modeling_utils.py 135 KB
Newer Older
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
Patrick von Platen committed
17
import inspect
Sylvain Gugger's avatar
Sylvain Gugger committed
18
import json
19
import os
20
import re
Sylvain Gugger's avatar
Sylvain Gugger committed
21
22
import shutil
import tempfile
23
from contextlib import contextmanager
24
from dataclasses import dataclass
25
from functools import partial
Sylvain Gugger's avatar
Sylvain Gugger committed
26
from pathlib import Path
27
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
28
29

import torch
30
from torch import Tensor, device, nn
31
from torch.nn import CrossEntropyLoss
32

33
34
from requests import HTTPError

35
from .activations import get_activation
36
from .configuration_utils import PretrainedConfig
37
from .deepspeed import deepspeed_config, is_deepspeed_zero3_enabled
38
from .dynamic_module_utils import custom_object_save
39
40
from .generation_utils import GenerationMixin
from .utils import (
Aymeric Augustin's avatar
Aymeric Augustin committed
41
    DUMMY_INPUTS,
42
    FLAX_WEIGHTS_NAME,
43
    HUGGINGFACE_CO_RESOLVE_ENDPOINT,
44
45
    TF2_WEIGHTS_NAME,
    TF_WEIGHTS_NAME,
Sylvain Gugger's avatar
Sylvain Gugger committed
46
    WEIGHTS_INDEX_NAME,
47
    WEIGHTS_NAME,
48
    EntryNotFoundError,
49
    ModelOutput,
Sylvain Gugger's avatar
Sylvain Gugger committed
50
    PushToHubMixin,
51
52
    RepositoryNotFoundError,
    RevisionNotFoundError,
53
    cached_path,
54
    has_file,
55
    hf_bucket_url,
56
    is_offline_mode,
57
    is_remote_url,
58
    logging,
Sylvain Gugger's avatar
Sylvain Gugger committed
59
    replace_return_docstrings,
60
)
61
from .utils.versions import require_version_core
62

Aymeric Augustin's avatar
Aymeric Augustin committed
63

Lysandre Debut's avatar
Lysandre Debut committed
64
logger = logging.get_logger(__name__)
65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

_init_weights = True


@contextmanager
def no_init_weights(_enable=True):
    """
    Context manager to globally disable weight initialization to speed up loading large models.

    TODO(Patrick): Delete safety argument `_enable=True` at next major version. .
    """
    global _init_weights
    if _enable:
        _init_weights = False
    try:
        yield
    finally:
        _init_weights = True


thomwolf's avatar
thomwolf committed
86
87
88
89
90
try:
    from torch.nn import Identity
except ImportError:
    # Older PyTorch compatibility
    class Identity(nn.Module):
Lysandre's avatar
Lysandre committed
91
        r"""A placeholder identity operator that is argument-insensitive."""
92

thomwolf's avatar
thomwolf committed
93
        def __init__(self, *args, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
94
            super().__init__()
thomwolf's avatar
thomwolf committed
95
96
97
98

        def forward(self, input):
            return input

99

100
def find_pruneable_heads_and_indices(
Sylvain Gugger's avatar
Sylvain Gugger committed
101
102
103
    heads: List[int], n_heads: int, head_size: int, already_pruned_heads: Set[int]
) -> Tuple[Set[int], torch.LongTensor]:
    """
104
    Finds the heads and their indices taking `already_pruned_heads` into account.
Sylvain Gugger's avatar
Sylvain Gugger committed
105
106

    Args:
107
108
109
110
        heads (`List[int]`): List of the indices of heads to prune.
        n_heads (`int`): The number of heads in the model.
        head_size (`int`): The size of each head.
        already_pruned_heads (`Set[int]`): A set of already pruned heads.
Sylvain Gugger's avatar
Sylvain Gugger committed
111
112

    Returns:
113
        `Tuple[Set[int], torch.LongTensor]`: A tuple with the remaining heads and their corresponding indices.
Sylvain Gugger's avatar
Sylvain Gugger committed
114
    """
115
116
117
118
119
120
121
122
123
124
125
    mask = torch.ones(n_heads, head_size)
    heads = set(heads) - already_pruned_heads  # Convert to set and remove already pruned heads
    for head in heads:
        # Compute how many pruned heads are before the head and move the index accordingly
        head = head - sum(1 if h < head else 0 for h in already_pruned_heads)
        mask[head] = 0
    mask = mask.view(-1).contiguous().eq(1)
    index: torch.LongTensor = torch.arange(len(mask))[mask].long()
    return heads, index


Lysandre Debut's avatar
Lysandre Debut committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
def get_parameter_device(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    try:
        return next(parameter.parameters()).device
    except StopIteration:
        # For nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].device


def get_parameter_dtype(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    try:
        return next(parameter.parameters()).dtype
    except StopIteration:
        # For nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].dtype


Sylvain Gugger's avatar
Sylvain Gugger committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
def convert_file_size_to_int(size: Union[int, str]):
    """
    Converts a size expressed as a string with digits an unit (like `"5MB"`) to an integer (in bytes).

    Args:
        size (`int` or `str`): The size to convert. Will be directly returned if an `int`.

    Example:

    ```py
    >>> convert_file_size_to_int("1MB")
    1048576
    ```
    """
    if isinstance(size, int):
        return size
    if size.upper().endswith("GIB"):
        return int(size[:-3]) * (2**30)
    if size.upper().endswith("MIB"):
        return int(size[:-3]) * (2**20)
    if size.upper().endswith("KIB"):
        return int(size[:-3]) * (2**10)
    if size.upper().endswith("GB"):
        return int(size[:-2]) * (10**9)
    if size.upper().endswith("MB"):
        return int(size[:-2]) * (10**6)
    if size.upper().endswith("KB"):
        return int(size[:-2]) * (10**3)
    raise ValueError("`size` is not in a valid format. Use an integer followed by the unit, e.g., '5GB'.")


def dtype_byte_size(dtype):
    """
    Returns the size (in bytes) occupied by one parameter of type `dtype`.

    Example:

    ```py
    >>> dtype_byte_size(torch.float32)
    4
    ```
    """
    if dtype == torch.bool:
        return 1 / 8
    bit_search = re.search("[^\d](\d+)$", str(dtype))
    if bit_search is None:
        raise ValueError(f"`dtype` is not a valid dtype: {dtype}.")
    bit_size = int(bit_search.groups()[0])
    return bit_size // 8


def shard_checkpoint(state_dict: Dict[str, torch.Tensor], max_shard_size: Union[int, str] = "10GB"):
    """
    Splits a model state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a
    given size.

    The sub-checkpoints are determined by iterating through the `state_dict` in the order of its keys, so there is no
    optimization made to make each sub-checkpoint as close as possible to the maximum size passed. For example, if the
    limit is 10GB and we have weights of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as [6GB], [6+2GB],
    [6+2+2GB] and not [6+2+2GB], [6+2GB], [6GB].

    <Tip warning={true}>

    If one of the model's weight is bigger that `max_sahrd_size`, it will end up in its own sub-checkpoint which will
    have a size greater than `max_shard_size`.

    </Tip>

    Args:
        state_dict (`Dict[str, torch.Tensor]`): The state dictionary of a model to save.
        max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
            The maximum size of each sub-checkpoint. If expressed as a string, needs to be digits followed by a unit
            (like `"5MB"`).
    """
    max_shard_size = convert_file_size_to_int(max_shard_size)

    sharded_state_dicts = []
    current_block = {}
    current_block_size = 0
    total_size = 0

    for key, weight in state_dict.items():
        weight_size = weight.numel() * dtype_byte_size(weight.dtype)

        # If this weight is going to tip up over the maximal size, we split.
        if current_block_size + weight_size > max_shard_size:
            sharded_state_dicts.append(current_block)
            current_block = {}
            current_block_size = 0

        current_block[key] = weight
        current_block_size += weight_size
        total_size += weight_size

    # Add the last block
    sharded_state_dicts.append(current_block)

    # If we only have one shard, we return it
    if len(sharded_state_dicts) == 1:
        return {WEIGHTS_NAME: sharded_state_dicts[0]}, None

    # Otherwise, let's build the index
    weight_map = {}
    shards = {}
    for idx, shard in enumerate(sharded_state_dicts):
        shard_file = WEIGHTS_NAME.replace(".bin", f"-{idx+1:05d}-of-{len(sharded_state_dicts):05d}.bin")
        shards[shard_file] = shard
        for key in shard.keys():
            weight_map[key] = shard_file

    # Add the metadata
    metadata = {"total_size": total_size}
    index = {"metadata": metadata, "weight_map": weight_map}
    return shards, index


def get_checkpoint_shard_files(
    pretrained_model_name_or_path,
    index_filename,
    cache_dir=None,
    force_download=False,
    proxies=None,
    resume_download=False,
    local_files_only=False,
    use_auth_token=None,
    user_agent=None,
    revision=None,
    mirror=None,
):
    """
    For a given model:

    - download and cache all the shards of a sharded checkpoint if `pretrained_model_name_or_path` is a model ID on the
      Hub
    - returns the list of paths to all the shards, as well as some metadata.

    For the description of each arg, see [`PreTrainedModel.from_pretrained`]. `index_filename` is the full path to the
    index (downloaded and cached if `pretrained_model_name_or_path` is a model ID on the Hub).
    """
    with open(index_filename, "r") as f:
        index = json.loads(f.read())

    shard_filenames = sorted(list(set(index["weight_map"].values())))
    sharded_metadata = index["metadata"]
    sharded_metadata["all_checkpoint_keys"] = list(index["weight_map"].keys())

    # First, let's deal with local folder.
    if os.path.isdir(pretrained_model_name_or_path):
        shard_filenames = [os.path.join(pretrained_model_name_or_path, f) for f in shard_filenames]
        return shard_filenames, sharded_metadata

    # At this stage pretrained_model_name_or_path is a model identifier on the Hub
    cached_filenames = []
    for shard_filename in shard_filenames:
        shard_url = hf_bucket_url(
            pretrained_model_name_or_path, filename=shard_filename, revision=revision, mirror=mirror
        )

        try:
            # Load from URL
            cached_filename = cached_path(
                shard_url,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                resume_download=resume_download,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                user_agent=user_agent,
            )
        # We have already dealt with RepositoryNotFoundError and RevisionNotFoundError when getting the index, so
        # we don't have to catch them here.
        except EntryNotFoundError:
            raise EnvironmentError(
                f"{pretrained_model_name_or_path} does not appear to have a file named {shard_filename} which is "
                "required according to the checkpoint index."
            )
        except HTTPError:
            raise EnvironmentError(
335
                f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load {shard_filename}. You should try again "
Sylvain Gugger's avatar
Sylvain Gugger committed
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
                "after checking your internet connection."
            )

        cached_filenames.append(cached_filename)

    return cached_filenames, sharded_metadata


def load_state_dict(checkpoint_file: Union[str, os.PathLike]):
    """
    Reads a PyTorch checkpoint file, returning properly formatted errors if they arise.
    """
    try:
        return torch.load(checkpoint_file, map_location="cpu")
    except Exception as e:
        try:
            with open(checkpoint_file) as f:
                if f.read().startswith("version"):
                    raise OSError(
                        "You seem to have cloned a repository without having git-lfs installed. Please install "
                        "git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
                        "you cloned."
                    )
                else:
                    raise ValueError(
                        f"Unable to locate the file {checkpoint_file} which is necessary to load this pretrained "
                        "model. Make sure you have saved the model properly."
                    ) from e
        except (UnicodeDecodeError, ValueError):
            raise OSError(
                f"Unable to load weights from pytorch checkpoint file for '{checkpoint_file}' "
                f"at '{checkpoint_file}'. "
                "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True."
            )


def _load_state_dict_into_model(model_to_load, state_dict, start_prefix):
    # Convert old format to new format if needed from a PyTorch state_dict
    old_keys = []
    new_keys = []
    for key in state_dict.keys():
        new_key = None
        if "gamma" in key:
            new_key = key.replace("gamma", "weight")
        if "beta" in key:
            new_key = key.replace("beta", "bias")
        if new_key:
            old_keys.append(key)
            new_keys.append(new_key)
    for old_key, new_key in zip(old_keys, new_keys):
        state_dict[new_key] = state_dict.pop(old_key)

    # copy state_dict so _load_from_state_dict can modify it
    metadata = getattr(state_dict, "_metadata", None)
    state_dict = state_dict.copy()
    if metadata is not None:
        state_dict._metadata = metadata

    error_msgs = []

    # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
    # so we need to apply the function recursively.
    def load(module: nn.Module, prefix=""):
        local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
        args = (state_dict, prefix, local_metadata, True, [], [], error_msgs)
        if is_deepspeed_zero3_enabled():
            import deepspeed

            # because zero3 puts placeholders in model params, this context
            # manager gathers (unpartitions) the params of the current layer, then loads from
            # the state dict and then re-partitions them again
            with deepspeed.zero.GatheredParameters(list(module.parameters(recurse=False)), modifier_rank=0):
                if torch.distributed.get_rank() == 0:
                    module._load_from_state_dict(*args)
        else:
            module._load_from_state_dict(*args)

        for name, child in module._modules.items():
            if child is not None:
                load(child, prefix + name + ".")

    load(model_to_load, prefix=start_prefix)

    return error_msgs


422
class ModuleUtilsMixin:
Julien Chaumond's avatar
Julien Chaumond committed
423
    """
424
    A few utilities for `torch.nn.Modules`, to be used as a mixin.
Julien Chaumond's avatar
Julien Chaumond committed
425
426
    """

427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
    @staticmethod
    def _hook_rss_memory_pre_forward(module, *args, **kwargs):
        try:
            import psutil
        except (ImportError):
            raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")

        process = psutil.Process(os.getpid())
        mem = process.memory_info()
        module.mem_rss_pre_forward = mem.rss
        return None

    @staticmethod
    def _hook_rss_memory_post_forward(module, *args, **kwargs):
        try:
            import psutil
        except (ImportError):
            raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")

        process = psutil.Process(os.getpid())
        mem = process.memory_info()
        module.mem_rss_post_forward = mem.rss
        mem_rss_diff = module.mem_rss_post_forward - module.mem_rss_pre_forward
        module.mem_rss_diff = mem_rss_diff + (module.mem_rss_diff if hasattr(module, "mem_rss_diff") else 0)
        return None

    def add_memory_hooks(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
454
455
456
        """
        Add a memory hook before and after each sub-module forward pass to record increase in memory consumption.

Sylvain Gugger's avatar
Sylvain Gugger committed
457
458
        Increase in memory consumption is stored in a `mem_rss_diff` attribute for each module and can be reset to zero
        with `model.reset_memory_hooks_state()`.
459
460
461
462
463
464
465
        """
        for module in self.modules():
            module.register_forward_pre_hook(self._hook_rss_memory_pre_forward)
            module.register_forward_hook(self._hook_rss_memory_post_forward)
        self.reset_memory_hooks_state()

    def reset_memory_hooks_state(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
466
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
467
        Reset the `mem_rss_diff` attribute of each module (see [`~modeling_utils.ModuleUtilsMixin.add_memory_hooks`]).
Sylvain Gugger's avatar
Sylvain Gugger committed
468
        """
469
470
471
472
473
        for module in self.modules():
            module.mem_rss_diff = 0
            module.mem_rss_post_forward = 0
            module.mem_rss_pre_forward = 0

474
    @property
475
    def device(self) -> device:
476
        """
477
        `torch.device`: The device on which the module is (assuming that all the module parameters are on the same
478
        device).
479
        """
Lysandre Debut's avatar
Lysandre Debut committed
480
        return get_parameter_device(self)
481

482
    @property
483
    def dtype(self) -> torch.dtype:
484
        """
485
        `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
486
        """
Lysandre Debut's avatar
Lysandre Debut committed
487
        return get_parameter_dtype(self)
488
489

    def invert_attention_mask(self, encoder_attention_mask: Tensor) -> Tensor:
Sylvain Gugger's avatar
Sylvain Gugger committed
490
491
492
493
        """
        Invert an attention mask (e.g., switches 0. and 1.).

        Args:
494
            encoder_attention_mask (`torch.Tensor`): An attention mask.
Sylvain Gugger's avatar
Sylvain Gugger committed
495
496

        Returns:
497
            `torch.Tensor`: The inverted attention mask.
Sylvain Gugger's avatar
Sylvain Gugger committed
498
        """
499
500
501
502
503
504
505
506
507
508
        if encoder_attention_mask.dim() == 3:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
        if encoder_attention_mask.dim() == 2:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
        # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
        # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
        # /transformer/transformer_layers.py#L270
        # encoder_extended_attention_mask = (encoder_extended_attention_mask ==
        # encoder_extended_attention_mask.transpose(-1, -2))
        encoder_extended_attention_mask = encoder_extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
509
510
511

        if self.dtype == torch.float16:
            encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -1e4
512
        elif self.dtype in [torch.bfloat16, torch.float32]:
513
514
515
            encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -1e9
        else:
            raise ValueError(
516
                f"{self.dtype} not recognized. `dtype` should be set to either `torch.float32` or `torch.float16`"
517
518
            )

519
520
        return encoder_extended_attention_mask

521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
    def create_extended_attention_mask_for_decoder(self, input_shape, attention_mask, device):
        batch_size, seq_length = input_shape
        seq_ids = torch.arange(seq_length, device=device)
        causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
        # in case past_key_values are used we need to add a prefix ones mask to the causal mask
        # causal and attention masks must have same type with pytorch version < 1.3
        causal_mask = causal_mask.to(attention_mask.dtype)

        if causal_mask.shape[1] < attention_mask.shape[1]:
            prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
            causal_mask = torch.cat(
                [
                    torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype),
                    causal_mask,
                ],
                axis=-1,
            )

        extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
        return extended_attention_mask

Sylvain Gugger's avatar
Sylvain Gugger committed
542
543
544
    def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device) -> Tensor:
        """
        Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
545
546

        Arguments:
547
            attention_mask (`torch.Tensor`):
Sylvain Gugger's avatar
Sylvain Gugger committed
548
                Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
549
            input_shape (`Tuple[int]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
550
                The shape of the input to the model.
551
            device: (`torch.device`):
Sylvain Gugger's avatar
Sylvain Gugger committed
552
                The device of the input to the model.
553
554

        Returns:
555
            `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
556
557
558
559
560
561
562
563
564
565
        """
        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        if attention_mask.dim() == 3:
            extended_attention_mask = attention_mask[:, None, :, :]
        elif attention_mask.dim() == 2:
            # Provided a padding mask of dimensions [batch_size, seq_length]
            # - if the model is a decoder, apply a causal mask in addition to the padding mask
            # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
            if self.config.is_decoder:
566
567
568
                extended_attention_mask = self.create_extended_attention_mask_for_decoder(
                    input_shape, attention_mask, device
                )
569
570
571
572
            else:
                extended_attention_mask = attention_mask[:, None, None, :]
        else:
            raise ValueError(
573
                f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})"
574
575
576
577
578
579
580
581
582
583
584
            )

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
        return extended_attention_mask

Sylvain Gugger's avatar
Sylvain Gugger committed
585
586
587
    def get_head_mask(
        self, head_mask: Optional[Tensor], num_hidden_layers: int, is_attention_chunked: bool = False
    ) -> Tensor:
588
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
589
590
591
        Prepare the head mask if needed.

        Args:
592
            head_mask (`torch.Tensor` with shape `[num_heads]` or `[num_hidden_layers x num_heads]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
593
                The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard).
594
            num_hidden_layers (`int`):
Sylvain Gugger's avatar
Sylvain Gugger committed
595
                The number of hidden layers in the model.
596
            is_attention_chunked: (`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
597
598
                Whether or not the attentions scores are computed by chunks or not.

599
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
600
601
            `torch.Tensor` with shape `[num_hidden_layers x batch x num_heads x seq_length x seq_length]` or list with
            `[None]` for each layer.
602
603
604
        """
        if head_mask is not None:
            head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
605
606
            if is_attention_chunked is True:
                head_mask = head_mask.unsqueeze(-1)
607
608
609
610
611
612
613
614
615
616
617
618
619
        else:
            head_mask = [None] * num_hidden_layers

        return head_mask

    def _convert_head_mask_to_5d(self, head_mask, num_hidden_layers):
        """-> [num_hidden_layers x batch x num_heads x seq_length x seq_length]"""
        if head_mask.dim() == 1:
            head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
            head_mask = head_mask.expand(num_hidden_layers, -1, -1, -1, -1)
        elif head_mask.dim() == 2:
            head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
        assert head_mask.dim() == 5, f"head_mask.dim != 5, instead {head_mask.dim()}"
620
        head_mask = head_mask.to(dtype=self.dtype)  # switch to float if need + fp16 compatibility
621
622
        return head_mask

623
624
625
626
627
    def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int:
        """
        Get number of (optionally, trainable or non-embeddings) parameters in the module.

        Args:
628
            only_trainable (`bool`, *optional*, defaults to `False`):
629
630
                Whether or not to return only the number of trainable parameters

631
            exclude_embeddings (`bool`, *optional*, defaults to `False`):
632
633
634
                Whether or not to return only the number of non-embeddings parameters

        Returns:
635
            `int`: The number of parameters.
636
637
        """

638
639
640
641
642
643
644
645
646
647
        if exclude_embeddings:
            embedding_param_names = [
                f"{name}.weight" for name, module_type in self.named_modules() if isinstance(module_type, nn.Embedding)
            ]
            non_embedding_parameters = [
                parameter for name, parameter in self.named_parameters() if name not in embedding_param_names
            ]
            return sum(p.numel() for p in non_embedding_parameters if p.requires_grad or not only_trainable)
        else:
            return sum(p.numel() for p in self.parameters() if p.requires_grad or not only_trainable)
648
649
650
651
652
653

    def estimate_tokens(self, input_dict: Dict[str, Union[torch.Tensor, Any]]) -> int:
        """
        Helper function to estimate the total number of tokens from the model inputs.

        Args:
654
            inputs (`dict`): The model inputs.
655
656

        Returns:
657
            `int`: The total number of tokens.
658
        """
659
660
        if self.main_input_name in input_dict:
            return input_dict[self.main_input_name].numel()
661
        else:
662
            logger.warning(
663
664
665
666
667
668
669
670
671
672
                "Could not estimate the number of tokens of the input, floating-point operations will not be computed"
            )
            return 0

    def floating_point_ops(
        self, input_dict: Dict[str, Union[torch.Tensor, Any]], exclude_embeddings: bool = True
    ) -> int:
        """
        Get number of (optionally, non-embeddings) floating-point operations for the forward and backward passes of a
        batch with this transformer model. Default approximation neglects the quadratic dependency on the number of
Sylvain Gugger's avatar
Sylvain Gugger committed
673
674
        tokens (valid if `12 * d_model << sequence_length`) as laid out in [this
        paper](https://arxiv.org/pdf/2001.08361.pdf) section 2.1. Should be overridden for transformers with parameter
Sylvain Gugger's avatar
Sylvain Gugger committed
675
        re-use e.g. Albert or Universal Transformers, or if doing long-range modeling with very high sequence lengths.
676
677

        Args:
678
            batch_size (`int`):
679
680
                The batch size for the forward pass.

681
            sequence_length (`int`):
682
683
                The number of tokens in each line of the batch.

684
            exclude_embeddings (`bool`, *optional*, defaults to `True`):
685
686
687
                Whether or not to count embedding and softmax operations.

        Returns:
688
            `int`: The number of floating-point operations.
689
690
691
692
        """

        return 6 * self.estimate_tokens(input_dict) * self.num_parameters(exclude_embeddings=exclude_embeddings)

Julien Chaumond's avatar
Julien Chaumond committed
693

Sylvain Gugger's avatar
Sylvain Gugger committed
694
class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMixin):
695
696
    r"""
    Base class for all models.
697

Sylvain Gugger's avatar
Sylvain Gugger committed
698
699
    [`PreTrainedModel`] takes care of storing the configuration of the models and handles methods for loading,
    downloading and saving models as well as a few methods common to all models to:
700

701
702
        - resize the input embeddings,
        - prune heads in the self-attention heads.
703

704
    Class attributes (overridden by derived classes):
Sylvain Gugger's avatar
Sylvain Gugger committed
705

Sylvain Gugger's avatar
Sylvain Gugger committed
706
707
708
709
        - **config_class** ([`PretrainedConfig`]) -- A subclass of [`PretrainedConfig`] to use as configuration class
          for this model architecture.
        - **load_tf_weights** (`Callable`) -- A python *method* for loading a TensorFlow checkpoint in a PyTorch model,
          taking as arguments:
710

Sylvain Gugger's avatar
Sylvain Gugger committed
711
712
            - **model** ([`PreTrainedModel`]) -- An instance of the model on which to load the TensorFlow checkpoint.
            - **config** ([`PreTrainedConfig`]) -- An instance of the configuration associated to the model.
713
            - **path** (`str`) -- A path to the TensorFlow checkpoint.
714

Sylvain Gugger's avatar
Sylvain Gugger committed
715
716
        - **base_model_prefix** (`str`) -- A string indicating the attribute associated to the base model in derived
          classes of the same architecture adding modules on top of the base model.
717
        - **is_parallelizable** (`bool`) -- A flag indicating whether this model supports model parallelization.
Sylvain Gugger's avatar
Sylvain Gugger committed
718
719
        - **main_input_name** (`str`) -- The name of the principal input to the model (often `input_ids` for NLP
          models, `pixel_values` for vision models and `input_values` for speech models).
720
    """
721
    config_class = None
722
    base_model_prefix = ""
723
    main_input_name = "input_ids"
724
    _auto_class = None
725

726
727
728
729
730
731
732
    # a list of re pattern of tensor names to ignore from the model when loading the model weights
    # (and avoid unnecessary warnings).
    _keys_to_ignore_on_load_missing = None
    # a list of re pattern of tensor names to ignore from the weights when loading the model weights
    # (and avoid unnecessary warnings).
    _keys_to_ignore_on_load_unexpected = None
    # a list of of tensor names to ignore when saving the model (useful for keys that aren't
733
    # trained, but which are deterministic, or tied variables)
734
    _keys_to_ignore_on_save = None
735

736
    is_parallelizable = False
737
    supports_gradient_checkpointing = False
738

739
    @property
740
    def dummy_inputs(self) -> Dict[str, torch.Tensor]:
741
        """
742
        `Dict[str, torch.Tensor]`: Dummy inputs to do a forward pass in the network.
743
        """
744
        return {"input_ids": torch.tensor(DUMMY_INPUTS)}
745

746
747
748
749
750
751
752
    @property
    def framework(self) -> str:
        """
        :str: Identifies that this is a PyTorch model.
        """
        return "pt"

753
    def __init__(self, config: PretrainedConfig, *inputs, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
754
        super().__init__()
755
756
        if not isinstance(config, PretrainedConfig):
            raise ValueError(
757
758
759
                f"Parameter config in `{self.__class__.__name__}(config)` should be an instance of class "
                "`PretrainedConfig`. To create a model from a pretrained model use "
                f"`model = {self.__class__.__name__}.from_pretrained(PRETRAINED_MODEL_NAME)`"
760
            )
761
        # Save config and origin of the pretrained weights if given in model
762
        self.config = config
763
        self.name_or_path = config.name_or_path
764
765
766
767
768
769
770
771
772
773
774
775
776
777

    def post_init(self):
        """
        A method executed at the end of each Transformer model initialization, to execute code that needs the model's
        modules properly initialized (such as weight initialization).
        """
        self.init_weights()
        self._backward_compatibility_gradient_checkpointing()

    def _backward_compatibility_gradient_checkpointing(self):
        if self.supports_gradient_checkpointing and getattr(self.config, "gradient_checkpointing", False):
            self.gradient_checkpointing_enable()
            # Remove the attribute now that is has been consumed, so it's no saved in the config.
            delattr(self.config, "gradient_checkpointing")
778

779
780
781
782
783
784
    @classmethod
    def _from_config(cls, config, **kwargs):
        """
        All context managers that the model should be initialized under go here.

        Args:
785
786
            torch_dtype (`torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model under this dtype.
787
788
789
790
791
792
793
794
795
796
797
798
799
800
        """
        torch_dtype = kwargs.pop("torch_dtype", None)

        # override default dtype if needed
        dtype_orig = None
        if torch_dtype is not None:
            dtype_orig = cls._set_default_torch_dtype(torch_dtype)

        if is_deepspeed_zero3_enabled():
            import deepspeed

            logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
            # this immediately partitions the model across all gpus, to avoid the overhead in time
            # and memory copying it on CPU or each GPU first
801
            with deepspeed.zero.Init(config_dict_or_path=deepspeed_config()):
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
                model = cls(config, **kwargs)
        else:
            model = cls(config, **kwargs)

        # restore default dtype if it was modified
        if dtype_orig is not None:
            torch.set_default_dtype(dtype_orig)

        return model

    @classmethod
    def _set_default_torch_dtype(cls, dtype: torch.dtype) -> torch.dtype:
        """
        Change the default dtype and return the previous one. This is needed when wanting to instantiate the model
        under specific dtype.

        Args:
819
            dtype (`torch.dtype`):
820
821
822
                a floating dtype to set to.

        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
823
824
            `torch.dtype`: the original `dtype` that can be used to restore `torch.set_default_dtype(dtype)` if it was
            modified. If it wasn't, returns `None`.
825

826
827
        Note `set_default_dtype` currently only works with floating-point types and asserts if for example,
        `torch.int64` is passed. So if a non-float `dtype` is passed this functions will throw an exception.
828
829
830
831
832
833
834
835
836
837
838
        """
        if not dtype.is_floating_point:
            raise ValueError(
                f"Can't instantiate {cls.__name__} model under dtype={dtype} since it is not a floating point dtype"
            )

        logger.info(f"Instantiating {cls.__name__} model under default dtype {dtype}.")
        dtype_orig = torch.get_default_dtype()
        torch.set_default_dtype(dtype)
        return dtype_orig

839
    @property
840
841
    def base_model(self) -> nn.Module:
        """
842
        `torch.nn.Module`: The main body of the model.
843
        """
844
        return getattr(self, self.base_model_prefix, self)
thomwolf's avatar
thomwolf committed
845

846
    def get_input_embeddings(self) -> nn.Module:
847
848
849
850
        """
        Returns the model's input embeddings.

        Returns:
851
            `nn.Module`: A torch module mapping vocabulary to hidden states.
thomwolf's avatar
thomwolf committed
852
        """
853
        base_model = getattr(self, self.base_model_prefix, self)
thomwolf's avatar
thomwolf committed
854
855
856
857
        if base_model is not self:
            return base_model.get_input_embeddings()
        else:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
858

859
    def set_input_embeddings(self, value: nn.Module):
860
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
861
        Set model's input embeddings.
862
863

        Args:
864
            value (`nn.Module`): A module mapping vocabulary to hidden states.
thomwolf's avatar
thomwolf committed
865
866
867
868
869
870
        """
        base_model = getattr(self, self.base_model_prefix, self)
        if base_model is not self:
            base_model.set_input_embeddings(value)
        else:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
871

872
    def get_output_embeddings(self) -> nn.Module:
873
874
875
876
        """
        Returns the model's output embeddings.

        Returns:
877
            `nn.Module`: A torch module mapping hidden states to vocabulary.
thomwolf's avatar
thomwolf committed
878
        """
879
        return None  # Overwrite for models with output embeddings
thomwolf's avatar
thomwolf committed
880

881
882
883
884
    def _init_weights(self, module):
        """
        Initialize the weights. This method should be overridden by derived class.
        """
885
        raise NotImplementedError(f"Make sure `_init_weights` is implemented for {self.__class__}")
886

887
    def tie_weights(self):
888
889
        """
        Tie the weights between the input embeddings and the output embeddings.
890

Sylvain Gugger's avatar
Sylvain Gugger committed
891
892
        If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the
        weights instead.
thomwolf's avatar
thomwolf committed
893
        """
894
895
896
897
        if getattr(self.config, "tie_word_embeddings", True):
            output_embeddings = self.get_output_embeddings()
            if output_embeddings is not None:
                self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings())
thomwolf's avatar
thomwolf committed
898

899
        if getattr(self.config, "is_encoder_decoder", False) and getattr(self.config, "tie_encoder_decoder", False):
Weizhen's avatar
Weizhen committed
900
901
            if hasattr(self, self.base_model_prefix):
                self = getattr(self, self.base_model_prefix)
902
903
            self._tie_encoder_decoder_weights(self.encoder, self.decoder, self.base_model_prefix)

Sylvain Gugger's avatar
Sylvain Gugger committed
904
905
906
907
        for module in self.modules():
            if hasattr(module, "_tie_weights"):
                module._tie_weights()

908
909
910
    @staticmethod
    def _tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str):
        uninitialized_encoder_weights: List[str] = []
Weizhen's avatar
Weizhen committed
911
912
913
914
        if decoder.__class__ != encoder.__class__:
            logger.info(
                f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder weights are correctly initialized."
            )
915
916
917
918
919
920
921
922
923
924

        def tie_encoder_to_decoder_recursively(
            decoder_pointer: nn.Module,
            encoder_pointer: nn.Module,
            module_name: str,
            uninitialized_encoder_weights: List[str],
            depth=0,
        ):
            assert isinstance(decoder_pointer, nn.Module) and isinstance(
                encoder_pointer, nn.Module
925
            ), f"{decoder_pointer} and {encoder_pointer} have to be of type nn.Module"
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
            if hasattr(decoder_pointer, "weight"):
                assert hasattr(encoder_pointer, "weight")
                encoder_pointer.weight = decoder_pointer.weight
                if hasattr(decoder_pointer, "bias"):
                    assert hasattr(encoder_pointer, "bias")
                    encoder_pointer.bias = decoder_pointer.bias
                return

            encoder_modules = encoder_pointer._modules
            decoder_modules = decoder_pointer._modules
            if len(decoder_modules) > 0:
                assert (
                    len(encoder_modules) > 0
                ), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"

                all_encoder_weights = set([module_name + "/" + sub_name for sub_name in encoder_modules.keys()])
                encoder_layer_pos = 0
                for name, module in decoder_modules.items():
                    if name.isdigit():
                        encoder_name = str(int(name) + encoder_layer_pos)
                        decoder_name = name
Weizhen's avatar
Weizhen committed
947
948
949
                        if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len(
                            encoder_modules
                        ) != len(decoder_modules):
950
951
                            # this can happen if the name corresponds to the position in a list module list of layers
                            # in this case the decoder has added a cross-attention that the encoder does not have
952
                            # thus skip this step and subtract one layer pos from encoder
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
                            encoder_layer_pos -= 1
                            continue
                    elif name not in encoder_modules:
                        continue
                    elif depth > 500:
                        raise ValueError(
                            "Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model."
                        )
                    else:
                        decoder_name = encoder_name = name
                    tie_encoder_to_decoder_recursively(
                        decoder_modules[decoder_name],
                        encoder_modules[encoder_name],
                        module_name + "/" + name,
                        uninitialized_encoder_weights,
                        depth=depth + 1,
                    )
                    all_encoder_weights.remove(module_name + "/" + encoder_name)

                uninitialized_encoder_weights += list(all_encoder_weights)

        # tie weights recursively
        tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights)
        if len(uninitialized_encoder_weights) > 0:
            logger.warning(
                f"The following encoder weights were not tied to the decoder {uninitialized_encoder_weights}"
            )

981
    def _tie_or_clone_weights(self, output_embeddings, input_embeddings):
Lysandre's avatar
Lysandre committed
982
        """Tie or clone module weights depending of whether we are using TorchScript or not"""
thomwolf's avatar
thomwolf committed
983
        if self.config.torchscript:
984
            output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone())
thomwolf's avatar
thomwolf committed
985
        else:
986
            output_embeddings.weight = input_embeddings.weight
thomwolf's avatar
thomwolf committed
987

Sam Shleifer's avatar
Sam Shleifer committed
988
        if getattr(output_embeddings, "bias", None) is not None:
989
            output_embeddings.bias.data = nn.functional.pad(
990
                output_embeddings.bias.data,
Lysandre's avatar
Lysandre committed
991
992
993
994
                (
                    0,
                    output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0],
                ),
995
996
                "constant",
                0,
997
            )
998
        if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"):
999
            output_embeddings.out_features = input_embeddings.num_embeddings
1000

1001
    def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding:
1002
        """
1003
        Resizes input token embeddings matrix of the model if `new_num_tokens != config.vocab_size`.
1004

1005
        Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
thomwolf's avatar
thomwolf committed
1006

1007
        Arguments:
1008
            new_num_tokens (`int`, *optional*):
1009
                The number of new tokens in the embedding matrix. Increasing the size will add newly initialized
Sylvain Gugger's avatar
Sylvain Gugger committed
1010
1011
                vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
                returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything.
1012
1013

        Return:
1014
            `torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model.
thomwolf's avatar
thomwolf committed
1015
        """
1016
        model_embeds = self._resize_token_embeddings(new_num_tokens)
thomwolf's avatar
thomwolf committed
1017
1018
        if new_num_tokens is None:
            return model_embeds
thomwolf's avatar
thomwolf committed
1019
1020
1021

        # Update base model and current model config
        self.config.vocab_size = new_num_tokens
1022
        self.vocab_size = new_num_tokens
thomwolf's avatar
thomwolf committed
1023
1024

        # Tie weights again if needed
1025
        self.tie_weights()
thomwolf's avatar
thomwolf committed
1026

thomwolf's avatar
thomwolf committed
1027
1028
        return model_embeds

1029
    def _resize_token_embeddings(self, new_num_tokens):
thomwolf's avatar
thomwolf committed
1030
1031
1032
        old_embeddings = self.get_input_embeddings()
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)
        self.set_input_embeddings(new_embeddings)
1033
1034
1035
1036
1037
1038
1039

        # if word embeddings are not tied, make sure that lm head is resized as well
        if self.get_output_embeddings() is not None and not self.config.tie_word_embeddings:
            old_lm_head = self.get_output_embeddings()
            new_lm_head = self._get_resized_lm_head(old_lm_head, new_num_tokens)
            self.set_output_embeddings(new_lm_head)

thomwolf's avatar
thomwolf committed
1040
        return self.get_input_embeddings()
1041

1042
    def _get_resized_embeddings(
1043
1044
        self, old_embeddings: nn.Embedding, new_num_tokens: Optional[int] = None
    ) -> nn.Embedding:
1045
1046
1047
        """
        Build a resized Embedding Module from a provided token Embedding Module. Increasing the size will add newly
        initialized vectors at the end. Reducing the size will remove vectors from the end
1048
1049

        Args:
1050
            old_embeddings (`torch.nn.Embedding`):
1051
                Old embeddings to be resized.
1052
            new_num_tokens (`int`, *optional*):
1053
                New number of tokens in the embedding matrix.
1054
1055

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
1056
1057
                vectors from the end. If not provided or `None`, just returns a pointer to the input tokens
                ``torch.nn.Embedding``` module of the model without doing anything.
1058
1059

        Return:
1060
1061
            `torch.nn.Embedding`: Pointer to the resized Embedding Module or the old Embedding Module if
            `new_num_tokens` is `None`
1062
1063
1064
1065
        """
        if new_num_tokens is None:
            return old_embeddings

1066
1067
1068
1069
1070
1071
1072
1073
        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_embeddings.weight, modifier_rank=None):
                old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
        else:
            old_num_tokens, old_embedding_dim = old_embeddings.weight.size()

1074
1075
1076
        if old_num_tokens == new_num_tokens:
            return old_embeddings

1077
1078
        if not isinstance(old_embeddings, nn.Embedding):
            raise TypeError(
1079
                f"Old embeddings are of type {type(old_embeddings)}, which is not an instance of {nn.Embedding}. "
1080
1081
1082
                f"You should either use a different resize function or make sure that `old_embeddings` are an instance of {nn.Embedding}."
            )

1083
        # Build new embeddings
1084
1085
        new_embeddings = nn.Embedding(new_num_tokens, old_embedding_dim)
        new_embeddings.to(self.device, dtype=old_embeddings.weight.dtype)
1086
1087
1088
1089

        # initialize all new embeddings (in particular added tokens)
        self._init_weights(new_embeddings)

1090
        # Copy token embeddings from the previous weights
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101

        # numbers of tokens to copy
        n = min(old_num_tokens, new_num_tokens)
        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_embeddings.weight, modifier_rank=0):
                if torch.distributed.get_rank() == 0:
                    new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :]
        else:
            new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :]
1102
1103
1104

        return new_embeddings

1105
    def _get_resized_lm_head(
1106
1107
        self, old_lm_head: nn.Linear, new_num_tokens: Optional[int] = None, transposed: Optional[bool] = False
    ) -> nn.Linear:
1108
1109
1110
1111
1112
        """
        Build a resized Linear Module from a provided old Linear Module. Increasing the size will add newly initialized
        vectors at the end. Reducing the size will remove vectors from the end

        Args:
1113
            old_lm_head (`torch.nn.Linear`):
1114
                Old lm head liner layer to be resized.
1115
            new_num_tokens (`int`, *optional*):
1116
1117
1118
                New number of tokens in the linear matrix.

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
1119
                vectors from the end. If not provided or `None`, just returns a pointer to the input tokens
Sylvain Gugger's avatar
Sylvain Gugger committed
1120
1121
1122
                ``torch.nn.Linear``` module of the model without doing anything. transposed (`bool`, *optional*,
                defaults to `False`): Whether `old_lm_head` is transposed or not. If True `old_lm_head.size()` is
                `lm_head_dim, vocab_size` else `vocab_size, lm_head_dim`.
1123
1124

        Return:
Sylvain Gugger's avatar
Sylvain Gugger committed
1125
1126
            `torch.nn.Linear`: Pointer to the resized Linear Module or the old Linear Module if `new_num_tokens` is
            `None`
1127
1128
1129
1130
        """
        if new_num_tokens is None:
            return old_lm_head

1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_lm_head.weight, modifier_rank=None):
                old_num_tokens, old_lm_head_dim = (
                    old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
                )
        else:
            old_num_tokens, old_lm_head_dim = (
                old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
            )
1142
1143
1144
1145
1146
1147

        if old_num_tokens == new_num_tokens:
            return old_lm_head

        if not isinstance(old_lm_head, nn.Linear):
            raise TypeError(
1148
                f"Old language model head is of type {type(old_lm_head)}, which is not an instance of {nn.Linear}. "
1149
                f"You should either use a different resize function or make sure that `old_lm_head` are an instance of {nn.Linear}."
1150
1151
1152
1153
1154
            )

        # Build new lm head
        new_lm_head_shape = (old_lm_head_dim, new_num_tokens) if not transposed else (new_num_tokens, old_lm_head_dim)
        has_new_lm_head_bias = old_lm_head.bias is not None
1155
1156
        new_lm_head = nn.Linear(*new_lm_head_shape, bias=has_new_lm_head_bias)
        new_lm_head = new_lm_head.to(self.device, dtype=old_lm_head.weight.dtype)
1157
1158
1159
1160
1161
1162

        # initialize new lm head (in particular added tokens)
        self._init_weights(new_lm_head)

        num_tokens_to_copy = min(old_num_tokens, new_num_tokens)

1163
1164
1165
1166
        # XXX: put the long block of code in a wrapper
        if is_deepspeed_zero3_enabled():
            import deepspeed

1167
1168
            params = [old_lm_head.weight, old_lm_head.bias, new_lm_head.weight, new_lm_head.bias]
            with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
                if torch.distributed.get_rank() == 0:
                    # Copy old lm head weights to new lm head
                    if not transposed:
                        new_lm_head.weight.data[:num_tokens_to_copy, :] = old_lm_head.weight.data[
                            :num_tokens_to_copy, :
                        ]
                    else:
                        new_lm_head.weight.data[:, :num_tokens_to_copy] = old_lm_head.weight.data[
                            :, :num_tokens_to_copy
                        ]

                    # Copy bias weights to new lm head
                    if has_new_lm_head_bias:
                        new_lm_head.bias.data[:num_tokens_to_copy] = old_lm_head.bias.data[:num_tokens_to_copy]
1183
        else:
1184
1185
1186
1187
1188
            # Copy old lm head weights to new lm head
            if not transposed:
                new_lm_head.weight.data[:num_tokens_to_copy, :] = old_lm_head.weight.data[:num_tokens_to_copy, :]
            else:
                new_lm_head.weight.data[:, :num_tokens_to_copy] = old_lm_head.weight.data[:, :num_tokens_to_copy]
1189

1190
1191
1192
            # Copy bias weights to new lm head
            if has_new_lm_head_bias:
                new_lm_head.bias.data[:num_tokens_to_copy] = old_lm_head.bias.data[:num_tokens_to_copy]
1193
1194
1195

        return new_lm_head

1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
    def resize_position_embeddings(self, new_num_position_embeddings: int):
        raise NotImplementedError(
            f"`resize_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should "
            f"overwrite this method in the class {self.__class__} in `modeling_{self.__class__.__module__}.py`"
        )

    def get_position_embeddings(self) -> Union[nn.Embedding, Tuple[nn.Embedding]]:
        raise NotImplementedError(
            f"`get_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should "
            f"overwrite this method in the class {self.__class__} in `modeling_{self.__class__.__module__}.py`"
        )

1208
    def init_weights(self):
1209
        """
1210
        If needed prunes and maybe initializes weights.
1211
        """
1212
1213
1214
1215
        # Prune heads if needed
        if self.config.pruned_heads:
            self.prune_heads(self.config.pruned_heads)

1216
1217
1218
1219
1220
1221
1222
        if _init_weights:
            # Initialize weights
            self.apply(self._init_weights)

            # Tie weights should be skipped when not initializing all weights
            # since from_pretrained(...) calls tie weights anyways
            self.tie_weights()
1223

1224
1225
1226
    def prune_heads(self, heads_to_prune: Dict[int, List[int]]):
        """
        Prunes heads of the base model.
1227

1228
        Arguments:
1229
            heads_to_prune (`Dict[int, List[int]]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1230
1231
1232
                Dictionary with keys being selected layer indices (`int`) and associated values being the list of heads
                to prune in said layer (list of `int`). For instance {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on
                layer 1 and heads 2 and 3 on layer 2.
thomwolf's avatar
thomwolf committed
1233
        """
1234
        # save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads
1235
        for layer, heads in heads_to_prune.items():
1236
1237
1238
            union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads)
            self.config.pruned_heads[layer] = list(union_heads)  # Unfortunately we have to store it as list for JSON

1239
        self.base_model._prune_heads(heads_to_prune)
thomwolf's avatar
thomwolf committed
1240

1241
    def gradient_checkpointing_enable(self):
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
        """
        Activates gradient checkpointing for the current model.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        if not self.supports_gradient_checkpointing:
            raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
        self.apply(partial(self._set_gradient_checkpointing, value=True))

1252
    def gradient_checkpointing_disable(self):
1253
1254
1255
1256
1257
1258
1259
1260
1261
        """
        Deactivates gradient checkpointing for the current model.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        if self.supports_gradient_checkpointing:
            self.apply(partial(self._set_gradient_checkpointing, value=False))

1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
    @property
    def is_gradient_checkpointing(self) -> bool:
        """
        Whether gradient checkpointing is activated for this model or not.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules())

1272
1273
1274
1275
1276
1277
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
        save_config: bool = True,
        state_dict: Optional[dict] = None,
        save_function: Callable = torch.save,
Sylvain Gugger's avatar
Sylvain Gugger committed
1278
        push_to_hub: bool = False,
Sylvain Gugger's avatar
Sylvain Gugger committed
1279
        max_shard_size: Union[int, str] = "10GB",
Sylvain Gugger's avatar
Sylvain Gugger committed
1280
        **kwargs,
1281
    ):
1282
1283
        """
        Save a model and its configuration file to a directory, so that it can be re-loaded using the
1284
        `[`~PreTrainedModel.from_pretrained`]` class method.
1285

1286
        Arguments:
1287
            save_directory (`str` or `os.PathLike`):
1288
                Directory to which to save. Will be created if it doesn't exist.
1289
            save_config (`bool`, *optional*, defaults to `True`):
1290
                Whether or not to save the config of the model. Useful when in distributed training like TPUs and need
Sylvain Gugger's avatar
Sylvain Gugger committed
1291
1292
                to call this function on all processes. In this case, set `save_config=True` only on the main process
                to avoid race conditions.
1293
            state_dict (nested dictionary of `torch.Tensor`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1294
1295
1296
                The state dictionary of the model to save. Will default to `self.state_dict()`, but can be used to only
                save parts of the model or if special precautions need to be taken when recovering the state dictionary
                of a model (like when using model parallelism).
1297
            save_function (`Callable`):
1298
                The function to use to save the state dictionary. Useful on distributed training like TPUs when one
1299
1300
                need to replace `torch.save` by another method.
            push_to_hub (`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1301
                Whether or not to push your model to the Hugging Face model hub after saving it.
1302

1303
                <Tip warning={true}>
1304

Sylvain Gugger's avatar
Sylvain Gugger committed
1305
1306
1307
                Using `push_to_hub=True` will synchronize the repository you are pushing to with `save_directory`,
                which requires `save_directory` to be a local clone of the repo you are pushing to if it's an existing
                folder. Pass along `temp_dir=True` to use a temporary directory instead.
1308
1309

                </Tip>
1310

Sylvain Gugger's avatar
Sylvain Gugger committed
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
            max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
                The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size
                lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`).

                <Tip warning={true}>

                If a single weight of the model is bigger than `max_shard_size`, it will be in its own checkpoint shard
                which will be bigger than `max_shard_size`.

                </Tip>

Sylvain Gugger's avatar
Sylvain Gugger committed
1322
            kwargs:
1323
                Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
1324
        """
1325
        if os.path.isfile(save_directory):
1326
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
1327
            return
1328
1329
1330
1331
1332

        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
            repo = self._create_or_get_repo(save_directory, **kwargs)

1333
        os.makedirs(save_directory, exist_ok=True)
1334

Julien Chaumond's avatar
Julien Chaumond committed
1335
        # Only save the model itself if we are using distributed training
1336
        model_to_save = unwrap_model(self)
1337

1338
1339
1340
1341
1342
        # save the string version of dtype to the config, e.g. convert torch.float32 => "float32"
        # we currently don't use this setting automatically, but may start to use with v5
        dtype = get_parameter_dtype(model_to_save)
        model_to_save.config.torch_dtype = str(dtype).split(".")[1]

Julien Chaumond's avatar
Julien Chaumond committed
1343
1344
1345
        # Attach architecture to the config
        model_to_save.config.architectures = [model_to_save.__class__.__name__]

1346
1347
1348
1349
1350
        # If we have a custom model, we copy the file defining it in the folder and set the attributes so it can be
        # loaded from the Hub.
        if self._auto_class is not None:
            custom_object_save(self, save_directory, config=self.config)

1351
1352
1353
1354
1355
1356
1357
        # Save the config
        if save_config:
            model_to_save.config.save_pretrained(save_directory)

        # Save the model
        if state_dict is None:
            state_dict = model_to_save.state_dict()
1358
1359

        # Handle the case where some state_dict keys shouldn't be saved
1360
        if self._keys_to_ignore_on_save is not None:
1361
            for ignore_key in self._keys_to_ignore_on_save:
1362
1363
                if ignore_key in state_dict.keys():
                    del state_dict[ignore_key]
1364

Sylvain Gugger's avatar
Sylvain Gugger committed
1365
1366
1367
1368
1369
1370
1371
1372
        # Shard the model if it is too big.
        shards, index = shard_checkpoint(state_dict, max_shard_size=max_shard_size)

        # Clean the folder from a previous save
        for filename in os.listdir(save_directory):
            full_filename = os.path.join(save_directory, filename)
            if filename.startswith(WEIGHTS_NAME[:-4]) and os.path.isfile(full_filename):
                os.remove(full_filename)
1373

Sylvain Gugger's avatar
Sylvain Gugger committed
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
        # Save the model
        for shard_file, shard in shards.items():
            save_function(shard, os.path.join(save_directory, shard_file))

        if index is None:
            logger.info(f"Model weights saved in {os.path.join(save_directory, WEIGHTS_NAME)}")
        else:
            save_index_file = os.path.join(save_directory, WEIGHTS_INDEX_NAME)
            # Save the index as well
            with open(save_index_file, "w", encoding="utf-8") as f:
                content = json.dumps(index, indent=2, sort_keys=True) + "\n"
                f.write(content)
            logger.info(
                f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be "
                f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the "
                f"index located at {save_index_file}."
            )
1391

Sylvain Gugger's avatar
Sylvain Gugger committed
1392
        if push_to_hub:
1393
            url = self._push_to_hub(repo, commit_message=commit_message)
Sylvain Gugger's avatar
Sylvain Gugger committed
1394
1395
            logger.info(f"Model pushed to the hub in this commit: {url}")

1396
    @classmethod
1397
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
1398
1399
        r"""
        Instantiate a pretrained pytorch model from a pre-trained model configuration.
1400

Sylvain Gugger's avatar
Sylvain Gugger committed
1401
1402
        The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
        the model, you should first set it back in training mode with `model.train()`.
1403

1404
        The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
1405
1406
        pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
        task.
1407

1408
        The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
1409
        weights are discarded.
1410

1411
        Parameters:
1412
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
1413
1414
                Can be either:

1415
                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
Sylvain Gugger's avatar
Sylvain Gugger committed
1416
1417
                      Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a
                      user or organization name, like `dbmdz/bert-base-german-cased`.
1418
1419
1420
                    - A path to a *directory* containing model weights saved using
                      [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
                    - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
Sylvain Gugger's avatar
Sylvain Gugger committed
1421
1422
1423
                      this case, `from_tf` should be set to `True` and a configuration object should be provided as
                      `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
                      PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
1424
                    - A path or url to a model folder containing a *flax checkpoint file* in *.msgpack* format (e.g,
Sylvain Gugger's avatar
Sylvain Gugger committed
1425
1426
                      `./flax_model/` containing `flax_model.msgpack`). In this case, `from_flax` should be set to
                      `True`.
1427
1428
1429
1430
1431
                    - `None` if you are both providing the configuration and state dictionary (resp. with keyword
                      arguments `config` and `state_dict`).
            model_args (sequence of positional arguments, *optional*):
                All remaining positional arguments will be passed to the underlying model's `__init__` method.
            config (`Union[PretrainedConfig, str, os.PathLike]`, *optional*):
1432
1433
                Can be either:

1434
1435
                    - an instance of a class derived from [`PretrainedConfig`],
                    - a string or path valid as input to [`~PretrainedConfig.from_pretrained`].
1436

1437
                Configuration for the model to use instead of an automatically loaded configuration. Configuration can
1438
1439
                be automatically loaded when:

1440
                    - The model is a model provided by the library (loaded with the *model id* string of a pretrained
1441
                      model).
Sylvain Gugger's avatar
Sylvain Gugger committed
1442
1443
                    - The model was saved using [`~PreTrainedModel.save_pretrained`] and is reloaded by supplying the
                      save directory.
1444
1445
1446
                    - The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a
                      configuration JSON file named *config.json* is found in the directory.
            state_dict (`Dict[str, torch.Tensor]`, *optional*):
1447
1448
1449
                A state dictionary to use instead of a state dictionary loaded from saved weights file.

                This option can be used if you want to create a model from a pretrained configuration but load your own
Sylvain Gugger's avatar
Sylvain Gugger committed
1450
                weights. In this case though, you should check if using [`~PreTrainedModel.save_pretrained`] and
1451
1452
                [`~PreTrainedModel.from_pretrained`] is not a simpler option.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
1453
1454
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
1455
            from_tf (`bool`, *optional*, defaults to `False`):
1456
                Load the model weights from a TensorFlow checkpoint save file (see docstring of
1457
1458
                `pretrained_model_name_or_path` argument).
            from_flax (`bool`, *optional*, defaults to `False`):
1459
                Load the model weights from a Flax checkpoint save file (see docstring of
1460
1461
                `pretrained_model_name_or_path` argument).
            ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`):
1462
1463
1464
                Whether or not to raise an error if some of the weights from the checkpoint do not have the same size
                as the weights of the model (if for instance, you are instantiating a model with 10 labels from a
                checkpoint with 3 labels).
1465
            force_download (`bool`, *optional*, defaults to `False`):
1466
1467
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
1468
            resume_download (`bool`, *optional*, defaults to `False`):
1469
1470
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
1471
            proxies (`Dict[str, str]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1472
1473
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
1474
            output_loading_info(`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1475
                Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
1476
            local_files_only(`bool`, *optional*, defaults to `False`):
Stas Bekman's avatar
Stas Bekman committed
1477
                Whether or not to only look at local files (i.e., do not try to download the model).
1478
            use_auth_token (`str` or *bool*, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1479
1480
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `transformers-cli login` (stored in `~/.huggingface`).
1481
            revision (`str`, *optional*, defaults to `"main"`):
Julien Chaumond's avatar
Julien Chaumond committed
1482
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
1483
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
Julien Chaumond's avatar
Julien Chaumond committed
1484
                identifier allowed by git.
1485
            mirror (`str`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1486
1487
1488
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information.
1489
            _fast_init(`bool`, *optional*, defaults to `True`):
1490
1491
                Whether or not to disable fast initialization.

1492
1493
                <Tip warning={true}>

Sylvain Gugger's avatar
Sylvain Gugger committed
1494
1495
1496
                One should only disable *_fast_init* to ensure backwards compatibility with `transformers.__version__ <
                4.6.0` for seeded model initialization. This argument will be removed at the next major version. See
                [pull request 11471](https://github.com/huggingface/transformers/pull/11471) for more information.
1497

1498
                </Tip>
1499

1500
1501
1502
1503
1504
1505
            low_cpu_mem_usage(`bool`, *optional*, defaults to `False`):
                Tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                This is an experimental feature and a subject to change at any moment.
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model under this dtype. If `"auto"` is passed the dtype
                will be automatically derived from the model's weights.
1506
            kwargs (remaining dictionary of keyword arguments, *optional*):
1507
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
1508
                `output_attentions=True`). Behaves differently depending on whether a `config` is provided or
1509
1510
                automatically loaded:

1511
1512
                    - If a configuration is provided with `config`, `**kwargs` will be directly passed to the
                      underlying model's `__init__` method (we assume all relevant updates to the configuration have
1513
                      already been done)
1514
                    - If a configuration is not provided, `kwargs` will be first passed to the configuration class
Sylvain Gugger's avatar
Sylvain Gugger committed
1515
1516
1517
1518
                      initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that
                      corresponds to a configuration attribute will be used to override said attribute with the
                      supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute
                      will be passed to the underlying model's `__init__` function.
1519
1520
1521
1522
1523
1524
1525
1526
1527

        <Tip>

        Passing `use_auth_token=True`` is required when you want to use a private model.

        </Tip>

        <Tip>

Sylvain Gugger's avatar
Sylvain Gugger committed
1528
1529
        Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to
        use this method in a firewalled environment.
1530
1531
1532
1533
1534
1535
1536

        </Tip>

        Examples:

        ```python
        >>> from transformers import BertConfig, BertModel
Sylvain Gugger's avatar
Sylvain Gugger committed
1537

1538
        >>> # Download model and configuration from huggingface.co and cache.
Sylvain Gugger's avatar
Sylvain Gugger committed
1539
        >>> model = BertModel.from_pretrained("bert-base-uncased")
1540
        >>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable).
Sylvain Gugger's avatar
Sylvain Gugger committed
1541
        >>> model = BertModel.from_pretrained("./test/saved_model/")
1542
        >>> # Update configuration during loading.
Sylvain Gugger's avatar
Sylvain Gugger committed
1543
        >>> model = BertModel.from_pretrained("bert-base-uncased", output_attentions=True)
1544
1545
        >>> assert model.config.output_attentions == True
        >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable).
Sylvain Gugger's avatar
Sylvain Gugger committed
1546
1547
        >>> config = BertConfig.from_json_file("./tf_model/my_tf_model_config.json")
        >>> model = BertModel.from_pretrained("./tf_model/my_tf_checkpoint.ckpt.index", from_tf=True, config=config)
1548
        >>> # Loading from a Flax checkpoint file instead of a PyTorch model (slower)
Sylvain Gugger's avatar
Sylvain Gugger committed
1549
        >>> model = BertModel.from_pretrained("bert-base-uncased", from_flax=True)
1550
        ```"""
1551
1552
1553
1554
        config = kwargs.pop("config", None)
        state_dict = kwargs.pop("state_dict", None)
        cache_dir = kwargs.pop("cache_dir", None)
        from_tf = kwargs.pop("from_tf", False)
1555
        from_flax = kwargs.pop("from_flax", False)
1556
        ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
1557
1558
1559
1560
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        output_loading_info = kwargs.pop("output_loading_info", False)
1561
        local_files_only = kwargs.pop("local_files_only", False)
1562
        use_auth_token = kwargs.pop("use_auth_token", None)
Julien Chaumond's avatar
Julien Chaumond committed
1563
        revision = kwargs.pop("revision", None)
1564
        mirror = kwargs.pop("mirror", None)
1565
1566
        from_pipeline = kwargs.pop("_from_pipeline", None)
        from_auto_class = kwargs.pop("_from_auto", False)
1567
        _fast_init = kwargs.pop("_fast_init", True)
1568
        torch_dtype = kwargs.pop("torch_dtype", None)
1569
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", False)
1570
1571

        from_pt = not (from_tf | from_flax)
1572
1573
1574
1575

        user_agent = {"file_type": "model", "framework": "pytorch", "from_auto_class": from_auto_class}
        if from_pipeline is not None:
            user_agent["using_pipeline"] = from_pipeline
thomwolf's avatar
thomwolf committed
1576

1577
1578
1579
1580
        if is_offline_mode() and not local_files_only:
            logger.info("Offline mode: forcing local_files_only=True")
            local_files_only = True

1581
1582
1583
        # Load config if we don't provide a configuration
        if not isinstance(config, PretrainedConfig):
            config_path = config if config is not None else pretrained_model_name_or_path
1584
            config, model_kwargs = cls.config_class.from_pretrained(
1585
1586
1587
                config_path,
                cache_dir=cache_dir,
                return_unused_kwargs=True,
1588
                force_download=force_download,
1589
                resume_download=resume_download,
1590
                proxies=proxies,
1591
                local_files_only=local_files_only,
1592
                use_auth_token=use_auth_token,
Julien Chaumond's avatar
Julien Chaumond committed
1593
                revision=revision,
1594
1595
                _from_auto=from_auto_class,
                _from_pipeline=from_pipeline,
1596
                **kwargs,
1597
1598
1599
            )
        else:
            model_kwargs = kwargs
1600

Sylvain Gugger's avatar
Sylvain Gugger committed
1601
1602
1603
1604
        # This variable will flag if we're loading a sharded checkpoint. In this case the archive file is just the
        # index of the files.
        is_sharded = False
        sharded_metadata = None
thomwolf's avatar
thomwolf committed
1605
        # Load model
thomwolf's avatar
thomwolf committed
1606
        if pretrained_model_name_or_path is not None:
1607
            pretrained_model_name_or_path = str(pretrained_model_name_or_path)
1608
            if os.path.isdir(pretrained_model_name_or_path):
thomwolf's avatar
thomwolf committed
1609
                if from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")):
1610
                    # Load from a TF 1.0 checkpoint in priority if from_tf
thomwolf's avatar
thomwolf committed
1611
                    archive_file = os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")
thomwolf's avatar
thomwolf committed
1612
                elif from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)):
1613
                    # Load from a TF 2.0 checkpoint in priority if from_tf
thomwolf's avatar
thomwolf committed
1614
                    archive_file = os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)
1615
1616
1617
                elif from_flax and os.path.isfile(os.path.join(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME)):
                    # Load from a Flax checkpoint in priority if from_flax
                    archive_file = os.path.join(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME)
thomwolf's avatar
thomwolf committed
1618
1619
                elif os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)):
                    # Load from a PyTorch checkpoint
thomwolf's avatar
thomwolf committed
1620
                    archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
Sylvain Gugger's avatar
Sylvain Gugger committed
1621
1622
1623
1624
                elif os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_INDEX_NAME)):
                    # Load from a sharded PyTorch checkpoint
                    archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_INDEX_NAME)
                    is_sharded = True
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
                # At this stage we don't have a weight file so we will raise an error.
                elif os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")
                ) or os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)):
                    raise EnvironmentError(
                        f"Error no file named {WEIGHTS_NAME} found in directory {pretrained_model_name_or_path} but "
                        "there is a file for TensorFlow weights. Use `from_tf=True` to load this model from those "
                        "weights."
                    )
                elif os.path.join(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME):
                    raise EnvironmentError(
                        f"Error no file named {WEIGHTS_NAME} found in directory {pretrained_model_name_or_path} but "
                        "there is a file for Flax weights. Use `from_flax=True` to load this model from those "
                        "weights."
                    )
thomwolf's avatar
thomwolf committed
1640
                else:
1641
                    raise EnvironmentError(
1642
1643
                        f"Error no file named {WEIGHTS_NAME}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME + '.index'} or "
                        f"{FLAX_WEIGHTS_NAME} found in directory {pretrained_model_name_or_path}."
1644
                    )
1645
            elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
1646
                archive_file = pretrained_model_name_or_path
1647
            elif os.path.isfile(pretrained_model_name_or_path + ".index"):
1648
1649
1650
1651
1652
                if not from_tf:
                    raise ValueError(
                        f"We found a TensorFlow checkpoint at {pretrained_model_name_or_path + '.index'}, please set "
                        "from_tf to True to load from this checkpoint."
                    )
1653
                archive_file = pretrained_model_name_or_path + ".index"
1654
            else:
1655
1656
1657
1658
1659
1660
1661
1662
                # set correct filename
                if from_tf:
                    filename = TF2_WEIGHTS_NAME
                elif from_flax:
                    filename = FLAX_WEIGHTS_NAME
                else:
                    filename = WEIGHTS_NAME

thomwolf's avatar
thomwolf committed
1663
                archive_file = hf_bucket_url(
Julien Chaumond's avatar
Julien Chaumond committed
1664
                    pretrained_model_name_or_path,
1665
                    filename=filename,
Julien Chaumond's avatar
Julien Chaumond committed
1666
                    revision=revision,
1667
                    mirror=mirror,
thomwolf's avatar
thomwolf committed
1668
                )
1669

thomwolf's avatar
thomwolf committed
1670
            try:
1671
                # Load from URL or cache if already cached
1672
1673
1674
1675
1676
1677
                resolved_archive_file = cached_path(
                    archive_file,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    resume_download=resume_download,
1678
                    local_files_only=local_files_only,
1679
                    use_auth_token=use_auth_token,
1680
                    user_agent=user_agent,
1681
                )
1682

1683
            except RepositoryNotFoundError:
1684
1685
1686
1687
1688
1689
                raise EnvironmentError(
                    f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier "
                    "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a "
                    "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli "
                    "login` and pass `use_auth_token=True`."
                )
1690
            except RevisionNotFoundError:
1691
1692
1693
1694
1695
                raise EnvironmentError(
                    f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for "
                    "this model name. Check the model page at "
                    f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions."
                )
1696
            except EntryNotFoundError:
1697
                if filename == WEIGHTS_NAME:
Sylvain Gugger's avatar
Sylvain Gugger committed
1698
1699
1700
1701
1702
1703
1704
                    try:
                        # Maybe the checkpoint is sharded, we try to grab the index name in this case.
                        archive_file = hf_bucket_url(
                            pretrained_model_name_or_path,
                            filename=WEIGHTS_INDEX_NAME,
                            revision=revision,
                            mirror=mirror,
1705
                        )
Sylvain Gugger's avatar
Sylvain Gugger committed
1706
1707
1708
1709
1710
1711
1712
1713
1714
                        resolved_archive_file = cached_path(
                            archive_file,
                            cache_dir=cache_dir,
                            force_download=force_download,
                            proxies=proxies,
                            resume_download=resume_download,
                            local_files_only=local_files_only,
                            use_auth_token=use_auth_token,
                            user_agent=user_agent,
1715
                        )
Sylvain Gugger's avatar
Sylvain Gugger committed
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
                        is_sharded = True
                    except EntryNotFoundError:
                        # Otherwise, maybe there is a TF or Flax model file.  We try those to give a helpful error
                        # message.
                        has_file_kwargs = {
                            "revision": revision,
                            "mirror": mirror,
                            "proxies": proxies,
                            "use_auth_token": use_auth_token,
                        }
                        if has_file(pretrained_model_name_or_path, TF2_WEIGHTS_NAME, **has_file_kwargs):
                            raise EnvironmentError(
                                f"{pretrained_model_name_or_path} does not appear to have a file named {WEIGHTS_NAME} but "
                                "there is a file for TensorFlow weights. Use `from_tf=True` to load this model from those "
                                "weights."
                            )
                        elif has_file(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME, **has_file_kwargs):
                            raise EnvironmentError(
                                f"{pretrained_model_name_or_path} does not appear to have a file named {WEIGHTS_NAME} but "
                                "there is a file for Flax weights. Use `from_flax=True` to load this model from those "
                                "weights."
                            )
                        else:
                            raise EnvironmentError(
                                f"{pretrained_model_name_or_path} does not appear to have a file named {WEIGHTS_NAME}, "
                                f"{TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or {FLAX_WEIGHTS_NAME}."
                            )
1743
1744
1745
1746
                else:
                    raise EnvironmentError(
                        f"{pretrained_model_name_or_path} does not appear to have a file named {filename}."
                    )
1747
            except HTTPError as err:
1748
                raise EnvironmentError(
1749
1750
1751
1752
1753
                    f"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n"
                    f"{err}"
                )
            except ValueError:
                raise EnvironmentError(
1754
                    f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it in the cached "
1755
1756
1757
                    f"files and it looks like {pretrained_model_name_or_path} is not the path to a directory "
                    f"containing a file named {WEIGHTS_NAME}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or "
                    f"{FLAX_WEIGHTS_NAME}.\n"
1758
1759
1760
                    "Checkout your internet connection or see how to run the library in offline mode at "
                    "'https://huggingface.co/docs/transformers/installation#offline-mode'."
                )
1761
            except EnvironmentError:
1762
1763
1764
1765
1766
1767
                raise EnvironmentError(
                    f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from "
                    "'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
                    f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
                    f"containing a file named {WEIGHTS_NAME}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or "
                    f"{FLAX_WEIGHTS_NAME}."
1768
                )
1769

thomwolf's avatar
thomwolf committed
1770
            if resolved_archive_file == archive_file:
1771
                logger.info(f"loading weights file {archive_file}")
1772
            else:
1773
                logger.info(f"loading weights file {archive_file} from cache at {resolved_archive_file}")
1774
        else:
thomwolf's avatar
thomwolf committed
1775
            resolved_archive_file = None
1776

Sylvain Gugger's avatar
Sylvain Gugger committed
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
        # We'll need to download and cache each checkpoint shard if the checkpoint is sharded.
        if is_sharded:
            # resolved_archive_file becomes a list of files that point to the different checkpoint shards in this case.
            resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(
                pretrained_model_name_or_path,
                resolved_archive_file,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                resume_download=resume_download,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                user_agent=user_agent,
                revision=revision,
                mirror=mirror,
            )

1794
1795
        # load pt weights early so that we know which dtype to init the model under
        if from_pt:
1796
            if not is_sharded and state_dict is None:
Sylvain Gugger's avatar
Sylvain Gugger committed
1797
1798
                # Time to load the checkpoint
                state_dict = load_state_dict(resolved_archive_file)
1799
1800
1801
1802
1803
1804
1805
1806
1807
            # set dtype to instantiate the model under:
            # 1. If torch_dtype is not None, we use that dtype
            # 2. If torch_dtype is "auto", we auto-detect dtype from the loaded state_dict, by checking its first
            #    weights entry - we assume all weights are of the same dtype
            # we also may have config.torch_dtype available, but we won't rely on it till v5
            dtype_orig = None
            if torch_dtype is not None:
                if isinstance(torch_dtype, str):
                    if torch_dtype == "auto":
Sylvain Gugger's avatar
Sylvain Gugger committed
1808
1809
1810
1811
1812
1813
1814
1815
                        if is_sharded and "dtype" in sharded_metadata:
                            torch_dtype = sharded_metadata["dtype"]
                        elif not is_sharded:
                            torch_dtype = next(iter(state_dict.values())).dtype
                        else:
                            one_state_dict = load_state_dict(resolved_archive_file)
                            torch_dtype = next(iter(one_state_dict.values())).dtype
                            del one_state_dict  # free CPU memory
1816
1817
1818
1819
1820
1821
                    else:
                        raise ValueError(
                            f"`torch_dtype` can be either a `torch.dtype` or `auto`, but received {torch_dtype}"
                        )
                dtype_orig = cls._set_default_torch_dtype(torch_dtype)

1822
1823
            if low_cpu_mem_usage:
                # save the keys
Sylvain Gugger's avatar
Sylvain Gugger committed
1824
1825
1826
1827
1828
                if is_sharded:
                    loaded_state_dict_keys = sharded_metadata["all_checkpoint_keys"]
                else:
                    loaded_state_dict_keys = [k for k in state_dict.keys()]
                    del state_dict  # free CPU memory - will reload again later
1829

1830
1831
        config.name_or_path = pretrained_model_name_or_path

1832
        # Instantiate model.
1833
1834
1835
1836
        if is_deepspeed_zero3_enabled():
            import deepspeed

            logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
1837
1838
            # this immediately partitions the model across all gpus, to avoid the overhead in time
            # and memory copying it on CPU or each GPU first
1839
            with deepspeed.zero.Init(config_dict_or_path=deepspeed_config()):
1840
1841
                with no_init_weights(_enable=_fast_init):
                    model = cls(config, *model_args, **model_kwargs)
1842
        else:
1843
1844
            with no_init_weights(_enable=_fast_init):
                model = cls(config, *model_args, **model_kwargs)
1845

1846
1847
1848
1849
1850
        if from_pt:
            # restore default dtype
            if dtype_orig is not None:
                torch.set_default_dtype(dtype_orig)

1851
        if from_tf:
1852
            if resolved_archive_file.endswith(".index"):
1853
1854
1855
1856
1857
                # Load from a TensorFlow 1.X checkpoint - provided by original authors
                model = cls.load_tf_weights(model, config, resolved_archive_file[:-6])  # Remove the '.index'
            else:
                # Load from our TensorFlow 2.0 checkpoints
                try:
1858
                    from .modeling_tf_pytorch_utils import load_tf2_checkpoint_in_pytorch_model
1859

1860
                    model = load_tf2_checkpoint_in_pytorch_model(model, resolved_archive_file, allow_missing_keys=True)
1861
                except ImportError:
1862
1863
1864
1865
                    logger.error(
                        "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed. Please see "
                        "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions."
                    )
1866
                    raise
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
        elif from_flax:
            try:
                from .modeling_flax_pytorch_utils import load_flax_checkpoint_in_pytorch_model

                model = load_flax_checkpoint_in_pytorch_model(model, resolved_archive_file)
            except ImportError:
                logger.error(
                    "Loading a Flax model in PyTorch, requires both PyTorch and Flax to be installed. Please see "
                    "https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation instructions."
                )
                raise
1878
        elif from_pt:
1879
1880

            if low_cpu_mem_usage:
Sylvain Gugger's avatar
Sylvain Gugger committed
1881
                cls._load_pretrained_model_low_mem(model, loaded_state_dict_keys, resolved_archive_file)
1882
            else:
Sylvain Gugger's avatar
Sylvain Gugger committed
1883
                model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model(
1884
1885
                    model,
                    state_dict,
Sylvain Gugger's avatar
Sylvain Gugger committed
1886
                    resolved_archive_file,
1887
1888
                    pretrained_model_name_or_path,
                    ignore_mismatched_sizes=ignore_mismatched_sizes,
Sylvain Gugger's avatar
Sylvain Gugger committed
1889
                    sharded_metadata=sharded_metadata,
1890
1891
                    _fast_init=_fast_init,
                )
1892

1893
1894
        # make sure token embedding weights are still tied if needed
        model.tie_weights()
1895

1896
        # Set model in evaluation mode to deactivate DropOut modules by default
1897
1898
        model.eval()

thomwolf's avatar
thomwolf committed
1899
        if output_loading_info:
1900
1901
1902
            loading_info = {
                "missing_keys": missing_keys,
                "unexpected_keys": unexpected_keys,
1903
                "mismatched_keys": mismatched_keys,
1904
1905
                "error_msgs": error_msgs,
            }
thomwolf's avatar
thomwolf committed
1906
1907
            return model, loading_info

1908
1909
        return model

1910
    @classmethod
Sylvain Gugger's avatar
Sylvain Gugger committed
1911
1912
1913
1914
1915
1916
1917
1918
1919
    def _load_pretrained_model(
        cls,
        model,
        state_dict,
        resolved_archive_file,
        pretrained_model_name_or_path,
        ignore_mismatched_sizes=False,
        sharded_metadata=None,
        _fast_init=True,
1920
    ):
1921
        # Retrieve missing & unexpected_keys
1922
1923
        model_state_dict = model.state_dict()
        expected_keys = list(model_state_dict.keys())
Sylvain Gugger's avatar
Sylvain Gugger committed
1924
        loaded_keys = list(state_dict.keys()) if state_dict is not None else sharded_metadata["all_checkpoint_keys"]
1925
1926
        prefix = model.base_model_prefix

Sylvain Gugger's avatar
Sylvain Gugger committed
1927
1928
1929
1930
1931
1932
1933
1934
1935
        def _fix_key(key):
            if "beta" in key:
                return key.replace("beta", "bias")
            if "gamma" in key:
                return key.replace("gamma", "weight")
            return key

        loaded_keys = [_fix_key(key) for key in loaded_keys]

1936
1937
1938
1939
1940
1941
        if len(prefix) > 0:
            has_prefix_module = any(s.startswith(prefix) for s in loaded_keys)
            expects_prefix_module = any(s.startswith(prefix) for s in expected_keys)
        else:
            has_prefix_module = False
            expects_prefix_module = False
Patrick von Platen's avatar
Patrick von Platen committed
1942
1943
1944

        # key re-naming operations are never done on the keys
        # that are loaded, but always on the keys of the newly initialized model
1945
1946
        remove_prefix_from_model = not has_prefix_module and expects_prefix_module
        add_prefix_to_model = has_prefix_module and not expects_prefix_module
1947

1948
        if remove_prefix_from_model:
1949
            expected_keys_not_prefixed = [s for s in expected_keys if not s.startswith(prefix)]
1950
            expected_keys = [".".join(s.split(".")[1:]) if s.startswith(prefix) else s for s in expected_keys]
1951
        elif add_prefix_to_model:
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
            expected_keys = [".".join([prefix, s]) for s in expected_keys]

        missing_keys = list(set(expected_keys) - set(loaded_keys))
        unexpected_keys = list(set(loaded_keys) - set(expected_keys))

        # Some models may have keys that are not in the state by design, removing them before needlessly warning
        # the user.
        if cls._keys_to_ignore_on_load_missing is not None:
            for pat in cls._keys_to_ignore_on_load_missing:
                missing_keys = [k for k in missing_keys if re.search(pat, k) is None]

        if cls._keys_to_ignore_on_load_unexpected is not None:
            for pat in cls._keys_to_ignore_on_load_unexpected:
                unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

1967
1968
        if _fast_init:
            # retrieve unintialized modules and initialize
1969
            uninitialized_modules = model.retrieve_modules_from_names(
1970
                missing_keys, add_prefix=add_prefix_to_model, remove_prefix=remove_prefix_from_model
1971
            )
1972
            for module in uninitialized_modules:
1973
1974
                model._init_weights(module)

1975
1976
1977
        # Make sure we are able to load base models as well as derived models (with heads)
        start_prefix = ""
        model_to_load = model
1978
        if len(cls.base_model_prefix) > 0 and not hasattr(model, cls.base_model_prefix) and has_prefix_module:
1979
            start_prefix = cls.base_model_prefix + "."
1980
        if len(cls.base_model_prefix) > 0 and hasattr(model, cls.base_model_prefix) and not has_prefix_module:
1981
            model_to_load = getattr(model, cls.base_model_prefix)
1982
1983
1984
1985
1986
            if any(key in expected_keys_not_prefixed for key in loaded_keys):
                raise ValueError(
                    "The state dictionary of the model you are training to load is corrupted. Are you sure it was "
                    "properly saved?"
                )
1987

Sylvain Gugger's avatar
Sylvain Gugger committed
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
        if state_dict is not None:
            # Whole checkpoint
            mismatched_keys = []
            if ignore_mismatched_sizes:
                for checkpoint_key in loaded_keys:
                    model_key = checkpoint_key
                    if remove_prefix_from_model:
                        # The model key starts with `prefix` but `checkpoint_key` doesn't so we add it.
                        model_key = f"{prefix}.{checkpoint_key}"
                    elif add_prefix_to_model:
                        # The model key doesn't start with `prefix` but `checkpoint_key` does so we remove it.
                        model_key = ".".join(checkpoint_key.split(".")[1:])

                    if (
                        model_key in model_state_dict
                        and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
                    ):
                        mismatched_keys.append(
                            (checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
                        )
                        del state_dict[checkpoint_key]

            error_msgs = _load_state_dict_into_model(model_to_load, state_dict, start_prefix)
        else:
            # Sharded checkpoint
            # This should always be a list but, just to be sure.
            if not isinstance(resolved_archive_file, list):
                resolved_archive_file = [resolved_archive_file]

            error_msgs = []
            for shard_file in resolved_archive_file:
                state_dict = load_state_dict(shard_file)
                # Mistmatched keys contains tuples key/shape1/shape2 of weights in the checkpoint that have a shape not
                # matching the weights in the model.
                mismatched_keys = []
                if ignore_mismatched_sizes:
                    for checkpoint_key in loaded_keys:
                        model_key = checkpoint_key
                        if remove_prefix_from_model:
                            # The model key starts with `prefix` but `checkpoint_key` doesn't so we add it.
                            model_key = f"{prefix}.{checkpoint_key}"
                        elif add_prefix_to_model:
                            # The model key doesn't start with `prefix` but `checkpoint_key` does so we remove it.
                            model_key = ".".join(checkpoint_key.split(".")[1:])

                        if (
                            model_key in model_state_dict
                            and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
                        ):
                            mismatched_keys.append(
                                (checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
                            )
                            del state_dict[checkpoint_key]

                error_msgs += _load_state_dict_into_model(model_to_load, state_dict, start_prefix)
2043

2044
2045
2046
2047
        if len(error_msgs) > 0:
            error_msg = "\n\t".join(error_msgs)
            raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")

2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
        if len(unexpected_keys) > 0:
            logger.warning(
                f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when "
                f"initializing {model.__class__.__name__}: {unexpected_keys}\n"
                f"- This IS expected if you are initializing {model.__class__.__name__} from the checkpoint of a model trained on another task "
                f"or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n"
                f"- This IS NOT expected if you are initializing {model.__class__.__name__} from the checkpoint of a model that you expect "
                f"to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
            )
        else:
            logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
        if len(missing_keys) > 0:
            logger.warning(
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} "
                f"and are newly initialized: {missing_keys}\n"
                f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference."
            )
2065
        elif len(mismatched_keys) == 0:
2066
2067
2068
2069
2070
            logger.info(
                f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at {pretrained_model_name_or_path}.\n"
                f"If your task is similar to the task the model of the checkpoint was trained on, "
                f"you can already use {model.__class__.__name__} for predictions without further training."
            )
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
        if len(mismatched_keys) > 0:
            mismatched_warning = "\n".join(
                [
                    f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
                    for key, shape1, shape2 in mismatched_keys
                ]
            )
            logger.warning(
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} "
                f"and are newly initialized because the shapes did not match:\n{mismatched_warning}\n"
                f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference."
            )
2083

2084
        return model, missing_keys, unexpected_keys, mismatched_keys, error_msgs
2085
2086
2087
2088

    def retrieve_modules_from_names(self, names, add_prefix=False, remove_prefix=False):
        module_keys = set([".".join(key.split(".")[:-1]) for key in names])

Patrick von Platen's avatar
Patrick von Platen committed
2089
2090
2091
2092
        # torch.nn.ParameterList is a special case where two parameter keywords
        # are appended to the module name, *e.g.* bert.special_embeddings.0
        module_keys = module_keys.union(set([".".join(key.split(".")[:-2]) for key in names if key[-1].isdigit()]))

2093
2094
2095
2096
2097
2098
        retrieved_modules = []
        # retrieve all modules that has at least one missing weight name
        for name, module in self.named_modules():
            if remove_prefix:
                name = ".".join(name.split(".")[1:]) if name.startswith(self.base_model_prefix) else name
            elif add_prefix:
Patrick von Platen's avatar
Patrick von Platen committed
2099
                name = ".".join([self.base_model_prefix, name]) if len(name) > 0 else self.base_model_prefix
2100
2101
2102
2103
2104
2105

            if name in module_keys:
                retrieved_modules.append(module)

        return retrieved_modules

2106
2107
    @staticmethod
    def _load_pretrained_model_low_mem(model, loaded_state_dict_keys, resolved_archive_file):
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
        """
        This is an experimental function that loads the model using ~1.x model size CPU memory

        Before it gets called we do:

        1. save which state_dict keys we have
        2. drop state_dict before model is created, since the latter takes 1x model size memory

        Here then we continue:

        3. switch to the meta device all params/buffers that are going to be replaced from the loaded state_dict
        4. load state_dict 2nd time
        5. replace the params/buffers from the state_dict

        Currently, it doesn't handle missing_keys, unexpected_keys, mismatched_keys. It can't handle deepspeed.
        """
        require_version_core("torch>=1.9")
        if is_deepspeed_zero3_enabled():
            raise ValueError("low_cpu_mem_usage arg cannot be used with DeepSpeed ZeRO-3")

        # a helper util to find the last sub-module and the param/buffer name
        def find_submodule_and_param_name(model, long_key):
            split_key = long_key.split(".")
            submodule = model
            while len(split_key) > 1:
                if hasattr(submodule, split_key[0]):
                    submodule = getattr(submodule, split_key[0])
                    del split_key[0]
                else:
                    submodule = None
                    break
            return submodule, split_key[0]

        # dematerialize param storage for keys that are going to be replaced by state_dict, by
        # putting those on the meta device
        for k in loaded_state_dict_keys:
            submodule, param_name = find_submodule_and_param_name(model, k)
            if submodule is not None:
                # selectively switch to the meta device only those params/buffers that will
                # be next replaced from state_dict. This a complex way to do p.to_("meta")
                # since we have no in-place to_ for tensors.
                new_val = getattr(submodule, param_name)
                if isinstance(new_val, torch.nn.Parameter):
                    # isinstance returns False for Params on meta device, so switch after the check
                    new_val = torch.nn.Parameter(new_val.to("meta"))
                else:
                    new_val = new_val.to("meta")
                setattr(submodule, param_name, new_val)

Sylvain Gugger's avatar
Sylvain Gugger committed
2157
2158
2159
        # only now can load state_dict(s)
        if not isinstance(resolved_archive_file, list):
            resolved_archive_file = [resolved_archive_file]
2160

Sylvain Gugger's avatar
Sylvain Gugger committed
2161
        for archive_file in resolved_archive_file:
2162
            state_dict = torch.load(archive_file, map_location="cpu")
2163

Sylvain Gugger's avatar
Sylvain Gugger committed
2164
2165
            # materialize state_dict entries one by one on CPU
            for k in loaded_state_dict_keys:
2166
2167
2168
2169
2170
2171
2172
2173
                if k in state_dict:
                    submodule, param_name = find_submodule_and_param_name(model, k)
                    if submodule is not None:
                        param_dtype = getattr(submodule, param_name).dtype
                        new_val = state_dict[k].to(param_dtype)
                        if isinstance(getattr(submodule, param_name), torch.nn.Parameter):
                            new_val = torch.nn.Parameter(new_val)
                        setattr(submodule, param_name, new_val)
Sylvain Gugger's avatar
Sylvain Gugger committed
2174
2175

            del state_dict
2176

2177
2178
2179
2180
2181
2182
    @classmethod
    def register_for_auto_class(cls, auto_class="AutoModel"):
        """
        Register this class with a given auto class. This should only be used for custom models as the ones in the
        library are already mapped with an auto class.

2183
2184
2185
2186
2187
2188
        <Tip warning={true}>

        This API is experimental and may have some slight breaking changes in the next releases.

        </Tip>

2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
        Args:
            auto_class (`str` or `type`, *optional*, defaults to `"AutoModel"`):
                The auto class to register this new model with.
        """
        if not isinstance(auto_class, str):
            auto_class = auto_class.__name__

        import transformers.models.auto as auto_module

        if not hasattr(auto_module, auto_class):
            raise ValueError(f"{auto_class} is not a valid auto class.")

        cls._auto_class = auto_class

Sylvain Gugger's avatar
Sylvain Gugger committed
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
    def push_to_hub(
        self,
        repo_path_or_name: Optional[str] = None,
        repo_url: Optional[str] = None,
        use_temp_dir: bool = False,
        commit_message: str = "add model",
        organization: Optional[str] = None,
        private: Optional[bool] = None,
        use_auth_token: Optional[Union[bool, str]] = None,
        max_shard_size: Union[int, str] = "10GB",
        **model_card_kwargs
    ) -> str:
        """
        Upload the model files to the 🤗 Model Hub while synchronizing a local clone of the repo in `repo_path_or_name`.
thomwolf's avatar
thomwolf committed
2217

Sylvain Gugger's avatar
Sylvain Gugger committed
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
        Parameters:
            repo_path_or_name (`str`, *optional*):
                Can either be a repository name for your model in the Hub or a path to a local folder (in which case
                the repository will have the name of that local folder). If not specified, will default to the name
                given by `repo_url` and a local directory with that name will be created.
            repo_url (`str`, *optional*):
                Specify this in case you want to push to an existing repository in the hub. If unspecified, a new
                repository will be created in your namespace (unless you specify an `organization`) with `repo_name`.
            use_temp_dir (`bool`, *optional*, defaults to `False`):
                Whether or not to clone the distant repo in a temporary directory or in `repo_path_or_name` inside the
                current working directory. This will slow things down if you are making changes in an existing repo
                since you will need to clone the repo before every push.
            commit_message (`str`, *optional*, defaults to `"add model"`):
                Message to commit while pushing.
            organization (`str`, *optional*):
                Organization in which you want to push your {object} (you must be a member of this organization).
            private (`bool`, *optional*):
                Whether or not the repository created should be private (requires a paying subscription).
            use_auth_token (`bool` or `str`, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `transformers-cli login` (stored in `~/.huggingface`). Will default to `True` if
                `repo_url` is not specified.
            max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
                The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size
                lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`).

                <Tip warning={true}>

                If a single weight of the model is bigger than `max_shard_size`, it will be in its own checkpoint shard
                which will be bigger than `max_shard_size`.

                </Tip>

        Returns:
            `str`: The url of the commit of your {object} in the given repository.

        Examples:

        ```python
        from transformers import AutoModel

        model = AutoModel.from_pretrained("bert-base-cased")

        # Push the model to your namespace with the name "my-finetuned-bert" and have a local clone in the
        # *my-finetuned-bert* folder.
        model.push_to_hub("my-finetuned-bert")

        # Push the model to your namespace with the name "my-finetuned-bert" with no local clone.
        model.push_to_hub("my-finetuned-bert", use_temp_dir=True)

        # Push the model to an organization with the name "my-finetuned-bert" and have a local clone in the
        # *my-finetuned-bert* folder.
        model.push_to_hub("my-finetuned-bert", organization="huggingface")

        # Make a change to an existing repo that has been cloned locally in *my-finetuned-bert*.
        model.push_to_hub("my-finetuned-bert", repo_url="https://huggingface.co/sgugger/my-finetuned-bert")
        ```
        """
        if use_temp_dir:
            # Make sure we use the right `repo_name` for the `repo_url` before replacing it.
            if repo_url is None:
                if use_auth_token is None:
                    use_auth_token = True
                repo_name = Path(repo_path_or_name).name
                repo_url = self._get_repo_url_from_name(
                    repo_name, organization=organization, private=private, use_auth_token=use_auth_token
                )
            repo_path_or_name = tempfile.mkdtemp()

        # Create or clone the repo. If the repo is already cloned, this just retrieves the path to the repo.
        repo = self._create_or_get_repo(
            repo_path_or_name=repo_path_or_name,
            repo_url=repo_url,
            organization=organization,
            private=private,
            use_auth_token=use_auth_token,
        )
        # Save the files in the cloned repo
        self.save_pretrained(repo_path_or_name, max_shard_size=max_shard_size)

        # Commit and push!
        url = self._push_to_hub(repo, commit_message=commit_message)

        # Clean up! Clean up! Everybody everywhere!
        if use_temp_dir:
            shutil.rmtree(repo_path_or_name)

        return url
2306
2307


thomwolf's avatar
thomwolf committed
2308
class Conv1D(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
2309
2310
2311
2312
2313
2314
    """
    1D-convolutional layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2).

    Basically works like a linear layer but the weights are transposed.

    Args:
2315
2316
        nf (`int`): The number of output features.
        nx (`int`): The number of input features.
Sylvain Gugger's avatar
Sylvain Gugger committed
2317
2318
    """

thomwolf's avatar
thomwolf committed
2319
    def __init__(self, nf, nx):
Julien Chaumond's avatar
Julien Chaumond committed
2320
        super().__init__()
thomwolf's avatar
thomwolf committed
2321
2322
2323
2324
2325
2326
2327
2328
2329
        self.nf = nf
        w = torch.empty(nx, nf)
        nn.init.normal_(w, std=0.02)
        self.weight = nn.Parameter(w)
        self.bias = nn.Parameter(torch.zeros(nf))

    def forward(self, x):
        size_out = x.size()[:-1] + (self.nf,)
        x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
2330
        x = x.view(size_out)
thomwolf's avatar
thomwolf committed
2331
2332
2333
        return x


thomwolf's avatar
thomwolf committed
2334
class PoolerStartLogits(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
2335
2336
    """
    Compute SQuAD start logits from sequence hidden states.
2337

Sylvain Gugger's avatar
Sylvain Gugger committed
2338
    Args:
2339
2340
        config ([`PretrainedConfig`]):
            The config used by the model, will be used to grab the `hidden_size` of the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
2341
2342
2343
    """

    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
2344
        super().__init__()
thomwolf's avatar
thomwolf committed
2345
2346
        self.dense = nn.Linear(config.hidden_size, 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
2347
2348
2349
2350
2351
    def forward(
        self, hidden_states: torch.FloatTensor, p_mask: Optional[torch.FloatTensor] = None
    ) -> torch.FloatTensor:
        """
        Args:
2352
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2353
                The final hidden states of the model.
2354
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2355
2356
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
Sylvain Gugger's avatar
Sylvain Gugger committed
2357
2358

        Returns:
2359
            `torch.FloatTensor`: The start logits for SQuAD.
thomwolf's avatar
thomwolf committed
2360
        """
thomwolf's avatar
thomwolf committed
2361
2362
2363
        x = self.dense(hidden_states).squeeze(-1)

        if p_mask is not None:
Lysandre Debut's avatar
Lysandre Debut committed
2364
            if get_parameter_dtype(self) == torch.float16:
2365
2366
2367
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask
thomwolf's avatar
thomwolf committed
2368
2369
2370
2371
2372
2373

        return x


class PoolerEndLogits(nn.Module):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
2374
    Compute SQuAD end logits from sequence hidden states.
2375

Sylvain Gugger's avatar
Sylvain Gugger committed
2376
    Args:
2377
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
2378
2379
            The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps`
            to use.
Sylvain Gugger's avatar
Sylvain Gugger committed
2380
2381
2382
    """

    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
2383
        super().__init__()
thomwolf's avatar
thomwolf committed
2384
2385
2386
2387
2388
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dense_1 = nn.Linear(config.hidden_size, 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
2389
2390
2391
2392
2393
2394
2395
2396
2397
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        start_states: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        p_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
        """
        Args:
2398
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2399
                The final hidden states of the model.
2400
            start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2401
                The hidden states of the first tokens for the labeled span.
2402
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2403
                The position of the first token for the labeled span.
2404
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2405
2406
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
Sylvain Gugger's avatar
Sylvain Gugger committed
2407

2408
        <Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
2409

Stas Bekman's avatar
Stas Bekman committed
2410
2411
        One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides
        `start_states`.
2412
2413

        </Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
2414
2415

        Returns:
2416
            `torch.FloatTensor`: The end logits for SQuAD.
thomwolf's avatar
thomwolf committed
2417
        """
2418
2419
2420
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
thomwolf's avatar
thomwolf committed
2421
        if start_positions is not None:
2422
            slen, hsz = hidden_states.shape[-2:]
2423
2424
2425
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions)  # shape (bsz, 1, hsz)
            start_states = start_states.expand(-1, slen, -1)  # shape (bsz, slen, hsz)
thomwolf's avatar
thomwolf committed
2426
2427
2428
2429
2430
2431
2432

        x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1))
        x = self.activation(x)
        x = self.LayerNorm(x)
        x = self.dense_1(x).squeeze(-1)

        if p_mask is not None:
Lysandre Debut's avatar
Lysandre Debut committed
2433
            if get_parameter_dtype(self) == torch.float16:
2434
2435
2436
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask
thomwolf's avatar
thomwolf committed
2437
2438
2439
2440
2441

        return x


class PoolerAnswerClass(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
2442
2443
2444
2445
    """
    Compute SQuAD 2.0 answer class from classification and start tokens hidden states.

    Args:
2446
2447
        config ([`PretrainedConfig`]):
            The config used by the model, will be used to grab the `hidden_size` of the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
2448
    """
2449

thomwolf's avatar
thomwolf committed
2450
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
2451
        super().__init__()
thomwolf's avatar
thomwolf committed
2452
2453
2454
2455
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False)

Sylvain Gugger's avatar
Sylvain Gugger committed
2456
2457
2458
2459
2460
2461
2462
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        start_states: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        cls_index: Optional[torch.LongTensor] = None,
    ) -> torch.FloatTensor:
2463
2464
        """
        Args:
2465
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2466
                The final hidden states of the model.
2467
            start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2468
                The hidden states of the first tokens for the labeled span.
2469
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2470
                The position of the first token for the labeled span.
2471
2472
2473
2474
            cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
                Position of the CLS token for each sentence in the batch. If `None`, takes the last token.

        <Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
2475

Stas Bekman's avatar
Stas Bekman committed
2476
2477
        One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides
        `start_states`.
Sylvain Gugger's avatar
Sylvain Gugger committed
2478

2479
        </Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
2480
2481

        Returns:
2482
            `torch.FloatTensor`: The SQuAD 2.0 answer class.
thomwolf's avatar
thomwolf committed
2483
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
2484
        # No dependency on end_feature so that we can obtain one single `cls_logits` for each sample.
2485
        hsz = hidden_states.shape[-1]
2486
2487
2488
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
thomwolf's avatar
thomwolf committed
2489
        if start_positions is not None:
2490
2491
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions).squeeze(-2)  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
2492
2493

        if cls_index is not None:
2494
2495
            cls_index = cls_index[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
2496
        else:
2497
            cls_token_state = hidden_states[:, -1, :]  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
2498
2499
2500
2501
2502
2503
2504
2505

        x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1))
        x = self.activation(x)
        x = self.dense_1(x).squeeze(-1)

        return x


2506
2507
2508
@dataclass
class SquadHeadOutput(ModelOutput):
    """
2509
    Base class for outputs of question answering models using a [`~modeling_utils.SQuADHead`].
2510
2511

    Args:
2512
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned if both `start_positions` and `end_positions` are provided):
Sylvain Gugger's avatar
Sylvain Gugger committed
2513
2514
            Classification loss as the sum of start token, end token (and is_impossible if provided) classification
            losses.
2515
        start_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
2516
            Log probabilities for the top config.start_n_top start token possibilities (beam-search).
2517
        start_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
2518
            Indices for the top config.start_n_top start token possibilities (beam-search).
2519
2520
        end_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Log probabilities for the top `config.start_n_top * config.end_n_top` end token possibilities
Sylvain Gugger's avatar
Sylvain Gugger committed
2521
            (beam-search).
2522
2523
2524
2525
        end_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Indices for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search).
        cls_logits (`torch.FloatTensor` of shape `(batch_size,)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Log probabilities for the `is_impossible` label of the answers.
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536

    """

    loss: Optional[torch.FloatTensor] = None
    start_top_log_probs: Optional[torch.FloatTensor] = None
    start_top_index: Optional[torch.LongTensor] = None
    end_top_log_probs: Optional[torch.FloatTensor] = None
    end_top_index: Optional[torch.LongTensor] = None
    cls_logits: Optional[torch.FloatTensor] = None


thomwolf's avatar
thomwolf committed
2537
class SQuADHead(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
2538
2539
    r"""
    A SQuAD head inspired by XLNet.
2540

Sylvain Gugger's avatar
Sylvain Gugger committed
2541
    Args:
2542
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
2543
2544
            The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps`
            to use.
thomwolf's avatar
thomwolf committed
2545
    """
2546

thomwolf's avatar
thomwolf committed
2547
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
2548
        super().__init__()
thomwolf's avatar
thomwolf committed
2549
2550
2551
2552
2553
2554
2555
        self.start_n_top = config.start_n_top
        self.end_n_top = config.end_n_top

        self.start_logits = PoolerStartLogits(config)
        self.end_logits = PoolerEndLogits(config)
        self.answer_class = PoolerAnswerClass(config)

Sylvain Gugger's avatar
Sylvain Gugger committed
2556
    @replace_return_docstrings(output_type=SquadHeadOutput, config_class=PretrainedConfig)
2557
    def forward(
2558
        self,
Sylvain Gugger's avatar
Sylvain Gugger committed
2559
2560
2561
2562
2563
2564
        hidden_states: torch.FloatTensor,
        start_positions: Optional[torch.LongTensor] = None,
        end_positions: Optional[torch.LongTensor] = None,
        cls_index: Optional[torch.LongTensor] = None,
        is_impossible: Optional[torch.LongTensor] = None,
        p_mask: Optional[torch.FloatTensor] = None,
2565
        return_dict: bool = False,
Sylvain Gugger's avatar
Sylvain Gugger committed
2566
2567
    ) -> Union[SquadHeadOutput, Tuple[torch.FloatTensor]]:
        """
Lysandre's avatar
Lysandre committed
2568
        Args:
2569
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Lysandre's avatar
Lysandre committed
2570
                Final hidden states of the model on the sequence tokens.
2571
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
2572
                Positions of the first token for the labeled span.
2573
            end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
2574
                Positions of the last token for the labeled span.
2575
2576
2577
            cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
                Position of the CLS token for each sentence in the batch. If `None`, takes the last token.
            is_impossible (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
2578
                Whether the question has a possible answer in the paragraph or not.
2579
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2580
2581
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
2582
            return_dict (`bool`, *optional*, defaults to `False`):
2583
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Sylvain Gugger's avatar
Sylvain Gugger committed
2584

Lysandre's avatar
Lysandre committed
2585
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
2586
        """
thomwolf's avatar
thomwolf committed
2587
        start_logits = self.start_logits(hidden_states, p_mask=p_mask)
thomwolf's avatar
thomwolf committed
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610

        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, let's remove the dimension added by batch splitting
            for x in (start_positions, end_positions, cls_index, is_impossible):
                if x is not None and x.dim() > 1:
                    x.squeeze_(-1)

            # during training, compute the end logits based on the ground truth of the start position
            end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)

            loss_fct = CrossEntropyLoss()
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

            if cls_index is not None and is_impossible is not None:
                # Predict answerability from the representation of CLS and START
                cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
                loss_fct_cls = nn.BCEWithLogitsLoss()
                cls_loss = loss_fct_cls(cls_logits, is_impossible)

                # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss
                total_loss += cls_loss * 0.5
2611

2612
            return SquadHeadOutput(loss=total_loss) if return_dict else (total_loss,)
thomwolf's avatar
thomwolf committed
2613
2614
2615
2616

        else:
            # during inference, compute the end logits based on beam search
            bsz, slen, hsz = hidden_states.size()
2617
            start_log_probs = nn.functional.softmax(start_logits, dim=-1)  # shape (bsz, slen)
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628

            start_top_log_probs, start_top_index = torch.topk(
                start_log_probs, self.start_n_top, dim=-1
            )  # shape (bsz, start_n_top)
            start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz)  # shape (bsz, start_n_top, hsz)
            start_states = torch.gather(hidden_states, -2, start_top_index_exp)  # shape (bsz, start_n_top, hsz)
            start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1)  # shape (bsz, slen, start_n_top, hsz)

            hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(
                start_states
            )  # shape (bsz, slen, start_n_top, hsz)
thomwolf's avatar
thomwolf committed
2629
2630
            p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
            end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
2631
            end_log_probs = nn.functional.softmax(end_logits, dim=1)  # shape (bsz, slen, start_n_top)
thomwolf's avatar
thomwolf committed
2632

2633
2634
2635
            end_top_log_probs, end_top_index = torch.topk(
                end_log_probs, self.end_n_top, dim=1
            )  # shape (bsz, end_n_top, start_n_top)
thomwolf's avatar
thomwolf committed
2636
2637
2638
2639
2640
2641
            end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
            end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)

            start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs)
            cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index)

2642
            if not return_dict:
2643
2644
2645
2646
2647
2648
2649
2650
2651
                return (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits)
            else:
                return SquadHeadOutput(
                    start_top_log_probs=start_top_log_probs,
                    start_top_index=start_top_index,
                    end_top_log_probs=end_top_log_probs,
                    end_top_index=end_top_index,
                    cls_logits=cls_logits,
                )
thomwolf's avatar
thomwolf committed
2652
2653
2654


class SequenceSummary(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
2655
2656
2657
2658
    r"""
    Compute a single vector summary of a sequence hidden states.

    Args:
2659
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
2660
2661
            The config used by the model. Relevant arguments in the config class of the model are (refer to the actual
            config class of your model for the default values it uses):
Sylvain Gugger's avatar
Sylvain Gugger committed
2662

2663
            - **summary_type** (`str`) -- The method to use to make this summary. Accepted values are:
Sylvain Gugger's avatar
Sylvain Gugger committed
2664

2665
2666
2667
2668
2669
                - `"last"` -- Take the last token hidden state (like XLNet)
                - `"first"` -- Take the first token hidden state (like Bert)
                - `"mean"` -- Take the mean of all tokens hidden states
                - `"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2)
                - `"attn"` -- Not implemented now, use multi-head attention
Sylvain Gugger's avatar
Sylvain Gugger committed
2670

2671
            - **summary_use_proj** (`bool`) -- Add a projection after the vector extraction.
Sylvain Gugger's avatar
Sylvain Gugger committed
2672
2673
2674
2675
2676
2677
            - **summary_proj_to_labels** (`bool`) -- If `True`, the projection outputs to `config.num_labels` classes
              (otherwise to `config.hidden_size`).
            - **summary_activation** (`Optional[str]`) -- Set to `"tanh"` to add a tanh activation to the output,
              another string or `None` will add no activation.
            - **summary_first_dropout** (`float`) -- Optional dropout probability before the projection and activation.
            - **summary_last_dropout** (`float`)-- Optional dropout probability after the projection and activation.
thomwolf's avatar
thomwolf committed
2678
    """
2679

2680
    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
2681
        super().__init__()
thomwolf's avatar
thomwolf committed
2682

2683
        self.summary_type = getattr(config, "summary_type", "last")
2684
        if self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
2685
2686
2687
2688
2689
            # We should use a standard multi-head attention module with absolute positional embedding for that.
            # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
            # We can probably just use the multi-head attention module of PyTorch >=1.1.0
            raise NotImplementedError

thomwolf's avatar
thomwolf committed
2690
        self.summary = Identity()
2691
2692
        if hasattr(config, "summary_use_proj") and config.summary_use_proj:
            if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0:
2693
                num_classes = config.num_labels
thomwolf's avatar
thomwolf committed
2694
2695
2696
2697
            else:
                num_classes = config.hidden_size
            self.summary = nn.Linear(config.hidden_size, num_classes)

2698
        activation_string = getattr(config, "summary_activation", None)
Lysandre's avatar
Lysandre committed
2699
        self.activation: Callable = get_activation(activation_string) if activation_string else Identity()
thomwolf's avatar
thomwolf committed
2700

thomwolf's avatar
thomwolf committed
2701
        self.first_dropout = Identity()
2702
        if hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0:
2703
2704
            self.first_dropout = nn.Dropout(config.summary_first_dropout)

thomwolf's avatar
thomwolf committed
2705
        self.last_dropout = Identity()
2706
        if hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0:
2707
            self.last_dropout = nn.Dropout(config.summary_last_dropout)
thomwolf's avatar
thomwolf committed
2708

Sylvain Gugger's avatar
Sylvain Gugger committed
2709
2710
2711
2712
2713
2714
2715
    def forward(
        self, hidden_states: torch.FloatTensor, cls_index: Optional[torch.LongTensor] = None
    ) -> torch.FloatTensor:
        """
        Compute a single vector summary of a sequence hidden states.

        Args:
2716
            hidden_states (`torch.FloatTensor` of shape `[batch_size, seq_len, hidden_size]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2717
                The hidden states of the last layer.
2718
            cls_index (`torch.LongTensor` of shape `[batch_size]` or `[batch_size, ...]` where ... are optional leading dimensions of `hidden_states`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2719
                Used if `summary_type == "cls_index"` and takes the last token of the sequence as classification token.
Sylvain Gugger's avatar
Sylvain Gugger committed
2720
2721

        Returns:
2722
            `torch.FloatTensor`: The summary of the sequence hidden states.
thomwolf's avatar
thomwolf committed
2723
        """
2724
        if self.summary_type == "last":
thomwolf's avatar
thomwolf committed
2725
            output = hidden_states[:, -1]
2726
        elif self.summary_type == "first":
thomwolf's avatar
thomwolf committed
2727
            output = hidden_states[:, 0]
2728
        elif self.summary_type == "mean":
thomwolf's avatar
thomwolf committed
2729
            output = hidden_states.mean(dim=1)
2730
        elif self.summary_type == "cls_index":
thomwolf's avatar
thomwolf committed
2731
            if cls_index is None:
Lysandre's avatar
Lysandre committed
2732
2733
2734
2735
2736
                cls_index = torch.full_like(
                    hidden_states[..., :1, :],
                    hidden_states.shape[-2] - 1,
                    dtype=torch.long,
                )
thomwolf's avatar
thomwolf committed
2737
            else:
thomwolf's avatar
thomwolf committed
2738
                cls_index = cls_index.unsqueeze(-1).unsqueeze(-1)
2739
                cls_index = cls_index.expand((-1,) * (cls_index.dim() - 1) + (hidden_states.size(-1),))
thomwolf's avatar
thomwolf committed
2740
            # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
2741
2742
            output = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, XX, hidden_size)
        elif self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
2743
2744
            raise NotImplementedError

2745
        output = self.first_dropout(output)
thomwolf's avatar
thomwolf committed
2746
2747
        output = self.summary(output)
        output = self.activation(output)
2748
        output = self.last_dropout(output)
thomwolf's avatar
thomwolf committed
2749
2750
2751
2752

        return output


2753
def unwrap_model(model: nn.Module) -> nn.Module:
2754
2755
2756
2757
    """
    Recursively unwraps a model from potential containers (as used in distributed training).

    Args:
2758
        model (`torch.nn.Module`): The model to unwrap.
2759
2760
2761
2762
2763
2764
2765
2766
    """
    # since there could be multiple levels of wrapping, unwrap recursively
    if hasattr(model, "module"):
        return unwrap_model(model.module)
    else:
        return model


2767
def prune_linear_layer(layer: nn.Linear, index: torch.LongTensor, dim: int = 0) -> nn.Linear:
Sylvain Gugger's avatar
Sylvain Gugger committed
2768
2769
2770
2771
2772
2773
    """
    Prune a linear layer to keep only entries in index.

    Used to remove heads.

    Args:
2774
2775
2776
        layer (`torch.nn.Linear`): The layer to prune.
        index (`torch.LongTensor`): The indices to keep in the layer.
        dim (`int`, *optional*, defaults to 0): The dimension on which to keep the indices.
Sylvain Gugger's avatar
Sylvain Gugger committed
2777
2778

    Returns:
2779
        `torch.nn.Linear`: The pruned layer as a new layer with `requires_grad=True`.
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
    """
    index = index.to(layer.weight.device)
    W = layer.weight.index_select(dim, index).clone().detach()
    if layer.bias is not None:
        if dim == 1:
            b = layer.bias.clone().detach()
        else:
            b = layer.bias[index].clone().detach()
    new_size = list(layer.weight.size())
    new_size[dim] = len(index)
    new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(layer.weight.device)
    new_layer.weight.requires_grad = False
    new_layer.weight.copy_(W.contiguous())
    new_layer.weight.requires_grad = True
    if layer.bias is not None:
        new_layer.bias.requires_grad = False
        new_layer.bias.copy_(b.contiguous())
        new_layer.bias.requires_grad = True
    return new_layer


Sylvain Gugger's avatar
Sylvain Gugger committed
2801
2802
2803
2804
2805
2806
2807
2808
def prune_conv1d_layer(layer: Conv1D, index: torch.LongTensor, dim: int = 1) -> Conv1D:
    """
    Prune a Conv1D layer to keep only entries in index. A Conv1D work as a Linear layer (see e.g. BERT) but the weights
    are transposed.

    Used to remove heads.

    Args:
2809
2810
2811
        layer ([`~modeling_utils.Conv1D`]): The layer to prune.
        index (`torch.LongTensor`): The indices to keep in the layer.
        dim (`int`, *optional*, defaults to 1): The dimension on which to keep the indices.
Sylvain Gugger's avatar
Sylvain Gugger committed
2812
2813

    Returns:
2814
        [`~modeling_utils.Conv1D`]: The pruned layer as a new layer with `requires_grad=True`.
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
    """
    index = index.to(layer.weight.device)
    W = layer.weight.index_select(dim, index).clone().detach()
    if dim == 0:
        b = layer.bias.clone().detach()
    else:
        b = layer.bias[index].clone().detach()
    new_size = list(layer.weight.size())
    new_size[dim] = len(index)
    new_layer = Conv1D(new_size[1], new_size[0]).to(layer.weight.device)
    new_layer.weight.requires_grad = False
    new_layer.weight.copy_(W.contiguous())
    new_layer.weight.requires_grad = True
    new_layer.bias.requires_grad = False
    new_layer.bias.copy_(b.contiguous())
    new_layer.bias.requires_grad = True
    return new_layer
2832
2833


Sylvain Gugger's avatar
Sylvain Gugger committed
2834
def prune_layer(
2835
2836
    layer: Union[nn.Linear, Conv1D], index: torch.LongTensor, dim: Optional[int] = None
) -> Union[nn.Linear, Conv1D]:
Sylvain Gugger's avatar
Sylvain Gugger committed
2837
2838
2839
2840
2841
2842
    """
    Prune a Conv1D or linear layer to keep only entries in index.

    Used to remove heads.

    Args:
2843
2844
2845
        layer (`Union[torch.nn.Linear, Conv1D]`): The layer to prune.
        index (`torch.LongTensor`): The indices to keep in the layer.
        dim (`int`, *optional*): The dimension on which to keep the indices.
Sylvain Gugger's avatar
Sylvain Gugger committed
2846
2847

    Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
2848
        `torch.nn.Linear` or [`~modeling_utils.Conv1D`]: The pruned layer as a new layer with `requires_grad=True`.
2849
2850
2851
2852
2853
2854
    """
    if isinstance(layer, nn.Linear):
        return prune_linear_layer(layer, index, dim=0 if dim is None else dim)
    elif isinstance(layer, Conv1D):
        return prune_conv1d_layer(layer, index, dim=1 if dim is None else dim)
    else:
2855
        raise ValueError(f"Can't prune layer of class {layer.__class__}")
Patrick von Platen's avatar
Patrick von Platen committed
2856
2857
2858


def apply_chunking_to_forward(
2859
    forward_fn: Callable[..., torch.Tensor], chunk_size: int, chunk_dim: int, *input_tensors
Patrick von Platen's avatar
Patrick von Platen committed
2860
2861
) -> torch.Tensor:
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
2862
2863
    This function chunks the `input_tensors` into smaller input tensor parts of size `chunk_size` over the dimension
    `chunk_dim`. It then applies a layer `forward_fn` to each chunk independently to save memory.
2864

Sylvain Gugger's avatar
Sylvain Gugger committed
2865
2866
    If the `forward_fn` is independent across the `chunk_dim` this function will yield the same result as directly
    applying `forward_fn` to `input_tensors`.
Patrick von Platen's avatar
Patrick von Platen committed
2867
2868

    Args:
2869
        forward_fn (`Callable[..., torch.Tensor]`):
2870
            The forward function of the model.
2871
2872
2873
2874
2875
2876
        chunk_size (`int`):
            The chunk size of a chunked tensor: `num_chunks = len(input_tensors[0]) / chunk_size`.
        chunk_dim (`int`):
            The dimension over which the `input_tensors` should be chunked.
        input_tensors (`Tuple[torch.Tensor]`):
            The input tensors of `forward_fn` which will be chunked
Sylvain Gugger's avatar
Sylvain Gugger committed
2877

Patrick von Platen's avatar
Patrick von Platen committed
2878
    Returns:
2879
        `torch.Tensor`: A tensor with the same shape as the `forward_fn` would have given if applied`.
Patrick von Platen's avatar
Patrick von Platen committed
2880
2881


2882
    Examples:
Patrick von Platen's avatar
Patrick von Platen committed
2883

2884
2885
2886
2887
2888
    ```python
    # rename the usual forward() fn to forward_chunk()
    def forward_chunk(self, hidden_states):
        hidden_states = self.decoder(hidden_states)
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
2889

Sylvain Gugger's avatar
Sylvain Gugger committed
2890

2891
2892
2893
2894
    # implement a chunked forward function
    def forward(self, hidden_states):
        return apply_chunking_to_forward(self.forward_chunk, self.chunk_size_lm_head, self.seq_len_dim, hidden_states)
    ```"""
Patrick von Platen's avatar
Patrick von Platen committed
2895

2896
    assert len(input_tensors) > 0, f"{input_tensors} has to be a tuple/list of tensors"
Patrick von Platen's avatar
Patrick von Platen committed
2897

2898
    # inspect.signature exist since python 3.5 and is a python method -> no problem with backward compatibility
Patrick von Platen's avatar
Patrick von Platen committed
2899
    num_args_in_forward_chunk_fn = len(inspect.signature(forward_fn).parameters)
2900
2901
2902
2903
2904
    if num_args_in_forward_chunk_fn != len(input_tensors):
        raise ValueError(
            f"forward_chunk_fn expects {num_args_in_forward_chunk_fn} arguments, but only {len(input_tensors)} input "
            "tensors are given"
        )
Patrick von Platen's avatar
Patrick von Platen committed
2905
2906

    if chunk_size > 0:
2907
2908
2909
2910
2911
2912
2913
2914
        tensor_shape = input_tensors[0].shape[chunk_dim]
        for input_tensor in input_tensors:
            if input_tensor.shape[chunk_dim] != tensor_shape:
                raise ValueError(
                    f"All input tenors have to be of the same shape: {tensor_shape}, "
                    f"found shape {input_tensor.shape[chunk_dim]}"
                )

2915
2916
2917
2918
2919
        if input_tensors[0].shape[chunk_dim] % chunk_size != 0:
            raise ValueError(
                f"The dimension to be chunked {input_tensors[0].shape[chunk_dim]} has to be a multiple of the chunk "
                f"size {chunk_size}"
            )
Patrick von Platen's avatar
Patrick von Platen committed
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930

        num_chunks = input_tensors[0].shape[chunk_dim] // chunk_size

        # chunk input tensor into tuples
        input_tensors_chunks = tuple(input_tensor.chunk(num_chunks, dim=chunk_dim) for input_tensor in input_tensors)
        # apply forward fn to every tuple
        output_chunks = tuple(forward_fn(*input_tensors_chunk) for input_tensors_chunk in zip(*input_tensors_chunks))
        # concatenate output at same dimension
        return torch.cat(output_chunks, dim=chunk_dim)

    return forward_fn(*input_tensors)