modeling_utils.py 223 KB
Newer Older
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
16
import collections
17
import copy
18
import functools
19
import gc
20
import importlib.metadata
Yih-Dar's avatar
Yih-Dar committed
21
import inspect
22
import itertools
Sylvain Gugger's avatar
Sylvain Gugger committed
23
import json
24
import os
25
import re
Sylvain Gugger's avatar
Sylvain Gugger committed
26
27
import shutil
import tempfile
28
import warnings
29
from contextlib import contextmanager
30
from dataclasses import dataclass
31
from functools import partial, wraps
32
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
33
from zipfile import is_zipfile
34
35

import torch
36
from packaging import version
Sylvain Gugger's avatar
Sylvain Gugger committed
37
from torch import Tensor, nn
38
from torch.nn import CrossEntropyLoss, Identity
39
from torch.utils.checkpoint import checkpoint
40

41
from .activations import get_activation
42
from .configuration_utils import PretrainedConfig
43
from .dynamic_module_utils import custom_object_save
44
from .generation import GenerationConfig, GenerationMixin
45
from .integrations import PeftAdapterMixin, deepspeed_config, is_deepspeed_zero3_enabled
46
47
48
49
from .pytorch_utils import (  # noqa: F401
    Conv1D,
    apply_chunking_to_forward,
    find_pruneable_heads_and_indices,
Thomas Wang's avatar
Thomas Wang committed
50
    id_tensor_storage,
51
    is_torch_greater_or_equal_than_1_13,
52
53
54
55
    prune_conv1d_layer,
    prune_layer,
    prune_linear_layer,
)
56
from .quantizers import AutoHfQuantizer, HfQuantizer
57
from .safetensors_conversion import auto_conversion
58
from .utils import (
59
60
    ADAPTER_SAFE_WEIGHTS_NAME,
    ADAPTER_WEIGHTS_NAME,
61
    CONFIG_NAME,
Aymeric Augustin's avatar
Aymeric Augustin committed
62
    DUMMY_INPUTS,
63
    FLAX_WEIGHTS_NAME,
64
65
    SAFE_WEIGHTS_INDEX_NAME,
    SAFE_WEIGHTS_NAME,
66
67
    TF2_WEIGHTS_NAME,
    TF_WEIGHTS_NAME,
Sylvain Gugger's avatar
Sylvain Gugger committed
68
    WEIGHTS_INDEX_NAME,
69
    WEIGHTS_NAME,
70
    ContextManagers,
71
    ModelOutput,
Sylvain Gugger's avatar
Sylvain Gugger committed
72
    PushToHubMixin,
73
    cached_file,
74
    copy_func,
75
    download_url,
76
    extract_commit_hash,
77
    has_file,
78
    is_accelerate_available,
79
    is_bitsandbytes_available,
80
    is_flash_attn_2_available,
81
    is_offline_mode,
82
    is_optimum_available,
83
    is_peft_available,
84
    is_remote_url,
85
    is_safetensors_available,
86
    is_torch_sdpa_available,
87
    is_torch_tpu_available,
88
    logging,
Sylvain Gugger's avatar
Sylvain Gugger committed
89
    replace_return_docstrings,
90
    strtobool,
91
)
92
from .utils.hub import convert_file_size_to_int, create_and_tag_model_card, get_checkpoint_shard_files
93
94
95
96
97
98
from .utils.import_utils import (
    ENV_VARS_TRUE_VALUES,
    is_sagemaker_mp_enabled,
    is_torch_fx_proxy,
    is_torchdynamo_compiling,
)
99
from .utils.quantization_config import BitsAndBytesConfig, QuantizationMethod
100

Aymeric Augustin's avatar
Aymeric Augustin committed
101

102
103
104
XLA_USE_BF16 = os.environ.get("XLA_USE_BF16", "0").upper()
XLA_DOWNCAST_BF16 = os.environ.get("XLA_DOWNCAST_BF16", "0").upper()

105
106
if is_accelerate_available():
    from accelerate import dispatch_model, infer_auto_device_map, init_empty_weights
107
    from accelerate.hooks import add_hook_to_module
108
    from accelerate.utils import (
109
        check_tied_parameters_on_same_device,
110
        find_tied_parameters,
111
        get_balanced_memory,
Marc Sun's avatar
Marc Sun committed
112
        get_max_memory,
113
114
115
116
117
118
        load_offloaded_weights,
        offload_weight,
        save_offload_index,
        set_module_tensor_to_device,
    )

119
120
121
122
if is_safetensors_available():
    from safetensors import safe_open
    from safetensors.torch import load_file as safe_load_file
    from safetensors.torch import save_file as safe_save_file
123

Lysandre Debut's avatar
Lysandre Debut committed
124
logger = logging.get_logger(__name__)
125

126
127
128
129

_init_weights = True


130
def is_fsdp_enabled():
131
132
133
134
    return (
        torch.distributed.is_available()
        and torch.distributed.is_initialized()
        and strtobool(os.environ.get("ACCELERATE_USE_FSDP", "False")) == 1
135
        and strtobool(os.environ.get("FSDP_CPU_RAM_EFFICIENT_LOADING", "False")) == 1
136
    )
137
138


139
140
141
142
143
144
def is_local_dist_rank_0():
    return (
        torch.distributed.is_available()
        and torch.distributed.is_initialized()
        and int(os.environ.get("LOCAL_RANK", -1)) == 0
    )
145
146


147
148
149
150
151
152
153
154
if is_sagemaker_mp_enabled():
    import smdistributed.modelparallel.torch as smp
    from smdistributed.modelparallel import __version__ as SMP_VERSION

    IS_SAGEMAKER_MP_POST_1_10 = version.parse(SMP_VERSION) >= version.parse("1.10")
else:
    IS_SAGEMAKER_MP_POST_1_10 = False

155
156
157
if is_peft_available():
    from .utils import find_adapter_config_file

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
TORCH_INIT_FUNCTIONS = {
    "uniform_": nn.init.uniform_,
    "normal_": nn.init.normal_,
    "trunc_normal_": nn.init.trunc_normal_,
    "constant_": nn.init.constant_,
    "xavier_uniform_": nn.init.xavier_uniform_,
    "xavier_normal_": nn.init.xavier_normal_,
    "kaiming_uniform_": nn.init.kaiming_uniform_,
    "kaiming_normal_": nn.init.kaiming_normal_,
    "uniform": nn.init.uniform,
    "normal": nn.init.normal,
    "xavier_uniform": nn.init.xavier_uniform,
    "xavier_normal": nn.init.xavier_normal,
    "kaiming_uniform": nn.init.kaiming_uniform,
    "kaiming_normal": nn.init.kaiming_normal,
}

175

176
177
178
179
180
181
182
183
@contextmanager
def no_init_weights(_enable=True):
    """
    Context manager to globally disable weight initialization to speed up loading large models.

    TODO(Patrick): Delete safety argument `_enable=True` at next major version. .
    """
    global _init_weights
184
    old_init_weights = _init_weights
185

186
187
    if _enable:
        _init_weights = False
188
189
190
191
192
193
194

        def _skip_init(*args, **kwargs):
            pass

        # # Save the original initialization functions
        for name, init_func in TORCH_INIT_FUNCTIONS.items():
            setattr(torch.nn.init, name, _skip_init)
195
196
197
    try:
        yield
    finally:
198
        _init_weights = old_init_weights
199
200
201
202
        if _enable:
            # # Restore the original initialization functions
            for name, init_func in TORCH_INIT_FUNCTIONS.items():
                setattr(torch.nn.init, name, init_func)
203
204


Lysandre Debut's avatar
Lysandre Debut committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
def get_parameter_device(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    try:
        return next(parameter.parameters()).device
    except StopIteration:
        # For nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].device


220
221
222
223
def get_first_parameter_dtype(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    """
    Returns the first parameter dtype (can be non-floating) or asserts if none were found.
    """
Lysandre Debut's avatar
Lysandre Debut committed
224
225
226
    try:
        return next(parameter.parameters()).dtype
    except StopIteration:
Sylvain Gugger's avatar
Sylvain Gugger committed
227
        # For nn.DataParallel compatibility in PyTorch > 1.5
Lysandre Debut's avatar
Lysandre Debut committed
228
229
230
231
232
233
234
235
236
237

        def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].dtype


238
239
def get_parameter_dtype(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
240
    Returns the first found floating dtype in parameters if there is one, otherwise returns the last dtype it found.
241
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
242
243
244
245
    last_dtype = None
    for t in parameter.parameters():
        last_dtype = t.dtype
        if t.is_floating_point():
246
247
248
            # Adding fix for https://github.com/pytorch/xla/issues/4152
            # Fixes issue where the model code passes a value that is out of range for XLA_USE_BF16=1
            # and XLA_DOWNCAST_BF16=1 so the conversion would cast it to -inf
249
250
251
252
253
            # NOTE: `is_torch_tpu_available()` is checked last as it induces a graph break in torch dynamo
            if XLA_USE_BF16 in ENV_VARS_TRUE_VALUES and is_torch_tpu_available():
                return torch.bfloat16
            if XLA_DOWNCAST_BF16 in ENV_VARS_TRUE_VALUES and is_torch_tpu_available():
                if t.dtype == torch.float:
254
                    return torch.bfloat16
255
256
                if t.dtype == torch.double:
                    return torch.float32
Sylvain Gugger's avatar
Sylvain Gugger committed
257
            return t.dtype
258

Sylvain Gugger's avatar
Sylvain Gugger committed
259
260
261
    if last_dtype is not None:
        # if no floating dtype was found return whatever the first dtype is
        return last_dtype
262

263
264
265
266
267
268
269
270
271
272
273
274
275
    # For nn.DataParallel compatibility in PyTorch > 1.5
    def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
        tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
        return tuples

    gen = parameter._named_members(get_members_fn=find_tensor_attributes)
    last_tuple = None
    for tuple in gen:
        last_tuple = tuple
        if tuple[1].is_floating_point():
            return tuple[1].dtype

    if last_tuple is not None:
276
277
        # fallback to the last dtype
        return last_tuple[1].dtype
278

279
280
281
282
283
284
285
    # fallback to buffer dtype
    for t in parameter.buffers():
        last_dtype = t.dtype
        if t.is_floating_point():
            return t.dtype
    return last_dtype

286
287
288
289
290
291
292
293
294
295
296
297
298
299

def get_state_dict_float_dtype(state_dict):
    """
    Returns the first found floating dtype in `state_dict` or asserts if none were found.
    """
    for t in state_dict.values():
        if t.is_floating_point():
            return t.dtype

    raise ValueError("couldn't find any floating point dtypes in state_dict")


def get_state_dict_dtype(state_dict):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
300
    Returns the first found floating dtype in `state_dict` if there is one, otherwise returns the first dtype.
301
302
303
304
305
306
307
    """
    for t in state_dict.values():
        if t.is_floating_point():
            return t.dtype

    # if no floating dtype was found return whatever the first dtype is
    else:
Sylvain Gugger's avatar
Sylvain Gugger committed
308
        return next(state_dict.values()).dtype
309
310


Sylvain Gugger's avatar
Sylvain Gugger committed
311
312
313
314
315
316
317
318
319
320
321
322
323
def dtype_byte_size(dtype):
    """
    Returns the size (in bytes) occupied by one parameter of type `dtype`.

    Example:

    ```py
    >>> dtype_byte_size(torch.float32)
    4
    ```
    """
    if dtype == torch.bool:
        return 1 / 8
324
    bit_search = re.search(r"[^\d](\d+)$", str(dtype))
Sylvain Gugger's avatar
Sylvain Gugger committed
325
326
327
328
329
330
    if bit_search is None:
        raise ValueError(f"`dtype` is not a valid dtype: {dtype}.")
    bit_size = int(bit_search.groups()[0])
    return bit_size // 8


331
332
333
def shard_checkpoint(
    state_dict: Dict[str, torch.Tensor], max_shard_size: Union[int, str] = "10GB", weights_name: str = WEIGHTS_NAME
):
Sylvain Gugger's avatar
Sylvain Gugger committed
334
335
336
337
338
339
340
341
342
343
344
    """
    Splits a model state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a
    given size.

    The sub-checkpoints are determined by iterating through the `state_dict` in the order of its keys, so there is no
    optimization made to make each sub-checkpoint as close as possible to the maximum size passed. For example, if the
    limit is 10GB and we have weights of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as [6GB], [6+2GB],
    [6+2+2GB] and not [6+2+2GB], [6+2GB], [6GB].

    <Tip warning={true}>

Alan Ji's avatar
Alan Ji committed
345
    If one of the model's weight is bigger than `max_shard_size`, it will end up in its own sub-checkpoint which will
Sylvain Gugger's avatar
Sylvain Gugger committed
346
347
348
349
350
351
352
353
354
    have a size greater than `max_shard_size`.

    </Tip>

    Args:
        state_dict (`Dict[str, torch.Tensor]`): The state dictionary of a model to save.
        max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
            The maximum size of each sub-checkpoint. If expressed as a string, needs to be digits followed by a unit
            (like `"5MB"`).
355
356
        weights_name (`str`, *optional*, defaults to `"pytorch_model.bin"`):
            The name of the model save file.
Sylvain Gugger's avatar
Sylvain Gugger committed
357
358
359
    """
    max_shard_size = convert_file_size_to_int(max_shard_size)

Thomas Wang's avatar
Thomas Wang committed
360
361
    sharded_state_dicts = [{}]
    last_block_size = 0
Sylvain Gugger's avatar
Sylvain Gugger committed
362
    total_size = 0
Thomas Wang's avatar
Thomas Wang committed
363
    storage_id_to_block = {}
Sylvain Gugger's avatar
Sylvain Gugger committed
364
365

    for key, weight in state_dict.items():
366
367
368
369
370
371
        # when bnb serialization is used the weights in the state dict can be strings
        # check: https://github.com/huggingface/transformers/pull/24416 for more details
        if isinstance(weight, str):
            continue
        else:
            storage_id = id_tensor_storage(weight)
Thomas Wang's avatar
Thomas Wang committed
372
373
374
375
376
377
378

        # If a `weight` shares the same underlying storage as another tensor, we put `weight` in the same `block`
        if storage_id in storage_id_to_block:
            block_id = storage_id_to_block[storage_id]
            sharded_state_dicts[block_id][key] = weight
            continue

Sylvain Gugger's avatar
Sylvain Gugger committed
379
380
        weight_size = weight.numel() * dtype_byte_size(weight.dtype)

Sylvain Gugger's avatar
Sylvain Gugger committed
381
382
383
        # If this weight is going to tip up over the maximal size, we split, but only if we have put at least one
        # weight in the current shard.
        if last_block_size + weight_size > max_shard_size and len(sharded_state_dicts[-1]) > 0:
Thomas Wang's avatar
Thomas Wang committed
384
385
            sharded_state_dicts.append({})
            last_block_size = 0
Sylvain Gugger's avatar
Sylvain Gugger committed
386

Thomas Wang's avatar
Thomas Wang committed
387
388
        sharded_state_dicts[-1][key] = weight
        last_block_size += weight_size
Sylvain Gugger's avatar
Sylvain Gugger committed
389
        total_size += weight_size
Thomas Wang's avatar
Thomas Wang committed
390
        storage_id_to_block[storage_id] = len(sharded_state_dicts) - 1
Sylvain Gugger's avatar
Sylvain Gugger committed
391
392
393

    # If we only have one shard, we return it
    if len(sharded_state_dicts) == 1:
394
        return {weights_name: sharded_state_dicts[0]}, None
Sylvain Gugger's avatar
Sylvain Gugger committed
395
396
397
398
399

    # Otherwise, let's build the index
    weight_map = {}
    shards = {}
    for idx, shard in enumerate(sharded_state_dicts):
400
401
402
403
        shard_file = weights_name.replace(".bin", f"-{idx+1:05d}-of-{len(sharded_state_dicts):05d}.bin")
        shard_file = shard_file.replace(
            ".safetensors", f"-{idx + 1:05d}-of-{len(sharded_state_dicts):05d}.safetensors"
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
404
405
406
407
408
409
410
411
412
413
        shards[shard_file] = shard
        for key in shard.keys():
            weight_map[key] = shard_file

    # Add the metadata
    metadata = {"total_size": total_size}
    index = {"metadata": metadata, "weight_map": weight_map}
    return shards, index


414
def load_sharded_checkpoint(model, folder, strict=True, prefer_safe=True):
415
416
417
418
419
420
421
422
423
424
425
426
427
    """
    This is the same as
    [`torch.nn.Module.load_state_dict`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html?highlight=load_state_dict#torch.nn.Module.load_state_dict)
    but for a sharded checkpoint.

    This load is performed efficiently: each checkpoint shard is loaded one by one in RAM and deleted after being
    loaded in the model.

    Args:
        model (`torch.nn.Module`): The model in which to load the checkpoint.
        folder (`str` or `os.PathLike`): A path to a folder containing the sharded checkpoint.
        strict (`bool`, *optional`, defaults to `True`):
            Whether to strictly enforce that the keys in the model state dict match the keys in the sharded checkpoint.
428
429
430
        prefer_safe (`bool`, *optional*, defaults to `False`)
            If both safetensors and PyTorch save files are present in checkpoint and `prefer_safe` is True, the
            safetensors files will be loaded. Otherwise, PyTorch files are always loaded when possible.
431
432
433
434
435
436
437
438

    Returns:
        `NamedTuple`: A named tuple with `missing_keys` and `unexpected_keys` fields
            - `missing_keys` is a list of str containing the missing keys
            - `unexpected_keys` is a list of str containing the unexpected keys
    """
    # Load the index
    index_file = os.path.join(folder, WEIGHTS_INDEX_NAME)
439
    safe_index_file = os.path.join(folder, SAFE_WEIGHTS_INDEX_NAME)
440

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
    index_present = os.path.isfile(index_file)
    safe_index_present = os.path.isfile(safe_index_file)

    if not index_present and not (safe_index_present and is_safetensors_available()):
        filenames = (
            (WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_INDEX_NAME) if is_safetensors_available() else (WEIGHTS_INDEX_NAME,)
        )
        raise ValueError(f"Can't find a checkpoint index ({' or '.join(filenames)}) in {folder}.")

    load_safe = False
    if safe_index_present:
        if prefer_safe:
            if is_safetensors_available():
                load_safe = True  # load safe due to preference
            else:
                logger.warning(
                    f"Cannot load sharded checkpoint at {folder} safely since safetensors is not installed!"
                )
        elif not index_present:
            load_safe = True  # load safe since we have no other choice

    load_index = safe_index_file if load_safe else index_file

    with open(load_index, "r", encoding="utf-8") as f:
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
        index = json.load(f)

    shard_files = list(set(index["weight_map"].values()))

    # If strict=True, error before loading any of the state dicts.
    loaded_keys = index["weight_map"].keys()
    model_keys = model.state_dict().keys()
    missing_keys = [key for key in model_keys if key not in loaded_keys]
    unexpected_keys = [key for key in loaded_keys if key not in model_keys]
    if strict and (len(missing_keys) > 0 or len(unexpected_keys) > 0):
        error_message = f"Error(s) in loading state_dict for {model.__class__.__name__}"
        if len(missing_keys) > 0:
            str_missing_keys = ",".join([f'"{k}"' for k in missing_keys])
            error_message += f"\nMissing key(s): {str_missing_keys}."
        if len(unexpected_keys) > 0:
            str_unexpected_keys = ",".join([f'"{k}"' for k in unexpected_keys])
            error_message += f"\nMissing key(s): {str_unexpected_keys}."
        raise RuntimeError(error_message)

Yih-Dar's avatar
Yih-Dar committed
484
485
    weights_only_kwarg = {"weights_only": True} if is_torch_greater_or_equal_than_1_13 else {}
    loader = safe_load_file if load_safe else partial(torch.load, map_location="cpu", **weights_only_kwarg)
486

487
    for shard_file in shard_files:
488
        state_dict = loader(os.path.join(folder, shard_file))
489
490
        model.load_state_dict(state_dict, strict=False)

491
        # Make sure memory is freed before we load the next state dict.
492
493
494
495
496
497
498
        del state_dict
        gc.collect()

    # Return the same thing as PyTorch load_state_dict function.
    return torch.nn.modules.module._IncompatibleKeys(missing_keys, unexpected_keys)


Sylvain Gugger's avatar
Sylvain Gugger committed
499
500
501
502
def load_state_dict(checkpoint_file: Union[str, os.PathLike]):
    """
    Reads a PyTorch checkpoint file, returning properly formatted errors if they arise.
    """
503
504
505
506
507
508
509
510
511
512
    if checkpoint_file.endswith(".safetensors") and is_safetensors_available():
        # Check format of the archive
        with safe_open(checkpoint_file, framework="pt") as f:
            metadata = f.metadata()
        if metadata.get("format") not in ["pt", "tf", "flax"]:
            raise OSError(
                f"The safetensors archive passed at {checkpoint_file} does not contain the valid metadata. Make sure "
                "you save your model with the `save_pretrained` method."
            )
        return safe_load_file(checkpoint_file)
Sylvain Gugger's avatar
Sylvain Gugger committed
513
    try:
514
        if (
515
516
            is_deepspeed_zero3_enabled() and torch.distributed.is_initialized() and torch.distributed.get_rank() > 0
        ) or (is_fsdp_enabled() and not is_local_dist_rank_0()):
517
518
519
            map_location = "meta"
        else:
            map_location = "cpu"
520
521
522
523
524
525
526
527
528
        extra_args = {}
        # mmap can only be used with files serialized with zipfile-based format.
        if (
            isinstance(checkpoint_file, str)
            and map_location != "meta"
            and version.parse(torch.__version__) >= version.parse("2.1.0")
            and is_zipfile(checkpoint_file)
        ):
            extra_args = {"mmap": True}
Yih-Dar's avatar
Yih-Dar committed
529
        weights_only_kwarg = {"weights_only": True} if is_torch_greater_or_equal_than_1_13 else {}
530
531
532
        return torch.load(
            checkpoint_file,
            map_location=map_location,
Yih-Dar's avatar
Yih-Dar committed
533
            **weights_only_kwarg,
534
535
            **extra_args,
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
536
537
538
    except Exception as e:
        try:
            with open(checkpoint_file) as f:
539
                if f.read(7) == "version":
Sylvain Gugger's avatar
Sylvain Gugger committed
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
                    raise OSError(
                        "You seem to have cloned a repository without having git-lfs installed. Please install "
                        "git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
                        "you cloned."
                    )
                else:
                    raise ValueError(
                        f"Unable to locate the file {checkpoint_file} which is necessary to load this pretrained "
                        "model. Make sure you have saved the model properly."
                    ) from e
        except (UnicodeDecodeError, ValueError):
            raise OSError(
                f"Unable to load weights from pytorch checkpoint file for '{checkpoint_file}' "
                f"at '{checkpoint_file}'. "
                "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True."
            )


558
559
560
561
562
def set_initialized_submodules(model, state_dict_keys):
    """
    Sets the `_is_hf_initialized` flag in all submodules of a given model when all its weights are in the loaded state
    dict.
    """
563
    not_initialized_submodules = {}
564
    for module_name, module in model.named_modules():
565
566
        loaded_keys = {k.replace(f"{module_name}.", "") for k in state_dict_keys if k.startswith(f"{module_name}.")}
        if loaded_keys.issuperset(module.state_dict()):
567
            module._is_hf_initialized = True
568
569
570
        else:
            not_initialized_submodules[module_name] = module
    return not_initialized_submodules
571
572


Sylvain Gugger's avatar
Sylvain Gugger committed
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
def _load_state_dict_into_model(model_to_load, state_dict, start_prefix):
    # Convert old format to new format if needed from a PyTorch state_dict
    old_keys = []
    new_keys = []
    for key in state_dict.keys():
        new_key = None
        if "gamma" in key:
            new_key = key.replace("gamma", "weight")
        if "beta" in key:
            new_key = key.replace("beta", "bias")
        if new_key:
            old_keys.append(key)
            new_keys.append(new_key)
    for old_key, new_key in zip(old_keys, new_keys):
        state_dict[new_key] = state_dict.pop(old_key)

    # copy state_dict so _load_from_state_dict can modify it
    metadata = getattr(state_dict, "_metadata", None)
    state_dict = state_dict.copy()
    if metadata is not None:
        state_dict._metadata = metadata

    error_msgs = []

    # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
    # so we need to apply the function recursively.
599
    def load(module: nn.Module, state_dict, prefix=""):
Sylvain Gugger's avatar
Sylvain Gugger committed
600
601
        local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
        args = (state_dict, prefix, local_metadata, True, [], [], error_msgs)
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
        # Parameters of module and children will start with prefix. We can exit early if there are none in this
        # state_dict
        if len([key for key in state_dict if key.startswith(prefix)]) > 0:
            if is_deepspeed_zero3_enabled():
                import deepspeed

                # In sharded models, each shard has only part of the full state_dict, so only gather
                # parameters that are in the current state_dict.
                named_parameters = dict(module.named_parameters(prefix=prefix[:-1], recurse=False))
                params_to_gather = [named_parameters[k] for k in state_dict.keys() if k in named_parameters]
                if len(params_to_gather) > 0:
                    # because zero3 puts placeholders in model params, this context
                    # manager gathers (unpartitions) the params of the current layer, then loads from
                    # the state dict and then re-partitions them again
                    with deepspeed.zero.GatheredParameters(params_to_gather, modifier_rank=0):
                        if torch.distributed.get_rank() == 0:
                            module._load_from_state_dict(*args)
            else:
                module._load_from_state_dict(*args)
Sylvain Gugger's avatar
Sylvain Gugger committed
621
622
623

        for name, child in module._modules.items():
            if child is not None:
624
                load(child, state_dict, prefix + name + ".")
Sylvain Gugger's avatar
Sylvain Gugger committed
625

626
627
628
629
    load(model_to_load, state_dict, prefix=start_prefix)
    # Delete `state_dict` so it could be collected by GC earlier. Note that `state_dict` is a copy of the argument, so
    # it's safe to delete it.
    del state_dict
Sylvain Gugger's avatar
Sylvain Gugger committed
630
631
632
633

    return error_msgs


634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
def find_submodule_and_param_name(model, long_key, start_prefix):
    """
    A helper util to find the last sub-module and the param/buffer name. If `start_prefix` is supplied it'll be removed
    from the start of the key
    """

    if len(start_prefix) > 0 and long_key.startswith(start_prefix):
        long_key = ".".join(long_key.split(".")[1:])

    split_key = long_key.split(".")
    submodule = model
    while len(split_key) > 1:
        if hasattr(submodule, split_key[0]):
            submodule = getattr(submodule, split_key[0])
            del split_key[0]
        else:
            submodule = None
            break
    if submodule == model:
        submodule = None
    return submodule, split_key[0]


def _move_model_to_meta(model, loaded_state_dict_keys, start_prefix):
    """
    Moves `loaded_state_dict_keys` in model to meta device which frees up the memory taken by those params.

    `start_prefix` is used for models which insert their name into model keys, e.g. `bert` in
    `bert.pooler.dense.weight`

    """

    # dematerialize param storage for keys that are going to be replaced by state_dict, by
    # putting those on the meta device
    for k in loaded_state_dict_keys:
        submodule, param_name = find_submodule_and_param_name(model, k, start_prefix)
        if submodule is not None:
            # selectively switch to the meta device only those params/buffers that will
            # be next replaced from state_dict. This a complex way to do p.to_("meta")
            # since we have no in-place to_ for tensors.
            new_val = getattr(submodule, param_name)
            if isinstance(new_val, torch.nn.Parameter):
                # isinstance returns False for Params on meta device, so switch after the check
                new_val = torch.nn.Parameter(new_val.to("meta"))
            else:
                new_val = new_val.to("meta")
            setattr(submodule, param_name, new_val)


683
684
685
686
687
688
689
690
691
692
693
694
def _load_state_dict_into_meta_model(
    model,
    state_dict,
    loaded_state_dict_keys,  # left for now but could be removed, see below
    start_prefix,
    expected_keys,
    device_map=None,
    offload_folder=None,
    offload_index=None,
    state_dict_folder=None,
    state_dict_index=None,
    dtype=None,
695
    hf_quantizer=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
696
    is_safetensors=False,
697
    keep_in_fp32_modules=None,
698
    unexpected_keys=None,  # passing `unexpected` for cleanup from quantization items
699
):
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
    """
    This is somewhat similar to `_load_state_dict_into_model`, but deals with a model that has some or all of its
    params on a `meta` device. It replaces the model params with the data from the `state_dict`, while moving the
    params back to the normal device, but only for `loaded_state_dict_keys`.

    `start_prefix` is used for models which insert their name into model keys, e.g. `bert` in
    `bert.pooler.dense.weight`

    """

    # XXX: remaining features to implement to be fully compatible with _load_state_dict_into_model
    # - deepspeed zero 3 support
    # - need to copy metadata if any - see _load_state_dict_into_model
    # - handling error_msgs - mimicking the error handling in module._load_from_state_dict()
    # - Is there a situation where some keys aren't in `loaded_state_dict_keys` and in which case
    #   they won't get loaded.

    error_msgs = []

719
720
721
722
723
724
725
726
727
728
729
730
731
    old_keys = []
    new_keys = []
    for key in state_dict.keys():
        new_key = None
        if "gamma" in key:
            new_key = key.replace("gamma", "weight")
        if "beta" in key:
            new_key = key.replace("beta", "bias")
        if new_key:
            old_keys.append(key)
            new_keys.append(new_key)
    for old_key, new_key in zip(old_keys, new_keys):
        state_dict[new_key] = state_dict.pop(old_key)
732

733
734
735
736
737
738
739
740
741
    for param_name, param in state_dict.items():
        # First part of the test is always true as load_state_dict_keys always contains state_dict keys.
        if param_name not in loaded_state_dict_keys or param_name not in expected_keys:
            continue

        if param_name.startswith(start_prefix):
            param_name = param_name[len(start_prefix) :]

        module_name = param_name
742
        set_module_kwargs = {}
743

744
        # We convert floating dtypes to the `dtype` passed. We want to keep the buffers/params
745
746
        # in int/uint/bool and not cast them.
        if dtype is not None and torch.is_floating_point(param):
747
748
            if (
                keep_in_fp32_modules is not None
749
750
751
                and any(
                    module_to_keep_in_fp32 in param_name.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules
                )
752
753
754
                and dtype == torch.float16
            ):
                param = param.to(torch.float32)
755
756
757
758
759

                # For backward compatibility with older versions of `accelerate`
                # TODO: @sgugger replace this check with version check at the next `accelerate` release
                if "dtype" in list(inspect.signature(set_module_tensor_to_device).parameters):
                    set_module_kwargs["dtype"] = torch.float32
760
761
            else:
                param = param.to(dtype)
762

763
764
765
766
767
768
769
770
771
772
773
774
        # For compatibility with PyTorch load_state_dict which converts state dict dtype to existing dtype in model, and which
        # uses `param.copy_(input_param)` that preserves the contiguity of the parameter in the model.
        # Reference: https://github.com/pytorch/pytorch/blob/db79ceb110f6646523019a59bbd7b838f43d4a86/torch/nn/modules/module.py#L2040C29-L2040C29
        old_param = model
        splits = param_name.split(".")
        for split in splits:
            old_param = getattr(old_param, split)
            if old_param is None:
                break

        if old_param is not None:
            if dtype is None:
775
                param = param.to(old_param.dtype)
776

777
778
779
            if old_param.is_contiguous():
                param = param.contiguous()

780
781
        set_module_kwargs["value"] = param

782
783
784
785
786
787
788
789
790
791
792
        if device_map is None:
            param_device = "cpu"
        else:
            # find next higher level module that is defined in device_map:
            # bert.lm_head.weight -> bert.lm_head -> bert -> ''
            while len(module_name) > 0 and module_name not in device_map:
                module_name = ".".join(module_name.split(".")[:-1])
            if module_name == "" and "" not in device_map:
                # TODO: group all errors and raise at the end.
                raise ValueError(f"{param_name} doesn't have any device set.")
            param_device = device_map[module_name]
793

794
        if param_device == "disk":
Sylvain Gugger's avatar
Sylvain Gugger committed
795
796
            if not is_safetensors:
                offload_index = offload_weight(param, param_name, offload_folder, offload_index)
797
        elif param_device == "cpu" and state_dict_index is not None:
798
799
800
801
802
803
804
            state_dict_index = offload_weight(param, param_name, model, state_dict_folder, state_dict_index)
        elif (
            hf_quantizer is None
            or (not hf_quantizer.requires_parameters_quantization)
            or (not hf_quantizer.check_quantized_param(model, param, param_name, state_dict))
        ):
            # For backward compatibility with older versions of `accelerate` and for non-quantized params
805
            set_module_tensor_to_device(model, param_name, param_device, **set_module_kwargs)
806
        else:
807
808
            hf_quantizer.create_quantized_param(model, param, param_name, param_device, state_dict, unexpected_keys)
            # TODO: consider removing used param_parts from state_dict before return
809
810

    return error_msgs, offload_index, state_dict_index
811
812


813
814
815
816
817
818
819
820
821
def _add_variant(weights_name: str, variant: Optional[str] = None) -> str:
    if variant is not None:
        splits = weights_name.split(".")
        splits = splits[:-1] + [variant] + splits[-1:]
        weights_name = ".".join(splits)

    return weights_name


822
class ModuleUtilsMixin:
Julien Chaumond's avatar
Julien Chaumond committed
823
    """
824
    A few utilities for `torch.nn.Modules`, to be used as a mixin.
Julien Chaumond's avatar
Julien Chaumond committed
825
826
    """

827
828
829
830
    @staticmethod
    def _hook_rss_memory_pre_forward(module, *args, **kwargs):
        try:
            import psutil
Sylvain Gugger's avatar
Sylvain Gugger committed
831
        except ImportError:
832
833
834
835
836
837
838
839
840
841
842
            raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")

        process = psutil.Process(os.getpid())
        mem = process.memory_info()
        module.mem_rss_pre_forward = mem.rss
        return None

    @staticmethod
    def _hook_rss_memory_post_forward(module, *args, **kwargs):
        try:
            import psutil
Sylvain Gugger's avatar
Sylvain Gugger committed
843
        except ImportError:
844
845
846
847
848
849
850
851
852
853
            raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")

        process = psutil.Process(os.getpid())
        mem = process.memory_info()
        module.mem_rss_post_forward = mem.rss
        mem_rss_diff = module.mem_rss_post_forward - module.mem_rss_pre_forward
        module.mem_rss_diff = mem_rss_diff + (module.mem_rss_diff if hasattr(module, "mem_rss_diff") else 0)
        return None

    def add_memory_hooks(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
854
855
856
        """
        Add a memory hook before and after each sub-module forward pass to record increase in memory consumption.

Sylvain Gugger's avatar
Sylvain Gugger committed
857
858
        Increase in memory consumption is stored in a `mem_rss_diff` attribute for each module and can be reset to zero
        with `model.reset_memory_hooks_state()`.
859
860
861
862
863
864
865
        """
        for module in self.modules():
            module.register_forward_pre_hook(self._hook_rss_memory_pre_forward)
            module.register_forward_hook(self._hook_rss_memory_post_forward)
        self.reset_memory_hooks_state()

    def reset_memory_hooks_state(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
866
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
867
        Reset the `mem_rss_diff` attribute of each module (see [`~modeling_utils.ModuleUtilsMixin.add_memory_hooks`]).
Sylvain Gugger's avatar
Sylvain Gugger committed
868
        """
869
870
871
872
873
        for module in self.modules():
            module.mem_rss_diff = 0
            module.mem_rss_post_forward = 0
            module.mem_rss_pre_forward = 0

874
    @property
Sylvain Gugger's avatar
Sylvain Gugger committed
875
    def device(self) -> torch.device:
876
        """
877
        `torch.device`: The device on which the module is (assuming that all the module parameters are on the same
878
        device).
879
        """
Lysandre Debut's avatar
Lysandre Debut committed
880
        return get_parameter_device(self)
881

882
    @property
883
    def dtype(self) -> torch.dtype:
884
        """
885
        `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
886
        """
Lysandre Debut's avatar
Lysandre Debut committed
887
        return get_parameter_dtype(self)
888
889

    def invert_attention_mask(self, encoder_attention_mask: Tensor) -> Tensor:
Sylvain Gugger's avatar
Sylvain Gugger committed
890
891
892
893
        """
        Invert an attention mask (e.g., switches 0. and 1.).

        Args:
894
            encoder_attention_mask (`torch.Tensor`): An attention mask.
Sylvain Gugger's avatar
Sylvain Gugger committed
895
896

        Returns:
897
            `torch.Tensor`: The inverted attention mask.
Sylvain Gugger's avatar
Sylvain Gugger committed
898
        """
899
900
901
902
903
904
905
906
907
908
        if encoder_attention_mask.dim() == 3:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
        if encoder_attention_mask.dim() == 2:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
        # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
        # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
        # /transformer/transformer_layers.py#L270
        # encoder_extended_attention_mask = (encoder_extended_attention_mask ==
        # encoder_extended_attention_mask.transpose(-1, -2))
        encoder_extended_attention_mask = encoder_extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
Yih-Dar's avatar
Yih-Dar committed
909
        encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * torch.finfo(self.dtype).min
910

911
912
        return encoder_extended_attention_mask

913
    @staticmethod
914
915
916
917
918
919
920
    def create_extended_attention_mask_for_decoder(input_shape, attention_mask, device=None):
        if device is not None:
            warnings.warn(
                "The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
            )
        else:
            device = attention_mask.device
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
        batch_size, seq_length = input_shape
        seq_ids = torch.arange(seq_length, device=device)
        causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
        # in case past_key_values are used we need to add a prefix ones mask to the causal mask
        # causal and attention masks must have same type with pytorch version < 1.3
        causal_mask = causal_mask.to(attention_mask.dtype)

        if causal_mask.shape[1] < attention_mask.shape[1]:
            prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
            causal_mask = torch.cat(
                [
                    torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype),
                    causal_mask,
                ],
                axis=-1,
            )

        extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
        return extended_attention_mask

941
    def get_extended_attention_mask(
942
        self, attention_mask: Tensor, input_shape: Tuple[int], device: torch.device = None, dtype: torch.float = None
943
    ) -> Tensor:
Sylvain Gugger's avatar
Sylvain Gugger committed
944
945
        """
        Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
946
947

        Arguments:
948
            attention_mask (`torch.Tensor`):
Sylvain Gugger's avatar
Sylvain Gugger committed
949
                Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
950
            input_shape (`Tuple[int]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
951
                The shape of the input to the model.
952
953

        Returns:
954
            `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
955
        """
Yih-Dar's avatar
Yih-Dar committed
956
957
958
        if dtype is None:
            dtype = self.dtype

959
960
961
962
963
964
        if not (attention_mask.dim() == 2 and self.config.is_decoder):
            # show warning only if it won't be shown in `create_extended_attention_mask_for_decoder`
            if device is not None:
                warnings.warn(
                    "The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
                )
965
966
967
968
969
970
971
972
973
        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        if attention_mask.dim() == 3:
            extended_attention_mask = attention_mask[:, None, :, :]
        elif attention_mask.dim() == 2:
            # Provided a padding mask of dimensions [batch_size, seq_length]
            # - if the model is a decoder, apply a causal mask in addition to the padding mask
            # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
            if self.config.is_decoder:
974
                extended_attention_mask = ModuleUtilsMixin.create_extended_attention_mask_for_decoder(
975
976
                    input_shape, attention_mask, device
                )
977
978
979
980
            else:
                extended_attention_mask = attention_mask[:, None, None, :]
        else:
            raise ValueError(
981
                f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})"
982
983
984
985
            )

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
986
        # positions we want to attend and the dtype's smallest value for masked positions.
987
988
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
Yih-Dar's avatar
Yih-Dar committed
989
990
        extended_attention_mask = extended_attention_mask.to(dtype=dtype)  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(dtype).min
991
992
        return extended_attention_mask

Sylvain Gugger's avatar
Sylvain Gugger committed
993
994
995
    def get_head_mask(
        self, head_mask: Optional[Tensor], num_hidden_layers: int, is_attention_chunked: bool = False
    ) -> Tensor:
996
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
997
998
999
        Prepare the head mask if needed.

        Args:
1000
            head_mask (`torch.Tensor` with shape `[num_heads]` or `[num_hidden_layers x num_heads]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1001
                The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard).
1002
            num_hidden_layers (`int`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1003
                The number of hidden layers in the model.
1004
            is_attention_chunked (`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1005
1006
                Whether or not the attentions scores are computed by chunks or not.

1007
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
1008
1009
            `torch.Tensor` with shape `[num_hidden_layers x batch x num_heads x seq_length x seq_length]` or list with
            `[None]` for each layer.
1010
1011
1012
        """
        if head_mask is not None:
            head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
1013
1014
            if is_attention_chunked is True:
                head_mask = head_mask.unsqueeze(-1)
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
        else:
            head_mask = [None] * num_hidden_layers

        return head_mask

    def _convert_head_mask_to_5d(self, head_mask, num_hidden_layers):
        """-> [num_hidden_layers x batch x num_heads x seq_length x seq_length]"""
        if head_mask.dim() == 1:
            head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
            head_mask = head_mask.expand(num_hidden_layers, -1, -1, -1, -1)
        elif head_mask.dim() == 2:
            head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
        assert head_mask.dim() == 5, f"head_mask.dim != 5, instead {head_mask.dim()}"
1028
        head_mask = head_mask.to(dtype=self.dtype)  # switch to float if need + fp16 compatibility
1029
1030
        return head_mask

1031
1032
1033
1034
1035
    def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int:
        """
        Get number of (optionally, trainable or non-embeddings) parameters in the module.

        Args:
1036
            only_trainable (`bool`, *optional*, defaults to `False`):
1037
1038
                Whether or not to return only the number of trainable parameters

1039
            exclude_embeddings (`bool`, *optional*, defaults to `False`):
1040
1041
1042
                Whether or not to return only the number of non-embeddings parameters

        Returns:
1043
            `int`: The number of parameters.
1044
1045
        """

1046
1047
1048
1049
        if exclude_embeddings:
            embedding_param_names = [
                f"{name}.weight" for name, module_type in self.named_modules() if isinstance(module_type, nn.Embedding)
            ]
1050
            total_parameters = [
1051
1052
1053
                parameter for name, parameter in self.named_parameters() if name not in embedding_param_names
            ]
        else:
1054
1055
1056
1057
            total_parameters = list(self.parameters())

        total_numel = []
        is_loaded_in_4bit = getattr(self, "is_loaded_in_4bit", False)
1058

1059
1060
1061
1062
1063
1064
        if is_loaded_in_4bit:
            if is_bitsandbytes_available():
                import bitsandbytes as bnb
            else:
                raise ValueError(
                    "bitsandbytes is not installed but it seems that the model has been loaded in 4bit precision, something went wrong"
1065
                    " make sure to install bitsandbytes with `pip install bitsandbytes`. You also need a GPU. "
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
                )

        for param in total_parameters:
            if param.requires_grad or not only_trainable:
                # For 4bit models, we need to multiply the number of parameters by 2 as half of the parameters are
                # used for the 4bit quantization (uint8 tensors are stored)
                if is_loaded_in_4bit and isinstance(param, bnb.nn.Params4bit):
                    total_numel.append(param.numel() * 2)
                else:
                    total_numel.append(param.numel())

        return sum(total_numel)
1078
1079
1080
1081
1082
1083

    def estimate_tokens(self, input_dict: Dict[str, Union[torch.Tensor, Any]]) -> int:
        """
        Helper function to estimate the total number of tokens from the model inputs.

        Args:
1084
            inputs (`dict`): The model inputs.
1085
1086

        Returns:
1087
            `int`: The total number of tokens.
1088
        """
1089
1090
        if not hasattr(self, "warnings_issued"):
            self.warnings_issued = {}
1091
1092
        if self.main_input_name in input_dict:
            return input_dict[self.main_input_name].numel()
1093
        elif "estimate_tokens" not in self.warnings_issued:
1094
            logger.warning(
1095
1096
                "Could not estimate the number of tokens of the input, floating-point operations will not be computed"
            )
1097
1098
            self.warnings_issued["estimate_tokens"] = True
        return 0
1099
1100
1101
1102
1103
1104
1105

    def floating_point_ops(
        self, input_dict: Dict[str, Union[torch.Tensor, Any]], exclude_embeddings: bool = True
    ) -> int:
        """
        Get number of (optionally, non-embeddings) floating-point operations for the forward and backward passes of a
        batch with this transformer model. Default approximation neglects the quadratic dependency on the number of
Sylvain Gugger's avatar
Sylvain Gugger committed
1106
1107
        tokens (valid if `12 * d_model << sequence_length`) as laid out in [this
        paper](https://arxiv.org/pdf/2001.08361.pdf) section 2.1. Should be overridden for transformers with parameter
Sylvain Gugger's avatar
Sylvain Gugger committed
1108
        re-use e.g. Albert or Universal Transformers, or if doing long-range modeling with very high sequence lengths.
1109
1110

        Args:
1111
            batch_size (`int`):
1112
1113
                The batch size for the forward pass.

1114
            sequence_length (`int`):
1115
1116
                The number of tokens in each line of the batch.

1117
            exclude_embeddings (`bool`, *optional*, defaults to `True`):
1118
1119
1120
                Whether or not to count embedding and softmax operations.

        Returns:
1121
            `int`: The number of floating-point operations.
1122
1123
1124
1125
        """

        return 6 * self.estimate_tokens(input_dict) * self.num_parameters(exclude_embeddings=exclude_embeddings)

Julien Chaumond's avatar
Julien Chaumond committed
1126

1127
class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMixin, PeftAdapterMixin):
1128
1129
    r"""
    Base class for all models.
1130

Sylvain Gugger's avatar
Sylvain Gugger committed
1131
1132
    [`PreTrainedModel`] takes care of storing the configuration of the models and handles methods for loading,
    downloading and saving models as well as a few methods common to all models to:
1133

1134
1135
        - resize the input embeddings,
        - prune heads in the self-attention heads.
1136

1137
    Class attributes (overridden by derived classes):
Sylvain Gugger's avatar
Sylvain Gugger committed
1138

Sylvain Gugger's avatar
Sylvain Gugger committed
1139
1140
1141
1142
        - **config_class** ([`PretrainedConfig`]) -- A subclass of [`PretrainedConfig`] to use as configuration class
          for this model architecture.
        - **load_tf_weights** (`Callable`) -- A python *method* for loading a TensorFlow checkpoint in a PyTorch model,
          taking as arguments:
1143

Sylvain Gugger's avatar
Sylvain Gugger committed
1144
1145
            - **model** ([`PreTrainedModel`]) -- An instance of the model on which to load the TensorFlow checkpoint.
            - **config** ([`PreTrainedConfig`]) -- An instance of the configuration associated to the model.
1146
            - **path** (`str`) -- A path to the TensorFlow checkpoint.
1147

Sylvain Gugger's avatar
Sylvain Gugger committed
1148
1149
        - **base_model_prefix** (`str`) -- A string indicating the attribute associated to the base model in derived
          classes of the same architecture adding modules on top of the base model.
1150
        - **is_parallelizable** (`bool`) -- A flag indicating whether this model supports model parallelization.
Sylvain Gugger's avatar
Sylvain Gugger committed
1151
1152
        - **main_input_name** (`str`) -- The name of the principal input to the model (often `input_ids` for NLP
          models, `pixel_values` for vision models and `input_values` for speech models).
1153
    """
1154

1155
    config_class = None
1156
    base_model_prefix = ""
1157
    main_input_name = "input_ids"
1158
1159
    model_tags = None

1160
    _auto_class = None
1161
    _no_split_modules = None
1162
    _skip_keys_device_placement = None
1163
    _keep_in_fp32_modules = None
1164

1165
1166
    # a list of `re` patterns of `state_dict` keys that should be removed from the list of missing
    # keys we find (keys inside the model but not in the checkpoint) and avoid unnecessary warnings.
1167
    _keys_to_ignore_on_load_missing = None
1168
1169
1170
    # a list of `re` patterns of `state_dict` keys that should be removed from the list of
    # unexpected keys we find (keys inside the checkpoint but not the model) and avoid unnecessary
    # warnings.
1171
    _keys_to_ignore_on_load_unexpected = None
1172
1173
    # a list of `state_dict` keys to ignore when saving the model (useful for keys that aren't
    # trained, but which are either deterministic or tied variables)
1174
    _keys_to_ignore_on_save = None
Sylvain Gugger's avatar
Sylvain Gugger committed
1175
1176
    # a list of `state_dict` keys that are potentially tied to another key in the state_dict.
    _tied_weights_keys = None
1177

1178
    is_parallelizable = False
1179
    supports_gradient_checkpointing = False
1180

1181
1182
1183
    # Flash Attention 2 support
    _supports_flash_attn_2 = False

1184
1185
1186
    # SDPA support
    _supports_sdpa = False

1187
1188
1189
    # Has support for a `Cache` instance as `past_key_values`
    _supports_cache_class = False

1190
    @property
1191
    def dummy_inputs(self) -> Dict[str, torch.Tensor]:
1192
        """
1193
        `Dict[str, torch.Tensor]`: Dummy inputs to do a forward pass in the network.
1194
        """
1195
        return {"input_ids": torch.tensor(DUMMY_INPUTS)}
1196

1197
1198
1199
1200
1201
1202
1203
    @property
    def framework(self) -> str:
        """
        :str: Identifies that this is a PyTorch model.
        """
        return "pt"

1204
    def __init__(self, config: PretrainedConfig, *inputs, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
1205
        super().__init__()
1206
1207
        if not isinstance(config, PretrainedConfig):
            raise ValueError(
1208
1209
1210
                f"Parameter config in `{self.__class__.__name__}(config)` should be an instance of class "
                "`PretrainedConfig`. To create a model from a pretrained model use "
                f"`model = {self.__class__.__name__}.from_pretrained(PRETRAINED_MODEL_NAME)`"
1211
            )
1212
        # Save config and origin of the pretrained weights if given in model
1213
1214
1215
        config = self._autoset_attn_implementation(
            config, torch_dtype=torch.get_default_dtype(), check_device_map=False
        )
1216
        self.config = config
1217

1218
        self.name_or_path = config.name_or_path
1219
        self.warnings_issued = {}
1220
        self.generation_config = GenerationConfig.from_model_config(config) if self.can_generate() else None
1221
1222
1223
1224
        # Overwrite the class attribute to make it an instance attribute, so models like
        # `InstructBlipForConditionalGeneration` can dynamically update it without modifying the class attribute
        # when a different component (e.g. language_model) is used.
        self._keep_in_fp32_modules = copy.copy(self.__class__._keep_in_fp32_modules)
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238

    def post_init(self):
        """
        A method executed at the end of each Transformer model initialization, to execute code that needs the model's
        modules properly initialized (such as weight initialization).
        """
        self.init_weights()
        self._backward_compatibility_gradient_checkpointing()

    def _backward_compatibility_gradient_checkpointing(self):
        if self.supports_gradient_checkpointing and getattr(self.config, "gradient_checkpointing", False):
            self.gradient_checkpointing_enable()
            # Remove the attribute now that is has been consumed, so it's no saved in the config.
            delattr(self.config, "gradient_checkpointing")
1239

1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
    def add_model_tags(self, tags: Union[List[str], str]) -> None:
        r"""
        Add custom tags into the model that gets pushed to the Hugging Face Hub. Will
        not overwrite existing tags in the model.

        Args:
            tags (`Union[List[str], str]`):
                The desired tags to inject in the model

        Examples:

        ```python
        from transformers import AutoModel

        model = AutoModel.from_pretrained("bert-base-cased")

        model.add_model_tags(["custom", "custom-bert"])

        # Push the model to your namespace with the name "my-custom-bert".
        model.push_to_hub("my-custom-bert")
        ```
        """
        if isinstance(tags, str):
            tags = [tags]

        if self.model_tags is None:
            self.model_tags = []

        for tag in tags:
            if tag not in self.model_tags:
                self.model_tags.append(tag)

1272
1273
1274
1275
1276
1277
    @classmethod
    def _from_config(cls, config, **kwargs):
        """
        All context managers that the model should be initialized under go here.

        Args:
1278
1279
            torch_dtype (`torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model under this dtype.
1280
1281
        """
        torch_dtype = kwargs.pop("torch_dtype", None)
1282
        use_flash_attention_2 = kwargs.pop("use_flash_attention_2", False)
1283
1284
1285
1286
1287
1288

        # override default dtype if needed
        dtype_orig = None
        if torch_dtype is not None:
            dtype_orig = cls._set_default_torch_dtype(torch_dtype)

1289
1290
1291
        config = copy.deepcopy(config)  # We do not want to modify the config inplace in _from_config.
        config._attn_implementation = kwargs.pop("attn_implementation", None)
        config = cls._autoset_attn_implementation(
1292
1293
1294
1295
            config,
            use_flash_attention_2=use_flash_attention_2,
            check_device_map=False,
            torch_dtype=torch_dtype,
1296
        )
1297

1298
1299
1300
1301
1302
1303
        if is_deepspeed_zero3_enabled():
            import deepspeed

            logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
            # this immediately partitions the model across all gpus, to avoid the overhead in time
            # and memory copying it on CPU or each GPU first
1304
            with deepspeed.zero.Init(config_dict_or_path=deepspeed_config()):
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
                model = cls(config, **kwargs)
        else:
            model = cls(config, **kwargs)

        # restore default dtype if it was modified
        if dtype_orig is not None:
            torch.set_default_dtype(dtype_orig)

        return model

1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
    @classmethod
    def _autoset_attn_implementation(
        cls,
        config,
        use_flash_attention_2: bool = False,
        torch_dtype: Optional[torch.dtype] = None,
        device_map: Optional[Union[str, Dict[str, int]]] = None,
        check_device_map: bool = True,
    ):
        """
        Automatically checks and dispatches to a default attention implementation. In order of priority:
            1. An implementation specified in `config._attn_implementation` (due for example to the argument attn_implementation="sdpa" in from_pretrained).
            2. DEPRECATED: if use_flash_attention_2 is set to `True` and `flash_attn` is available, flash attention. (`LlamaFlashAttention` for example)
            3. SDPA implementation, if available and supported by the model type. (`LlamaSdpaAttention` for example)
            4. The default model's implementation otherwise (`LlamaAttention` for example) .
        """
        # Here we use config._attn_implementation_internal to check whether the attention implementation was explicitely set by the user.
        # The property `PretrainedConfig._attn_implementation` is never `None`, for backward compatibility (always fall back on "eager").
        # The `hasattr` here is used as some Transformers tests for some reason do not call PretrainedConfig __init__ (e.g. test_no_super_init_config_and_model)
1334
        requested_attn_implementation = None
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
        if hasattr(config, "_attn_implementation_internal") and config._attn_implementation_internal is not None:
            if config._attn_implementation != "flash_attention_2" and use_flash_attention_2:
                raise ValueError(
                    f'Both attn_implementation="{config._attn_implementation}" and `use_flash_attention_2=True` were used when loading the model, which are not compatible.'
                    ' We recommend to just use `attn_implementation="flash_attention_2"` when loading the model.'
                )

            if config._attn_implementation not in ["eager", "sdpa", "flash_attention_2"]:
                message = f'Specified `attn_implementation="{config._attn_implementation}"` is not supported. The only possible arguments are `attn_implementation="eager"` (manual attention implementation)'
                if cls._supports_flash_attn_2:
                    message += ', `"attn_implementation=flash_attention_2"` (implementation using flash attention 2)'
                if cls._supports_sdpa:
                    message += ', `"attn_implementation=sdpa"` (implementation using torch.nn.functional.scaled_dot_product_attention)'
                raise ValueError(message + ".")

            # If a config is passed with a preset attn_implementation, we skip the automatic dispatch and use the user-provided config, with hard checks that the requested attention implementation is available.
1351
            requested_attn_implementation = config._attn_implementation_internal
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363

        if use_flash_attention_2:
            logger.warning_once(
                'The model was loaded with use_flash_attention_2=True, which is deprecated and may be removed in a future release. Please use `attn_implementation="flash_attention_2"` instead.'
            )
            config._attn_implementation = "flash_attention_2"

        if config._attn_implementation == "flash_attention_2":
            cls._check_and_enable_flash_attn_2(
                config,
                torch_dtype=torch_dtype,
                device_map=device_map,
1364
                hard_check_only=False,
1365
1366
                check_device_map=check_device_map,
            )
1367
        elif requested_attn_implementation in [None, "sdpa"]:
1368
            # use_flash_attention_2 takes priority over SDPA, hence SDPA treated in this elif.
1369
            config = cls._check_and_enable_sdpa(
1370
1371
                config,
                hard_check_only=False if requested_attn_implementation is None else True,
1372
1373
            )
        else:
1374
1375
1376
1377
            config._attn_implementation = "eager"

        return config

1378
1379
1380
1381
1382
1383
1384
    @classmethod
    def _set_default_torch_dtype(cls, dtype: torch.dtype) -> torch.dtype:
        """
        Change the default dtype and return the previous one. This is needed when wanting to instantiate the model
        under specific dtype.

        Args:
1385
            dtype (`torch.dtype`):
1386
1387
1388
                a floating dtype to set to.

        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
1389
1390
            `torch.dtype`: the original `dtype` that can be used to restore `torch.set_default_dtype(dtype)` if it was
            modified. If it wasn't, returns `None`.
1391

1392
1393
        Note `set_default_dtype` currently only works with floating-point types and asserts if for example,
        `torch.int64` is passed. So if a non-float `dtype` is passed this functions will throw an exception.
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
        """
        if not dtype.is_floating_point:
            raise ValueError(
                f"Can't instantiate {cls.__name__} model under dtype={dtype} since it is not a floating point dtype"
            )

        logger.info(f"Instantiating {cls.__name__} model under default dtype {dtype}.")
        dtype_orig = torch.get_default_dtype()
        torch.set_default_dtype(dtype)
        return dtype_orig

1405
    @property
1406
1407
    def base_model(self) -> nn.Module:
        """
1408
        `torch.nn.Module`: The main body of the model.
1409
        """
1410
        return getattr(self, self.base_model_prefix, self)
thomwolf's avatar
thomwolf committed
1411

1412
1413
    @classmethod
    def can_generate(cls) -> bool:
1414
1415
1416
1417
1418
1419
        """
        Returns whether this model can generate sequences with `.generate()`.

        Returns:
            `bool`: Whether this model can generate sequences with `.generate()`.
        """
1420
1421
1422
        # Detects whether `prepare_inputs_for_generation` has been overwritten, which is a requirement for generation.
        # Alternativelly, the model can also have a custom `generate` function.
        if "GenerationMixin" in str(cls.prepare_inputs_for_generation) and "GenerationMixin" in str(cls.generate):
1423
1424
1425
            return False
        return True

1426
1427
    @classmethod
    def _check_and_enable_flash_attn_2(
1428
1429
1430
1431
1432
1433
        cls,
        config,
        torch_dtype: Optional[torch.dtype] = None,
        device_map: Optional[Union[str, Dict[str, int]]] = None,
        check_device_map: bool = True,
        hard_check_only: bool = False,
1434
1435
    ) -> PretrainedConfig:
        """
1436
        Checks the availability of Flash Attention 2 and compatibility with the current model.
1437

1438
        If all checks pass and `hard_check_only` is False, the method will set the config attribute `attn_implementation` to "flash_attention_2" so that the model can initialize the correct attention module.
1439
1440
1441
        """
        if not cls._supports_flash_attn_2:
            raise ValueError(
1442
1443
1444
                f"{cls.__name__} does not support Flash Attention 2.0 yet. Please request to add support where"
                f" the model is hosted, on its model hub page: https://huggingface.co/{config._name_or_path}/discussions/new"
                " or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new"
1445
1446
            )

1447
        if not is_flash_attn_2_available():
1448
1449
1450
            preface = "FlashAttention2 has been toggled on, but it cannot be used due to the following error:"
            install_message = "Please refer to the documentation of https://huggingface.co/docs/transformers/perf_infer_gpu_one#flashattention-2 to install Flash Attention 2."

1451
1452
1453
1454
1455
            if importlib.util.find_spec("flash_attn") is None:
                raise ImportError(f"{preface} the package flash_attn seems to be not installed. {install_message}")

            flash_attention_version = version.parse(importlib.metadata.version("flash_attn"))
            if torch.version.cuda:
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
                if flash_attention_version < version.parse("2.1.0"):
                    raise ImportError(
                        f"{preface} you need flash_attn package version to be greater or equal than 2.1.0. Detected version {flash_attention_version}. {install_message}"
                    )
                else:
                    raise ImportError(f"{preface} Flash Attention 2 is not available. {install_message}")
            elif torch.version.hip:
                if flash_attention_version < version.parse("2.0.4"):
                    raise ImportError(
                        f"{preface} you need flash_attn package version to be greater or equal than 2.0.4. Make sure to have that version installed - detected version {flash_attention_version}. {install_message}"
                    )
                else:
                    raise ImportError(f"{preface} Flash Attention 2 is not available. {install_message}")
1469
1470
1471
1472
1473
1474
1475
1476
1477

        _is_bettertransformer = getattr(cls, "use_bettertransformer", False)

        if _is_bettertransformer:
            raise ValueError(
                "Flash Attention 2 and BetterTransformer API are not compatible. Please make sure to disable BetterTransformers by doing model.reverse_bettertransformer()"
            )

        if torch_dtype is None:
1478
            logger.warning_once(
1479
1480
1481
                "You are attempting to use Flash Attention 2.0 without specifying a torch dtype. This might lead to unexpected behaviour"
            )
        elif torch_dtype is not None and torch_dtype not in [torch.float16, torch.bfloat16]:
1482
1483
1484
1485
            logger.warning_once(
                "Flash Attention 2.0 only supports torch.float16 and torch.bfloat16 dtypes, but"
                f" the current dype in {cls.__name__} is {torch_dtype}. You should run training or inference using Automatic Mixed-Precision via the `with torch.autocast(device_type='torch_device'):` decorator,"
                ' or load the model with the `torch_dtype` argument. Example: `model = AutoModel.from_pretrained("openai/whisper-tiny", attn_implementation="flash_attention_2", torch_dtype=torch.float16)`'
1486
1487
            )

1488
1489
1490
        # The check `torch.empty(0).device.type != "cuda"` is needed as the model may be initialized after `torch.set_default_device` has been called,
        # or the model may be initialized under the context manager `with torch.device("cuda"):`.
        if check_device_map and device_map is None and torch.empty(0).device.type != "cuda":
1491
            if torch.cuda.is_available():
1492
                logger.warning_once(
1493
                    "You are attempting to use Flash Attention 2.0 with a model not initialized on GPU. Make sure to move the model to GPU"
1494
1495
1496
1497
                    " after initializing it on CPU with `model.to('cuda')`."
                )
            else:
                raise ValueError(
1498
                    "You are attempting to use Flash Attention 2.0 with a model not initialized on GPU and with no GPU available. "
1499
1500
1501
1502
                    "This is not supported yet. Please make sure to have access to a GPU and either initialise the model on a GPU by passing a device_map "
                    "or initialising the model on CPU and then moving it to GPU."
                )
        elif (
1503
1504
            check_device_map
            and device_map is not None
1505
1506
1507
1508
1509
1510
1511
            and isinstance(device_map, dict)
            and ("cpu" in device_map.values() or "disk" in device_map.values())
        ):
            raise ValueError(
                "You are attempting to use Flash Attention 2.0 with a model dispatched on CPU or disk. This is not supported. Please make sure to "
                "initialise the model on a GPU by passing a device_map that contains only GPU devices as keys."
            )
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
        if not hard_check_only:
            config._attn_implementation = "flash_attention_2"
        return config

    @classmethod
    def _check_and_enable_sdpa(cls, config, hard_check_only: bool = False) -> PretrainedConfig:
        """
        Checks the availability of SDPA for a given model.

        If all checks pass and `hard_check_only` is False, the method will set the config attribute `_attn_implementation` to "flash_attention_2" so that the model can initialize the correct attention module.
        """
        if hard_check_only:
            if not cls._supports_sdpa:
                raise ValueError(
1526
1527
1528
                    f"{cls.__name__} does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet."
                    " Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe"
                    ' this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation="eager"` meanwhile. Example: `model = AutoModel.from_pretrained("openai/whisper-tiny", attn_implementation="eager")`'
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
                )
            if not is_torch_sdpa_available():
                raise ImportError(
                    "PyTorch SDPA requirements in Transformers are not met. Please install torch>=2.1.1."
                )

        if not is_torch_sdpa_available() or not cls._supports_sdpa:
            return config

        _is_bettertransformer = getattr(cls, "use_bettertransformer", False)
        if _is_bettertransformer:
            return config

        if not hard_check_only:
            config._attn_implementation = "sdpa"
1544
1545
        return config

1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
    def enable_input_require_grads(self):
        """
        Enables the gradients for the input embeddings. This is useful for fine-tuning adapter weights while keeping
        the model weights fixed.
        """

        def make_inputs_require_grads(module, input, output):
            output.requires_grad_(True)

        self._require_grads_hook = self.get_input_embeddings().register_forward_hook(make_inputs_require_grads)

    def disable_input_require_grads(self):
        """
        Removes the `_require_grads_hook`.
        """
        self._require_grads_hook.remove()

1563
    def get_input_embeddings(self) -> nn.Module:
1564
1565
1566
1567
        """
        Returns the model's input embeddings.

        Returns:
1568
            `nn.Module`: A torch module mapping vocabulary to hidden states.
thomwolf's avatar
thomwolf committed
1569
        """
1570
        base_model = getattr(self, self.base_model_prefix, self)
thomwolf's avatar
thomwolf committed
1571
1572
1573
1574
        if base_model is not self:
            return base_model.get_input_embeddings()
        else:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
1575

1576
    def set_input_embeddings(self, value: nn.Module):
1577
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1578
        Set model's input embeddings.
1579
1580

        Args:
1581
            value (`nn.Module`): A module mapping vocabulary to hidden states.
thomwolf's avatar
thomwolf committed
1582
1583
1584
1585
1586
1587
        """
        base_model = getattr(self, self.base_model_prefix, self)
        if base_model is not self:
            base_model.set_input_embeddings(value)
        else:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
1588

1589
    def get_output_embeddings(self) -> nn.Module:
1590
1591
1592
1593
        """
        Returns the model's output embeddings.

        Returns:
1594
            `nn.Module`: A torch module mapping hidden states to vocabulary.
thomwolf's avatar
thomwolf committed
1595
        """
1596
        return None  # Overwrite for models with output embeddings
thomwolf's avatar
thomwolf committed
1597

1598
1599
    def _init_weights(self, module):
        """
1600
1601
1602
1603
        Initialize the weights. This method should be overridden by derived class and is
        the only initialization method that will be called when loading a checkpoint
        using `from_pretrained`. Any attempt to initialize outside of this function
        will be useless as the torch.nn.init function are all replaced with skip.
1604
        """
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
        pass

    def _initialize_weights(self, module):
        """
        Initialize the weights if they are not already initialized.
        """
        if getattr(module, "_is_hf_initialized", False):
            return
        self._init_weights(module)
        module._is_hf_initialized = True
1615

1616
    def tie_weights(self):
1617
1618
        """
        Tie the weights between the input embeddings and the output embeddings.
1619

Sylvain Gugger's avatar
Sylvain Gugger committed
1620
1621
        If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the
        weights instead.
thomwolf's avatar
thomwolf committed
1622
        """
1623
1624
1625
1626
        if getattr(self.config, "tie_word_embeddings", True):
            output_embeddings = self.get_output_embeddings()
            if output_embeddings is not None:
                self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings())
thomwolf's avatar
thomwolf committed
1627

1628
        if getattr(self.config, "is_encoder_decoder", False) and getattr(self.config, "tie_encoder_decoder", False):
Weizhen's avatar
Weizhen committed
1629
1630
            if hasattr(self, self.base_model_prefix):
                self = getattr(self, self.base_model_prefix)
1631
1632
            self._tie_encoder_decoder_weights(self.encoder, self.decoder, self.base_model_prefix)

Sylvain Gugger's avatar
Sylvain Gugger committed
1633
1634
1635
1636
        for module in self.modules():
            if hasattr(module, "_tie_weights"):
                module._tie_weights()

1637
1638
1639
    @staticmethod
    def _tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str):
        uninitialized_encoder_weights: List[str] = []
Weizhen's avatar
Weizhen committed
1640
1641
        if decoder.__class__ != encoder.__class__:
            logger.info(
Sylvain Gugger's avatar
Sylvain Gugger committed
1642
1643
                f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder"
                " weights are correctly initialized."
Weizhen's avatar
Weizhen committed
1644
            )
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654

        def tie_encoder_to_decoder_recursively(
            decoder_pointer: nn.Module,
            encoder_pointer: nn.Module,
            module_name: str,
            uninitialized_encoder_weights: List[str],
            depth=0,
        ):
            assert isinstance(decoder_pointer, nn.Module) and isinstance(
                encoder_pointer, nn.Module
1655
            ), f"{decoder_pointer} and {encoder_pointer} have to be of type nn.Module"
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
            if hasattr(decoder_pointer, "weight"):
                assert hasattr(encoder_pointer, "weight")
                encoder_pointer.weight = decoder_pointer.weight
                if hasattr(decoder_pointer, "bias"):
                    assert hasattr(encoder_pointer, "bias")
                    encoder_pointer.bias = decoder_pointer.bias
                return

            encoder_modules = encoder_pointer._modules
            decoder_modules = decoder_pointer._modules
            if len(decoder_modules) > 0:
                assert (
                    len(encoder_modules) > 0
                ), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"

1671
                all_encoder_weights = {module_name + "/" + sub_name for sub_name in encoder_modules.keys()}
1672
1673
1674
1675
1676
                encoder_layer_pos = 0
                for name, module in decoder_modules.items():
                    if name.isdigit():
                        encoder_name = str(int(name) + encoder_layer_pos)
                        decoder_name = name
Weizhen's avatar
Weizhen committed
1677
1678
1679
                        if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len(
                            encoder_modules
                        ) != len(decoder_modules):
1680
1681
                            # this can happen if the name corresponds to the position in a list module list of layers
                            # in this case the decoder has added a cross-attention that the encoder does not have
1682
                            # thus skip this step and subtract one layer pos from encoder
1683
1684
1685
1686
1687
1688
                            encoder_layer_pos -= 1
                            continue
                    elif name not in encoder_modules:
                        continue
                    elif depth > 500:
                        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1689
1690
                            "Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is"
                            " a circular dependency between two or more `nn.Modules` of your model."
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
                        )
                    else:
                        decoder_name = encoder_name = name
                    tie_encoder_to_decoder_recursively(
                        decoder_modules[decoder_name],
                        encoder_modules[encoder_name],
                        module_name + "/" + name,
                        uninitialized_encoder_weights,
                        depth=depth + 1,
                    )
                    all_encoder_weights.remove(module_name + "/" + encoder_name)

                uninitialized_encoder_weights += list(all_encoder_weights)

        # tie weights recursively
        tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights)
        if len(uninitialized_encoder_weights) > 0:
            logger.warning(
                f"The following encoder weights were not tied to the decoder {uninitialized_encoder_weights}"
            )

1712
    def _tie_or_clone_weights(self, output_embeddings, input_embeddings):
Lysandre's avatar
Lysandre committed
1713
        """Tie or clone module weights depending of whether we are using TorchScript or not"""
thomwolf's avatar
thomwolf committed
1714
        if self.config.torchscript:
1715
            output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone())
thomwolf's avatar
thomwolf committed
1716
        else:
1717
            output_embeddings.weight = input_embeddings.weight
thomwolf's avatar
thomwolf committed
1718

Sam Shleifer's avatar
Sam Shleifer committed
1719
        if getattr(output_embeddings, "bias", None) is not None:
1720
            output_embeddings.bias.data = nn.functional.pad(
1721
                output_embeddings.bias.data,
Lysandre's avatar
Lysandre committed
1722
1723
1724
1725
                (
                    0,
                    output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0],
                ),
1726
1727
                "constant",
                0,
1728
            )
1729
        if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"):
1730
            output_embeddings.out_features = input_embeddings.num_embeddings
1731

Marc Sun's avatar
Marc Sun committed
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
    def _get_no_split_modules(self, device_map: str):
        """
        Get the modules of the model that should not be spit when using device_map. We iterate through the modules to
        get the underlying `_no_split_modules`.

        Args:
            device_map (`str`):
                The device map value. Options are ["auto", "balanced", "balanced_low_0", "sequential"]

        Returns:
            `List[str]`: List of modules that should not be split
        """
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
        _no_split_modules = set()
        modules_to_check = [self]
        while len(modules_to_check) > 0:
            module = modules_to_check.pop(-1)
            # if the module does not appear in _no_split_modules, we also check the children
            if module.__class__.__name__ not in _no_split_modules:
                if isinstance(module, PreTrainedModel):
                    if module._no_split_modules is None:
                        raise ValueError(
                            f"{module.__class__.__name__} does not support `device_map='{device_map}'`. To implement support, the model "
                            "class needs to implement the `_no_split_modules` attribute."
                        )
                    else:
                        _no_split_modules = _no_split_modules | set(module._no_split_modules)
                modules_to_check += list(module.children())
Marc Sun's avatar
Marc Sun committed
1759
1760
        return list(_no_split_modules)

1761
1762
1763
    def resize_token_embeddings(
        self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None
    ) -> nn.Embedding:
1764
        """
1765
        Resizes input token embeddings matrix of the model if `new_num_tokens != config.vocab_size`.
1766

1767
        Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
thomwolf's avatar
thomwolf committed
1768

1769
        Arguments:
1770
            new_num_tokens (`int`, *optional*):
1771
                The new number of tokens in the embedding matrix. Increasing the size will add newly initialized
Sylvain Gugger's avatar
Sylvain Gugger committed
1772
1773
                vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
                returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything.
1774
            pad_to_multiple_of (`int`, *optional*):
Arthur's avatar
Arthur committed
1775
1776
                If set will pad the embedding matrix to a multiple of the provided value.If `new_num_tokens` is set to
                `None` will just pad the embedding to a multiple of `pad_to_multiple_of`.
1777
1778
1779
1780
1781

                This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
                `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more
                details about this, or help on choosing the correct value for resizing, refer to this guide:
                https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc
1782
1783

        Return:
1784
            `torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model.
thomwolf's avatar
thomwolf committed
1785
        """
1786
        model_embeds = self._resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
Arthur's avatar
Arthur committed
1787
        if new_num_tokens is None and pad_to_multiple_of is None:
thomwolf's avatar
thomwolf committed
1788
            return model_embeds
thomwolf's avatar
thomwolf committed
1789
1790

        # Update base model and current model config
Arthur's avatar
Arthur committed
1791
1792
        self.config.vocab_size = model_embeds.weight.shape[0]
        self.vocab_size = model_embeds.weight.shape[0]
thomwolf's avatar
thomwolf committed
1793
1794

        # Tie weights again if needed
1795
        self.tie_weights()
thomwolf's avatar
thomwolf committed
1796

thomwolf's avatar
thomwolf committed
1797
1798
        return model_embeds

1799
    def _resize_token_embeddings(self, new_num_tokens, pad_to_multiple_of=None):
thomwolf's avatar
thomwolf committed
1800
        old_embeddings = self.get_input_embeddings()
1801
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens, pad_to_multiple_of)
1802
1803
1804
        if hasattr(old_embeddings, "_hf_hook"):
            hook = old_embeddings._hf_hook
            add_hook_to_module(new_embeddings, hook)
1805
1806
        old_embeddings_requires_grad = old_embeddings.weight.requires_grad
        new_embeddings.requires_grad_(old_embeddings_requires_grad)
thomwolf's avatar
thomwolf committed
1807
        self.set_input_embeddings(new_embeddings)
1808

1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
        # Update new_num_tokens with the actual size of new_embeddings
        if pad_to_multiple_of is not None:
            if is_deepspeed_zero3_enabled():
                import deepspeed

                with deepspeed.zero.GatheredParameters(new_embeddings.weight, modifier_rank=None):
                    new_num_tokens = new_embeddings.weight.shape[0]
            else:
                new_num_tokens = new_embeddings.weight.shape[0]

1819
1820
1821
        # if word embeddings are not tied, make sure that lm head is resized as well
        if self.get_output_embeddings() is not None and not self.config.tie_word_embeddings:
            old_lm_head = self.get_output_embeddings()
1822
            new_lm_head = self._get_resized_lm_head(old_lm_head, new_num_tokens)
1823
1824
1825
            if hasattr(old_lm_head, "_hf_hook"):
                hook = old_lm_head._hf_hook
                add_hook_to_module(new_lm_head, hook)
1826
1827
            old_lm_head_requires_grad = old_lm_head.weight.requires_grad
            new_lm_head.requires_grad_(old_lm_head_requires_grad)
1828
1829
            self.set_output_embeddings(new_lm_head)

thomwolf's avatar
thomwolf committed
1830
        return self.get_input_embeddings()
1831

1832
    def _get_resized_embeddings(
1833
1834
1835
1836
        self,
        old_embeddings: nn.Embedding,
        new_num_tokens: Optional[int] = None,
        pad_to_multiple_of: Optional[int] = None,
1837
    ) -> nn.Embedding:
1838
1839
1840
        """
        Build a resized Embedding Module from a provided token Embedding Module. Increasing the size will add newly
        initialized vectors at the end. Reducing the size will remove vectors from the end
1841
1842

        Args:
1843
            old_embeddings (`torch.nn.Embedding`):
1844
                Old embeddings to be resized.
1845
            new_num_tokens (`int`, *optional*):
1846
                New number of tokens in the embedding matrix.
1847
1848

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
1849
                vectors from the end. If not provided or `None`, just returns a pointer to the input tokens
1850
                `torch.nn.Embedding` module of the model without doing anything.
1851
            pad_to_multiple_of (`int`, *optional*):
Arthur's avatar
Arthur committed
1852
1853
                If set will pad the embedding matrix to a multiple of the provided value. If `new_num_tokens` is set to
                `None` will just pad the embedding to a multiple of `pad_to_multiple_of`.
1854
1855
1856
1857
1858
1859

                This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
                `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more
                details about this, or help on choosing the correct value for resizing, refer to this guide:
                https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc

1860
1861

        Return:
1862
1863
            `torch.nn.Embedding`: Pointer to the resized Embedding Module or the old Embedding Module if
            `new_num_tokens` is `None`
1864
        """
1865
1866
1867
1868
1869
1870
1871
1872

        if pad_to_multiple_of is not None:
            if not isinstance(pad_to_multiple_of, int):
                raise ValueError(
                    f"Asking to pad the embedding matrix to a multiple of `{pad_to_multiple_of}`, which is not and integer. Please make sure to pass an integer"
                )
            if new_num_tokens is None:
                new_num_tokens = old_embeddings.weight.shape[0]
1873
            new_num_tokens = ((new_num_tokens + pad_to_multiple_of - 1) // pad_to_multiple_of) * pad_to_multiple_of
1874
        else:
1875
            logger.info(
1876
                "You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding"
1877
                f" dimension will be {new_num_tokens}. This might induce some performance reduction as *Tensor Cores* will not be available."
1878
                " For more details about this, or help on choosing the correct value for resizing, refer to this guide:"
1879
1880
1881
                " https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc"
            )

1882
1883
1884
        if new_num_tokens is None:
            return old_embeddings

1885
1886
1887
1888
1889
1890
1891
1892
        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_embeddings.weight, modifier_rank=None):
                old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
        else:
            old_num_tokens, old_embedding_dim = old_embeddings.weight.size()

1893
        if old_num_tokens == new_num_tokens and not is_deepspeed_zero3_enabled():
1894
1895
            return old_embeddings

1896
1897
        if not isinstance(old_embeddings, nn.Embedding):
            raise TypeError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1898
1899
1900
                f"Old embeddings are of type {type(old_embeddings)}, which is not an instance of {nn.Embedding}. You"
                " should either use a different resize function or make sure that `old_embeddings` are an instance of"
                f" {nn.Embedding}."
1901
1902
            )

1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
        # Build new embeddings

        # When using DeepSpeed ZeRO-3, we shouldn't create new embeddings with DeepSpeed init
        # because the shape of the new embedding layer is used across various modeling files
        # as well as to update config vocab size. Shape will be 0 when using DeepSpeed init leading
        # to errors when training.
        new_embeddings = nn.Embedding(
            new_num_tokens,
            old_embedding_dim,
            device=old_embeddings.weight.device,
            dtype=old_embeddings.weight.dtype,
        )

        # initialize all new embeddings (in particular added tokens)
        self._init_weights(new_embeddings)

        # Copy token embeddings from the previous weights

1921
1922
        # numbers of tokens to copy
        n = min(old_num_tokens, new_num_tokens)
1923

1924
1925
1926
        if is_deepspeed_zero3_enabled():
            import deepspeed

1927
1928
1929
            params = [old_embeddings.weight, new_embeddings.weight]
            with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
                new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :]
1930
1931
        else:
            new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :]
1932
1933
1934

        return new_embeddings

1935
    def _get_resized_lm_head(
1936
1937
        self, old_lm_head: nn.Linear, new_num_tokens: Optional[int] = None, transposed: Optional[bool] = False
    ) -> nn.Linear:
1938
1939
1940
1941
1942
        """
        Build a resized Linear Module from a provided old Linear Module. Increasing the size will add newly initialized
        vectors at the end. Reducing the size will remove vectors from the end

        Args:
1943
            old_lm_head (`torch.nn.Linear`):
1944
                Old lm head liner layer to be resized.
1945
            new_num_tokens (`int`, *optional*):
1946
1947
1948
                New number of tokens in the linear matrix.

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
1949
                vectors from the end. If not provided or `None`, just returns a pointer to the input tokens
1950
1951
1952
                `torch.nn.Linear` module of the model without doing anything. transposed (`bool`, *optional*, defaults
                to `False`): Whether `old_lm_head` is transposed or not. If True `old_lm_head.size()` is `lm_head_dim,
                vocab_size` else `vocab_size, lm_head_dim`.
1953
1954

        Return:
Sylvain Gugger's avatar
Sylvain Gugger committed
1955
1956
            `torch.nn.Linear`: Pointer to the resized Linear Module or the old Linear Module if `new_num_tokens` is
            `None`
1957
1958
1959
1960
        """
        if new_num_tokens is None:
            return old_lm_head

1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_lm_head.weight, modifier_rank=None):
                old_num_tokens, old_lm_head_dim = (
                    old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
                )
        else:
            old_num_tokens, old_lm_head_dim = (
                old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
            )
1972

1973
        if old_num_tokens == new_num_tokens and not is_deepspeed_zero3_enabled():
1974
1975
1976
1977
            return old_lm_head

        if not isinstance(old_lm_head, nn.Linear):
            raise TypeError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1978
1979
1980
                f"Old language model head is of type {type(old_lm_head)}, which is not an instance of {nn.Linear}. You"
                " should either use a different resize function or make sure that `old_lm_head` are an instance of"
                f" {nn.Linear}."
1981
1982
1983
1984
1985
1986
            )

        # Build new lm head
        new_lm_head_shape = (old_lm_head_dim, new_num_tokens) if not transposed else (new_num_tokens, old_lm_head_dim)
        has_new_lm_head_bias = old_lm_head.bias is not None

1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
        # When using DeepSpeed ZeRO-3, we shouldn't create new embeddings with DeepSpeed init
        # because the shape of the new embedding layer is used across various modeling files
        # as well as to update config vocab size. Shape will be 0 when using DeepSpeed init leading
        # to errors when training.
        new_lm_head = nn.Linear(
            *new_lm_head_shape,
            bias=has_new_lm_head_bias,
            device=old_lm_head.weight.device,
            dtype=old_lm_head.weight.dtype,
        )

        # initialize new lm head (in particular added tokens)
        self._init_weights(new_lm_head)

2001
2002
        num_tokens_to_copy = min(old_num_tokens, new_num_tokens)

2003
2004
2005
        if is_deepspeed_zero3_enabled():
            import deepspeed

2006
2007
            params = [old_lm_head.weight, old_lm_head.bias, new_lm_head.weight, new_lm_head.bias]
            with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
2008
2009
2010
                self._copy_lm_head_original_to_resized(
                    new_lm_head, old_lm_head, num_tokens_to_copy, transposed, has_new_lm_head_bias
                )
2011
        else:
2012
2013
            self._copy_lm_head_original_to_resized(
                new_lm_head, old_lm_head, num_tokens_to_copy, transposed, has_new_lm_head_bias
2014
            )
2015
2016
2017

        return new_lm_head

2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
    def _copy_lm_head_original_to_resized(
        self, new_lm_head, old_lm_head, num_tokens_to_copy, transposed, has_new_lm_head_bias
    ):
        # Copy old lm head weights to new lm head
        if not transposed:
            new_lm_head.weight.data[:num_tokens_to_copy, :] = old_lm_head.weight.data[:num_tokens_to_copy, :]
        else:
            new_lm_head.weight.data[:, :num_tokens_to_copy] = old_lm_head.weight.data[:, :num_tokens_to_copy]

        # Copy bias weights to new lm head
        if has_new_lm_head_bias:
            new_lm_head.bias.data[:num_tokens_to_copy] = old_lm_head.bias.data[:num_tokens_to_copy]

2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
    def resize_position_embeddings(self, new_num_position_embeddings: int):
        raise NotImplementedError(
            f"`resize_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should "
            f"overwrite this method in the class {self.__class__} in `modeling_{self.__class__.__module__}.py`"
        )

    def get_position_embeddings(self) -> Union[nn.Embedding, Tuple[nn.Embedding]]:
        raise NotImplementedError(
            f"`get_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should "
            f"overwrite this method in the class {self.__class__} in `modeling_{self.__class__.__module__}.py`"
        )

2043
    def init_weights(self):
2044
        """
2045
2046
        If needed prunes and maybe initializes weights. If using a custom `PreTrainedModel`, you need to implement any
        initialization logic in `_init_weights`.
2047
        """
2048
2049
2050
2051
        # Prune heads if needed
        if self.config.pruned_heads:
            self.prune_heads(self.config.pruned_heads)

2052
2053
        if _init_weights:
            # Initialize weights
2054
            self.apply(self._initialize_weights)
2055
2056
2057
2058

            # Tie weights should be skipped when not initializing all weights
            # since from_pretrained(...) calls tie weights anyways
            self.tie_weights()
2059

2060
2061
2062
    def prune_heads(self, heads_to_prune: Dict[int, List[int]]):
        """
        Prunes heads of the base model.
2063

2064
        Arguments:
2065
            heads_to_prune (`Dict[int, List[int]]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2066
2067
2068
                Dictionary with keys being selected layer indices (`int`) and associated values being the list of heads
                to prune in said layer (list of `int`). For instance {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on
                layer 1 and heads 2 and 3 on layer 2.
thomwolf's avatar
thomwolf committed
2069
        """
2070
        # save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads
2071
        for layer, heads in heads_to_prune.items():
2072
2073
2074
            union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads)
            self.config.pruned_heads[layer] = list(union_heads)  # Unfortunately we have to store it as list for JSON

2075
        self.base_model._prune_heads(heads_to_prune)
thomwolf's avatar
thomwolf committed
2076

2077
    def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None):
2078
2079
2080
2081
2082
        """
        Activates gradient checkpointing for the current model.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
2083
2084
2085
2086
2087
2088
2089

        We pass the `__call__` method of the modules instead of `forward` because `__call__` attaches all the hooks of
        the module. https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2

        Args:
            gradient_checkpointing_kwargs (dict, *optional*):
                Additional keyword arguments passed along to the `torch.utils.checkpoint.checkpoint` function.
2090
2091
2092
        """
        if not self.supports_gradient_checkpointing:
            raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
2093
2094
2095
2096

        if gradient_checkpointing_kwargs is None:
            gradient_checkpointing_kwargs = {}

2097
        gradient_checkpointing_func = functools.partial(checkpoint, **gradient_checkpointing_kwargs)
2098

2099
        # For old GC format (transformers < 4.35.0) for models that live on the Hub
Stas Bekman's avatar
Stas Bekman committed
2100
        # we will fall back to the overwritten `_set_gradient_checkpointing` method
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
        _is_using_old_format = "value" in inspect.signature(self._set_gradient_checkpointing).parameters

        if not _is_using_old_format:
            self._set_gradient_checkpointing(enable=True, gradient_checkpointing_func=gradient_checkpointing_func)
        else:
            self.apply(partial(self._set_gradient_checkpointing, value=True))
            logger.warn(
                "You are using an old version of the checkpointing format that is deprecated (We will also silently ignore `gradient_checkpointing_kwargs` in case you passed it)."
                "Please update to the new format on your modeling file. To use the new format, you need to completely remove the definition of the method `_set_gradient_checkpointing` in your model."
            )
2111

2112
2113
2114
2115
2116
2117
2118
        if getattr(self, "_hf_peft_config_loaded", False):
            # When using PEFT + gradient checkpointing + Trainer we need to make sure the input has requires_grad=True
            # we do it also on PEFT: https://github.com/huggingface/peft/blob/85013987aa82aa1af3da1236b6902556ce3e483e/src/peft/peft_model.py#L334
            # When training with PEFT, only LoRA layers will have requires grad set to True, but the output of frozen layers need to propagate
            # the gradients to make sure the gradient flows.
            self.enable_input_require_grads()

2119
    def _set_gradient_checkpointing(self, enable: bool = True, gradient_checkpointing_func: Callable = checkpoint):
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
        is_gradient_checkpointing_set = False

        # Apply it on the top-level module in case the top-level modules supports it
        # for example, LongT5Stack inherits from `PreTrainedModel`.
        if hasattr(self, "gradient_checkpointing"):
            self._gradient_checkpointing_func = gradient_checkpointing_func
            self.gradient_checkpointing = enable
            is_gradient_checkpointing_set = True

        for module in self.modules():
            if hasattr(module, "gradient_checkpointing"):
                module._gradient_checkpointing_func = gradient_checkpointing_func
                module.gradient_checkpointing = enable
                is_gradient_checkpointing_set = True

        if not is_gradient_checkpointing_set:
            raise ValueError(
                f"{self.__class__.__name__} is not compatible with gradient checkpointing. Make sure all the architecture support it by setting a boolean attribute"
                " `gradient_checkpointing` to modules of the model that uses checkpointing."
            )

2141
    def gradient_checkpointing_disable(self):
2142
2143
2144
2145
2146
2147
2148
        """
        Deactivates gradient checkpointing for the current model.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        if self.supports_gradient_checkpointing:
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
            # For old GC format (transformers < 4.35.0) for models that live on the Hub
            # we will fall back to the overwritten `_set_gradient_checkpointing` methid
            _is_using_old_format = "value" in inspect.signature(self._set_gradient_checkpointing).parameters
            if not _is_using_old_format:
                self._set_gradient_checkpointing(enable=False)
            else:
                logger.warn(
                    "You are using an old version of the checkpointing format that is deprecated (We will also silently ignore `gradient_checkpointing_kwargs` in case you passed it)."
                    "Please update to the new format on your modeling file. To use the new format, you need to completely remove the definition of the method `_set_gradient_checkpointing` in your model."
                )
                self.apply(partial(self._set_gradient_checkpointing, value=False))
2160

2161
2162
2163
        if getattr(self, "_hf_peft_config_loaded", False):
            self.disable_input_require_grads()

2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
    @property
    def is_gradient_checkpointing(self) -> bool:
        """
        Whether gradient checkpointing is activated for this model or not.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules())

2174
2175
2176
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
2177
        is_main_process: bool = True,
2178
2179
        state_dict: Optional[dict] = None,
        save_function: Callable = torch.save,
Sylvain Gugger's avatar
Sylvain Gugger committed
2180
        push_to_hub: bool = False,
2181
        max_shard_size: Union[int, str] = "5GB",
2182
        safe_serialization: bool = True,
2183
        variant: Optional[str] = None,
2184
        token: Optional[Union[str, bool]] = None,
2185
        save_peft_format: bool = True,
Sylvain Gugger's avatar
Sylvain Gugger committed
2186
        **kwargs,
2187
    ):
2188
2189
        """
        Save a model and its configuration file to a directory, so that it can be re-loaded using the
2190
        [`~PreTrainedModel.from_pretrained`] class method.
2191

2192
        Arguments:
2193
            save_directory (`str` or `os.PathLike`):
2194
                Directory to which to save. Will be created if it doesn't exist.
2195
2196
2197
2198
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful when in distributed training like
                TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on
                the main process to avoid race conditions.
2199
            state_dict (nested dictionary of `torch.Tensor`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2200
2201
2202
                The state dictionary of the model to save. Will default to `self.state_dict()`, but can be used to only
                save parts of the model or if special precautions need to be taken when recovering the state dictionary
                of a model (like when using model parallelism).
2203
            save_function (`Callable`):
2204
                The function to use to save the state dictionary. Useful on distributed training like TPUs when one
2205
2206
                need to replace `torch.save` by another method.
            push_to_hub (`bool`, *optional*, defaults to `False`):
2207
2208
2209
                Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
2210
            max_shard_size (`int` or `str`, *optional*, defaults to `"5GB"`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2211
2212
                The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size
                lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`).
2213
2214
                We default it to 5GB in order for models to be able to run easily on free-tier google colab instances
                without CPU OOM issues.
Sylvain Gugger's avatar
Sylvain Gugger committed
2215
2216
2217
2218
2219
2220
2221
2222

                <Tip warning={true}>

                If a single weight of the model is bigger than `max_shard_size`, it will be in its own checkpoint shard
                which will be bigger than `max_shard_size`.

                </Tip>

2223
            safe_serialization (`bool`, *optional*, defaults to `True`):
2224
                Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
2225
2226
            variant (`str`, *optional*):
                If specified, weights are saved in the format pytorch_model.<variant>.bin.
2227
2228
2229
            token (`str` or `bool`, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
                the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
2230
2231
2232
2233
            save_peft_format (`bool`, *optional*, defaults to `True`):
                For backward compatibility with PEFT library, in case adapter weights are attached to the model, all
                keys of the state dict of adapters needs to be pre-pended with `base_model.model`. Advanced users can
                disable this behaviours by setting `save_peft_format` to `False`.
2234
            kwargs (`Dict[str, Any]`, *optional*):
2235
                Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
2236
        """
2237
        use_auth_token = kwargs.pop("use_auth_token", None)
2238
        ignore_metadata_errors = kwargs.pop("ignore_metadata_errors", False)
2239
2240
2241

        if use_auth_token is not None:
            warnings.warn(
2242
2243
                "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
                FutureWarning,
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
            )
            if token is not None:
                raise ValueError(
                    "`token` and `use_auth_token` are both specified. Please set only the argument `token`."
                )
            token = use_auth_token

        if token is not None:
            kwargs["token"] = token

Younes Belkada's avatar
Younes Belkada committed
2254
2255
        _hf_peft_config_loaded = getattr(self, "_hf_peft_config_loaded", False)

2256
2257
2258
2259
        hf_quantizer = getattr(self, "hf_quantizer", None)
        quantization_serializable = (
            hf_quantizer is not None and isinstance(hf_quantizer, HfQuantizer) and hf_quantizer.is_serializable
        )
2260

2261
2262
2263
2264
        if hf_quantizer is not None and not _hf_peft_config_loaded and not quantization_serializable:
            raise ValueError(
                f"The model is quantized with {hf_quantizer.quantization_config.quant_method} and is not serializable - check out the warnings from"
                " the logger on the traceback to understand the reason why the quantized model is not serializable."
2265
2266
            )

2267
2268
2269
2270
2271
        if "save_config" in kwargs:
            warnings.warn(
                "`save_config` is deprecated and will be removed in v5 of Transformers. Use `is_main_process` instead."
            )
            is_main_process = kwargs.pop("save_config")
2272
2273
        if safe_serialization and not is_safetensors_available():
            raise ImportError("`safe_serialization` requires the `safetensors library: `pip install safetensors`.")
2274

2275
        if os.path.isfile(save_directory):
2276
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
2277
            return
2278

2279
2280
        os.makedirs(save_directory, exist_ok=True)

2281
2282
        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
2283
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
2284
            repo_id = self._create_repo(repo_id, **kwargs)
2285
            files_timestamps = self._get_files_timestamps(save_directory)
2286

Julien Chaumond's avatar
Julien Chaumond committed
2287
        # Only save the model itself if we are using distributed training
2288
        model_to_save = unwrap_model(self)
2289

2290
2291
2292
2293
2294
        # save the string version of dtype to the config, e.g. convert torch.float32 => "float32"
        # we currently don't use this setting automatically, but may start to use with v5
        dtype = get_parameter_dtype(model_to_save)
        model_to_save.config.torch_dtype = str(dtype).split(".")[1]

Julien Chaumond's avatar
Julien Chaumond committed
2295
2296
2297
        # Attach architecture to the config
        model_to_save.config.architectures = [model_to_save.__class__.__name__]

2298
2299
2300
2301
2302
        # If we have a custom model, we copy the file defining it in the folder and set the attributes so it can be
        # loaded from the Hub.
        if self._auto_class is not None:
            custom_object_save(self, save_directory, config=self.config)

2303
        # Save the config
2304
        if is_main_process:
2305
2306
            if not _hf_peft_config_loaded:
                model_to_save.config.save_pretrained(save_directory)
2307
            if self.can_generate():
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
                # generation config built from the model config + the model config holds generation kwargs -> generate
                # may revert to legacy behavior if the two don't match
                if (
                    model_to_save.generation_config._from_model_config
                    and model_to_save.config._has_non_default_generation_parameters()
                ):
                    new_generation_config = GenerationConfig.from_model_config(model_to_save.config)
                    if new_generation_config != model_to_save.generation_config:
                        logger.warning(
                            "Your generation config was originally created from the model config, but the model "
                            "config has changed since then. Unless you pass the `generation_config` argument to this "
                            "model's `generate` calls, they will revert to the legacy behavior where the base "
                            "`generate` parameterization is loaded from the model config instead. "
                            "To avoid this behavior and this warning, we recommend you to overwrite the generation "
                            "config model attribute before calling the model's `save_pretrained`, preferably also "
                            "removing any generation kwargs from the model config. This warning will be raised to an "
                            "exception in v4.41."
                        )
2326
                model_to_save.generation_config.save_pretrained(save_directory)
2327

2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
            if _hf_peft_config_loaded:
                logger.info(
                    "Detected adapters on the model, saving the model in the PEFT format, only adapter weights will be saved."
                )
                state_dict = model_to_save.get_adapter_state_dict()

                if save_peft_format:
                    logger.info(
                        "To match the expected format of the PEFT library, all keys of the state dict of adapters will be pre-pended with `base_model.model`."
                    )
                    peft_state_dict = {}
                    for key, value in state_dict.items():
                        peft_state_dict[f"base_model.model.{key}"] = value
                    state_dict = peft_state_dict

2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
                active_adapter = self.active_adapters()

                if len(active_adapter) > 1:
                    raise ValueError(
                        "Multiple active adapters detected, saving multiple active adapters is not supported yet. You can save adapters separately one by one "
                        "by iteratively calling `model.set_adapter(adapter_name)` then `model.save_pretrained(...)`"
                    )
                active_adapter = active_adapter[0]

                current_peft_config = self.peft_config[active_adapter]
2353
2354
                current_peft_config.save_pretrained(save_directory)

2355
2356
2357
        # Save the model
        if state_dict is None:
            state_dict = model_to_save.state_dict()
2358

2359
2360
2361
2362
2363
        # Translate state_dict from smp to hf if saving with smp >= 1.10
        if IS_SAGEMAKER_MP_POST_1_10:
            for smp_to_hf, _ in smp.state.module_manager.translate_functions:
                state_dict = smp_to_hf(state_dict)

2364
        # Handle the case where some state_dict keys shouldn't be saved
2365
        if self._keys_to_ignore_on_save is not None:
2366
            for ignore_key in self._keys_to_ignore_on_save:
2367
2368
                if ignore_key in state_dict.keys():
                    del state_dict[ignore_key]
2369
2370
2371
2372
2373
        if safe_serialization:
            # Safetensors does not allow tensor aliasing.
            # We're going to remove aliases before saving
            ptrs = collections.defaultdict(list)
            for name, tensor in state_dict.items():
2374
2375
2376
2377
2378
2379
2380
                # Sometimes in the state_dict we have non-tensor objects.
                # e.g. in bitsandbytes we have some `str` objects in the state_dict
                if isinstance(tensor, torch.Tensor):
                    ptrs[id_tensor_storage(tensor)].append(name)
                else:
                    # In the non-tensor case, fall back to the pointer of the object itself
                    ptrs[id(tensor)].append(name)
2381
2382
2383
2384
2385
2386
2387

            # These are all the pointers of shared tensors.
            shared_ptrs = {ptr: names for ptr, names in ptrs.items() if len(names) > 1}
            warn_names = set()
            for names in shared_ptrs.values():
                # Removing the keys which are declared as known duplicates on
                # load. This allows to make sure the name which is kept is consistent.
Sylvain Gugger's avatar
Sylvain Gugger committed
2388
                if self._tied_weights_keys is not None:
2389
2390
                    found = 0
                    for name in sorted(names):
Sylvain Gugger's avatar
Sylvain Gugger committed
2391
                        matches_pattern = any(re.search(pat, name) for pat in self._tied_weights_keys)
2392
                        if matches_pattern and name in state_dict:
2393
2394
                            found += 1
                            if found < len(names):
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
                                del state_dict[name]

                # When not all duplicates have been cleaned, still remove those keys, but put a clear warning.
                # If the link between tensors was done at runtime then `from_pretrained` will not get
                # the key back leading to random tensor. A proper warning will be shown
                # during reload (if applicable), but since the file is not necessarily compatible with
                # the config, better show a proper warning.
                found = 0
                for name in names:
                    if name in state_dict:
                        found += 1
                        if found > 1:
                            del state_dict[name]
                            warn_names.add(name)
2409
2410
2411
2412
            if len(warn_names) > 0:
                logger.warning_once(
                    f"Removed shared tensor {warn_names} while saving. This should be OK, but check by verifying that you don't receive any warning while reloading",
                )
2413

Sylvain Gugger's avatar
Sylvain Gugger committed
2414
        # Shard the model if it is too big.
2415
2416
2417
2418
2419
        if not _hf_peft_config_loaded:
            weights_name = SAFE_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME
            weights_name = _add_variant(weights_name, variant)
        else:
            weights_name = ADAPTER_SAFE_WEIGHTS_NAME if safe_serialization else ADAPTER_WEIGHTS_NAME
2420

2421
        shards, index = shard_checkpoint(state_dict, max_shard_size=max_shard_size, weights_name=weights_name)
Sylvain Gugger's avatar
Sylvain Gugger committed
2422
2423
2424
2425

        # Clean the folder from a previous save
        for filename in os.listdir(save_directory):
            full_filename = os.path.join(save_directory, filename)
2426
2427
            # If we have a shard file that is not going to be replaced, we delete it, but only from the main process
            # in distributed settings to avoid race conditions.
2428
            weights_no_suffix = weights_name.replace(".bin", "").replace(".safetensors", "")
2429
2430
2431

            # make sure that file to be deleted matches format of sharded file, e.g. pytorch_model-00001-of-00005
            filename_no_suffix = filename.replace(".bin", "").replace(".safetensors", "")
2432
            reg = re.compile(r"(.*?)-\d{5}-of-\d{5}")
2433

2434
            if (
2435
                filename.startswith(weights_no_suffix)
2436
2437
2438
                and os.path.isfile(full_filename)
                and filename not in shards.keys()
                and is_main_process
2439
                and reg.fullmatch(filename_no_suffix) is not None
2440
            ):
Sylvain Gugger's avatar
Sylvain Gugger committed
2441
                os.remove(full_filename)
2442

Sylvain Gugger's avatar
Sylvain Gugger committed
2443
2444
        # Save the model
        for shard_file, shard in shards.items():
2445
2446
2447
2448
2449
2450
            if safe_serialization:
                # At some point we will need to deal better with save_function (used for TPU and other distributed
                # joyfulness), but for now this enough.
                safe_save_file(shard, os.path.join(save_directory, shard_file), metadata={"format": "pt"})
            else:
                save_function(shard, os.path.join(save_directory, shard_file))
Sylvain Gugger's avatar
Sylvain Gugger committed
2451
2452

        if index is None:
2453
            path_to_weights = os.path.join(save_directory, weights_name)
2454
            logger.info(f"Model weights saved in {path_to_weights}")
Sylvain Gugger's avatar
Sylvain Gugger committed
2455
        else:
2456
            save_index_file = SAFE_WEIGHTS_INDEX_NAME if safe_serialization else WEIGHTS_INDEX_NAME
2457
            save_index_file = os.path.join(save_directory, _add_variant(save_index_file, variant))
Sylvain Gugger's avatar
Sylvain Gugger committed
2458
2459
2460
2461
2462
2463
2464
2465
2466
            # Save the index as well
            with open(save_index_file, "w", encoding="utf-8") as f:
                content = json.dumps(index, indent=2, sort_keys=True) + "\n"
                f.write(content)
            logger.info(
                f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be "
                f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the "
                f"index located at {save_index_file}."
            )
2467

Sylvain Gugger's avatar
Sylvain Gugger committed
2468
        if push_to_hub:
2469
2470
2471
2472
2473
2474
2475
2476
            # Eventually create an empty model card
            model_card = create_and_tag_model_card(
                repo_id, self.model_tags, token=token, ignore_metadata_errors=ignore_metadata_errors
            )

            # Update model card if needed:
            model_card.save(os.path.join(save_directory, "README.md"))

2477
            self._upload_modified_files(
2478
2479
2480
2481
                save_directory,
                repo_id,
                files_timestamps,
                commit_message=commit_message,
2482
                token=token,
2483
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
2484

2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
    @wraps(PushToHubMixin.push_to_hub)
    def push_to_hub(self, *args, **kwargs):
        tags = self.model_tags if self.model_tags is not None else []

        tags_kwargs = kwargs.get("tags", [])
        if isinstance(tags_kwargs, str):
            tags_kwargs = [tags_kwargs]

        for tag in tags_kwargs:
            if tag not in tags:
                tags.append(tag)

        if tags:
            kwargs["tags"] = tags
        return super().push_to_hub(*args, **kwargs)

2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
    def get_memory_footprint(self, return_buffers=True):
        r"""
        Get the memory footprint of a model. This will return the memory footprint of the current model in bytes.
        Useful to benchmark the memory footprint of the current model and design some tests. Solution inspired from the
        PyTorch discussions: https://discuss.pytorch.org/t/gpu-memory-that-model-uses/56822/2

        Arguments:
            return_buffers (`bool`, *optional*, defaults to `True`):
                Whether to return the size of the buffer tensors in the computation of the memory footprint. Buffers
                are tensors that do not require gradients and not registered as parameters. E.g. mean and std in batch
                norm layers. Please see: https://discuss.pytorch.org/t/what-pytorch-means-by-buffers/120266/2
        """
        mem = sum([param.nelement() * param.element_size() for param in self.parameters()])
        if return_buffers:
            mem_bufs = sum([buf.nelement() * buf.element_size() for buf in self.buffers()])
            mem = mem + mem_bufs
        return mem

2519
    @wraps(torch.nn.Module.cuda)
2520
2521
    def cuda(self, *args, **kwargs):
        # Checks if the model has been loaded in 8-bit
Marc Sun's avatar
Marc Sun committed
2522
        if getattr(self, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES:
2523
2524
2525
2526
2527
2528
2529
            raise ValueError(
                "Calling `cuda()` is not supported for `4-bit` or `8-bit` quantized models. Please use the model as it is, since the"
                " model has already been set to the correct devices and casted to the correct `dtype`."
            )
        else:
            return super().cuda(*args, **kwargs)

2530
    @wraps(torch.nn.Module.to)
2531
2532
    def to(self, *args, **kwargs):
        # Checks if the model has been loaded in 8-bit
Marc Sun's avatar
Marc Sun committed
2533
        if getattr(self, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES:
2534
            raise ValueError(
Marc Sun's avatar
Marc Sun committed
2535
                "`.to` is not supported for `4-bit` or `8-bit` bitsandbytes models. Please use the model as it is, since the"
2536
2537
                " model has already been set to the correct devices and casted to the correct `dtype`."
            )
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
        elif getattr(self, "quantization_method", None) == QuantizationMethod.GPTQ:
            # For GPTQ models, we prevent users from casting the model to another dytpe to restrict unwanted behaviours.
            # the correct API should be to load the model with the desired dtype directly through `from_pretrained`.
            dtype_present_in_args = False

            if "dtype" not in kwargs:
                for arg in args:
                    if isinstance(arg, torch.dtype):
                        dtype_present_in_args = True
                        break
            else:
                dtype_present_in_args = True

            if dtype_present_in_args:
                raise ValueError(
                    "You cannot cast a GPTQ model in a new `dtype`. Make sure to load the model using `from_pretrained` using the desired"
                    " `dtype` by passing the correct `torch_dtype` argument."
                )
        return super().to(*args, **kwargs)
2557
2558

    def half(self, *args):
Marc Sun's avatar
Marc Sun committed
2559
        # Checks if the model is quantized
2560
        if getattr(self, "is_quantized", False):
2561
            raise ValueError(
Marc Sun's avatar
Marc Sun committed
2562
                "`.half()` is not supported for quantized model. Please use the model as it is, since the"
2563
2564
2565
2566
2567
2568
                " model has already been casted to the correct `dtype`."
            )
        else:
            return super().half(*args)

    def float(self, *args):
Marc Sun's avatar
Marc Sun committed
2569
        # Checks if the model is quantized
2570
        if getattr(self, "is_quantized", False):
2571
            raise ValueError(
Marc Sun's avatar
Marc Sun committed
2572
                "`.float()` is not supported for quantized model. Please use the model as it is, since the"
2573
2574
2575
2576
2577
                " model has already been casted to the correct `dtype`."
            )
        else:
            return super().float(*args)

2578
    @classmethod
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
    def from_pretrained(
        cls,
        pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
        *model_args,
        config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
        cache_dir: Optional[Union[str, os.PathLike]] = None,
        ignore_mismatched_sizes: bool = False,
        force_download: bool = False,
        local_files_only: bool = False,
        token: Optional[Union[str, bool]] = None,
        revision: str = "main",
        use_safetensors: bool = None,
        **kwargs,
    ):
2593
2594
        r"""
        Instantiate a pretrained pytorch model from a pre-trained model configuration.
2595

Sylvain Gugger's avatar
Sylvain Gugger committed
2596
2597
        The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
        the model, you should first set it back in training mode with `model.train()`.
2598

2599
        The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
2600
2601
        pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
        task.
2602

2603
        The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
2604
        weights are discarded.
2605

2606
        Parameters:
2607
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
2608
2609
                Can be either:

2610
                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
Sylvain Gugger's avatar
Sylvain Gugger committed
2611
2612
                      Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a
                      user or organization name, like `dbmdz/bert-base-german-cased`.
2613
2614
2615
                    - A path to a *directory* containing model weights saved using
                      [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
                    - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
Sylvain Gugger's avatar
Sylvain Gugger committed
2616
2617
2618
                      this case, `from_tf` should be set to `True` and a configuration object should be provided as
                      `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
                      PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
2619
                    - A path or url to a model folder containing a *flax checkpoint file* in *.msgpack* format (e.g,
Sylvain Gugger's avatar
Sylvain Gugger committed
2620
2621
                      `./flax_model/` containing `flax_model.msgpack`). In this case, `from_flax` should be set to
                      `True`.
2622
2623
2624
2625
2626
                    - `None` if you are both providing the configuration and state dictionary (resp. with keyword
                      arguments `config` and `state_dict`).
            model_args (sequence of positional arguments, *optional*):
                All remaining positional arguments will be passed to the underlying model's `__init__` method.
            config (`Union[PretrainedConfig, str, os.PathLike]`, *optional*):
2627
2628
                Can be either:

2629
2630
                    - an instance of a class derived from [`PretrainedConfig`],
                    - a string or path valid as input to [`~PretrainedConfig.from_pretrained`].
2631

2632
                Configuration for the model to use instead of an automatically loaded configuration. Configuration can
2633
2634
                be automatically loaded when:

2635
                    - The model is a model provided by the library (loaded with the *model id* string of a pretrained
2636
                      model).
Sylvain Gugger's avatar
Sylvain Gugger committed
2637
2638
                    - The model was saved using [`~PreTrainedModel.save_pretrained`] and is reloaded by supplying the
                      save directory.
2639
2640
2641
                    - The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a
                      configuration JSON file named *config.json* is found in the directory.
            state_dict (`Dict[str, torch.Tensor]`, *optional*):
2642
2643
2644
                A state dictionary to use instead of a state dictionary loaded from saved weights file.

                This option can be used if you want to create a model from a pretrained configuration but load your own
Sylvain Gugger's avatar
Sylvain Gugger committed
2645
                weights. In this case though, you should check if using [`~PreTrainedModel.save_pretrained`] and
2646
2647
                [`~PreTrainedModel.from_pretrained`] is not a simpler option.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
2648
2649
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
2650
            from_tf (`bool`, *optional*, defaults to `False`):
2651
                Load the model weights from a TensorFlow checkpoint save file (see docstring of
2652
2653
                `pretrained_model_name_or_path` argument).
            from_flax (`bool`, *optional*, defaults to `False`):
2654
                Load the model weights from a Flax checkpoint save file (see docstring of
2655
2656
                `pretrained_model_name_or_path` argument).
            ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`):
2657
2658
2659
                Whether or not to raise an error if some of the weights from the checkpoint do not have the same size
                as the weights of the model (if for instance, you are instantiating a model with 10 labels from a
                checkpoint with 3 labels).
2660
            force_download (`bool`, *optional*, defaults to `False`):
2661
2662
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
2663
            resume_download (`bool`, *optional*, defaults to `False`):
2664
2665
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
2666
            proxies (`Dict[str, str]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2667
2668
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
2669
            output_loading_info(`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2670
                Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
2671
            local_files_only(`bool`, *optional*, defaults to `False`):
Stas Bekman's avatar
Stas Bekman committed
2672
                Whether or not to only look at local files (i.e., do not try to download the model).
2673
            token (`str` or `bool`, *optional*):
2674
2675
                The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
                the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
2676
            revision (`str`, *optional*, defaults to `"main"`):
Julien Chaumond's avatar
Julien Chaumond committed
2677
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
2678
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
Julien Chaumond's avatar
Julien Chaumond committed
2679
                identifier allowed by git.
2680
2681
2682
2683
2684
2685
2686

                <Tip>

                To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>".

                </Tip>

2687
            mirror (`str`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2688
2689
2690
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information.
2691
            _fast_init(`bool`, *optional*, defaults to `True`):
2692
2693
                Whether or not to disable fast initialization.

2694
2695
                <Tip warning={true}>

Sylvain Gugger's avatar
Sylvain Gugger committed
2696
2697
2698
                One should only disable *_fast_init* to ensure backwards compatibility with `transformers.__version__ <
                4.6.0` for seeded model initialization. This argument will be removed at the next major version. See
                [pull request 11471](https://github.com/huggingface/transformers/pull/11471) for more information.
2699

2700
                </Tip>
2701

2702
2703
2704
            > Parameters for big model inference

            low_cpu_mem_usage(`bool`, *optional*):
2705
2706
2707
                Tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                This is an experimental feature and a subject to change at any moment.
            torch_dtype (`str` or `torch.dtype`, *optional*):
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
                Override the default `torch.dtype` and load the model under a specific `dtype`. The different options
                are:

                1. `torch.float16` or `torch.bfloat16` or `torch.float`: load in a specified
                  `dtype`, ignoring the model's `config.torch_dtype` if one exists. If not specified
                  - the model will get loaded in `torch.float` (fp32).

                2. `"auto"` - A `torch_dtype` entry in the `config.json` file of the model will be
                  attempted to be used. If this entry isn't found then next check the `dtype` of the first weight in
                  the checkpoint that's of a floating point type and use that as `dtype`. This will load the model
                  using the `dtype` it was saved in at the end of the training. It can't be used as an indicator of how
                  the model was trained. Since it could be trained in one of half precision dtypes, but saved in fp32.

                <Tip>

                For some models the `dtype` they were trained in is unknown - you may try to check the model's paper or
                reach out to the authors and ask them to add this information to the model's card and to insert the
                `torch_dtype` entry in `config.json` on the hub.

                </Tip>

2729
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]` or `int` or `torch.device`, *optional*):
2730
2731
                A map that specifies where each submodule should go. It doesn't need to be refined to each
                parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the
2732
2733
2734
                same device. If we only pass the device (*e.g.*, `"cpu"`, `"cuda:1"`, `"mps"`, or a GPU ordinal rank
                like `1`) on which the model will be allocated, the device map will map the entire model to this
                device. Passing `device_map = 0` means put the whole model on GPU 0.
2735

2736
2737
                To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For
                more information about each option see [designing a device
Patrick von Platen's avatar
Patrick von Platen committed
2738
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
2739
2740
2741
            max_memory (`Dict`, *optional*):
                A dictionary device identifier to maximum memory. Will default to the maximum memory available for each
                GPU and the available CPU RAM if unset.
2742
2743
            offload_folder (`str` or `os.PathLike`, *optional*):
                If the `device_map` contains any value `"disk"`, the folder where we will offload weights.
2744
            offload_state_dict (`bool`, *optional*):
2745
                If `True`, will temporarily offload the CPU state dict to the hard drive to avoid getting out of CPU
2746
2747
                RAM if the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to
                `True` when there is some disk offload.
Marc Sun's avatar
Marc Sun committed
2748
2749
            quantization_config (`Union[QuantizationConfigMixin,Dict]`, *optional*):
                A dictionary of configuration parameters or a QuantizationConfigMixin object for quantization (e.g
2750
2751
2752
2753
                bitsandbytes, gptq). There may be other quantization-related kwargs, including `load_in_4bit` and
                `load_in_8bit`, which are parsed by QuantizationConfigParser. Supported only for bitsandbytes
                quantizations and not preferred. consider inserting all such arguments into quantization_config
                instead.
2754
2755
2756
            subfolder (`str`, *optional*, defaults to `""`):
                In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
                specify the folder name here.
2757
2758
2759
            variant (`str`, *optional*):
                If specified load weights from `variant` filename, *e.g.* pytorch_model.<variant>.bin. `variant` is
                ignored when using `from_tf` or `from_flax`.
2760
2761
2762
            use_safetensors (`bool`, *optional*, defaults to `None`):
                Whether or not to use `safetensors` checkpoints. Defaults to `None`. If not specified and `safetensors`
                is not installed, it will be set to `False`.
2763

2764
            kwargs (remaining dictionary of keyword arguments, *optional*):
2765
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
2766
                `output_attentions=True`). Behaves differently depending on whether a `config` is provided or
2767
2768
                automatically loaded:

2769
2770
                    - If a configuration is provided with `config`, `**kwargs` will be directly passed to the
                      underlying model's `__init__` method (we assume all relevant updates to the configuration have
2771
                      already been done)
2772
                    - If a configuration is not provided, `kwargs` will be first passed to the configuration class
Sylvain Gugger's avatar
Sylvain Gugger committed
2773
2774
2775
2776
                      initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that
                      corresponds to a configuration attribute will be used to override said attribute with the
                      supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute
                      will be passed to the underlying model's `__init__` function.
2777
2778
2779

        <Tip>

Sylvain Gugger's avatar
Sylvain Gugger committed
2780
2781
        Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to
        use this method in a firewalled environment.
2782
2783
2784
2785
2786
2787
2788

        </Tip>

        Examples:

        ```python
        >>> from transformers import BertConfig, BertModel
Sylvain Gugger's avatar
Sylvain Gugger committed
2789

2790
        >>> # Download model and configuration from huggingface.co and cache.
Sylvain Gugger's avatar
Sylvain Gugger committed
2791
        >>> model = BertModel.from_pretrained("bert-base-uncased")
2792
        >>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable).
Sylvain Gugger's avatar
Sylvain Gugger committed
2793
        >>> model = BertModel.from_pretrained("./test/saved_model/")
2794
        >>> # Update configuration during loading.
Sylvain Gugger's avatar
Sylvain Gugger committed
2795
        >>> model = BertModel.from_pretrained("bert-base-uncased", output_attentions=True)
2796
2797
        >>> assert model.config.output_attentions == True
        >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable).
Sylvain Gugger's avatar
Sylvain Gugger committed
2798
2799
        >>> config = BertConfig.from_json_file("./tf_model/my_tf_model_config.json")
        >>> model = BertModel.from_pretrained("./tf_model/my_tf_checkpoint.ckpt.index", from_tf=True, config=config)
2800
        >>> # Loading from a Flax checkpoint file instead of a PyTorch model (slower)
Sylvain Gugger's avatar
Sylvain Gugger committed
2801
        >>> model = BertModel.from_pretrained("bert-base-uncased", from_flax=True)
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
        ```

        * `low_cpu_mem_usage` algorithm:

        This is an experimental function that loads the model using ~1x model size CPU memory

        Here is how it works:

        1. save which state_dict keys we have
        2. drop state_dict before the model is created, since the latter takes 1x model size CPU memory
        3. after the model has been instantiated switch to the meta device all params/buffers that
        are going to be replaced from the loaded state_dict
        4. load state_dict 2nd time
        5. replace the params/buffers from the state_dict

        Currently, it can't handle deepspeed ZeRO stage 3 and ignores loading errors

        """
2820
2821
        state_dict = kwargs.pop("state_dict", None)
        from_tf = kwargs.pop("from_tf", False)
2822
        from_flax = kwargs.pop("from_flax", False)
2823
2824
2825
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        output_loading_info = kwargs.pop("output_loading_info", False)
2826
        use_auth_token = kwargs.pop("use_auth_token", None)
2827
        trust_remote_code = kwargs.pop("trust_remote_code", None)
Sylvain Gugger's avatar
Sylvain Gugger committed
2828
        _ = kwargs.pop("mirror", None)
2829
2830
        from_pipeline = kwargs.pop("_from_pipeline", None)
        from_auto_class = kwargs.pop("_from_auto", False)
2831
        _fast_init = kwargs.pop("_fast_init", True)
2832
        torch_dtype = kwargs.pop("torch_dtype", None)
2833
2834
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", None)
        device_map = kwargs.pop("device_map", None)
2835
        max_memory = kwargs.pop("max_memory", None)
2836
        offload_folder = kwargs.pop("offload_folder", None)
2837
2838
        offload_state_dict = kwargs.pop("offload_state_dict", False)
        load_in_8bit = kwargs.pop("load_in_8bit", False)
2839
        load_in_4bit = kwargs.pop("load_in_4bit", False)
2840
        quantization_config = kwargs.pop("quantization_config", None)
2841
        subfolder = kwargs.pop("subfolder", "")
2842
        commit_hash = kwargs.pop("_commit_hash", None)
2843
        variant = kwargs.pop("variant", None)
2844
        adapter_kwargs = kwargs.pop("adapter_kwargs", {})
2845
        adapter_name = kwargs.pop("adapter_name", "default")
2846
        use_flash_attention_2 = kwargs.pop("use_flash_attention_2", False)
2847

2848
2849
2850
        if is_fsdp_enabled():
            low_cpu_mem_usage = True

2851
2852
        if use_auth_token is not None:
            warnings.warn(
2853
2854
                "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
                FutureWarning,
2855
2856
2857
2858
2859
2860
2861
            )
            if token is not None:
                raise ValueError(
                    "`token` and `use_auth_token` are both specified. Please set only the argument `token`."
                )
            token = use_auth_token

2862
        if token is not None and adapter_kwargs is not None and "token" not in adapter_kwargs:
2863
2864
            adapter_kwargs["token"] = token

2865
2866
        if use_safetensors is None and not is_safetensors_available():
            use_safetensors = False
2867
2868
2869
2870
2871
        if trust_remote_code is True:
            logger.warning(
                "The argument `trust_remote_code` is to be used with Auto classes. It has no effect here and is"
                " ignored."
            )
2872

2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
        if commit_hash is None:
            if not isinstance(config, PretrainedConfig):
                # We make a call to the config file first (which may be absent) to get the commit hash as soon as possible
                resolved_config_file = cached_file(
                    pretrained_model_name_or_path,
                    CONFIG_NAME,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    token=token,
                    revision=revision,
                    subfolder=subfolder,
2887
                    _raise_exceptions_for_gated_repo=False,
2888
2889
2890
2891
2892
2893
2894
                    _raise_exceptions_for_missing_entries=False,
                    _raise_exceptions_for_connection_errors=False,
                )
                commit_hash = extract_commit_hash(resolved_config_file, commit_hash)
            else:
                commit_hash = getattr(config, "_commit_hash", None)

2895
        if is_peft_available():
2896
2897
            _adapter_model_path = adapter_kwargs.pop("_adapter_model_path", None)

2898
2899
2900
2901
2902
2903
2904
2905
2906
            if _adapter_model_path is None:
                _adapter_model_path = find_adapter_config_file(
                    pretrained_model_name_or_path,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    _commit_hash=commit_hash,
2907
                    **adapter_kwargs,
2908
2909
                )
            if _adapter_model_path is not None and os.path.isfile(_adapter_model_path):
2910
                with open(_adapter_model_path, "r", encoding="utf-8") as f:
2911
                    _adapter_model_path = pretrained_model_name_or_path
2912
                    pretrained_model_name_or_path = json.load(f)["base_model_name_or_path"]
2913
2914
        else:
            _adapter_model_path = None
2915

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
        # change device_map into a map if we passed an int, a str or a torch.device
        if isinstance(device_map, torch.device):
            device_map = {"": device_map}
        elif isinstance(device_map, str) and device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
            try:
                device_map = {"": torch.device(device_map)}
            except RuntimeError:
                raise ValueError(
                    "When passing device_map as a string, the value needs to be a device name (e.g. cpu, cuda:0) or "
                    f"'auto', 'balanced', 'balanced_low_0', 'sequential' but found {device_map}."
                )
        elif isinstance(device_map, int):
            if device_map < 0:
                raise ValueError(
                    "You can't pass device_map as a negative int. If you want to put the model on the cpu, pass device_map = 'cpu' "
                )
            else:
                device_map = {"": device_map}

2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
        if device_map is not None:
            if low_cpu_mem_usage is None:
                low_cpu_mem_usage = True
            elif not low_cpu_mem_usage:
                raise ValueError("Passing along a `device_map` requires `low_cpu_mem_usage=True`")

        if low_cpu_mem_usage:
            if is_deepspeed_zero3_enabled():
                raise ValueError(
                    "DeepSpeed Zero-3 is not compatible with `low_cpu_mem_usage=True` or with passing a `device_map`."
                )
            elif not is_accelerate_available():
                raise ImportError(
                    "Using `low_cpu_mem_usage=True` or a `device_map` requires Accelerate: `pip install accelerate`"
                )
2950

2951
2952
2953
        # handling bnb config from kwargs, remove after `load_in_{4/8}bit` deprecation.
        if load_in_4bit or load_in_8bit:
            if quantization_config is not None:
2954
                raise ValueError(
2955
                    "You can't pass `load_in_4bit`or `load_in_8bit` as a kwarg when passing "
2956
2957
2958
                    "`quantization_config` argument at the same time."
                )

2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
            # preparing BitsAndBytesConfig from kwargs
            config_dict = {k: v for k, v in kwargs.items() if k in inspect.signature(BitsAndBytesConfig).parameters}
            config_dict = {**config_dict, "load_in_4bit": load_in_4bit, "load_in_8bit": load_in_8bit}
            quantization_config, kwargs = BitsAndBytesConfig.from_dict(
                config_dict=config_dict, return_unused_kwargs=True, **kwargs
            )
            logger.warning(
                "The `load_in_4bit` and `load_in_8bit` arguments are deprecated and will be removed in the future versions. "
                "Please, pass a `BitsAndBytesConfig` object in `quantization_config` argument instead."
            )
2969

2970
        from_pt = not (from_tf | from_flax)
2971

2972
2973
2974
        user_agent = {"file_type": "model", "framework": "pytorch", "from_auto_class": from_auto_class}
        if from_pipeline is not None:
            user_agent["using_pipeline"] = from_pipeline
thomwolf's avatar
thomwolf committed
2975

2976
2977
2978
2979
        if is_offline_mode() and not local_files_only:
            logger.info("Offline mode: forcing local_files_only=True")
            local_files_only = True

2980
2981
2982
        # Load config if we don't provide a configuration
        if not isinstance(config, PretrainedConfig):
            config_path = config if config is not None else pretrained_model_name_or_path
2983
            config, model_kwargs = cls.config_class.from_pretrained(
2984
2985
2986
                config_path,
                cache_dir=cache_dir,
                return_unused_kwargs=True,
2987
                force_download=force_download,
2988
                resume_download=resume_download,
2989
                proxies=proxies,
2990
                local_files_only=local_files_only,
2991
                token=token,
Julien Chaumond's avatar
Julien Chaumond committed
2992
                revision=revision,
2993
                subfolder=subfolder,
2994
2995
                _from_auto=from_auto_class,
                _from_pipeline=from_pipeline,
2996
                **kwargs,
2997
2998
            )
        else:
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
            # In case one passes a config to `from_pretrained` + "attn_implementation"
            # override the `_attn_implementation` attribute to `attn_implementation` of the kwargs
            # Please see: https://github.com/huggingface/transformers/issues/28038

            # Overwrite `config._attn_implementation` by the one from the kwargs --> in auto-factory
            # we pop attn_implementation from the kwargs but this handles the case where users
            # passes manually the config to `from_pretrained`.
            config = copy.deepcopy(config)

            kwarg_attn_imp = kwargs.pop("attn_implementation", None)
            if kwarg_attn_imp is not None and config._attn_implementation != kwarg_attn_imp:
                config._attn_implementation = kwarg_attn_imp
3011
            model_kwargs = kwargs
3012

3013
3014
3015
3016
3017
        pre_quantized = getattr(config, "quantization_config", None) is not None
        if pre_quantized or quantization_config is not None:
            if pre_quantized:
                config.quantization_config = AutoHfQuantizer.merge_quantization_configs(
                    config.quantization_config, quantization_config
Marc Sun's avatar
Marc Sun committed
3018
3019
3020
                )
            else:
                config.quantization_config = quantization_config
3021
3022
3023
            hf_quantizer = AutoHfQuantizer.from_config(config.quantization_config, pre_quantized=pre_quantized)
        else:
            hf_quantizer = None
3024

3025
3026
3027
3028
3029
3030
        if hf_quantizer is not None:
            hf_quantizer.validate_environment(
                torch_dtype=torch_dtype, from_tf=from_tf, from_flax=from_flax, device_map=device_map
            )
            torch_dtype = hf_quantizer.update_torch_dtype(torch_dtype)
            device_map = hf_quantizer.update_device_map(device_map)
3031
3032
3033
3034

            # Force-set to `True` for more mem efficiency
            if low_cpu_mem_usage is None:
                low_cpu_mem_usage = True
3035
                logger.warning("`low_cpu_mem_usage` was None, now set to True since model is quantized.")
3036

Sylvain Gugger's avatar
Sylvain Gugger committed
3037
3038
3039
3040
        # This variable will flag if we're loading a sharded checkpoint. In this case the archive file is just the
        # index of the files.
        is_sharded = False
        sharded_metadata = None
thomwolf's avatar
thomwolf committed
3041
        # Load model
Yih-Dar's avatar
Yih-Dar committed
3042
3043
        loading_info = None

3044
3045
3046
3047
        # Keep in fp32 modules
        keep_in_fp32_modules = None
        use_keep_in_fp32_modules = False

thomwolf's avatar
thomwolf committed
3048
        if pretrained_model_name_or_path is not None:
3049
            pretrained_model_name_or_path = str(pretrained_model_name_or_path)
3050
3051
            is_local = os.path.isdir(pretrained_model_name_or_path)
            if is_local:
3052
3053
3054
                if from_tf and os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index")
                ):
3055
                    # Load from a TF 1.0 checkpoint in priority if from_tf
3056
3057
3058
3059
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index")
                elif from_tf and os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME)
                ):
3060
                    # Load from a TF 2.0 checkpoint in priority if from_tf
3061
3062
3063
3064
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME)
                elif from_flax and os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)
                ):
3065
                    # Load from a Flax checkpoint in priority if from_flax
3066
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)
3067
                elif use_safetensors is not False and os.path.isfile(
3068
                    os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_NAME, variant))
3069
3070
                ):
                    # Load from a safetensors checkpoint
3071
3072
3073
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_NAME, variant)
                    )
3074
                elif use_safetensors is not False and os.path.isfile(
3075
3076
3077
                    os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)
                    )
3078
3079
                ):
                    # Load from a sharded safetensors checkpoint
3080
3081
3082
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)
                    )
3083
                    is_sharded = True
3084
3085
3086
                elif os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_NAME, variant))
                ):
thomwolf's avatar
thomwolf committed
3087
                    # Load from a PyTorch checkpoint
3088
3089
3090
3091
3092
3093
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_NAME, variant)
                    )
                elif os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_INDEX_NAME, variant))
                ):
Sylvain Gugger's avatar
Sylvain Gugger committed
3094
                    # Load from a sharded PyTorch checkpoint
3095
3096
3097
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_INDEX_NAME, variant)
                    )
Sylvain Gugger's avatar
Sylvain Gugger committed
3098
                    is_sharded = True
3099
3100
                # At this stage we don't have a weight file so we will raise an error.
                elif os.path.isfile(
3101
3102
                    os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index")
                ) or os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME)):
3103
                    raise EnvironmentError(
3104
3105
3106
                        f"Error no file named {_add_variant(WEIGHTS_NAME, variant)} found in directory"
                        f" {pretrained_model_name_or_path} but there is a file for TensorFlow weights. Use"
                        " `from_tf=True` to load this model from those weights."
3107
                    )
3108
                elif os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)):
3109
                    raise EnvironmentError(
3110
3111
3112
                        f"Error no file named {_add_variant(WEIGHTS_NAME, variant)} found in directory"
                        f" {pretrained_model_name_or_path} but there is a file for Flax weights. Use `from_flax=True`"
                        " to load this model from those weights."
3113
                    )
3114
3115
3116
3117
3118
                elif use_safetensors:
                    raise EnvironmentError(
                        f"Error no file named {_add_variant(SAFE_WEIGHTS_NAME, variant)} found in directory"
                        f" {pretrained_model_name_or_path}."
                    )
thomwolf's avatar
thomwolf committed
3119
                else:
3120
                    raise EnvironmentError(
3121
3122
3123
                        f"Error no file named {_add_variant(WEIGHTS_NAME, variant)}, {TF2_WEIGHTS_NAME},"
                        f" {TF_WEIGHTS_NAME + '.index'} or {FLAX_WEIGHTS_NAME} found in directory"
                        f" {pretrained_model_name_or_path}."
3124
                    )
3125
            elif os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path)):
3126
                archive_file = pretrained_model_name_or_path
3127
                is_local = True
3128
            elif os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path + ".index")):
3129
3130
3131
3132
3133
                if not from_tf:
                    raise ValueError(
                        f"We found a TensorFlow checkpoint at {pretrained_model_name_or_path + '.index'}, please set "
                        "from_tf to True to load from this checkpoint."
                    )
3134
                archive_file = os.path.join(subfolder, pretrained_model_name_or_path + ".index")
3135
                is_local = True
3136
            elif is_remote_url(pretrained_model_name_or_path):
3137
                filename = pretrained_model_name_or_path
3138
                resolved_archive_file = download_url(pretrained_model_name_or_path)
3139
            else:
3140
3141
3142
3143
3144
                # set correct filename
                if from_tf:
                    filename = TF2_WEIGHTS_NAME
                elif from_flax:
                    filename = FLAX_WEIGHTS_NAME
3145
                elif use_safetensors is not False:
3146
                    filename = _add_variant(SAFE_WEIGHTS_NAME, variant)
3147
                else:
3148
                    filename = _add_variant(WEIGHTS_NAME, variant)
3149

3150
3151
                try:
                    # Load from URL or cache if already cached
3152
3153
3154
3155
3156
3157
                    cached_file_kwargs = {
                        "cache_dir": cache_dir,
                        "force_download": force_download,
                        "proxies": proxies,
                        "resume_download": resume_download,
                        "local_files_only": local_files_only,
3158
                        "token": token,
3159
3160
3161
                        "user_agent": user_agent,
                        "revision": revision,
                        "subfolder": subfolder,
3162
                        "_raise_exceptions_for_gated_repo": False,
3163
3164
3165
                        "_raise_exceptions_for_missing_entries": False,
                        "_commit_hash": commit_hash,
                    }
3166
                    resolved_archive_file = cached_file(pretrained_model_name_or_path, filename, **cached_file_kwargs)
3167

3168
                    # Since we set _raise_exceptions_for_missing_entries=False, we don't get an exception but a None
3169
                    # result when internet is up, the repo and revision exist, but the file does not.
3170
                    if resolved_archive_file is None and filename == _add_variant(SAFE_WEIGHTS_NAME, variant):
3171
3172
                        # Maybe the checkpoint is sharded, we try to grab the index name in this case.
                        resolved_archive_file = cached_file(
3173
3174
3175
                            pretrained_model_name_or_path,
                            _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant),
                            **cached_file_kwargs,
3176
3177
3178
                        )
                        if resolved_archive_file is not None:
                            is_sharded = True
3179
                        elif use_safetensors:
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
                            if revision == "main":
                                resolved_archive_file, revision, is_sharded = auto_conversion(
                                    pretrained_model_name_or_path, **cached_file_kwargs
                                )
                            cached_file_kwargs["revision"] = revision
                            if resolved_archive_file is None:
                                raise EnvironmentError(
                                    f"{pretrained_model_name_or_path} does not appear to have a file named"
                                    f" {_add_variant(SAFE_WEIGHTS_NAME, variant)} or {_add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)} "
                                    "and thus cannot be loaded with `safetensors`. Please make sure that the model has "
                                    "been saved with `safe_serialization=True` or do not set `use_safetensors=True`."
                                )
3192
3193
                        else:
                            # This repo has no safetensors file of any kind, we switch to PyTorch.
3194
                            filename = _add_variant(WEIGHTS_NAME, variant)
3195
                            resolved_archive_file = cached_file(
3196
                                pretrained_model_name_or_path, filename, **cached_file_kwargs
3197
                            )
3198
                    if resolved_archive_file is None and filename == _add_variant(WEIGHTS_NAME, variant):
Sylvain Gugger's avatar
Sylvain Gugger committed
3199
                        # Maybe the checkpoint is sharded, we try to grab the index name in this case.
3200
                        resolved_archive_file = cached_file(
3201
3202
3203
                            pretrained_model_name_or_path,
                            _add_variant(WEIGHTS_INDEX_NAME, variant),
                            **cached_file_kwargs,
3204
                        )
3205
3206
3207
                        if resolved_archive_file is not None:
                            is_sharded = True
                    if resolved_archive_file is None:
Sylvain Gugger's avatar
Sylvain Gugger committed
3208
3209
3210
3211
3212
                        # Otherwise, maybe there is a TF or Flax model file.  We try those to give a helpful error
                        # message.
                        has_file_kwargs = {
                            "revision": revision,
                            "proxies": proxies,
3213
                            "token": token,
Sylvain Gugger's avatar
Sylvain Gugger committed
3214
3215
3216
                        }
                        if has_file(pretrained_model_name_or_path, TF2_WEIGHTS_NAME, **has_file_kwargs):
                            raise EnvironmentError(
Sylvain Gugger's avatar
Sylvain Gugger committed
3217
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
3218
3219
                                f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file for TensorFlow weights."
                                " Use `from_tf=True` to load this model from those weights."
Sylvain Gugger's avatar
Sylvain Gugger committed
3220
3221
3222
                            )
                        elif has_file(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME, **has_file_kwargs):
                            raise EnvironmentError(
Sylvain Gugger's avatar
Sylvain Gugger committed
3223
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
                                f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file for Flax weights. Use"
                                " `from_flax=True` to load this model from those weights."
                            )
                        elif variant is not None and has_file(
                            pretrained_model_name_or_path, WEIGHTS_NAME, **has_file_kwargs
                        ):
                            raise EnvironmentError(
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
                                f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file without the variant"
                                f" {variant}. Use `variant=None` to load this model from those weights."
Sylvain Gugger's avatar
Sylvain Gugger committed
3234
3235
3236
                            )
                        else:
                            raise EnvironmentError(
3237
3238
3239
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
                                f" {_add_variant(WEIGHTS_NAME, variant)}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or"
                                f" {FLAX_WEIGHTS_NAME}."
Sylvain Gugger's avatar
Sylvain Gugger committed
3240
                            )
3241
3242
3243
3244
                except EnvironmentError:
                    # Raise any environment error raise by `cached_file`. It will have a helpful error message adapted
                    # to the original exception.
                    raise
3245
                except Exception as e:
3246
                    # For any other exception, we throw a generic error.
3247
                    raise EnvironmentError(
3248
3249
3250
                        f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it"
                        " from 'https://huggingface.co/models', make sure you don't have a local directory with the"
                        f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a"
3251
3252
                        f" directory containing a file named {_add_variant(WEIGHTS_NAME, variant)},"
                        f" {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or {FLAX_WEIGHTS_NAME}."
3253
                    ) from e
3254

3255
            if is_local:
3256
                logger.info(f"loading weights file {archive_file}")
3257
                resolved_archive_file = archive_file
3258
            else:
3259
                logger.info(f"loading weights file {filename} from cache at {resolved_archive_file}")
3260
        else:
thomwolf's avatar
thomwolf committed
3261
            resolved_archive_file = None
3262

Sylvain Gugger's avatar
Sylvain Gugger committed
3263
3264
        # We'll need to download and cache each checkpoint shard if the checkpoint is sharded.
        if is_sharded:
3265
            # rsolved_archive_file becomes a list of files that point to the different checkpoint shards in this case.
Sylvain Gugger's avatar
Sylvain Gugger committed
3266
3267
3268
3269
3270
3271
3272
3273
            resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(
                pretrained_model_name_or_path,
                resolved_archive_file,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                resume_download=resume_download,
                local_files_only=local_files_only,
3274
                token=token,
Sylvain Gugger's avatar
Sylvain Gugger committed
3275
3276
                user_agent=user_agent,
                revision=revision,
3277
                subfolder=subfolder,
3278
                _commit_hash=commit_hash,
Sylvain Gugger's avatar
Sylvain Gugger committed
3279
3280
            )

3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
        if (
            is_safetensors_available()
            and isinstance(resolved_archive_file, str)
            and resolved_archive_file.endswith(".safetensors")
        ):
            with safe_open(resolved_archive_file, framework="pt") as f:
                metadata = f.metadata()

            if metadata.get("format") == "pt":
                pass
            elif metadata.get("format") == "tf":
                from_tf = True
                logger.info("A TensorFlow safetensors file is being loaded in a PyTorch model.")
            elif metadata.get("format") == "flax":
                from_flax = True
                logger.info("A Flax safetensors file is being loaded in a PyTorch model.")
            else:
                raise ValueError(
                    f"Incompatible safetensors file. File metadata is not ['pt', 'tf', 'flax'] but {metadata.get('format')}"
                )

        from_pt = not (from_tf | from_flax)

3304
3305
        # load pt weights early so that we know which dtype to init the model under
        if from_pt:
3306
            if not is_sharded and state_dict is None:
Sylvain Gugger's avatar
Sylvain Gugger committed
3307
3308
                # Time to load the checkpoint
                state_dict = load_state_dict(resolved_archive_file)
3309

3310
3311
3312
            # set dtype to instantiate the model under:
            # 1. If torch_dtype is not None, we use that dtype
            # 2. If torch_dtype is "auto", we auto-detect dtype from the loaded state_dict, by checking its first
3313
            #    weights entry that is of a floating type - we assume all floating dtype weights are of the same dtype
3314
3315
            # we also may have config.torch_dtype available, but we won't rely on it till v5
            dtype_orig = None
3316

3317
3318
3319
            if torch_dtype is not None:
                if isinstance(torch_dtype, str):
                    if torch_dtype == "auto":
3320
3321
3322
                        if hasattr(config, "torch_dtype") and config.torch_dtype is not None:
                            torch_dtype = config.torch_dtype
                            logger.info(f"Will use torch_dtype={torch_dtype} as defined in model's config object")
Sylvain Gugger's avatar
Sylvain Gugger committed
3323
                        else:
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
                            if is_sharded and "dtype" in sharded_metadata:
                                torch_dtype = sharded_metadata["dtype"]
                            elif not is_sharded:
                                torch_dtype = get_state_dict_dtype(state_dict)
                            else:
                                one_state_dict = load_state_dict(resolved_archive_file[0])
                                torch_dtype = get_state_dict_dtype(one_state_dict)
                                del one_state_dict  # free CPU memory
                            logger.info(
                                "Since the `torch_dtype` attribute can't be found in model's config object, "
                                "will use torch_dtype={torch_dtype} as derived from model's weights"
                            )
3336
3337
                    else:
                        raise ValueError(
3338
                            f'`torch_dtype` can be either `torch.dtype` or `"auto"`, but received {torch_dtype}'
3339
3340
3341
                        )
                dtype_orig = cls._set_default_torch_dtype(torch_dtype)

3342
            # Check if `_keep_in_fp32_modules` is not None
3343
            use_keep_in_fp32_modules = (cls._keep_in_fp32_modules is not None) and (
3344
                (torch_dtype == torch.float16) or hasattr(hf_quantizer, "use_keep_in_fp32_modules")
3345
3346
            )

3347
3348
3349
            if is_sharded:
                loaded_state_dict_keys = sharded_metadata["all_checkpoint_keys"]
            else:
3350
                loaded_state_dict_keys = list(state_dict.keys())
3351
3352
3353
3354
            if low_cpu_mem_usage or (use_keep_in_fp32_modules and is_accelerate_available()):
                # In case some weights need to be kept in float32 and accelerate is not installed,
                # we later on want to take the path where state_dict is not None, that is the one
                # that do not require accelerate.
3355
                state_dict = None
3356

3357
3358
        config.name_or_path = pretrained_model_name_or_path

3359
        # Instantiate model.
3360
3361
        init_contexts = [no_init_weights(_enable=_fast_init)]

3362
3363
3364
3365
        if is_deepspeed_zero3_enabled():
            import deepspeed

            logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
3366
            init_contexts = [deepspeed.zero.Init(config_dict_or_path=deepspeed_config())] + init_contexts
3367
        elif low_cpu_mem_usage:
3368
3369
            init_contexts.append(init_empty_weights())

3370
3371
3372
3373
        config = copy.deepcopy(config)  # We do not want to modify the config inplace in from_pretrained.
        config = cls._autoset_attn_implementation(
            config, use_flash_attention_2=use_flash_attention_2, torch_dtype=torch_dtype, device_map=device_map
        )
3374

3375
        with ContextManagers(init_contexts):
3376
            # Let's make sure we don't run the init function of buffer modules
3377
3378
            model = cls(config, *model_args, **model_kwargs)

3379
3380
3381
        # make sure we use the model's config since the __init__ call might have copied it
        config = model.config

3382
3383
        # Check first if we are `from_pt`
        if use_keep_in_fp32_modules:
3384
            if is_accelerate_available() and not is_deepspeed_zero3_enabled():
3385
                low_cpu_mem_usage = True
3386
3387
3388
3389
            keep_in_fp32_modules = model._keep_in_fp32_modules
        else:
            keep_in_fp32_modules = []

3390
3391
3392
        if hf_quantizer is not None:
            hf_quantizer.preprocess_model(
                model=model, device_map=device_map, keep_in_fp32_modules=keep_in_fp32_modules
3393
            )
3394

3395
3396
3397
3398
3399
3400
            # We store the original dtype for quantized models as we cannot easily retrieve it
            # once the weights have been quantized
            # Note that once you have loaded a quantized model, you can't change its dtype so this will
            # remain a single source of truth
            config._pre_quantization_dtype = torch_dtype

3401
        if isinstance(device_map, str):
3402
            special_dtypes = {}
3403
3404
3405

            if hf_quantizer is not None:
                special_dtypes.update(hf_quantizer.get_special_dtypes_update(model, torch_dtype))
3406
3407
3408
3409
3410
3411
3412
3413
3414

            special_dtypes.update(
                {
                    name: torch.float32
                    for name, _ in model.named_parameters()
                    if any(m in name for m in keep_in_fp32_modules)
                }
            )

3415
3416
            target_dtype = torch_dtype

3417
3418
            if hf_quantizer is not None:
                target_dtype = hf_quantizer.adjust_target_dtype(target_dtype)
3419

Marc Sun's avatar
Marc Sun committed
3420
            no_split_modules = model._get_no_split_modules(device_map)
3421
3422
3423
3424
3425
            if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
                raise ValueError(
                    "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or "
                    "'sequential'."
                )
3426

3427
            device_map_kwargs = {"no_split_module_classes": no_split_modules}
3428
            if "special_dtypes" in inspect.signature(infer_auto_device_map).parameters:
3429
                device_map_kwargs["special_dtypes"] = special_dtypes
3430
            elif len(special_dtypes) > 0:
3431
                logger.warning(
3432
3433
3434
                    "This model has some weights that should be kept in higher precision, you need to upgrade "
                    "`accelerate` to properly deal with them (`pip install --upgrade accelerate`)."
                )
3435
            if device_map != "sequential":
3436
3437
                max_memory = get_balanced_memory(
                    model,
3438
                    dtype=target_dtype,
3439
                    low_zero=(device_map == "balanced_low_0"),
3440
                    max_memory=max_memory,
3441
                    **device_map_kwargs,
3442
                )
Marc Sun's avatar
Marc Sun committed
3443
3444
            else:
                max_memory = get_max_memory(max_memory)
3445
3446
            if hf_quantizer is not None:
                max_memory = hf_quantizer.adjust_max_memory(max_memory)
3447
            device_map_kwargs["max_memory"] = max_memory
Marc Sun's avatar
Marc Sun committed
3448

3449
3450
            # Make sure tied weights are tied before creating the device map.
            model.tie_weights()
3451
            device_map = infer_auto_device_map(model, dtype=target_dtype, **device_map_kwargs)
3452

3453
3454
            if hf_quantizer is not None:
                hf_quantizer.validate_environment(device_map=device_map)
3455

3456
3457
3458
3459
        elif device_map is not None:
            model.tie_weights()
            tied_params = find_tied_parameters(model)
            # check if we don't have tied param in different devices
3460
            check_tied_parameters_on_same_device(tied_params, device_map)
3461

3462
        if from_tf:
3463
            if resolved_archive_file.endswith(".index"):
3464
3465
3466
3467
3468
                # Load from a TensorFlow 1.X checkpoint - provided by original authors
                model = cls.load_tf_weights(model, config, resolved_archive_file[:-6])  # Remove the '.index'
            else:
                # Load from our TensorFlow 2.0 checkpoints
                try:
3469
                    from .modeling_tf_pytorch_utils import load_tf2_checkpoint_in_pytorch_model
3470

Yih-Dar's avatar
Yih-Dar committed
3471
3472
3473
                    model, loading_info = load_tf2_checkpoint_in_pytorch_model(
                        model, resolved_archive_file, allow_missing_keys=True, output_loading_info=True
                    )
3474
                except ImportError:
3475
                    logger.error(
Sylvain Gugger's avatar
Sylvain Gugger committed
3476
3477
3478
                        "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed."
                        " Please see https://pytorch.org/ and https://www.tensorflow.org/install/ for installation"
                        " instructions."
3479
                    )
3480
                    raise
3481
3482
3483
3484
3485
3486
3487
        elif from_flax:
            try:
                from .modeling_flax_pytorch_utils import load_flax_checkpoint_in_pytorch_model

                model = load_flax_checkpoint_in_pytorch_model(model, resolved_archive_file)
            except ImportError:
                logger.error(
Sylvain Gugger's avatar
Sylvain Gugger committed
3488
3489
3490
                    "Loading a Flax model in PyTorch, requires both PyTorch and Flax to be installed. Please see"
                    " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for"
                    " installation instructions."
3491
3492
                )
                raise
3493
        elif from_pt:
3494
3495
3496
            # restore default dtype
            if dtype_orig is not None:
                torch.set_default_dtype(dtype_orig)
Sylvain Gugger's avatar
Sylvain Gugger committed
3497
3498
3499
3500
3501
3502
3503
3504
            (
                model,
                missing_keys,
                unexpected_keys,
                mismatched_keys,
                offload_index,
                error_msgs,
            ) = cls._load_pretrained_model(
3505
3506
3507
3508
3509
3510
3511
3512
3513
                model,
                state_dict,
                loaded_state_dict_keys,  # XXX: rename?
                resolved_archive_file,
                pretrained_model_name_or_path,
                ignore_mismatched_sizes=ignore_mismatched_sizes,
                sharded_metadata=sharded_metadata,
                _fast_init=_fast_init,
                low_cpu_mem_usage=low_cpu_mem_usage,
3514
3515
3516
3517
                device_map=device_map,
                offload_folder=offload_folder,
                offload_state_dict=offload_state_dict,
                dtype=torch_dtype,
3518
                hf_quantizer=hf_quantizer,
3519
                keep_in_fp32_modules=keep_in_fp32_modules,
3520
            )
3521

3522
3523
        # make sure token embedding weights are still tied if needed
        model.tie_weights()
3524

3525
        # Set model in evaluation mode to deactivate DropOut modules by default
3526
3527
        model.eval()

3528
        # If it is a model with generation capabilities, attempt to load the generation config
3529
        if model.can_generate() and pretrained_model_name_or_path is not None:
3530
3531
3532
3533
3534
3535
3536
3537
            try:
                model.generation_config = GenerationConfig.from_pretrained(
                    pretrained_model_name_or_path,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
3538
                    token=token,
3539
3540
3541
3542
3543
3544
                    revision=revision,
                    subfolder=subfolder,
                    _from_auto=from_auto_class,
                    _from_pipeline=from_pipeline,
                    **kwargs,
                )
3545
            except OSError:
3546
3547
3548
3549
3550
                logger.info(
                    "Generation config file not found, using a generation config created from the model config."
                )
                pass

3551
3552
        # Dispatch model with hooks on all devices if necessary
        if device_map is not None:
3553
3554
3555
3556
3557
            device_map_kwargs = {
                "device_map": device_map,
                "offload_dir": offload_folder,
                "offload_index": offload_index,
            }
3558
            if "skip_keys" in inspect.signature(dispatch_model).parameters:
3559
3560
                device_map_kwargs["skip_keys"] = model._skip_keys_device_placement
            dispatch_model(model, **device_map_kwargs)
3561

3562
3563
3564
        if hf_quantizer is not None:
            hf_quantizer.postprocess_model(model)
            model.hf_quantizer = hf_quantizer
Marc Sun's avatar
Marc Sun committed
3565

3566
        if _adapter_model_path is not None:
3567
            model.load_adapter(
3568
                _adapter_model_path,
3569
3570
                adapter_name=adapter_name,
                token=token,
3571
                adapter_kwargs=adapter_kwargs,
3572
3573
            )

thomwolf's avatar
thomwolf committed
3574
        if output_loading_info:
Yih-Dar's avatar
Yih-Dar committed
3575
3576
3577
3578
3579
3580
3581
            if loading_info is None:
                loading_info = {
                    "missing_keys": missing_keys,
                    "unexpected_keys": unexpected_keys,
                    "mismatched_keys": mismatched_keys,
                    "error_msgs": error_msgs,
                }
thomwolf's avatar
thomwolf committed
3582
3583
            return model, loading_info

3584
3585
        return model

3586
    @classmethod
Sylvain Gugger's avatar
Sylvain Gugger committed
3587
3588
3589
3590
    def _load_pretrained_model(
        cls,
        model,
        state_dict,
3591
        loaded_keys,
Sylvain Gugger's avatar
Sylvain Gugger committed
3592
3593
3594
3595
3596
        resolved_archive_file,
        pretrained_model_name_or_path,
        ignore_mismatched_sizes=False,
        sharded_metadata=None,
        _fast_init=True,
3597
        low_cpu_mem_usage=False,
3598
3599
        device_map=None,
        offload_folder=None,
3600
        offload_state_dict=None,
3601
        dtype=None,
3602
        hf_quantizer=None,
3603
        keep_in_fp32_modules=None,
3604
    ):
Sylvain Gugger's avatar
Sylvain Gugger committed
3605
        is_safetensors = False
3606

Sylvain Gugger's avatar
Sylvain Gugger committed
3607
        if device_map is not None and "disk" in device_map.values():
Sylvain Gugger's avatar
Sylvain Gugger committed
3608
3609
3610
3611
3612
            archive_file = (
                resolved_archive_file[0] if isinstance(resolved_archive_file, (list, tuple)) else resolved_archive_file
            )
            is_safetensors = archive_file.endswith(".safetensors")
            if offload_folder is None and not is_safetensors:
Sylvain Gugger's avatar
Sylvain Gugger committed
3613
3614
                raise ValueError(
                    "The current `device_map` had weights offloaded to the disk. Please provide an `offload_folder`"
Sylvain Gugger's avatar
Sylvain Gugger committed
3615
3616
                    " for them. Alternatively, make sure you have `safetensors` installed if the model you are using"
                    " offers the weights in this format."
Sylvain Gugger's avatar
Sylvain Gugger committed
3617
                )
Sylvain Gugger's avatar
Sylvain Gugger committed
3618
3619
            if offload_folder is not None:
                os.makedirs(offload_folder, exist_ok=True)
3620
3621
3622
            if offload_state_dict is None:
                offload_state_dict = True

3623
        is_sharded_safetensors = is_safetensors and sharded_metadata is not None
Patrick von Platen's avatar
Patrick von Platen committed
3624
3625
3626
3627

        # tie the model weights before retrieving the state_dict
        model.tie_weights()

3628
        # Retrieve missing & unexpected_keys
3629
3630
        model_state_dict = model.state_dict()
        expected_keys = list(model_state_dict.keys())
3631
3632
        prefix = model.base_model_prefix

Sylvain Gugger's avatar
Sylvain Gugger committed
3633
3634
3635
3636
3637
3638
3639
        def _fix_key(key):
            if "beta" in key:
                return key.replace("beta", "bias")
            if "gamma" in key:
                return key.replace("gamma", "weight")
            return key

3640
        original_loaded_keys = loaded_keys
Sylvain Gugger's avatar
Sylvain Gugger committed
3641
3642
        loaded_keys = [_fix_key(key) for key in loaded_keys]

3643
3644
3645
3646
3647
3648
        if len(prefix) > 0:
            has_prefix_module = any(s.startswith(prefix) for s in loaded_keys)
            expects_prefix_module = any(s.startswith(prefix) for s in expected_keys)
        else:
            has_prefix_module = False
            expects_prefix_module = False
Patrick von Platen's avatar
Patrick von Platen committed
3649
3650
3651

        # key re-naming operations are never done on the keys
        # that are loaded, but always on the keys of the newly initialized model
3652
3653
        remove_prefix_from_model = not has_prefix_module and expects_prefix_module
        add_prefix_to_model = has_prefix_module and not expects_prefix_module
3654

3655
        if remove_prefix_from_model:
3656
3657
3658
            _prefix = f"{prefix}."
            expected_keys_not_prefixed = [s for s in expected_keys if not s.startswith(_prefix)]
            expected_keys = [s[len(_prefix) :] if s.startswith(_prefix) else s for s in expected_keys]
3659
        elif add_prefix_to_model:
3660
3661
            expected_keys = [".".join([prefix, s]) for s in expected_keys]

3662
        missing_keys = sorted(set(expected_keys) - set(loaded_keys))
Sylvain Gugger's avatar
Sylvain Gugger committed
3663
3664
3665
3666
3667
3668
3669
3670
        unexpected_keys = set(loaded_keys) - set(expected_keys)
        # Remove nonpersistent buffers from unexpected keys: they are not in the state dict but will be in the model
        # buffers
        model_buffers = {n for n, _ in model.named_buffers()}
        if remove_prefix_from_model:
            model_buffers = {key[len(_prefix) :] if key.startswith(_prefix) else key for key in model_buffers}
        elif add_prefix_to_model:
            model_buffers = {".".join([prefix, key]) for key in model_buffers}
3671
        unexpected_keys = sorted(unexpected_keys - model_buffers)
3672

3673
        model.tie_weights()
3674
        if device_map is None and not is_fsdp_enabled() and not is_deepspeed_zero3_enabled():
3675
3676
3677
3678
            ptrs = collections.defaultdict(list)
            for name, tensor in model.state_dict().items():
                id_tensor = id_tensor_storage(tensor)
                ptrs[id_tensor].append(name)
Sylvain Gugger's avatar
Sylvain Gugger committed
3679

3680
3681
3682
3683
3684
            # These are all the pointers of shared tensors.
            tied_params = [names for _, names in ptrs.items() if len(names) > 1]
        else:
            # id function doesn't work for meta tensor so we need this function
            tied_params = find_tied_parameters(model)
Sylvain Gugger's avatar
Sylvain Gugger committed
3685
3686

        for group in tied_params:
Sylvain Gugger's avatar
Sylvain Gugger committed
3687
3688
3689
3690
            if remove_prefix_from_model:
                group = [key[len(_prefix) :] if key.startswith(_prefix) else key for key in group]
            elif add_prefix_to_model:
                group = [".".join([prefix, key]) for key in group]
Sylvain Gugger's avatar
Sylvain Gugger committed
3691
3692
3693
            missing_in_group = [k for k in missing_keys if k in group]
            if len(missing_in_group) > 0 and len(missing_in_group) < len(group):
                missing_keys = [k for k in missing_keys if k not in missing_in_group]
3694

3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
        # Some models may have keys that are not in the state by design, removing them before needlessly warning
        # the user.
        if cls._keys_to_ignore_on_load_missing is not None:
            for pat in cls._keys_to_ignore_on_load_missing:
                missing_keys = [k for k in missing_keys if re.search(pat, k) is None]

        if cls._keys_to_ignore_on_load_unexpected is not None:
            for pat in cls._keys_to_ignore_on_load_unexpected:
                unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

3705
3706
3707
3708
        # retrieve weights on meta device and put them back on CPU.
        # This is not ideal in terms of memory, but if we don't do that not, we can't initialize them in the next step
        if low_cpu_mem_usage:
            for key in missing_keys:
Susnato Dhar's avatar
Susnato Dhar committed
3709
3710
                if key in list(model_state_dict.keys()):
                    key = key
3711
3712
                elif f"{prefix}.{key}" in list(model_state_dict.keys()):
                    key = f"{prefix}.{key}"
Susnato Dhar's avatar
Susnato Dhar committed
3713
                elif key.startswith(prefix) and ".".join(key.split(".")[1:]) in list(model_state_dict.keys()):
3714
3715
                    key = ".".join(key.split(".")[1:])
                param = model_state_dict[key]
3716
3717
3718
3719
3720
3721

                # upcast in fp32 if any
                target_dtype = dtype
                if (
                    keep_in_fp32_modules is not None
                    and dtype == torch.float16
3722
3723
3724
                    and any(
                        module_to_keep_in_fp32 in key.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules
                    )
3725
3726
3727
                ):
                    target_dtype = torch.float32

3728
                if param.device == torch.device("meta"):
3729
                    value = torch.empty(*param.size(), dtype=target_dtype)
3730
3731
3732
3733
3734
3735
                    if (
                        hf_quantizer is None
                        or getattr(hf_quantizer, "requires_parameters_quantization", False)
                        or not hf_quantizer.check_quantized_param(
                            model, param_value=value, param_name=key, state_dict={}
                        )
3736
3737
                    ):
                        set_module_tensor_to_device(model, key, "cpu", value)
3738
                    else:
3739
                        hf_quantizer.create_quantized_param(model, value, key, "cpu", state_dict)
3740

3741
        # retrieve uninitialized modules and initialize before maybe overriding that with the pretrained weights.
3742
        if _fast_init:
3743
3744
3745
3746
3747
3748
3749
            if not ignore_mismatched_sizes:
                if remove_prefix_from_model:
                    _loaded_keys = [f"{prefix}.{k}" for k in loaded_keys]
                elif add_prefix_to_model:
                    _loaded_keys = [k[len(prefix) + 1 :] for k in loaded_keys]
                else:
                    _loaded_keys = loaded_keys
3750
                not_initialized_submodules = set_initialized_submodules(model, _loaded_keys)
3751
                # If we're about to tie the output embeds to the input embeds we don't need to init them
3752
3753
3754
                if hasattr(model.config, "tie_word_embeddings") and model.config.tie_word_embeddings:
                    output_embeddings = model.get_output_embeddings()
                    if output_embeddings is not None:
3755
3756
3757
                        # Still need to initialize if there is a bias term since biases are not tied.
                        if not hasattr(output_embeddings, "bias") or output_embeddings.bias is None:
                            output_embeddings._is_hf_initialized = True
3758
3759
            else:
                not_initialized_submodules = dict(model.named_modules())
3760
            # This will only initialize submodules that are not marked as initialized by the line above.
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
            if is_deepspeed_zero3_enabled():
                import deepspeed

                not_initialized_parameters = list(
                    set(
                        itertools.chain.from_iterable(
                            submodule.parameters(recurse=False) for submodule in not_initialized_submodules.values()
                        )
                    )
                )
                with deepspeed.zero.GatheredParameters(not_initialized_parameters, modifier_rank=0):
                    model.apply(model._initialize_weights)
            else:
                model.apply(model._initialize_weights)
3775

3776
3777
3778
        # Set some modules to fp32 if any
        if keep_in_fp32_modules is not None:
            for name, param in model.named_parameters():
3779
                if any(module_to_keep_in_fp32 in name.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules):
3780
3781
                    # param = param.to(torch.float32) does not work here as only in the local scope.
                    param.data = param.data.to(torch.float32)
3782

3783
3784
3785
        # Make sure we are able to load base models as well as derived models (with heads)
        start_prefix = ""
        model_to_load = model
3786
        if len(cls.base_model_prefix) > 0 and not hasattr(model, cls.base_model_prefix) and has_prefix_module:
3787
            start_prefix = cls.base_model_prefix + "."
3788
        if len(cls.base_model_prefix) > 0 and hasattr(model, cls.base_model_prefix) and not has_prefix_module:
3789
            model_to_load = getattr(model, cls.base_model_prefix)
Sylvain Gugger's avatar
Sylvain Gugger committed
3790
3791
            base_model_expected_keys = list(model_to_load.state_dict().keys())
            if any(key in expected_keys_not_prefixed and key not in base_model_expected_keys for key in loaded_keys):
3792
                raise ValueError(
3793
                    "The state dictionary of the model you are trying to load is corrupted. Are you sure it was "
3794
3795
                    "properly saved?"
                )
3796
3797
            if device_map is not None:
                device_map = {k.replace(f"{cls.base_model_prefix}.", ""): v for k, v in device_map.items()}
3798

3799
3800
3801
3802
3803
3804
3805
3806
        def _find_mismatched_keys(
            state_dict,
            model_state_dict,
            loaded_keys,
            add_prefix_to_model,
            remove_prefix_from_model,
            ignore_mismatched_sizes,
        ):
Sylvain Gugger's avatar
Sylvain Gugger committed
3807
3808
3809
            mismatched_keys = []
            if ignore_mismatched_sizes:
                for checkpoint_key in loaded_keys:
3810
3811
3812
                    # If the checkpoint is sharded, we may not have the key here.
                    if checkpoint_key not in state_dict:
                        continue
Sylvain Gugger's avatar
Sylvain Gugger committed
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
                    model_key = checkpoint_key
                    if remove_prefix_from_model:
                        # The model key starts with `prefix` but `checkpoint_key` doesn't so we add it.
                        model_key = f"{prefix}.{checkpoint_key}"
                    elif add_prefix_to_model:
                        # The model key doesn't start with `prefix` but `checkpoint_key` does so we remove it.
                        model_key = ".".join(checkpoint_key.split(".")[1:])

                    if (
                        model_key in model_state_dict
                        and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
                    ):
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
                        if (
                            state_dict[checkpoint_key].shape[-1] == 1
                            and state_dict[checkpoint_key].numel() * 2 == model_state_dict[model_key].numel()
                        ):
                            # This skips size mismatches for 4-bit weights. Two 4-bit values share an 8-bit container, causing size differences.
                            # Without matching with module type or paramter type it seems like a practical way to detect valid 4bit weights.
                            pass
                        else:
                            mismatched_keys.append(
                                (checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
                            )
                            del state_dict[checkpoint_key]
3837
3838
            return mismatched_keys

3839
3840
3841
3842
        if resolved_archive_file is not None:
            folder = os.path.sep.join(resolved_archive_file[0].split(os.path.sep)[:-1])
        else:
            folder = None
Sylvain Gugger's avatar
Sylvain Gugger committed
3843
        if device_map is not None and is_safetensors:
3844
            param_device_map = expand_device_map(device_map, original_loaded_keys, start_prefix)
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
            str_dtype = str(dtype).replace("torch.", "") if dtype is not None else "float32"
            if sharded_metadata is None:
                archive_file = (
                    resolved_archive_file[0]
                    if isinstance(resolved_archive_file, (list, tuple))
                    else resolved_archive_file
                )
                weight_map = {p: archive_file for p in original_loaded_keys}
            else:
                weight_map = {p: os.path.join(folder, f) for p, f in sharded_metadata["weight_map"].items()}
Sylvain Gugger's avatar
Sylvain Gugger committed
3855
            offload_index = {
3856
                p[len(start_prefix) :]: {"safetensors_file": f, "weight_name": p, "dtype": str_dtype}
3857
                for p, f in weight_map.items()
3858
                if p.startswith(start_prefix) and param_device_map[p[len(start_prefix) :]] == "disk"
Sylvain Gugger's avatar
Sylvain Gugger committed
3859
3860
            }

3861
3862
3863
3864
3865
        if state_dict is not None:
            # Whole checkpoint
            mismatched_keys = _find_mismatched_keys(
                state_dict,
                model_state_dict,
3866
                original_loaded_keys,
3867
3868
3869
3870
                add_prefix_to_model,
                remove_prefix_from_model,
                ignore_mismatched_sizes,
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
3871
            error_msgs = _load_state_dict_into_model(model_to_load, state_dict, start_prefix)
Sylvain Gugger's avatar
Sylvain Gugger committed
3872
            offload_index = None
Sylvain Gugger's avatar
Sylvain Gugger committed
3873
        else:
3874
3875
            # Sharded checkpoint or whole but low_cpu_mem_usage==True

Sylvain Gugger's avatar
Sylvain Gugger committed
3876
3877
3878
3879
3880
            # This should always be a list but, just to be sure.
            if not isinstance(resolved_archive_file, list):
                resolved_archive_file = [resolved_archive_file]

            error_msgs = []
3881
            mismatched_keys = []
Sylvain Gugger's avatar
Sylvain Gugger committed
3882
3883
            if not is_safetensors:
                offload_index = {} if device_map is not None and "disk" in device_map.values() else None
3884
3885
3886
3887
3888
3889
3890
            if offload_state_dict:
                state_dict_folder = tempfile.mkdtemp()
                state_dict_index = {}
            else:
                state_dict_folder = None
                state_dict_index = None

3891
            if is_sharded_safetensors:
3892
3893
3894
                disk_only_shard_files = get_disk_only_shard_files(
                    device_map, sharded_metadata=sharded_metadata, start_prefix=start_prefix
                )
Sylvain Gugger's avatar
Sylvain Gugger committed
3895
3896
3897
3898
                disk_only_shard_files = [os.path.join(folder, f) for f in disk_only_shard_files]
            else:
                disk_only_shard_files = []

3899
3900
            if len(resolved_archive_file) > 1:
                resolved_archive_file = logging.tqdm(resolved_archive_file, desc="Loading checkpoint shards")
Sylvain Gugger's avatar
Sylvain Gugger committed
3901
            for shard_file in resolved_archive_file:
Sylvain Gugger's avatar
Sylvain Gugger committed
3902
3903
3904
                # Skip the load for shards that only contain disk-offloaded weights when using safetensors for the offload.
                if shard_file in disk_only_shard_files:
                    continue
Sylvain Gugger's avatar
Sylvain Gugger committed
3905
                state_dict = load_state_dict(shard_file)
3906

Sylvain Gugger's avatar
Sylvain Gugger committed
3907
3908
                # Mistmatched keys contains tuples key/shape1/shape2 of weights in the checkpoint that have a shape not
                # matching the weights in the model.
3909
3910
3911
                mismatched_keys += _find_mismatched_keys(
                    state_dict,
                    model_state_dict,
3912
                    original_loaded_keys,
3913
3914
3915
3916
                    add_prefix_to_model,
                    remove_prefix_from_model,
                    ignore_mismatched_sizes,
                )
3917
                if low_cpu_mem_usage:
3918
3919
3920
                    if is_fsdp_enabled() and not is_local_dist_rank_0():
                        for key, param in model_to_load.state_dict().items():
                            if param.device == torch.device("meta"):
3921
                                if hf_quantizer is None:
3922
3923
3924
3925
                                    set_module_tensor_to_device(
                                        model_to_load, key, "cpu", torch.empty(*param.size(), dtype=dtype)
                                    )
                                else:
3926
                                    hf_quantizer.create_quantized_param(model, param, key, "cpu", state_dict)
3927
                    else:
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
                        new_error_msgs, offload_index, state_dict_index = _load_state_dict_into_meta_model(
                            model_to_load,
                            state_dict,
                            loaded_keys,
                            start_prefix,
                            expected_keys,
                            device_map=device_map,
                            offload_folder=offload_folder,
                            offload_index=offload_index,
                            state_dict_folder=state_dict_folder,
                            state_dict_index=state_dict_index,
                            dtype=dtype,
3940
                            hf_quantizer=hf_quantizer,
3941
3942
                            is_safetensors=is_safetensors,
                            keep_in_fp32_modules=keep_in_fp32_modules,
3943
                            unexpected_keys=unexpected_keys,
3944
3945
                        )
                        error_msgs += new_error_msgs
3946
3947
                else:
                    error_msgs += _load_state_dict_into_model(model_to_load, state_dict, start_prefix)
3948

3949
3950
3951
3952
                # force memory release
                del state_dict
                gc.collect()

3953
            if offload_index is not None and len(offload_index) > 0:
Sylvain Gugger's avatar
Sylvain Gugger committed
3954
3955
3956
                if model != model_to_load:
                    # We need to add the prefix of the base model
                    prefix = cls.base_model_prefix
Sylvain Gugger's avatar
Sylvain Gugger committed
3957
3958
3959
3960
3961
3962
                    if not is_safetensors:
                        for weight_name in offload_index:
                            shutil.move(
                                os.path.join(offload_folder, f"{weight_name}.dat"),
                                os.path.join(offload_folder, f"{prefix}.{weight_name}.dat"),
                            )
Sylvain Gugger's avatar
Sylvain Gugger committed
3963
                    offload_index = {f"{prefix}.{key}": value for key, value in offload_index.items()}
Sylvain Gugger's avatar
Sylvain Gugger committed
3964
3965
3966
                if not is_safetensors:
                    save_offload_index(offload_index, offload_folder)
                    offload_index = None
3967
3968
3969

            if offload_state_dict:
                # Load back temporarily offloaded state dict
3970
                load_offloaded_weights(model_to_load, state_dict_index, state_dict_folder)
3971
3972
                shutil.rmtree(state_dict_folder)

3973
3974
        if len(error_msgs) > 0:
            error_msg = "\n\t".join(error_msgs)
3975
3976
3977
3978
            if "size mismatch" in error_msg:
                error_msg += (
                    "\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
                )
3979
3980
            raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")

3981
        if len(unexpected_keys) > 0:
Sylvain Gugger's avatar
Sylvain Gugger committed
3982
            archs = [] if model.config.architectures is None else model.config.architectures
3983
            warner = logger.warning if model.__class__.__name__ in archs else logger.info
Sylvain Gugger's avatar
Sylvain Gugger committed
3984
            warner(
Sylvain Gugger's avatar
Sylvain Gugger committed
3985
3986
3987
3988
3989
3990
3991
                f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
                f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
                f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task or"
                " with another architecture (e.g. initializing a BertForSequenceClassification model from a"
                " BertForPreTraining model).\n- This IS NOT expected if you are initializing"
                f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly identical"
                " (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
3992
3993
3994
3995
3996
            )
        else:
            logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
        if len(missing_keys) > 0:
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
3997
3998
3999
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
                " TRAIN this model on a down-stream task to be able to use it for predictions and inference."
4000
            )
4001
        elif len(mismatched_keys) == 0:
4002
            logger.info(
Sylvain Gugger's avatar
Sylvain Gugger committed
4003
4004
4005
4006
                f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the checkpoint"
                f" was trained on, you can already use {model.__class__.__name__} for predictions without further"
                " training."
4007
            )
4008
4009
4010
4011
4012
4013
4014
4015
        if len(mismatched_keys) > 0:
            mismatched_warning = "\n".join(
                [
                    f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
                    for key, shape1, shape2 in mismatched_keys
                ]
            )
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
4016
4017
4018
4019
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
                f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be able"
                " to use it for predictions and inference."
4020
            )
4021

Sylvain Gugger's avatar
Sylvain Gugger committed
4022
        return model, missing_keys, unexpected_keys, mismatched_keys, offload_index, error_msgs
4023
4024

    def retrieve_modules_from_names(self, names, add_prefix=False, remove_prefix=False):
4025
        module_keys = {".".join(key.split(".")[:-1]) for key in names}
4026

Patrick von Platen's avatar
Patrick von Platen committed
4027
4028
        # torch.nn.ParameterList is a special case where two parameter keywords
        # are appended to the module name, *e.g.* bert.special_embeddings.0
4029
        module_keys = module_keys.union(
4030
            {".".join(key.split(".")[:-2]) for key in names if len(key) > 0 and key[-1].isdigit()}
4031
        )
Patrick von Platen's avatar
Patrick von Platen committed
4032

4033
4034
4035
4036
        retrieved_modules = []
        # retrieve all modules that has at least one missing weight name
        for name, module in self.named_modules():
            if remove_prefix:
4037
4038
                _prefix = f"{self.base_model_prefix}."
                name = name[len(_prefix) :] if name.startswith(_prefix) else name
4039
            elif add_prefix:
Patrick von Platen's avatar
Patrick von Platen committed
4040
                name = ".".join([self.base_model_prefix, name]) if len(name) > 0 else self.base_model_prefix
4041
4042
4043
4044
4045
4046

            if name in module_keys:
                retrieved_modules.append(module)

        return retrieved_modules

4047
    @staticmethod
4048
4049
4050
    def _load_pretrained_model_low_mem(
        model, loaded_state_dict_keys, resolved_archive_file, start_prefix="", hf_quantizer=None
    ):
4051
4052
4053
        """
        This is an experimental function that loads the model using ~1.x model size CPU memory

4054
        Before you call it do:
4055

4056
        1. save which state_dict keys are available
4057
4058
4059
4060
4061
4062
4063
4064
        2. drop state_dict before model is created, since the latter takes 1x model size memory

        Here then we continue:

        3. switch to the meta device all params/buffers that are going to be replaced from the loaded state_dict
        4. load state_dict 2nd time
        5. replace the params/buffers from the state_dict

4065
4066
        Currently, it doesn't handle missing_keys, unexpected_keys, mismatched_keys. It can't handle deepspeed. To
        handle bitsandbytes, needs non-empty hf_quantizer argument.
4067
4068
        """

4069
4070
        _move_model_to_meta(model, loaded_state_dict_keys, start_prefix)
        state_dict = load_state_dict(resolved_archive_file)
4071
4072
4073
4074
4075
4076
4077
4078
4079
        expected_keys = loaded_state_dict_keys  # plug for missing expected_keys. TODO: replace with proper keys
        error_msgs = _load_state_dict_into_meta_model(
            model,
            state_dict,
            loaded_state_dict_keys,
            start_prefix,
            expected_keys=expected_keys,
            hf_quantizer=hf_quantizer,
        )
4080
        return error_msgs
4081

4082
4083
4084
4085
4086
4087
    @classmethod
    def register_for_auto_class(cls, auto_class="AutoModel"):
        """
        Register this class with a given auto class. This should only be used for custom models as the ones in the
        library are already mapped with an auto class.

4088
4089
4090
4091
4092
4093
        <Tip warning={true}>

        This API is experimental and may have some slight breaking changes in the next releases.

        </Tip>

4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
        Args:
            auto_class (`str` or `type`, *optional*, defaults to `"AutoModel"`):
                The auto class to register this new model with.
        """
        if not isinstance(auto_class, str):
            auto_class = auto_class.__name__

        import transformers.models.auto as auto_module

        if not hasattr(auto_module, auto_class):
            raise ValueError(f"{auto_class} is not a valid auto class.")

        cls._auto_class = auto_class

4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
    def to_bettertransformer(self) -> "PreTrainedModel":
        """
        Converts the model to use [PyTorch's native attention
        implementation](https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html), integrated to
        Transformers through [Optimum library](https://huggingface.co/docs/optimum/bettertransformer/overview). Only a
        subset of all Transformers models are supported.

        PyTorch's attention fastpath allows to speed up inference through kernel fusions and the use of [nested
        tensors](https://pytorch.org/docs/stable/nested.html). Detailed benchmarks can be found in [this blog
        post](https://medium.com/pytorch/bettertransformer-out-of-the-box-performance-for-huggingface-transformers-3fbe27d50ab2).

        Returns:
            [`PreTrainedModel`]: The model converted to BetterTransformer.
        """
        if not is_optimum_available():
            raise ImportError("The package `optimum` is required to use Better Transformer.")

        from optimum.version import __version__ as optimum_version

        if version.parse(optimum_version) < version.parse("1.7.0"):
            raise ImportError(
                f"Please install optimum>=1.7.0 to use Better Transformer. The version {optimum_version} was found."
            )

        from optimum.bettertransformer import BetterTransformer

        return BetterTransformer.transform(self)

    def reverse_bettertransformer(self):
        """
        Reverts the transformation from [`~PreTrainedModel.to_bettertransformer`] so that the original modeling is
        used, for example in order to save the model.

        Returns:
            [`PreTrainedModel`]: The model converted back to the original modeling.
        """
        if not is_optimum_available():
            raise ImportError("The package `optimum` is required to use Better Transformer.")

        from optimum.version import __version__ as optimum_version

        if version.parse(optimum_version) < version.parse("1.7.0"):
            raise ImportError(
                f"Please install optimum>=1.7.0 to use Better Transformer. The version {optimum_version} was found."
            )

        from optimum.bettertransformer import BetterTransformer

        return BetterTransformer.reverse(self)

4158
4159
4160
4161
    def warn_if_padding_and_no_attention_mask(self, input_ids, attention_mask):
        """
        Shows a one-time warning if the input_ids appear to contain padding and no attention mask was given.
        """
4162
4163

        # Skip the check during tracing.
4164
        if is_torch_fx_proxy(input_ids) or torch.jit.is_tracing() or is_torchdynamo_compiling():
4165
4166
            return

4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
        if (attention_mask is not None) or (self.config.pad_token_id is None):
            return

        # Check only the first and last input IDs to reduce overhead.
        if self.config.pad_token_id in input_ids[:, [-1, 0]]:
            warn_string = (
                "We strongly recommend passing in an `attention_mask` since your input_ids may be padded. See "
                "https://huggingface.co/docs/transformers/troubleshooting"
                "#incorrect-output-when-padding-tokens-arent-masked."
            )

            # If the pad token is equal to either BOS, EOS, or SEP, we do not know whether the user should use an
            # attention_mask or not. In this case, we should still show a warning because this is a rare case.
            if (
                (self.config.bos_token_id is not None and self.config.bos_token_id == self.config.pad_token_id)
                or (self.config.eos_token_id is not None and self.config.eos_token_id == self.config.pad_token_id)
                or (self.config.sep_token_id is not None and self.config.sep_token_id == self.config.pad_token_id)
            ):
                warn_string += (
                    f"\nYou may ignore this warning if your `pad_token_id` ({self.config.pad_token_id}) is identical "
                    f"to the `bos_token_id` ({self.config.bos_token_id}), `eos_token_id` ({self.config.eos_token_id}), "
                    f"or the `sep_token_id` ({self.config.sep_token_id}), and your input is not padded."
                )

            logger.warning_once(warn_string)

4193
4194
    @property
    def _is_quantized_training_enabled(self):
4195
        warnings.warn(
4196
4197
4198
4199
4200
4201
4202
4203
4204
            "`_is_quantized_training_enabled` is going to be deprecated in transformers 4.39.0. Please use `model.hf_quantizer.is_trainable` instead",
            FutureWarning,
        )

        if not hasattr(self, "hf_quantizer"):
            return False

        return self.hf_quantizer.is_trainable

thomwolf's avatar
thomwolf committed
4205

4206
PreTrainedModel.push_to_hub = copy_func(PreTrainedModel.push_to_hub)
4207
4208
4209
4210
if PreTrainedModel.push_to_hub.__doc__ is not None:
    PreTrainedModel.push_to_hub.__doc__ = PreTrainedModel.push_to_hub.__doc__.format(
        object="model", object_class="AutoModel", object_files="model file"
    )
4211
4212


thomwolf's avatar
thomwolf committed
4213
class PoolerStartLogits(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
4214
4215
    """
    Compute SQuAD start logits from sequence hidden states.
4216

Sylvain Gugger's avatar
Sylvain Gugger committed
4217
    Args:
4218
4219
        config ([`PretrainedConfig`]):
            The config used by the model, will be used to grab the `hidden_size` of the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
4220
4221
4222
    """

    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
4223
        super().__init__()
thomwolf's avatar
thomwolf committed
4224
4225
        self.dense = nn.Linear(config.hidden_size, 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
4226
4227
4228
4229
4230
    def forward(
        self, hidden_states: torch.FloatTensor, p_mask: Optional[torch.FloatTensor] = None
    ) -> torch.FloatTensor:
        """
        Args:
4231
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
4232
                The final hidden states of the model.
4233
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4234
4235
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
Sylvain Gugger's avatar
Sylvain Gugger committed
4236
4237

        Returns:
4238
            `torch.FloatTensor`: The start logits for SQuAD.
thomwolf's avatar
thomwolf committed
4239
        """
thomwolf's avatar
thomwolf committed
4240
4241
4242
        x = self.dense(hidden_states).squeeze(-1)

        if p_mask is not None:
Lysandre Debut's avatar
Lysandre Debut committed
4243
            if get_parameter_dtype(self) == torch.float16:
4244
4245
4246
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask
thomwolf's avatar
thomwolf committed
4247
4248
4249
4250
4251
4252

        return x


class PoolerEndLogits(nn.Module):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
4253
    Compute SQuAD end logits from sequence hidden states.
4254

Sylvain Gugger's avatar
Sylvain Gugger committed
4255
    Args:
4256
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
4257
4258
            The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps`
            to use.
Sylvain Gugger's avatar
Sylvain Gugger committed
4259
4260
4261
    """

    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
4262
        super().__init__()
thomwolf's avatar
thomwolf committed
4263
4264
4265
4266
4267
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dense_1 = nn.Linear(config.hidden_size, 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
4268
4269
4270
4271
4272
4273
4274
4275
4276
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        start_states: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        p_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
        """
        Args:
4277
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
4278
                The final hidden states of the model.
4279
            start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4280
                The hidden states of the first tokens for the labeled span.
4281
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4282
                The position of the first token for the labeled span.
4283
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4284
4285
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
Sylvain Gugger's avatar
Sylvain Gugger committed
4286

4287
        <Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
4288

Stas Bekman's avatar
Stas Bekman committed
4289
4290
        One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides
        `start_states`.
4291
4292

        </Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
4293
4294

        Returns:
4295
            `torch.FloatTensor`: The end logits for SQuAD.
thomwolf's avatar
thomwolf committed
4296
        """
4297
4298
4299
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
thomwolf's avatar
thomwolf committed
4300
        if start_positions is not None:
4301
            slen, hsz = hidden_states.shape[-2:]
4302
4303
4304
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions)  # shape (bsz, 1, hsz)
            start_states = start_states.expand(-1, slen, -1)  # shape (bsz, slen, hsz)
thomwolf's avatar
thomwolf committed
4305
4306
4307
4308
4309
4310
4311

        x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1))
        x = self.activation(x)
        x = self.LayerNorm(x)
        x = self.dense_1(x).squeeze(-1)

        if p_mask is not None:
Lysandre Debut's avatar
Lysandre Debut committed
4312
            if get_parameter_dtype(self) == torch.float16:
4313
4314
4315
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask
thomwolf's avatar
thomwolf committed
4316
4317
4318
4319
4320

        return x


class PoolerAnswerClass(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
4321
4322
4323
4324
    """
    Compute SQuAD 2.0 answer class from classification and start tokens hidden states.

    Args:
4325
4326
        config ([`PretrainedConfig`]):
            The config used by the model, will be used to grab the `hidden_size` of the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
4327
    """
4328

thomwolf's avatar
thomwolf committed
4329
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
4330
        super().__init__()
thomwolf's avatar
thomwolf committed
4331
4332
4333
4334
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False)

Sylvain Gugger's avatar
Sylvain Gugger committed
4335
4336
4337
4338
4339
4340
4341
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        start_states: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        cls_index: Optional[torch.LongTensor] = None,
    ) -> torch.FloatTensor:
4342
4343
        """
        Args:
4344
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
4345
                The final hidden states of the model.
4346
            start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4347
                The hidden states of the first tokens for the labeled span.
4348
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4349
                The position of the first token for the labeled span.
4350
4351
4352
4353
            cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
                Position of the CLS token for each sentence in the batch. If `None`, takes the last token.

        <Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
4354

Stas Bekman's avatar
Stas Bekman committed
4355
4356
        One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides
        `start_states`.
Sylvain Gugger's avatar
Sylvain Gugger committed
4357

4358
        </Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
4359
4360

        Returns:
4361
            `torch.FloatTensor`: The SQuAD 2.0 answer class.
thomwolf's avatar
thomwolf committed
4362
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
4363
        # No dependency on end_feature so that we can obtain one single `cls_logits` for each sample.
4364
        hsz = hidden_states.shape[-1]
4365
4366
4367
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
thomwolf's avatar
thomwolf committed
4368
        if start_positions is not None:
4369
4370
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions).squeeze(-2)  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
4371
4372

        if cls_index is not None:
4373
4374
            cls_index = cls_index[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
4375
        else:
4376
            cls_token_state = hidden_states[:, -1, :]  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
4377
4378
4379
4380
4381
4382
4383
4384

        x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1))
        x = self.activation(x)
        x = self.dense_1(x).squeeze(-1)

        return x


4385
4386
4387
@dataclass
class SquadHeadOutput(ModelOutput):
    """
4388
    Base class for outputs of question answering models using a [`~modeling_utils.SQuADHead`].
4389
4390

    Args:
4391
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned if both `start_positions` and `end_positions` are provided):
Sylvain Gugger's avatar
Sylvain Gugger committed
4392
4393
            Classification loss as the sum of start token, end token (and is_impossible if provided) classification
            losses.
4394
        start_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
4395
            Log probabilities for the top config.start_n_top start token possibilities (beam-search).
4396
        start_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
4397
            Indices for the top config.start_n_top start token possibilities (beam-search).
4398
4399
        end_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Log probabilities for the top `config.start_n_top * config.end_n_top` end token possibilities
Sylvain Gugger's avatar
Sylvain Gugger committed
4400
            (beam-search).
4401
4402
4403
4404
        end_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Indices for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search).
        cls_logits (`torch.FloatTensor` of shape `(batch_size,)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Log probabilities for the `is_impossible` label of the answers.
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415

    """

    loss: Optional[torch.FloatTensor] = None
    start_top_log_probs: Optional[torch.FloatTensor] = None
    start_top_index: Optional[torch.LongTensor] = None
    end_top_log_probs: Optional[torch.FloatTensor] = None
    end_top_index: Optional[torch.LongTensor] = None
    cls_logits: Optional[torch.FloatTensor] = None


thomwolf's avatar
thomwolf committed
4416
class SQuADHead(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
4417
4418
    r"""
    A SQuAD head inspired by XLNet.
4419

Sylvain Gugger's avatar
Sylvain Gugger committed
4420
    Args:
4421
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
4422
4423
            The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps`
            to use.
thomwolf's avatar
thomwolf committed
4424
    """
4425

thomwolf's avatar
thomwolf committed
4426
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
4427
        super().__init__()
thomwolf's avatar
thomwolf committed
4428
4429
4430
4431
4432
4433
4434
        self.start_n_top = config.start_n_top
        self.end_n_top = config.end_n_top

        self.start_logits = PoolerStartLogits(config)
        self.end_logits = PoolerEndLogits(config)
        self.answer_class = PoolerAnswerClass(config)

Sylvain Gugger's avatar
Sylvain Gugger committed
4435
    @replace_return_docstrings(output_type=SquadHeadOutput, config_class=PretrainedConfig)
4436
    def forward(
4437
        self,
Sylvain Gugger's avatar
Sylvain Gugger committed
4438
4439
4440
4441
4442
4443
        hidden_states: torch.FloatTensor,
        start_positions: Optional[torch.LongTensor] = None,
        end_positions: Optional[torch.LongTensor] = None,
        cls_index: Optional[torch.LongTensor] = None,
        is_impossible: Optional[torch.LongTensor] = None,
        p_mask: Optional[torch.FloatTensor] = None,
4444
        return_dict: bool = False,
Sylvain Gugger's avatar
Sylvain Gugger committed
4445
4446
    ) -> Union[SquadHeadOutput, Tuple[torch.FloatTensor]]:
        """
Lysandre's avatar
Lysandre committed
4447
        Args:
4448
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Lysandre's avatar
Lysandre committed
4449
                Final hidden states of the model on the sequence tokens.
4450
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
4451
                Positions of the first token for the labeled span.
4452
            end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
4453
                Positions of the last token for the labeled span.
4454
4455
4456
            cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
                Position of the CLS token for each sentence in the batch. If `None`, takes the last token.
            is_impossible (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
4457
                Whether the question has a possible answer in the paragraph or not.
4458
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4459
4460
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
4461
            return_dict (`bool`, *optional*, defaults to `False`):
4462
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Sylvain Gugger's avatar
Sylvain Gugger committed
4463

Lysandre's avatar
Lysandre committed
4464
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
4465
        """
thomwolf's avatar
thomwolf committed
4466
        start_logits = self.start_logits(hidden_states, p_mask=p_mask)
thomwolf's avatar
thomwolf committed
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489

        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, let's remove the dimension added by batch splitting
            for x in (start_positions, end_positions, cls_index, is_impossible):
                if x is not None and x.dim() > 1:
                    x.squeeze_(-1)

            # during training, compute the end logits based on the ground truth of the start position
            end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)

            loss_fct = CrossEntropyLoss()
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

            if cls_index is not None and is_impossible is not None:
                # Predict answerability from the representation of CLS and START
                cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
                loss_fct_cls = nn.BCEWithLogitsLoss()
                cls_loss = loss_fct_cls(cls_logits, is_impossible)

                # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss
                total_loss += cls_loss * 0.5
4490

4491
            return SquadHeadOutput(loss=total_loss) if return_dict else (total_loss,)
thomwolf's avatar
thomwolf committed
4492
4493
4494
4495

        else:
            # during inference, compute the end logits based on beam search
            bsz, slen, hsz = hidden_states.size()
4496
            start_log_probs = nn.functional.softmax(start_logits, dim=-1)  # shape (bsz, slen)
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507

            start_top_log_probs, start_top_index = torch.topk(
                start_log_probs, self.start_n_top, dim=-1
            )  # shape (bsz, start_n_top)
            start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz)  # shape (bsz, start_n_top, hsz)
            start_states = torch.gather(hidden_states, -2, start_top_index_exp)  # shape (bsz, start_n_top, hsz)
            start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1)  # shape (bsz, slen, start_n_top, hsz)

            hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(
                start_states
            )  # shape (bsz, slen, start_n_top, hsz)
thomwolf's avatar
thomwolf committed
4508
4509
            p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
            end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
4510
            end_log_probs = nn.functional.softmax(end_logits, dim=1)  # shape (bsz, slen, start_n_top)
thomwolf's avatar
thomwolf committed
4511

4512
4513
4514
            end_top_log_probs, end_top_index = torch.topk(
                end_log_probs, self.end_n_top, dim=1
            )  # shape (bsz, end_n_top, start_n_top)
thomwolf's avatar
thomwolf committed
4515
4516
4517
4518
4519
4520
            end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
            end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)

            start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs)
            cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index)

4521
            if not return_dict:
4522
4523
4524
4525
4526
4527
4528
4529
4530
                return (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits)
            else:
                return SquadHeadOutput(
                    start_top_log_probs=start_top_log_probs,
                    start_top_index=start_top_index,
                    end_top_log_probs=end_top_log_probs,
                    end_top_index=end_top_index,
                    cls_logits=cls_logits,
                )
thomwolf's avatar
thomwolf committed
4531
4532
4533


class SequenceSummary(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
4534
4535
4536
4537
    r"""
    Compute a single vector summary of a sequence hidden states.

    Args:
4538
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
4539
4540
            The config used by the model. Relevant arguments in the config class of the model are (refer to the actual
            config class of your model for the default values it uses):
Sylvain Gugger's avatar
Sylvain Gugger committed
4541

4542
            - **summary_type** (`str`) -- The method to use to make this summary. Accepted values are:
Sylvain Gugger's avatar
Sylvain Gugger committed
4543

4544
4545
4546
4547
4548
                - `"last"` -- Take the last token hidden state (like XLNet)
                - `"first"` -- Take the first token hidden state (like Bert)
                - `"mean"` -- Take the mean of all tokens hidden states
                - `"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2)
                - `"attn"` -- Not implemented now, use multi-head attention
Sylvain Gugger's avatar
Sylvain Gugger committed
4549

4550
            - **summary_use_proj** (`bool`) -- Add a projection after the vector extraction.
Sylvain Gugger's avatar
Sylvain Gugger committed
4551
4552
4553
4554
4555
4556
            - **summary_proj_to_labels** (`bool`) -- If `True`, the projection outputs to `config.num_labels` classes
              (otherwise to `config.hidden_size`).
            - **summary_activation** (`Optional[str]`) -- Set to `"tanh"` to add a tanh activation to the output,
              another string or `None` will add no activation.
            - **summary_first_dropout** (`float`) -- Optional dropout probability before the projection and activation.
            - **summary_last_dropout** (`float`)-- Optional dropout probability after the projection and activation.
thomwolf's avatar
thomwolf committed
4557
    """
4558

4559
    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
4560
        super().__init__()
thomwolf's avatar
thomwolf committed
4561

4562
        self.summary_type = getattr(config, "summary_type", "last")
4563
        if self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
4564
4565
4566
4567
4568
            # We should use a standard multi-head attention module with absolute positional embedding for that.
            # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
            # We can probably just use the multi-head attention module of PyTorch >=1.1.0
            raise NotImplementedError

thomwolf's avatar
thomwolf committed
4569
        self.summary = Identity()
4570
4571
        if hasattr(config, "summary_use_proj") and config.summary_use_proj:
            if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0:
4572
                num_classes = config.num_labels
thomwolf's avatar
thomwolf committed
4573
4574
4575
4576
            else:
                num_classes = config.hidden_size
            self.summary = nn.Linear(config.hidden_size, num_classes)

4577
        activation_string = getattr(config, "summary_activation", None)
Lysandre's avatar
Lysandre committed
4578
        self.activation: Callable = get_activation(activation_string) if activation_string else Identity()
thomwolf's avatar
thomwolf committed
4579

thomwolf's avatar
thomwolf committed
4580
        self.first_dropout = Identity()
4581
        if hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0:
4582
4583
            self.first_dropout = nn.Dropout(config.summary_first_dropout)

thomwolf's avatar
thomwolf committed
4584
        self.last_dropout = Identity()
4585
        if hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0:
4586
            self.last_dropout = nn.Dropout(config.summary_last_dropout)
thomwolf's avatar
thomwolf committed
4587

Sylvain Gugger's avatar
Sylvain Gugger committed
4588
4589
4590
4591
4592
4593
4594
    def forward(
        self, hidden_states: torch.FloatTensor, cls_index: Optional[torch.LongTensor] = None
    ) -> torch.FloatTensor:
        """
        Compute a single vector summary of a sequence hidden states.

        Args:
4595
            hidden_states (`torch.FloatTensor` of shape `[batch_size, seq_len, hidden_size]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
4596
                The hidden states of the last layer.
4597
            cls_index (`torch.LongTensor` of shape `[batch_size]` or `[batch_size, ...]` where ... are optional leading dimensions of `hidden_states`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4598
                Used if `summary_type == "cls_index"` and takes the last token of the sequence as classification token.
Sylvain Gugger's avatar
Sylvain Gugger committed
4599
4600

        Returns:
4601
            `torch.FloatTensor`: The summary of the sequence hidden states.
thomwolf's avatar
thomwolf committed
4602
        """
4603
        if self.summary_type == "last":
thomwolf's avatar
thomwolf committed
4604
            output = hidden_states[:, -1]
4605
        elif self.summary_type == "first":
thomwolf's avatar
thomwolf committed
4606
            output = hidden_states[:, 0]
4607
        elif self.summary_type == "mean":
thomwolf's avatar
thomwolf committed
4608
            output = hidden_states.mean(dim=1)
4609
        elif self.summary_type == "cls_index":
thomwolf's avatar
thomwolf committed
4610
            if cls_index is None:
Lysandre's avatar
Lysandre committed
4611
4612
4613
4614
4615
                cls_index = torch.full_like(
                    hidden_states[..., :1, :],
                    hidden_states.shape[-2] - 1,
                    dtype=torch.long,
                )
thomwolf's avatar
thomwolf committed
4616
            else:
thomwolf's avatar
thomwolf committed
4617
                cls_index = cls_index.unsqueeze(-1).unsqueeze(-1)
4618
                cls_index = cls_index.expand((-1,) * (cls_index.dim() - 1) + (hidden_states.size(-1),))
thomwolf's avatar
thomwolf committed
4619
            # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
4620
4621
            output = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, XX, hidden_size)
        elif self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
4622
4623
            raise NotImplementedError

4624
        output = self.first_dropout(output)
thomwolf's avatar
thomwolf committed
4625
4626
        output = self.summary(output)
        output = self.activation(output)
4627
        output = self.last_dropout(output)
thomwolf's avatar
thomwolf committed
4628
4629
4630
4631

        return output


4632
def unwrap_model(model: nn.Module) -> nn.Module:
4633
4634
4635
4636
    """
    Recursively unwraps a model from potential containers (as used in distributed training).

    Args:
4637
        model (`torch.nn.Module`): The model to unwrap.
4638
4639
4640
4641
4642
4643
    """
    # since there could be multiple levels of wrapping, unwrap recursively
    if hasattr(model, "module"):
        return unwrap_model(model.module)
    else:
        return model
Sylvain Gugger's avatar
Sylvain Gugger committed
4644
4645


4646
def expand_device_map(device_map, param_names, start_prefix):
Sylvain Gugger's avatar
Sylvain Gugger committed
4647
4648
4649
4650
    """
    Expand a device map to return the correspondance parameter name to device.
    """
    new_device_map = {}
4651
    param_names = [p[len(start_prefix) :] for p in param_names if p.startswith(start_prefix)]
Sylvain Gugger's avatar
Sylvain Gugger committed
4652
    for module, device in device_map.items():
4653
4654
4655
        new_device_map.update(
            {p: device for p in param_names if p == module or p.startswith(f"{module}.") or module == ""}
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
4656
4657
4658
    return new_device_map


4659
def get_disk_only_shard_files(device_map, sharded_metadata, start_prefix):
Sylvain Gugger's avatar
Sylvain Gugger committed
4660
4661
4662
    """
    Returns the list of shard files containing only weights offloaded to disk.
    """
4663
4664
4665
4666

    weight_map = {
        p[len(start_prefix) :]: v for p, v in sharded_metadata["weight_map"].items() if p.startswith(start_prefix)
    }
Sylvain Gugger's avatar
Sylvain Gugger committed
4667
    files_content = collections.defaultdict(list)
4668
    for weight_name, filename in weight_map.items():
Sylvain Gugger's avatar
Sylvain Gugger committed
4669
4670
4671
4672
4673
        while len(weight_name) > 0 and weight_name not in device_map:
            weight_name = ".".join(weight_name.split(".")[:-1])
        files_content[filename].append(device_map[weight_name])

    return [fname for fname, devices in files_content.items() if set(devices) == {"disk"}]