Sylvain Gugger committed
1956
1957
1958
1959
    Args:
        config (:class:`~transformers.PretrainedConfig`):
            The config used by the model, will be used to grab the :obj:`hidden_size` of the model and the
            :obj:`layer_norm_eps` to use.
thomwolf's avatar
thomwolf committed
1960
    """
1961

thomwolf's avatar
thomwolf committed
1962
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
1963
        super().__init__()
thomwolf's avatar
thomwolf committed
1964
1965
1966
1967
1968
1969
1970
        self.start_n_top = config.start_n_top
        self.end_n_top = config.end_n_top

        self.start_logits = PoolerStartLogits(config)
        self.end_logits = PoolerEndLogits(config)
        self.answer_class = PoolerAnswerClass(config)

Sylvain Gugger's avatar
Sylvain Gugger committed
1971
    @replace_return_docstrings(output_type=SquadHeadOutput, config_class=PretrainedConfig)
1972
    def forward(
1973
        self,
Sylvain Gugger's avatar
Sylvain Gugger committed
1974
1975
1976
1977
1978
1979
        hidden_states: torch.FloatTensor,
        start_positions: Optional[torch.LongTensor] = None,
        end_positions: Optional[torch.LongTensor] = None,
        cls_index: Optional[torch.LongTensor] = None,
        is_impossible: Optional[torch.LongTensor] = None,
        p_mask: Optional[torch.FloatTensor] = None,
1980
        return_dict: bool = False,
Sylvain Gugger's avatar
Sylvain Gugger committed
1981
1982
    ) -> Union[SquadHeadOutput, Tuple[torch.FloatTensor]]:
        """
Lysandre's avatar
Lysandre committed
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
        Args:
            hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`):
                Final hidden states of the model on the sequence tokens.
            start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
                Positions of the first token for the labeled span.
            end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
                Positions of the last token for the labeled span.
            cls_index (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
                Position of the CLS token for each sentence in the batch. If :obj:`None`, takes the last token.
            is_impossible (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
                Whether the question has a possible answer in the paragraph or not.
            p_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1995
1996
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
Lysandre's avatar
Lysandre committed
1997
            return_dict (:obj:`bool`, `optional`, defaults to :obj:`False`):
1998
                Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
Sylvain Gugger's avatar
Sylvain Gugger committed
1999

Lysandre's avatar
Lysandre committed
2000
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
2001
        """
thomwolf's avatar
thomwolf committed
2002
        start_logits = self.start_logits(hidden_states, p_mask=p_mask)
thomwolf's avatar
thomwolf committed
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025

        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, let's remove the dimension added by batch splitting
            for x in (start_positions, end_positions, cls_index, is_impossible):
                if x is not None and x.dim() > 1:
                    x.squeeze_(-1)

            # during training, compute the end logits based on the ground truth of the start position
            end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)

            loss_fct = CrossEntropyLoss()
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

            if cls_index is not None and is_impossible is not None:
                # Predict answerability from the representation of CLS and START
                cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
                loss_fct_cls = nn.BCEWithLogitsLoss()
                cls_loss = loss_fct_cls(cls_logits, is_impossible)

                # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss
                total_loss += cls_loss * 0.5
2026

2027
            return SquadHeadOutput(loss=total_loss) if return_dict else (total_loss,)
thomwolf's avatar
thomwolf committed
2028
2029
2030
2031

        else:
            # during inference, compute the end logits based on beam search
            bsz, slen, hsz = hidden_states.size()
2032
            start_log_probs = nn.functional.softmax(start_logits, dim=-1)  # shape (bsz, slen)
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043

            start_top_log_probs, start_top_index = torch.topk(
                start_log_probs, self.start_n_top, dim=-1
            )  # shape (bsz, start_n_top)
            start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz)  # shape (bsz, start_n_top, hsz)
            start_states = torch.gather(hidden_states, -2, start_top_index_exp)  # shape (bsz, start_n_top, hsz)
            start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1)  # shape (bsz, slen, start_n_top, hsz)

            hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(
                start_states
            )  # shape (bsz, slen, start_n_top, hsz)
thomwolf's avatar
thomwolf committed
2044
2045
            p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
            end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
2046
            end_log_probs = nn.functional.softmax(end_logits, dim=1)  # shape (bsz, slen, start_n_top)
thomwolf's avatar
thomwolf committed
2047

2048
2049
2050
            end_top_log_probs, end_top_index = torch.topk(
                end_log_probs, self.end_n_top, dim=1
            )  # shape (bsz, end_n_top, start_n_top)
thomwolf's avatar
thomwolf committed
2051
2052
2053
2054
2055
2056
            end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
            end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)

            start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs)
            cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index)

2057
            if not return_dict:
2058
2059
2060
2061
2062
2063
2064
2065
2066
                return (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits)
            else:
                return SquadHeadOutput(
                    start_top_log_probs=start_top_log_probs,
                    start_top_index=start_top_index,
                    end_top_log_probs=end_top_log_probs,
                    end_top_index=end_top_index,
                    cls_logits=cls_logits,
                )
thomwolf's avatar
thomwolf committed
2067
2068
2069


class SequenceSummary(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
2070
2071
2072
2073
2074
    r"""
    Compute a single vector summary of a sequence hidden states.

    Args:
        config (:class:`~transformers.PretrainedConfig`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2075
2076
            The config used by the model. Relevant arguments in the config class of the model are (refer to the actual
            config class of your model for the default values it uses):
Sylvain Gugger's avatar
Sylvain Gugger committed
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088

            - **summary_type** (:obj:`str`) -- The method to use to make this summary. Accepted values are:

                - :obj:`"last"` -- Take the last token hidden state (like XLNet)
                - :obj:`"first"` -- Take the first token hidden state (like Bert)
                - :obj:`"mean"` -- Take the mean of all tokens hidden states
                - :obj:`"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2)
                - :obj:`"attn"` -- Not implemented now, use multi-head attention

            - **summary_use_proj** (:obj:`bool`) -- Add a projection after the vector extraction.
            - **summary_proj_to_labels** (:obj:`bool`) -- If :obj:`True`, the projection outputs to
              :obj:`config.num_labels` classes (otherwise to :obj:`config.hidden_size`).
Sylvain Gugger's avatar
Sylvain Gugger committed
2089
            - **summary_activation** (:obj:`Optional[str]`) -- Set to :obj:`"tanh"` to add a tanh activation to the
Sylvain Gugger's avatar
Sylvain Gugger committed
2090
2091
2092
2093
2094
              output, another string or :obj:`None` will add no activation.
            - **summary_first_dropout** (:obj:`float`) -- Optional dropout probability before the projection and
              activation.
            - **summary_last_dropout** (:obj:`float`)-- Optional dropout probability after the projection and
              activation.
thomwolf's avatar
thomwolf committed
2095
    """
2096

2097
    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
2098
        super().__init__()
thomwolf's avatar
thomwolf committed
2099

2100
        self.summary_type = getattr(config, "summary_type", "last")
2101
        if self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
2102
2103
2104
2105
2106
            # We should use a standard multi-head attention module with absolute positional embedding for that.
            # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
            # We can probably just use the multi-head attention module of PyTorch >=1.1.0
            raise NotImplementedError

thomwolf's avatar
thomwolf committed
2107
        self.summary = Identity()
2108
2109
        if hasattr(config, "summary_use_proj") and config.summary_use_proj:
            if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0:
2110
                num_classes = config.num_labels
thomwolf's avatar
thomwolf committed
2111
2112
2113
2114
            else:
                num_classes = config.hidden_size
            self.summary = nn.Linear(config.hidden_size, num_classes)

2115
        activation_string = getattr(config, "summary_activation", None)
Lysandre's avatar
Lysandre committed
2116
        self.activation: Callable = get_activation(activation_string) if activation_string else Identity()
thomwolf's avatar
thomwolf committed
2117

thomwolf's avatar
thomwolf committed
2118
        self.first_dropout = Identity()
2119
        if hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0:
2120
2121
            self.first_dropout = nn.Dropout(config.summary_first_dropout)

thomwolf's avatar
thomwolf committed
2122
        self.last_dropout = Identity()
2123
        if hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0:
2124
            self.last_dropout = nn.Dropout(config.summary_last_dropout)
thomwolf's avatar
thomwolf committed
2125

Sylvain Gugger's avatar
Sylvain Gugger committed
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
    def forward(
        self, hidden_states: torch.FloatTensor, cls_index: Optional[torch.LongTensor] = None
    ) -> torch.FloatTensor:
        """
        Compute a single vector summary of a sequence hidden states.

        Args:
            hidden_states (:obj:`torch.FloatTensor` of shape :obj:`[batch_size, seq_len, hidden_size]`):
                The hidden states of the last layer.
            cls_index (:obj:`torch.LongTensor` of shape :obj:`[batch_size]` or :obj:`[batch_size, ...]` where ... are optional leading dimensions of :obj:`hidden_states`, `optional`):
                Used if :obj:`summary_type == "cls_index"` and takes the last token of the sequence as classification
                token.

        Returns:
            :obj:`torch.FloatTensor`: The summary of the sequence hidden states.
thomwolf's avatar
thomwolf committed
2141
        """
2142
        if self.summary_type == "last":
thomwolf's avatar
thomwolf committed
2143
            output = hidden_states[:, -1]
2144
        elif self.summary_type == "first":
thomwolf's avatar
thomwolf committed
2145
            output = hidden_states[:, 0]
2146
        elif self.summary_type == "mean":
thomwolf's avatar
thomwolf committed
2147
            output = hidden_states.mean(dim=1)
2148
        elif self.summary_type == "cls_index":
thomwolf's avatar
thomwolf committed
2149
            if cls_index is None:
Lysandre's avatar
Lysandre committed
2150
2151
2152
2153
2154
                cls_index = torch.full_like(
                    hidden_states[..., :1, :],
                    hidden_states.shape[-2] - 1,
                    dtype=torch.long,
                )
thomwolf's avatar
thomwolf committed
2155
            else:
thomwolf's avatar
thomwolf committed
2156
                cls_index = cls_index.unsqueeze(-1).unsqueeze(-1)
2157
                cls_index = cls_index.expand((-1,) * (cls_index.dim() - 1) + (hidden_states.size(-1),))
thomwolf's avatar
thomwolf committed
2158
            # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
2159
2160
            output = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, XX, hidden_size)
        elif self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
2161
2162
            raise NotImplementedError

2163
        output = self.first_dropout(output)
thomwolf's avatar
thomwolf committed
2164
2165
        output = self.summary(output)
        output = self.activation(output)
2166
        output = self.last_dropout(output)
thomwolf's avatar
thomwolf committed
2167
2168
2169
2170

        return output


2171
def unwrap_model(model: nn.Module) -> nn.Module:
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
    """
    Recursively unwraps a model from potential containers (as used in distributed training).

    Args:
        model (:obj:`torch.nn.Module`): The model to unwrap.
    """
    # since there could be multiple levels of wrapping, unwrap recursively
    if hasattr(model, "module"):
        return unwrap_model(model.module)
    else:
        return model


2185
def prune_linear_layer(layer: nn.Linear, index: torch.LongTensor, dim: int = 0) -> nn.Linear:
Sylvain Gugger's avatar
Sylvain Gugger committed
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
    """
    Prune a linear layer to keep only entries in index.

    Used to remove heads.

    Args:
        layer (:obj:`torch.nn.Linear`): The layer to prune.
        index (:obj:`torch.LongTensor`): The indices to keep in the layer.
        dim (:obj:`int`, `optional`, defaults to 0): The dimension on which to keep the indices.

    Returns:
        :obj:`torch.nn.Linear`: The pruned layer as a new layer with :obj:`requires_grad=True`.
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
    """
    index = index.to(layer.weight.device)
    W = layer.weight.index_select(dim, index).clone().detach()
    if layer.bias is not None:
        if dim == 1:
            b = layer.bias.clone().detach()
        else:
            b = layer.bias[index].clone().detach()
    new_size = list(layer.weight.size())
    new_size[dim] = len(index)
    new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(layer.weight.device)
    new_layer.weight.requires_grad = False
    new_layer.weight.copy_(W.contiguous())
    new_layer.weight.requires_grad = True
    if layer.bias is not None:
        new_layer.bias.requires_grad = False
        new_layer.bias.copy_(b.contiguous())
        new_layer.bias.requires_grad = True
    return new_layer


Sylvain Gugger's avatar
Sylvain Gugger committed
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
def prune_conv1d_layer(layer: Conv1D, index: torch.LongTensor, dim: int = 1) -> Conv1D:
    """
    Prune a Conv1D layer to keep only entries in index. A Conv1D work as a Linear layer (see e.g. BERT) but the weights
    are transposed.

    Used to remove heads.

    Args:
        layer (:class:`~transformers.modeling_utils.Conv1D`): The layer to prune.
        index (:obj:`torch.LongTensor`): The indices to keep in the layer.
        dim (:obj:`int`, `optional`, defaults to 1): The dimension on which to keep the indices.

    Returns:
        :class:`~transformers.modeling_utils.Conv1D`: The pruned layer as a new layer with :obj:`requires_grad=True`.
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
    """
    index = index.to(layer.weight.device)
    W = layer.weight.index_select(dim, index).clone().detach()
    if dim == 0:
        b = layer.bias.clone().detach()
    else:
        b = layer.bias[index].clone().detach()
    new_size = list(layer.weight.size())
    new_size[dim] = len(index)
    new_layer = Conv1D(new_size[1], new_size[0]).to(layer.weight.device)
    new_layer.weight.requires_grad = False
    new_layer.weight.copy_(W.contiguous())
    new_layer.weight.requires_grad = True
    new_layer.bias.requires_grad = False
    new_layer.bias.copy_(b.contiguous())
    new_layer.bias.requires_grad = True
    return new_layer
2250
2251


Sylvain Gugger's avatar
Sylvain Gugger committed
2252
def prune_layer(
2253
2254
    layer: Union[nn.Linear, Conv1D], index: torch.LongTensor, dim: Optional[int] = None
) -> Union[nn.Linear, Conv1D]:
Sylvain Gugger's avatar
Sylvain Gugger committed
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
    """
    Prune a Conv1D or linear layer to keep only entries in index.

    Used to remove heads.

    Args:
        layer (:obj:`Union[torch.nn.Linear, Conv1D]`): The layer to prune.
        index (:obj:`torch.LongTensor`): The indices to keep in the layer.
        dim (:obj:`int`, `optional`): The dimension on which to keep the indices.

    Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
2266
2267
        :obj:`torch.nn.Linear` or :class:`~transformers.modeling_utils.Conv1D`: The pruned layer as a new layer with
        :obj:`requires_grad=True`.
2268
2269
2270
2271
2272
2273
    """
    if isinstance(layer, nn.Linear):
        return prune_linear_layer(layer, index, dim=0 if dim is None else dim)
    elif isinstance(layer, Conv1D):
        return prune_conv1d_layer(layer, index, dim=1 if dim is None else dim)
    else:
2274
        raise ValueError(f"Can't prune layer of class {layer.__class__}")
Patrick von Platen's avatar
Patrick von Platen committed
2275
2276
2277


def apply_chunking_to_forward(
2278
    forward_fn: Callable[..., torch.Tensor], chunk_size: int, chunk_dim: int, *input_tensors
Patrick von Platen's avatar
Patrick von Platen committed
2279
2280
) -> torch.Tensor:
    """
2281
2282
2283
2284
2285
    This function chunks the :obj:`input_tensors` into smaller input tensor parts of size :obj:`chunk_size` over the
    dimension :obj:`chunk_dim`. It then applies a layer :obj:`forward_fn` to each chunk independently to save memory.

    If the :obj:`forward_fn` is independent across the :obj:`chunk_dim` this function will yield the same result as
    directly applying :obj:`forward_fn` to :obj:`input_tensors`.
Patrick von Platen's avatar
Patrick von Platen committed
2286
2287

    Args:
2288
2289
        forward_fn (:obj:`Callable[..., torch.Tensor]`):
            The forward function of the model.
2290
2291
2292
2293
2294
        chunk_size (:obj:`int`):
            The chunk size of a chunked tensor: :obj:`num_chunks = len(input_tensors[0]) / chunk_size`.
        chunk_dim (:obj:`int`):
            The dimension over which the :obj:`input_tensors` should be chunked.
        input_tensors (:obj:`Tuple[torch.Tensor]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2295
2296
            The input tensors of ``forward_fn`` which will be chunked

Patrick von Platen's avatar
Patrick von Platen committed
2297
    Returns:
2298
        :obj:`torch.Tensor`: A tensor with the same shape as the :obj:`forward_fn` would have given if applied`.
Patrick von Platen's avatar
Patrick von Platen committed
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309


    Examples::

        # rename the usual forward() fn to forward_chunk()
        def forward_chunk(self, hidden_states):
            hidden_states = self.decoder(hidden_states)
            return hidden_states

        # implement a chunked forward function
        def forward(self, hidden_states):
2310
            return apply_chunking_to_forward(self.forward_chunk, self.chunk_size_lm_head, self.seq_len_dim, hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
2311
2312
    """

2313
    assert len(input_tensors) > 0, f"{input_tensors} has to be a tuple/list of tensors"
Patrick von Platen's avatar
Patrick von Platen committed
2314

2315
    # inspect.signature exist since python 3.5 and is a python method -> no problem with backward compatibility
Patrick von Platen's avatar
Patrick von Platen committed
2316
    num_args_in_forward_chunk_fn = len(inspect.signature(forward_fn).parameters)
2317
2318
2319
2320
2321
    if num_args_in_forward_chunk_fn != len(input_tensors):
        raise ValueError(
            f"forward_chunk_fn expects {num_args_in_forward_chunk_fn} arguments, but only {len(input_tensors)} input "
            "tensors are given"
        )
Patrick von Platen's avatar
Patrick von Platen committed
2322
2323

    if chunk_size > 0:
2324
2325
2326
2327
2328
2329
2330
2331
        tensor_shape = input_tensors[0].shape[chunk_dim]
        for input_tensor in input_tensors:
            if input_tensor.shape[chunk_dim] != tensor_shape:
                raise ValueError(
                    f"All input tenors have to be of the same shape: {tensor_shape}, "
                    f"found shape {input_tensor.shape[chunk_dim]}"
                )

2332
2333
2334
2335
2336
        if input_tensors[0].shape[chunk_dim] % chunk_size != 0:
            raise ValueError(
                f"The dimension to be chunked {input_tensors[0].shape[chunk_dim]} has to be a multiple of the chunk "
                f"size {chunk_size}"
            )
Patrick von Platen's avatar
Patrick von Platen committed
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347

        num_chunks = input_tensors[0].shape[chunk_dim] // chunk_size

        # chunk input tensor into tuples
        input_tensors_chunks = tuple(input_tensor.chunk(num_chunks, dim=chunk_dim) for input_tensor in input_tensors)
        # apply forward fn to every tuple
        output_chunks = tuple(forward_fn(*input_tensors_chunk) for input_tensors_chunk in zip(*input_tensors_chunks))
        # concatenate output at same dimension
        return torch.cat(output_chunks, dim=chunk_dim)

    return forward_fn(*input_tensors)