modeling_utils.py 85.9 KB
Newer Older
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
Patrick von Platen committed
17
import inspect
18
import os
19
import re
20
import warnings
21
from dataclasses import dataclass
22
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
23
24

import torch
25
from torch import Tensor, device, dtype, nn
26
27
from torch.nn import CrossEntropyLoss
from torch.nn import functional as F
28

29
from .activations import get_activation
30
from .configuration_utils import PretrainedConfig
31
from .file_utils import (
Aymeric Augustin's avatar
Aymeric Augustin committed
32
    DUMMY_INPUTS,
33
34
35
    TF2_WEIGHTS_NAME,
    TF_WEIGHTS_NAME,
    WEIGHTS_NAME,
36
    ModelOutput,
37
38
39
    cached_path,
    hf_bucket_url,
    is_remote_url,
Sylvain Gugger's avatar
Sylvain Gugger committed
40
    replace_return_docstrings,
41
)
42
from .generation_utils import GenerationMixin
Lysandre Debut's avatar
Lysandre Debut committed
43
from .utils import logging
44

Aymeric Augustin's avatar
Aymeric Augustin committed
45

Lysandre Debut's avatar
Lysandre Debut committed
46
logger = logging.get_logger(__name__)
47

thomwolf's avatar
thomwolf committed
48
49
50
51
52
try:
    from torch.nn import Identity
except ImportError:
    # Older PyTorch compatibility
    class Identity(nn.Module):
Lysandre's avatar
Lysandre committed
53
        r"""A placeholder identity operator that is argument-insensitive."""
54

thomwolf's avatar
thomwolf committed
55
        def __init__(self, *args, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
56
            super().__init__()
thomwolf's avatar
thomwolf committed
57
58
59
60

        def forward(self, input):
            return input

61

62
def find_pruneable_heads_and_indices(
Sylvain Gugger's avatar
Sylvain Gugger committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
    heads: List[int], n_heads: int, head_size: int, already_pruned_heads: Set[int]
) -> Tuple[Set[int], torch.LongTensor]:
    """
    Finds the heads and their indices taking :obj:`already_pruned_heads` into account.

    Args:
        heads (:obj:`List[int]`): List of the indices of heads to prune.
        n_heads (:obj:`int`): The number of heads in the model.
        head_size (:obj:`int`): The size of each head.
        already_pruned_heads (:obj:`Set[int]`): A set of already pruned heads.

    Returns:
        :obj:`Tuple[Set[int], torch.LongTensor]`: A tuple with the remaining heads and their corresponding indices.
    """
77
78
79
80
81
82
83
84
85
86
87
    mask = torch.ones(n_heads, head_size)
    heads = set(heads) - already_pruned_heads  # Convert to set and remove already pruned heads
    for head in heads:
        # Compute how many pruned heads are before the head and move the index accordingly
        head = head - sum(1 if h < head else 0 for h in already_pruned_heads)
        mask[head] = 0
    mask = mask.view(-1).contiguous().eq(1)
    index: torch.LongTensor = torch.arange(len(mask))[mask].long()
    return heads, index


Lysandre Debut's avatar
Lysandre Debut committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
def get_parameter_device(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    try:
        return next(parameter.parameters()).device
    except StopIteration:
        # For nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].device


def get_parameter_dtype(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    try:
        return next(parameter.parameters()).dtype
    except StopIteration:
        # For nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].dtype


118
class ModuleUtilsMixin:
Julien Chaumond's avatar
Julien Chaumond committed
119
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
120
    A few utilities for :obj:`torch.nn.Modules`, to be used as a mixin.
Julien Chaumond's avatar
Julien Chaumond committed
121
122
    """

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
    @staticmethod
    def _hook_rss_memory_pre_forward(module, *args, **kwargs):
        try:
            import psutil
        except (ImportError):
            raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")

        process = psutil.Process(os.getpid())
        mem = process.memory_info()
        module.mem_rss_pre_forward = mem.rss
        return None

    @staticmethod
    def _hook_rss_memory_post_forward(module, *args, **kwargs):
        try:
            import psutil
        except (ImportError):
            raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")

        process = psutil.Process(os.getpid())
        mem = process.memory_info()
        module.mem_rss_post_forward = mem.rss
        mem_rss_diff = module.mem_rss_post_forward - module.mem_rss_pre_forward
        module.mem_rss_diff = mem_rss_diff + (module.mem_rss_diff if hasattr(module, "mem_rss_diff") else 0)
        return None

    def add_memory_hooks(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
150
151
152
153
154
        """
        Add a memory hook before and after each sub-module forward pass to record increase in memory consumption.

        Increase in memory consumption is stored in a :obj:`mem_rss_diff` attribute for each module and can be reset to
        zero with :obj:`model.reset_memory_hooks_state()`.
155
156
157
158
159
160
161
        """
        for module in self.modules():
            module.register_forward_pre_hook(self._hook_rss_memory_pre_forward)
            module.register_forward_hook(self._hook_rss_memory_post_forward)
        self.reset_memory_hooks_state()

    def reset_memory_hooks_state(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
162
163
164
165
        """
        Reset the :obj:`mem_rss_diff` attribute of each module (see
        :func:`~transformers.modeling_utils.ModuleUtilsMixin.add_memory_hooks`).
        """
166
167
168
169
170
        for module in self.modules():
            module.mem_rss_diff = 0
            module.mem_rss_post_forward = 0
            module.mem_rss_pre_forward = 0

171
    @property
172
    def device(self) -> device:
173
        """
174
175
        :obj:`torch.device`: The device on which the module is (assuming that all the module parameters are on the same
        device).
176
        """
Lysandre Debut's avatar
Lysandre Debut committed
177
        return get_parameter_device(self)
178

179
180
    @property
    def dtype(self) -> dtype:
181
        """
182
        :obj:`torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
183
        """
Lysandre Debut's avatar
Lysandre Debut committed
184
        return get_parameter_dtype(self)
185
186

    def invert_attention_mask(self, encoder_attention_mask: Tensor) -> Tensor:
Sylvain Gugger's avatar
Sylvain Gugger committed
187
188
189
190
191
192
193
194
195
        """
        Invert an attention mask (e.g., switches 0. and 1.).

        Args:
            encoder_attention_mask (:obj:`torch.Tensor`): An attention mask.

        Returns:
            :obj:`torch.Tensor`: The inverted attention mask.
        """
196
197
198
199
200
201
202
203
204
205
        if encoder_attention_mask.dim() == 3:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
        if encoder_attention_mask.dim() == 2:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
        # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
        # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
        # /transformer/transformer_layers.py#L270
        # encoder_extended_attention_mask = (encoder_extended_attention_mask ==
        # encoder_extended_attention_mask.transpose(-1, -2))
        encoder_extended_attention_mask = encoder_extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
206
207
208
209
210
211
212
213
214
215
216
217

        if self.dtype == torch.float16:
            encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -1e4
        elif self.dtype == torch.float32:
            encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -1e9
        else:
            raise ValueError(
                "{} not recognized. `dtype` should be set to either `torch.float32` or `torch.float16`".format(
                    self.dtype
                )
            )

218
219
        return encoder_extended_attention_mask

Sylvain Gugger's avatar
Sylvain Gugger committed
220
221
222
    def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device) -> Tensor:
        """
        Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
223
224

        Arguments:
Sylvain Gugger's avatar
Sylvain Gugger committed
225
226
227
228
229
230
            attention_mask (:obj:`torch.Tensor`):
                Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
            input_shape (:obj:`Tuple[int]`):
                The shape of the input to the model.
            device: (:obj:`torch.device`):
                The device of the input to the model.
231
232

        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
233
            :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
234
235
236
237
238
239
240
241
242
243
244
245
246
        """
        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        if attention_mask.dim() == 3:
            extended_attention_mask = attention_mask[:, None, :, :]
        elif attention_mask.dim() == 2:
            # Provided a padding mask of dimensions [batch_size, seq_length]
            # - if the model is a decoder, apply a causal mask in addition to the padding mask
            # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
            if self.config.is_decoder:
                batch_size, seq_length = input_shape
                seq_ids = torch.arange(seq_length, device=device)
                causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
247
                # in case past_key_values are used we need to add a prefix ones mask to the causal mask
Patrick von Platen's avatar
Patrick von Platen committed
248
249
250
                # causal and attention masks must have same type with pytorch version < 1.3
                causal_mask = causal_mask.to(attention_mask.dtype)

251
252
253
                if causal_mask.shape[1] < attention_mask.shape[1]:
                    prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
                    causal_mask = torch.cat(
Patrick von Platen's avatar
Patrick von Platen committed
254
255
256
257
258
259
260
                        [
                            torch.ones(
                                (batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype
                            ),
                            causal_mask,
                        ],
                        axis=-1,
261
262
                    )

263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
                extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
            else:
                extended_attention_mask = attention_mask[:, None, None, :]
        else:
            raise ValueError(
                "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
                    input_shape, attention_mask.shape
                )
            )

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
        return extended_attention_mask

Sylvain Gugger's avatar
Sylvain Gugger committed
282
283
284
    def get_head_mask(
        self, head_mask: Optional[Tensor], num_hidden_layers: int, is_attention_chunked: bool = False
    ) -> Tensor:
285
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
286
287
288
289
290
291
292
293
294
295
        Prepare the head mask if needed.

        Args:
            head_mask (:obj:`torch.Tensor` with shape :obj:`[num_heads]` or :obj:`[num_hidden_layers x num_heads]`, `optional`):
                The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard).
            num_hidden_layers (:obj:`int`):
                The number of hidden layers in the model.
            is_attention_chunked: (:obj:`bool`, `optional, defaults to :obj:`False`):
                Whether or not the attentions scores are computed by chunks or not.

296
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
297
298
            :obj:`torch.Tensor` with shape :obj:`[num_hidden_layers x batch x num_heads x seq_length x seq_length]` or
            list with :obj:`[None]` for each layer.
299
300
301
        """
        if head_mask is not None:
            head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
302
303
            if is_attention_chunked is True:
                head_mask = head_mask.unsqueeze(-1)
304
305
306
307
308
309
310
311
312
313
314
315
316
        else:
            head_mask = [None] * num_hidden_layers

        return head_mask

    def _convert_head_mask_to_5d(self, head_mask, num_hidden_layers):
        """-> [num_hidden_layers x batch x num_heads x seq_length x seq_length]"""
        if head_mask.dim() == 1:
            head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
            head_mask = head_mask.expand(num_hidden_layers, -1, -1, -1, -1)
        elif head_mask.dim() == 2:
            head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
        assert head_mask.dim() == 5, f"head_mask.dim != 5, instead {head_mask.dim()}"
317
        head_mask = head_mask.to(dtype=self.dtype)  # switch to float if need + fp16 compatibility
318
319
        return head_mask

320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
    def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int:
        """
        Get number of (optionally, trainable or non-embeddings) parameters in the module.

        Args:
            only_trainable (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to return only the number of trainable parameters

            exclude_embeddings (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to return only the number of non-embeddings parameters

        Returns:
            :obj:`int`: The number of parameters.
        """

        def parameter_filter(x):
            return (x.requires_grad or not only_trainable) and not (
                isinstance(x, torch.nn.Embedding) and exclude_embeddings
            )

        params = filter(parameter_filter, self.parameters()) if only_trainable else self.parameters()
        return sum(p.numel() for p in params)

    def estimate_tokens(self, input_dict: Dict[str, Union[torch.Tensor, Any]]) -> int:
        """
        Helper function to estimate the total number of tokens from the model inputs.

        Args:
            inputs (:obj:`dict`): The model inputs.

        Returns:
            :obj:`int`: The total number of tokens.
        """
        token_inputs = [tensor for key, tensor in input_dict.items() if "input" in key]
        if token_inputs:
            return sum([token_input.numel() for token_input in token_inputs])
        else:
            warnings.warn(
                "Could not estimate the number of tokens of the input, floating-point operations will not be computed"
            )
            return 0

    def floating_point_ops(
        self, input_dict: Dict[str, Union[torch.Tensor, Any]], exclude_embeddings: bool = True
    ) -> int:
        """
        Get number of (optionally, non-embeddings) floating-point operations for the forward and backward passes of a
        batch with this transformer model. Default approximation neglects the quadratic dependency on the number of
Sylvain Gugger's avatar
Sylvain Gugger committed
368
        tokens (valid if :obj:`12 * d_model << sequence_length`) as laid out in `this paper
369
        <https://arxiv.org/pdf/2001.08361.pdf>`__ section 2.1. Should be overridden for transformers with parameter
Sylvain Gugger's avatar
Sylvain Gugger committed
370
        re-use e.g. Albert or Universal Transformers, or if doing long-range modeling with very high sequence lengths.
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387

        Args:
            batch_size (:obj:`int`):
                The batch size for the forward pass.

            sequence_length (:obj:`int`):
                The number of tokens in each line of the batch.

            exclude_embeddings (:obj:`bool`, `optional`, defaults to :obj:`True`):
                Whether or not to count embedding and softmax operations.

        Returns:
            :obj:`int`: The number of floating-point operations.
        """

        return 6 * self.estimate_tokens(input_dict) * self.num_parameters(exclude_embeddings=exclude_embeddings)

Julien Chaumond's avatar
Julien Chaumond committed
388

389
class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin):
390
391
    r"""
    Base class for all models.
392

393
394
    :class:`~transformers.PreTrainedModel` takes care of storing the configuration of the models and handles methods
    for loading, downloading and saving models as well as a few methods common to all models to:
395

396
397
        * resize the input embeddings,
        * prune heads in the self-attention heads.
398

399
    Class attributes (overridden by derived classes):
Sylvain Gugger's avatar
Sylvain Gugger committed
400

401
402
        - **config_class** (:class:`~transformers.PretrainedConfig`) -- A subclass of
          :class:`~transformers.PretrainedConfig` to use as configuration class for this model architecture.
Sylvain Gugger's avatar
Sylvain Gugger committed
403
404
        - **load_tf_weights** (:obj:`Callable`) -- A python `method` for loading a TensorFlow checkpoint in a PyTorch
          model, taking as arguments:
405

406
407
            - **model** (:class:`~transformers.PreTrainedModel`) -- An instance of the model on which to load the
              TensorFlow checkpoint.
Sylvain Gugger's avatar
Sylvain Gugger committed
408
409
            - **config** (:class:`~transformers.PreTrainedConfig`) -- An instance of the configuration associated to
              the model.
410
411
412
413
            - **path** (:obj:`str`) -- A path to the TensorFlow checkpoint.

        - **base_model_prefix** (:obj:`str`) -- A string indicating the attribute associated to the base model in
          derived classes of the same architecture adding modules on top of the base model.
414
        - **is_parallelizable** (:obj:`bool`) -- A flag indicating whether this model supports model parallelization.
415
    """
416
    config_class = None
417
    base_model_prefix = ""
418
419
420
421
422
423
424
425
426
    # a list of re pattern of tensor names to ignore from the model when loading the model weights
    # (and avoid unnecessary warnings).
    _keys_to_ignore_on_load_missing = None
    # a list of re pattern of tensor names to ignore from the weights when loading the model weights
    # (and avoid unnecessary warnings).
    _keys_to_ignore_on_load_unexpected = None
    # a list of of tensor names to ignore when saving the model (useful for keys that aren't
    # trained, but which are deterministic)
    _keys_to_ignore_on_save = None
427

428
429
    is_parallelizable = False

430
    @property
431
    def dummy_inputs(self) -> Dict[str, torch.Tensor]:
432
433
        """
        :obj:`Dict[str, torch.Tensor]`: Dummy inputs to do a forward pass in the network.
434
        """
435
        return {"input_ids": torch.tensor(DUMMY_INPUTS)}
436

437
    def __init__(self, config: PretrainedConfig, *inputs, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
438
        super().__init__()
439
440
441
442
443
444
        if not isinstance(config, PretrainedConfig):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `PretrainedConfig`. "
                "To create a model from a pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
445
446
                )
            )
447
        # Save config and origin of the pretrained weights if given in model
448
        self.config = config
449
        self.name_or_path = config.name_or_path
450

451
    @property
452
453
454
455
    def base_model(self) -> nn.Module:
        """
        :obj:`torch.nn.Module`: The main body of the model.
        """
456
        return getattr(self, self.base_model_prefix, self)
thomwolf's avatar
thomwolf committed
457

458
    def get_input_embeddings(self) -> nn.Module:
459
460
461
462
        """
        Returns the model's input embeddings.

        Returns:
463
            :obj:`nn.Module`: A torch module mapping vocabulary to hidden states.
thomwolf's avatar
thomwolf committed
464
        """
465
        base_model = getattr(self, self.base_model_prefix, self)
thomwolf's avatar
thomwolf committed
466
467
468
469
        if base_model is not self:
            return base_model.get_input_embeddings()
        else:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
470

471
    def set_input_embeddings(self, value: nn.Module):
472
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
473
        Set model's input embeddings.
474
475

        Args:
476
            value (:obj:`nn.Module`): A module mapping vocabulary to hidden states.
thomwolf's avatar
thomwolf committed
477
478
479
480
481
482
        """
        base_model = getattr(self, self.base_model_prefix, self)
        if base_model is not self:
            base_model.set_input_embeddings(value)
        else:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
483

484
    def get_output_embeddings(self) -> nn.Module:
485
486
487
488
        """
        Returns the model's output embeddings.

        Returns:
489
            :obj:`nn.Module`: A torch module mapping hidden states to vocabulary.
thomwolf's avatar
thomwolf committed
490
        """
491
        return None  # Overwrite for models with output embeddings
thomwolf's avatar
thomwolf committed
492

493
    def tie_weights(self):
494
495
        """
        Tie the weights between the input embeddings and the output embeddings.
496
497

        If the :obj:`torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning
498
        the weights instead.
thomwolf's avatar
thomwolf committed
499
        """
thomwolf's avatar
thomwolf committed
500
        output_embeddings = self.get_output_embeddings()
501
        if output_embeddings is not None and self.config.tie_word_embeddings:
thomwolf's avatar
thomwolf committed
502
            self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings())
thomwolf's avatar
thomwolf committed
503

504
        if self.config.is_encoder_decoder and self.config.tie_encoder_decoder:
Weizhen's avatar
Weizhen committed
505
506
            if hasattr(self, self.base_model_prefix):
                self = getattr(self, self.base_model_prefix)
507
508
509
510
511
            self._tie_encoder_decoder_weights(self.encoder, self.decoder, self.base_model_prefix)

    @staticmethod
    def _tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str):
        uninitialized_encoder_weights: List[str] = []
Weizhen's avatar
Weizhen committed
512
513
514
515
        if decoder.__class__ != encoder.__class__:
            logger.info(
                f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder weights are correctly initialized."
            )
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547

        def tie_encoder_to_decoder_recursively(
            decoder_pointer: nn.Module,
            encoder_pointer: nn.Module,
            module_name: str,
            uninitialized_encoder_weights: List[str],
            depth=0,
        ):
            assert isinstance(decoder_pointer, nn.Module) and isinstance(
                encoder_pointer, nn.Module
            ), f"{decoder_pointer} and {encoder_pointer} have to be of type torch.nn.Module"
            if hasattr(decoder_pointer, "weight"):
                assert hasattr(encoder_pointer, "weight")
                encoder_pointer.weight = decoder_pointer.weight
                if hasattr(decoder_pointer, "bias"):
                    assert hasattr(encoder_pointer, "bias")
                    encoder_pointer.bias = decoder_pointer.bias
                return

            encoder_modules = encoder_pointer._modules
            decoder_modules = decoder_pointer._modules
            if len(decoder_modules) > 0:
                assert (
                    len(encoder_modules) > 0
                ), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"

                all_encoder_weights = set([module_name + "/" + sub_name for sub_name in encoder_modules.keys()])
                encoder_layer_pos = 0
                for name, module in decoder_modules.items():
                    if name.isdigit():
                        encoder_name = str(int(name) + encoder_layer_pos)
                        decoder_name = name
Weizhen's avatar
Weizhen committed
548
549
550
                        if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len(
                            encoder_modules
                        ) != len(decoder_modules):
551
552
                            # this can happen if the name corresponds to the position in a list module list of layers
                            # in this case the decoder has added a cross-attention that the encoder does not have
553
                            # thus skip this step and subtract one layer pos from encoder
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
                            encoder_layer_pos -= 1
                            continue
                    elif name not in encoder_modules:
                        continue
                    elif depth > 500:
                        raise ValueError(
                            "Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model."
                        )
                    else:
                        decoder_name = encoder_name = name
                    tie_encoder_to_decoder_recursively(
                        decoder_modules[decoder_name],
                        encoder_modules[encoder_name],
                        module_name + "/" + name,
                        uninitialized_encoder_weights,
                        depth=depth + 1,
                    )
                    all_encoder_weights.remove(module_name + "/" + encoder_name)

                uninitialized_encoder_weights += list(all_encoder_weights)

        # tie weights recursively
        tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights)
        if len(uninitialized_encoder_weights) > 0:
            logger.warning(
                f"The following encoder weights were not tied to the decoder {uninitialized_encoder_weights}"
            )

582
    def _tie_or_clone_weights(self, output_embeddings, input_embeddings):
Lysandre's avatar
Lysandre committed
583
        """Tie or clone module weights depending of whether we are using TorchScript or not"""
thomwolf's avatar
thomwolf committed
584
        if self.config.torchscript:
585
            output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone())
thomwolf's avatar
thomwolf committed
586
        else:
587
            output_embeddings.weight = input_embeddings.weight
thomwolf's avatar
thomwolf committed
588

Sam Shleifer's avatar
Sam Shleifer committed
589
        if getattr(output_embeddings, "bias", None) is not None:
590
591
            output_embeddings.bias.data = torch.nn.functional.pad(
                output_embeddings.bias.data,
Lysandre's avatar
Lysandre committed
592
593
594
595
                (
                    0,
                    output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0],
                ),
596
597
                "constant",
                0,
598
            )
599
        if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"):
600
            output_embeddings.out_features = input_embeddings.num_embeddings
601

602
603
604
    def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> torch.nn.Embedding:
        """
        Resizes input token embeddings matrix of the model if :obj:`new_num_tokens != config.vocab_size`.
605

606
        Takes care of tying weights embeddings afterwards if the model class has a :obj:`tie_weights()` method.
thomwolf's avatar
thomwolf committed
607

608
609
610
611
        Arguments:
            new_num_tokens (:obj:`int`, `optional`):
                The number of new tokens in the embedding matrix. Increasing the size will add newly initialized
                vectors at the end. Reducing the size will remove vectors from the end. If not provided or :obj:`None`,
612
                just returns a pointer to the input tokens :obj:`torch.nn.Embedding` module of the model without doing
613
614
615
616
                anything.

        Return:
            :obj:`torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model.
thomwolf's avatar
thomwolf committed
617
        """
618
        model_embeds = self._resize_token_embeddings(new_num_tokens)
thomwolf's avatar
thomwolf committed
619
620
        if new_num_tokens is None:
            return model_embeds
thomwolf's avatar
thomwolf committed
621
622
623

        # Update base model and current model config
        self.config.vocab_size = new_num_tokens
624
        self.vocab_size = new_num_tokens
thomwolf's avatar
thomwolf committed
625
626

        # Tie weights again if needed
627
        self.tie_weights()
thomwolf's avatar
thomwolf committed
628

thomwolf's avatar
thomwolf committed
629
630
        return model_embeds

631
    def _resize_token_embeddings(self, new_num_tokens):
thomwolf's avatar
thomwolf committed
632
633
634
        old_embeddings = self.get_input_embeddings()
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)
        self.set_input_embeddings(new_embeddings)
635
636
637
638
639
640
641

        # if word embeddings are not tied, make sure that lm head is resized as well
        if self.get_output_embeddings() is not None and not self.config.tie_word_embeddings:
            old_lm_head = self.get_output_embeddings()
            new_lm_head = self._get_resized_lm_head(old_lm_head, new_num_tokens)
            self.set_output_embeddings(new_lm_head)

thomwolf's avatar
thomwolf committed
642
        return self.get_input_embeddings()
643

644
645
646
    def _get_resized_embeddings(
        self, old_embeddings: torch.nn.Embedding, new_num_tokens: Optional[int] = None
    ) -> torch.nn.Embedding:
647
648
649
        """
        Build a resized Embedding Module from a provided token Embedding Module. Increasing the size will add newly
        initialized vectors at the end. Reducing the size will remove vectors from the end
650
651

        Args:
652
            old_embeddings (:obj:`torch.nn.Embedding`):
653
                Old embeddings to be resized.
654
            new_num_tokens (:obj:`int`, `optional`):
655
                New number of tokens in the embedding matrix.
656
657
658

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
                vectors from the end. If not provided or :obj:`None`, just returns a pointer to the input tokens
659
                :obj:`torch.nn.Embedding`` module of the model without doing anything.
660
661
662
663

        Return:
            :obj:`torch.nn.Embedding`: Pointer to the resized Embedding Module or the old Embedding Module if
            :obj:`new_num_tokens` is :obj:`None`
664
665
666
667
668
669
670
671
        """
        if new_num_tokens is None:
            return old_embeddings

        old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
        if old_num_tokens == new_num_tokens:
            return old_embeddings

672
673
674
675
676
677
        if not isinstance(old_embeddings, nn.Embedding):
            raise TypeError(
                f"Old embeddings are of type {type(old_embeddings)}, which is not an instance of {nn.Embedding}."
                f"You should either use a different resize function or make sure that `old_embeddings` are an instance of {nn.Embedding}."
            )

678
        # Build new embeddings
679
        new_embeddings = nn.Embedding(new_num_tokens, old_embedding_dim).to(self.device)
680
681
682
683

        # initialize all new embeddings (in particular added tokens)
        self._init_weights(new_embeddings)

684
        # Copy token embeddings from the previous weights
685
686
687
688
689
        num_tokens_to_copy = min(old_num_tokens, new_num_tokens)
        new_embeddings.weight.data[:num_tokens_to_copy, :] = old_embeddings.weight.data[:num_tokens_to_copy, :]

        return new_embeddings

690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
    def _get_resized_lm_head(
        self, old_lm_head: torch.nn.Linear, new_num_tokens: Optional[int] = None, transposed: Optional[bool] = False
    ) -> torch.nn.Linear:
        """
        Build a resized Linear Module from a provided old Linear Module. Increasing the size will add newly initialized
        vectors at the end. Reducing the size will remove vectors from the end

        Args:
            old_lm_head (:obj:`torch.nn.Linear`):
                Old lm head liner layer to be resized.
            new_num_tokens (:obj:`int`, `optional`):
                New number of tokens in the linear matrix.

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
                vectors from the end. If not provided or :obj:`None`, just returns a pointer to the input tokens
                :obj:`torch.nn.Linear`` module of the model without doing anything.
            transposed (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether ``old_lm_head`` is transposed or not. If True ``old_lm_head.size()`` is ``lm_head_dim,
                vocab_size`` else ``vocab_size, lm_head_dim``.

        Return:
            :obj:`torch.nn.Linear`: Pointer to the resized Linear Module or the old Linear Module if
            :obj:`new_num_tokens` is :obj:`None`
        """
        if new_num_tokens is None:
            return old_lm_head

        old_num_tokens, old_lm_head_dim = (
            old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
        )

        if old_num_tokens == new_num_tokens:
            return old_lm_head

        if not isinstance(old_lm_head, nn.Linear):
            raise TypeError(
                f"Old language model head is of type {type(old_lm_head)}, which is not an instance of {nn.Linear}."
                f"You should either use a different resize function or make sure that `old_embeddings` are an instance of {nn.Linear}."
            )

        # Build new lm head
        new_lm_head_shape = (old_lm_head_dim, new_num_tokens) if not transposed else (new_num_tokens, old_lm_head_dim)
        has_new_lm_head_bias = old_lm_head.bias is not None
        new_lm_head = nn.Linear(*new_lm_head_shape, bias=has_new_lm_head_bias).to(self.device)

        # initialize new lm head (in particular added tokens)
        self._init_weights(new_lm_head)

        num_tokens_to_copy = min(old_num_tokens, new_num_tokens)

        # Copy old lm head weights to new lm head
        if not transposed:
            new_lm_head.weight.data[:num_tokens_to_copy, :] = old_lm_head.weight.data[:num_tokens_to_copy, :]
        else:
            new_lm_head.weight.data[:, :num_tokens_to_copy] = old_lm_head.weight.data[:, :num_tokens_to_copy]

        # Copy bias weights to new lm head
        if has_new_lm_head_bias:
            new_lm_head.bias.data[:num_tokens_to_copy] = old_lm_head.bias.data[:num_tokens_to_copy]

        return new_lm_head

752
    def init_weights(self):
753
754
755
        """
        Initializes and prunes weights if needed.
        """
756
757
758
759
760
761
762
        # Initialize weights
        self.apply(self._init_weights)

        # Prune heads if needed
        if self.config.pruned_heads:
            self.prune_heads(self.config.pruned_heads)

763
764
765
        # Tie weights if needed
        self.tie_weights()

766
767
768
    def prune_heads(self, heads_to_prune: Dict[int, List[int]]):
        """
        Prunes heads of the base model.
769

770
771
        Arguments:
            heads_to_prune (:obj:`Dict[int, List[int]]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
772
773
774
                Dictionary with keys being selected layer indices (:obj:`int`) and associated values being the list of
                heads to prune in said layer (list of :obj:`int`). For instance {1: [0, 2], 2: [2, 3]} will prune heads
                0 and 2 on layer 1 and heads 2 and 3 on layer 2.
thomwolf's avatar
thomwolf committed
775
        """
776
        # save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads
777
        for layer, heads in heads_to_prune.items():
778
779
780
            union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads)
            self.config.pruned_heads[layer] = list(union_heads)  # Unfortunately we have to store it as list for JSON

781
        self.base_model._prune_heads(heads_to_prune)
thomwolf's avatar
thomwolf committed
782

783
784
785
786
787
788
789
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
        save_config: bool = True,
        state_dict: Optional[dict] = None,
        save_function: Callable = torch.save,
    ):
790
791
792
        """
        Save a model and its configuration file to a directory, so that it can be re-loaded using the
        `:func:`~transformers.PreTrainedModel.from_pretrained`` class method.
793

794
        Arguments:
795
            save_directory (:obj:`str` or :obj:`os.PathLike`):
796
                Directory to which to save. Will be created if it doesn't exist.
797
798
799
800
801
802
803
804
805
806
807
            save_config (:obj:`bool`, `optional`, defaults to :obj:`True`):
                Whether or not to save the config of the model. Useful when in distributed training like TPUs and need
                to call this function on all processes. In this case, set :obj:`save_config=True` only on the main
                process to avoid race conditions.
            state_dict (nested dictionary of :obj:`torch.Tensor`):
                The state dictionary of the model to save. Will default to :obj:`self.state_dict()`, but can be used to
                only save parts of the model or if special precautions need to be taken when recovering the state
                dictionary of a model (like when using model parallelism).
            save_function (:obj:`Callable`):
                The function to use to save the state dictionary. Useful on distributed training like TPUs when one
                need to replace :obj:`torch.save` by another method.
808
        """
809
        if os.path.isfile(save_directory):
810
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
811
812
            return
        os.makedirs(save_directory, exist_ok=True)
813

Julien Chaumond's avatar
Julien Chaumond committed
814
        # Only save the model itself if we are using distributed training
815
        model_to_save = unwrap_model(self)
816

Julien Chaumond's avatar
Julien Chaumond committed
817
818
819
        # Attach architecture to the config
        model_to_save.config.architectures = [model_to_save.__class__.__name__]

820
821
822
823
824
825
826
        # Save the config
        if save_config:
            model_to_save.config.save_pretrained(save_directory)

        # Save the model
        if state_dict is None:
            state_dict = model_to_save.state_dict()
827
828

        # Handle the case where some state_dict keys shouldn't be saved
829
830
        if self._keys_to_ignore_on_save is not None:
            state_dict = {k: v for k, v in state_dict.items() if k not in self._keys_to_ignore_on_save}
831

832
833
        # If we save using the predefined names, we can load using `from_pretrained`
        output_model_file = os.path.join(save_directory, WEIGHTS_NAME)
834
        save_function(state_dict, output_model_file)
835

thomwolf's avatar
thomwolf committed
836
        logger.info("Model weights saved in {}".format(output_model_file))
837

838
    @classmethod
839
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
840
841
        r"""
        Instantiate a pretrained pytorch model from a pre-trained model configuration.
842

Sylvain Gugger's avatar
Sylvain Gugger committed
843
844
        The model is set in evaluation mode by default using ``model.eval()`` (Dropout modules are deactivated). To
        train the model, you should first set it back in training mode with ``model.train()``.
845

846
847
848
        The warning `Weights from XXX not initialized from pretrained model` means that the weights of XXX do not come
        pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
        task.
849

850
851
        The warning `Weights from XXX not used in YYY` means that the layer XXX is not used by YYY, therefore those
        weights are discarded.
852

853
        Parameters:
854
            pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`, `optional`):
855
856
                Can be either:

857
858
859
                    - A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co.
                      Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under
                      a user or organization name, like ``dbmdz/bert-base-german-cased``.
860
861
                    - A path to a `directory` containing model weights saved using
                      :func:`~transformers.PreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``.
Sylvain Gugger's avatar
Sylvain Gugger committed
862
                    - A path or url to a `tensorflow index checkpoint file` (e.g, ``./tf_model/model.ckpt.index``). In
863
864
865
866
867
868
869
                      this case, ``from_tf`` should be set to :obj:`True` and a configuration object should be provided
                      as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in
                      a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
                    - :obj:`None` if you are both providing the configuration and state dictionary (resp. with keyword
                      arguments ``config`` and ``state_dict``).
            model_args (sequence of positional arguments, `optional`):
                All remaning positional arguments will be passed to the underlying model's ``__init__`` method.
870
            config (:obj:`Union[PretrainedConfig, str, os.PathLike]`, `optional`):
871
872
873
                Can be either:

                    - an instance of a class derived from :class:`~transformers.PretrainedConfig`,
874
                    - a string or path valid as input to :func:`~transformers.PretrainedConfig.from_pretrained`.
875
876
877
878

                Configuration for the model to use instead of an automatically loaded configuation. Configuration can
                be automatically loaded when:

879
880
                    - The model is a model provided by the library (loaded with the `model id` string of a pretrained
                      model).
881
                    - The model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded
882
883
                      by supplying the save directory.
                    - The model is loaded by supplying a local directory as ``pretrained_model_name_or_path`` and a
884
885
886
887
888
889
890
891
                      configuration JSON file named `config.json` is found in the directory.
            state_dict (:obj:`Dict[str, torch.Tensor]`, `optional`):
                A state dictionary to use instead of a state dictionary loaded from saved weights file.

                This option can be used if you want to create a model from a pretrained configuration but load your own
                weights. In this case though, you should check if using
                :func:`~transformers.PreTrainedModel.save_pretrained` and
                :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option.
892
            cache_dir (:obj:`Union[str, os.PathLike]`, `optional`):
893
894
895
896
897
898
899
900
901
902
903
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
            from_tf (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Load the model weights from a TensorFlow checkpoint save file (see docstring of
                ``pretrained_model_name_or_path`` argument).
            force_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
Sylvain Gugger's avatar
Sylvain Gugger committed
904
            proxies (:obj:`Dict[str, str], `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
905
906
                A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
907
            output_loading_info(:obj:`bool`, `optional`, defaults to :obj:`False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
908
                Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
909
            local_files_only(:obj:`bool`, `optional`, defaults to :obj:`False`):
Stas Bekman's avatar
Stas Bekman committed
910
                Whether or not to only look at local files (i.e., do not try to download the model).
911
912
913
            use_auth_token (:obj:`str` or `bool`, `optional`):
                The token to use as HTTP bearer authorization for remote files. If :obj:`True`, will use the token
                generated when running :obj:`transformers-cli login` (stored in :obj:`~/.huggingface`).
Julien Chaumond's avatar
Julien Chaumond committed
914
915
916
917
            revision(:obj:`str`, `optional`, defaults to :obj:`"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any
                identifier allowed by git.
918
            mirror(:obj:`str`, `optional`, defaults to :obj:`None`):
Sylvain Gugger's avatar
Sylvain Gugger committed
919
920
921
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information.
922
923
            kwargs (remaining dictionary of keyword arguments, `optional`):
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
924
                :obj:`output_attentions=True`). Behaves differently depending on whether a ``config`` is provided or
925
926
927
928
929
930
931
932
933
934
                automatically loaded:

                    - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the
                      underlying model's ``__init__`` method (we assume all relevant updates to the configuration have
                      already been done)
                    - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class
                      initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of
                      ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute
                      with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration
                      attribute will be passed to the underlying model's ``__init__`` function.
935

936
937
938
939
        .. note::

            Passing :obj:`use_auth_token=True` is required when you want to use a private model.

940
        Examples::
thomwolf's avatar
thomwolf committed
941

942
            >>> from transformers import BertConfig, BertModel
943
            >>> # Download model and configuration from huggingface.co and cache.
944
945
946
947
948
949
950
951
952
            >>> model = BertModel.from_pretrained('bert-base-uncased')
            >>> # Model was saved using `save_pretrained('./test/saved_model/')` (for example purposes, not runnable).
            >>> model = BertModel.from_pretrained('./test/saved_model/')
            >>> # Update configuration during loading.
            >>> model = BertModel.from_pretrained('bert-base-uncased', output_attentions=True)
            >>> assert model.config.output_attentions == True
            >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable).
            >>> config = BertConfig.from_json_file('./tf_model/my_tf_model_config.json')
            >>> model = BertModel.from_pretrained('./tf_model/my_tf_checkpoint.ckpt.index', from_tf=True, config=config)
953
        """
954
955
956
957
958
959
960
961
        config = kwargs.pop("config", None)
        state_dict = kwargs.pop("state_dict", None)
        cache_dir = kwargs.pop("cache_dir", None)
        from_tf = kwargs.pop("from_tf", False)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        output_loading_info = kwargs.pop("output_loading_info", False)
962
        local_files_only = kwargs.pop("local_files_only", False)
963
        use_auth_token = kwargs.pop("use_auth_token", None)
Julien Chaumond's avatar
Julien Chaumond committed
964
        revision = kwargs.pop("revision", None)
965
        mirror = kwargs.pop("mirror", None)
thomwolf's avatar
thomwolf committed
966

967
968
969
        # Load config if we don't provide a configuration
        if not isinstance(config, PretrainedConfig):
            config_path = config if config is not None else pretrained_model_name_or_path
970
            config, model_kwargs = cls.config_class.from_pretrained(
971
972
973
974
                config_path,
                *model_args,
                cache_dir=cache_dir,
                return_unused_kwargs=True,
975
                force_download=force_download,
976
                resume_download=resume_download,
977
                proxies=proxies,
978
                local_files_only=local_files_only,
979
                use_auth_token=use_auth_token,
Julien Chaumond's avatar
Julien Chaumond committed
980
                revision=revision,
981
                **kwargs,
982
983
984
            )
        else:
            model_kwargs = kwargs
985

thomwolf's avatar
thomwolf committed
986
        # Load model
thomwolf's avatar
thomwolf committed
987
        if pretrained_model_name_or_path is not None:
988
            pretrained_model_name_or_path = str(pretrained_model_name_or_path)
989
            if os.path.isdir(pretrained_model_name_or_path):
thomwolf's avatar
thomwolf committed
990
                if from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")):
991
                    # Load from a TF 1.0 checkpoint in priority if from_tf
thomwolf's avatar
thomwolf committed
992
                    archive_file = os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")
thomwolf's avatar
thomwolf committed
993
                elif from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)):
994
                    # Load from a TF 2.0 checkpoint in priority if from_tf
thomwolf's avatar
thomwolf committed
995
996
997
                    archive_file = os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)
                elif os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)):
                    # Load from a PyTorch checkpoint
thomwolf's avatar
thomwolf committed
998
                    archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
thomwolf's avatar
thomwolf committed
999
                else:
1000
1001
                    raise EnvironmentError(
                        "Error no file named {} found in directory {} or `from_tf` set to False".format(
Patrick von Platen's avatar
Patrick von Platen committed
1002
                            [WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME + ".index"],
Patrick von Platen's avatar
Patrick von Platen committed
1003
                            pretrained_model_name_or_path,
1004
1005
                        )
                    )
1006
            elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
1007
                archive_file = pretrained_model_name_or_path
1008
            elif os.path.isfile(pretrained_model_name_or_path + ".index"):
1009
1010
1011
1012
1013
                assert (
                    from_tf
                ), "We found a TensorFlow checkpoint at {}, please set from_tf to True to load from this checkpoint".format(
                    pretrained_model_name_or_path + ".index"
                )
1014
                archive_file = pretrained_model_name_or_path + ".index"
1015
            else:
thomwolf's avatar
thomwolf committed
1016
                archive_file = hf_bucket_url(
Julien Chaumond's avatar
Julien Chaumond committed
1017
1018
                    pretrained_model_name_or_path,
                    filename=(TF2_WEIGHTS_NAME if from_tf else WEIGHTS_NAME),
Julien Chaumond's avatar
Julien Chaumond committed
1019
                    revision=revision,
1020
                    mirror=mirror,
thomwolf's avatar
thomwolf committed
1021
                )
1022

thomwolf's avatar
thomwolf committed
1023
            try:
1024
                # Load from URL or cache if already cached
1025
1026
1027
1028
1029
1030
                resolved_archive_file = cached_path(
                    archive_file,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    resume_download=resume_download,
1031
                    local_files_only=local_files_only,
1032
                    use_auth_token=use_auth_token,
1033
                )
Julien Chaumond's avatar
Julien Chaumond committed
1034
1035
            except EnvironmentError as err:
                logger.error(err)
1036
1037
1038
1039
1040
                msg = (
                    f"Can't load weights for '{pretrained_model_name_or_path}'. Make sure that:\n\n"
                    f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n\n"
                    f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a file named one of {WEIGHTS_NAME}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME}.\n\n"
                )
thomwolf's avatar
thomwolf committed
1041
1042
                raise EnvironmentError(msg)

thomwolf's avatar
thomwolf committed
1043
1044
            if resolved_archive_file == archive_file:
                logger.info("loading weights file {}".format(archive_file))
1045
            else:
1046
                logger.info("loading weights file {} from cache at {}".format(archive_file, resolved_archive_file))
1047
        else:
thomwolf's avatar
thomwolf committed
1048
            resolved_archive_file = None
1049

1050
1051
        config.name_or_path = pretrained_model_name_or_path

1052
        # Instantiate model.
1053
        model = cls(config, *model_args, **model_kwargs)
thomwolf's avatar
thomwolf committed
1054

1055
        if state_dict is None and not from_tf:
1056
            try:
1057
                state_dict = torch.load(resolved_archive_file, map_location="cpu")
1058
            except Exception:
1059
                raise OSError(
1060
1061
                    f"Unable to load weights from pytorch checkpoint file for '{pretrained_model_name_or_path}' "
                    f"at '{resolved_archive_file}'"
1062
1063
                    "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True. "
                )
1064

1065
1066
1067
        missing_keys = []
        unexpected_keys = []
        error_msgs = []
1068
1069

        if from_tf:
1070
            if resolved_archive_file.endswith(".index"):
1071
1072
1073
1074
1075
                # Load from a TensorFlow 1.X checkpoint - provided by original authors
                model = cls.load_tf_weights(model, config, resolved_archive_file[:-6])  # Remove the '.index'
            else:
                # Load from our TensorFlow 2.0 checkpoints
                try:
1076
                    from .modeling_tf_pytorch_utils import load_tf2_checkpoint_in_pytorch_model
1077

1078
                    model = load_tf2_checkpoint_in_pytorch_model(model, resolved_archive_file, allow_missing_keys=True)
1079
                except ImportError:
1080
1081
1082
1083
                    logger.error(
                        "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed. Please see "
                        "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions."
                    )
1084
                    raise
1085
1086
1087
1088
1089
1090
        else:
            # Convert old format to new format if needed from a PyTorch state_dict
            old_keys = []
            new_keys = []
            for key in state_dict.keys():
                new_key = None
1091
1092
1093
1094
                if "gamma" in key:
                    new_key = key.replace("gamma", "weight")
                if "beta" in key:
                    new_key = key.replace("beta", "bias")
1095
1096
1097
1098
1099
1100
1101
                if new_key:
                    old_keys.append(key)
                    new_keys.append(new_key)
            for old_key, new_key in zip(old_keys, new_keys):
                state_dict[new_key] = state_dict.pop(old_key)

            # copy state_dict so _load_from_state_dict can modify it
1102
            metadata = getattr(state_dict, "_metadata", None)
1103
1104
1105
1106
            state_dict = state_dict.copy()
            if metadata is not None:
                state_dict._metadata = metadata

1107
1108
            # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
            # so we need to apply the function recursively.
Julien Chaumond's avatar
Julien Chaumond committed
1109
            def load(module: nn.Module, prefix=""):
1110
1111
                local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
                module._load_from_state_dict(
Lysandre's avatar
Lysandre committed
1112
1113
1114
1115
1116
1117
1118
                    state_dict,
                    prefix,
                    local_metadata,
                    True,
                    missing_keys,
                    unexpected_keys,
                    error_msgs,
1119
                )
1120
1121
                for name, child in module._modules.items():
                    if child is not None:
1122
                        load(child, prefix + name + ".")
1123
1124

            # Make sure we are able to load base models as well as derived models (with heads)
1125
            start_prefix = ""
1126
            model_to_load = model
1127
1128
            has_prefix_module = any(s.startswith(cls.base_model_prefix) for s in state_dict.keys())
            if not hasattr(model, cls.base_model_prefix) and has_prefix_module:
1129
                start_prefix = cls.base_model_prefix + "."
1130
            if hasattr(model, cls.base_model_prefix) and not has_prefix_module:
1131
1132
1133
                model_to_load = getattr(model, cls.base_model_prefix)

            load(model_to_load, prefix=start_prefix)
1134
1135
1136
1137
1138
1139
1140
1141

            if model.__class__.__name__ != model_to_load.__class__.__name__:
                base_model_state_dict = model_to_load.state_dict().keys()
                head_model_state_dict_without_base_prefix = [
                    key.split(cls.base_model_prefix + ".")[-1] for key in model.state_dict().keys()
                ]
                missing_keys.extend(head_model_state_dict_without_base_prefix - base_model_state_dict)

1142
1143
            # Some models may have keys that are not in the state by design, removing them before needlessly warning
            # the user.
1144
1145
            if cls._keys_to_ignore_on_load_missing is not None:
                for pat in cls._keys_to_ignore_on_load_missing:
1146
1147
                    missing_keys = [k for k in missing_keys if re.search(pat, k) is None]

1148
1149
            if cls._keys_to_ignore_on_load_unexpected is not None:
                for pat in cls._keys_to_ignore_on_load_unexpected:
1150
1151
                    unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

1152
1153
1154
1155
1156
            if len(unexpected_keys) > 0:
                logger.warning(
                    f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when "
                    f"initializing {model.__class__.__name__}: {unexpected_keys}\n"
                    f"- This IS expected if you are initializing {model.__class__.__name__} from the checkpoint of a model trained on another task "
1157
                    f"or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n"
1158
1159
1160
1161
1162
                    f"- This IS NOT expected if you are initializing {model.__class__.__name__} from the checkpoint of a model that you expect "
                    f"to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
                )
            else:
                logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
1163
            if len(missing_keys) > 0:
1164
1165
1166
1167
                logger.warning(
                    f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} "
                    f"and are newly initialized: {missing_keys}\n"
                    f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference."
1168
                )
1169
            else:
1170
                logger.info(
1171
                    f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at {pretrained_model_name_or_path}.\n"
Prajjwal Bhargava's avatar
Prajjwal Bhargava committed
1172
                    f"If your task is similar to the task the model of the checkpoint was trained on, "
1173
                    f"you can already use {model.__class__.__name__} for predictions without further training."
1174
                )
1175
            if len(error_msgs) > 0:
1176
1177
1178
1179
1180
                raise RuntimeError(
                    "Error(s) in loading state_dict for {}:\n\t{}".format(
                        model.__class__.__name__, "\n\t".join(error_msgs)
                    )
                )
1181
1182
        # make sure token embedding weights are still tied if needed
        model.tie_weights()
1183

1184
        # Set model in evaluation mode to deactivate DropOut modules by default
1185
1186
        model.eval()

thomwolf's avatar
thomwolf committed
1187
        if output_loading_info:
1188
1189
1190
1191
1192
            loading_info = {
                "missing_keys": missing_keys,
                "unexpected_keys": unexpected_keys,
                "error_msgs": error_msgs,
            }
thomwolf's avatar
thomwolf committed
1193
1194
            return model, loading_info

1195
1196
        return model

thomwolf's avatar
thomwolf committed
1197

thomwolf's avatar
thomwolf committed
1198
class Conv1D(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
    """
    1D-convolutional layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2).

    Basically works like a linear layer but the weights are transposed.

    Args:
        nf (:obj:`int`): The number of output features.
        nx (:obj:`int`): The number of input features.
    """

thomwolf's avatar
thomwolf committed
1209
    def __init__(self, nf, nx):
Julien Chaumond's avatar
Julien Chaumond committed
1210
        super().__init__()
thomwolf's avatar
thomwolf committed
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
        self.nf = nf
        w = torch.empty(nx, nf)
        nn.init.normal_(w, std=0.02)
        self.weight = nn.Parameter(w)
        self.bias = nn.Parameter(torch.zeros(nf))

    def forward(self, x):
        size_out = x.size()[:-1] + (self.nf,)
        x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
        x = x.view(*size_out)
        return x


thomwolf's avatar
thomwolf committed
1224
class PoolerStartLogits(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
1225
1226
    """
    Compute SQuAD start logits from sequence hidden states.
1227

Sylvain Gugger's avatar
Sylvain Gugger committed
1228
1229
1230
1231
1232
1233
    Args:
        config (:class:`~transformers.PretrainedConfig`):
            The config used by the model, will be used to grab the :obj:`hidden_size` of the model.
    """

    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
1234
        super().__init__()
thomwolf's avatar
thomwolf committed
1235
1236
        self.dense = nn.Linear(config.hidden_size, 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
1237
1238
1239
1240
1241
1242
1243
1244
    def forward(
        self, hidden_states: torch.FloatTensor, p_mask: Optional[torch.FloatTensor] = None
    ) -> torch.FloatTensor:
        """
        Args:
            hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`):
                The final hidden states of the model.
            p_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1245
1246
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
Sylvain Gugger's avatar
Sylvain Gugger committed
1247
1248
1249

        Returns:
            :obj:`torch.FloatTensor`: The start logits for SQuAD.
thomwolf's avatar
thomwolf committed
1250
        """
thomwolf's avatar
thomwolf committed
1251
1252
1253
        x = self.dense(hidden_states).squeeze(-1)

        if p_mask is not None:
Lysandre Debut's avatar
Lysandre Debut committed
1254
            if get_parameter_dtype(self) == torch.float16:
1255
1256
1257
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask
thomwolf's avatar
thomwolf committed
1258
1259
1260
1261
1262
1263

        return x


class PoolerEndLogits(nn.Module):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
1264
    Compute SQuAD end logits from sequence hidden states.
1265

Sylvain Gugger's avatar
Sylvain Gugger committed
1266
1267
1268
1269
1270
1271
1272
    Args:
        config (:class:`~transformers.PretrainedConfig`):
            The config used by the model, will be used to grab the :obj:`hidden_size` of the model and the
            :obj:`layer_norm_eps` to use.
    """

    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
1273
        super().__init__()
thomwolf's avatar
thomwolf committed
1274
1275
1276
1277
1278
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dense_1 = nn.Linear(config.hidden_size, 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        start_states: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        p_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
        """
        Args:
            hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`):
                The final hidden states of the model.
            start_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`, `optional`):
                The hidden states of the first tokens for the labeled span.
            start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
                The position of the first token for the labeled span.
            p_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1295
1296
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
Sylvain Gugger's avatar
Sylvain Gugger committed
1297
1298
1299
1300
1301
1302
1303
1304

        .. note::

            One of ``start_states`` or ``start_positions`` should be not obj:`None`. If both are set,
            ``start_positions`` overrides ``start_states``.

        Returns:
            :obj:`torch.FloatTensor`: The end logits for SQuAD.
thomwolf's avatar
thomwolf committed
1305
        """
1306
1307
1308
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
thomwolf's avatar
thomwolf committed
1309
        if start_positions is not None:
1310
            slen, hsz = hidden_states.shape[-2:]
1311
1312
1313
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions)  # shape (bsz, 1, hsz)
            start_states = start_states.expand(-1, slen, -1)  # shape (bsz, slen, hsz)
thomwolf's avatar
thomwolf committed
1314
1315
1316
1317
1318
1319
1320

        x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1))
        x = self.activation(x)
        x = self.LayerNorm(x)
        x = self.dense_1(x).squeeze(-1)

        if p_mask is not None:
Lysandre Debut's avatar
Lysandre Debut committed
1321
            if get_parameter_dtype(self) == torch.float16:
1322
1323
1324
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask
thomwolf's avatar
thomwolf committed
1325
1326
1327
1328
1329

        return x


class PoolerAnswerClass(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
1330
1331
1332
1333
1334
1335
1336
    """
    Compute SQuAD 2.0 answer class from classification and start tokens hidden states.

    Args:
        config (:class:`~transformers.PretrainedConfig`):
            The config used by the model, will be used to grab the :obj:`hidden_size` of the model.
    """
1337

thomwolf's avatar
thomwolf committed
1338
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
1339
        super().__init__()
thomwolf's avatar
thomwolf committed
1340
1341
1342
1343
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False)

Sylvain Gugger's avatar
Sylvain Gugger committed
1344
1345
1346
1347
1348
1349
1350
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        start_states: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        cls_index: Optional[torch.LongTensor] = None,
    ) -> torch.FloatTensor:
1351
1352
        """
        Args:
Sylvain Gugger's avatar
Sylvain Gugger committed
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
            hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`):
                The final hidden states of the model.
            start_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`, `optional`):
                The hidden states of the first tokens for the labeled span.
            start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
                The position of the first token for the labeled span.
            cls_index (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
                Position of the CLS token for each sentence in the batch. If :obj:`None`, takes the last token.

        .. note::

            One of ``start_states`` or ``start_positions`` should be not obj:`None`. If both are set,
            ``start_positions`` overrides ``start_states``.

        Returns:
            :obj:`torch.FloatTensor`: The SQuAD 2.0 answer class.
thomwolf's avatar
thomwolf committed
1369
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1370
        # No dependency on end_feature so that we can obtain one single `cls_logits` for each sample.
1371
        hsz = hidden_states.shape[-1]
1372
1373
1374
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
thomwolf's avatar
thomwolf committed
1375
        if start_positions is not None:
1376
1377
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions).squeeze(-2)  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
1378
1379

        if cls_index is not None:
1380
1381
            cls_index = cls_index[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
1382
        else:
1383
            cls_token_state = hidden_states[:, -1, :]  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
1384
1385
1386
1387
1388
1389
1390
1391

        x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1))
        x = self.activation(x)
        x = self.dense_1(x).squeeze(-1)

        return x


1392
1393
1394
@dataclass
class SquadHeadOutput(ModelOutput):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
1395
    Base class for outputs of question answering models using a :class:`~transformers.modeling_utils.SQuADHead`.
1396
1397
1398

    Args:
        loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned if both :obj:`start_positions` and :obj:`end_positions` are provided):
Sylvain Gugger's avatar
Sylvain Gugger committed
1399
1400
            Classification loss as the sum of start token, end token (and is_impossible if provided) classification
            losses.
1401
1402
1403
1404
1405
        start_top_log_probs (``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided):
            Log probabilities for the top config.start_n_top start token possibilities (beam-search).
        start_top_index (``torch.LongTensor`` of shape ``(batch_size, config.start_n_top)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided):
            Indices for the top config.start_n_top start token possibilities (beam-search).
        end_top_log_probs (``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided):
Sylvain Gugger's avatar
Sylvain Gugger committed
1406
1407
            Log probabilities for the top ``config.start_n_top * config.end_n_top`` end token possibilities
            (beam-search).
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
        end_top_index (``torch.LongTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided):
            Indices for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search).
        cls_logits (``torch.FloatTensor`` of shape ``(batch_size,)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided):
            Log probabilities for the ``is_impossible`` label of the answers.

    """

    loss: Optional[torch.FloatTensor] = None
    start_top_log_probs: Optional[torch.FloatTensor] = None
    start_top_index: Optional[torch.LongTensor] = None
    end_top_log_probs: Optional[torch.FloatTensor] = None
    end_top_index: Optional[torch.LongTensor] = None
    cls_logits: Optional[torch.FloatTensor] = None


thomwolf's avatar
thomwolf committed
1423
class SQuADHead(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
1424
1425
    r"""
    A SQuAD head inspired by XLNet.
1426

Sylvain Gugger's avatar
Sylvain Gugger committed
1427
1428
1429
1430
    Args:
        config (:class:`~transformers.PretrainedConfig`):
            The config used by the model, will be used to grab the :obj:`hidden_size` of the model and the
            :obj:`layer_norm_eps` to use.
thomwolf's avatar
thomwolf committed
1431
    """
1432

thomwolf's avatar
thomwolf committed
1433
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
1434
        super().__init__()
thomwolf's avatar
thomwolf committed
1435
1436
1437
1438
1439
1440
1441
        self.start_n_top = config.start_n_top
        self.end_n_top = config.end_n_top

        self.start_logits = PoolerStartLogits(config)
        self.end_logits = PoolerEndLogits(config)
        self.answer_class = PoolerAnswerClass(config)

Sylvain Gugger's avatar
Sylvain Gugger committed
1442
    @replace_return_docstrings(output_type=SquadHeadOutput, config_class=PretrainedConfig)
1443
    def forward(
1444
        self,
Sylvain Gugger's avatar
Sylvain Gugger committed
1445
1446
1447
1448
1449
1450
        hidden_states: torch.FloatTensor,
        start_positions: Optional[torch.LongTensor] = None,
        end_positions: Optional[torch.LongTensor] = None,
        cls_index: Optional[torch.LongTensor] = None,
        is_impossible: Optional[torch.LongTensor] = None,
        p_mask: Optional[torch.FloatTensor] = None,
1451
        return_dict: bool = False,
Sylvain Gugger's avatar
Sylvain Gugger committed
1452
1453
    ) -> Union[SquadHeadOutput, Tuple[torch.FloatTensor]]:
        """
Lysandre's avatar
Lysandre committed
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
        Args:
            hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`):
                Final hidden states of the model on the sequence tokens.
            start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
                Positions of the first token for the labeled span.
            end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
                Positions of the last token for the labeled span.
            cls_index (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
                Position of the CLS token for each sentence in the batch. If :obj:`None`, takes the last token.
            is_impossible (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
                Whether the question has a possible answer in the paragraph or not.
            p_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1466
1467
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
Lysandre's avatar
Lysandre committed
1468
            return_dict (:obj:`bool`, `optional`, defaults to :obj:`False`):
1469
                Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
Sylvain Gugger's avatar
Sylvain Gugger committed
1470

Lysandre's avatar
Lysandre committed
1471
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
1472
        """
thomwolf's avatar
thomwolf committed
1473
        start_logits = self.start_logits(hidden_states, p_mask=p_mask)
thomwolf's avatar
thomwolf committed
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496

        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, let's remove the dimension added by batch splitting
            for x in (start_positions, end_positions, cls_index, is_impossible):
                if x is not None and x.dim() > 1:
                    x.squeeze_(-1)

            # during training, compute the end logits based on the ground truth of the start position
            end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)

            loss_fct = CrossEntropyLoss()
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

            if cls_index is not None and is_impossible is not None:
                # Predict answerability from the representation of CLS and START
                cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
                loss_fct_cls = nn.BCEWithLogitsLoss()
                cls_loss = loss_fct_cls(cls_logits, is_impossible)

                # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss
                total_loss += cls_loss * 0.5
1497

1498
            return SquadHeadOutput(loss=total_loss) if return_dict else (total_loss,)
thomwolf's avatar
thomwolf committed
1499
1500
1501
1502

        else:
            # during inference, compute the end logits based on beam search
            bsz, slen, hsz = hidden_states.size()
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
            start_log_probs = F.softmax(start_logits, dim=-1)  # shape (bsz, slen)

            start_top_log_probs, start_top_index = torch.topk(
                start_log_probs, self.start_n_top, dim=-1
            )  # shape (bsz, start_n_top)
            start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz)  # shape (bsz, start_n_top, hsz)
            start_states = torch.gather(hidden_states, -2, start_top_index_exp)  # shape (bsz, start_n_top, hsz)
            start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1)  # shape (bsz, slen, start_n_top, hsz)

            hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(
                start_states
            )  # shape (bsz, slen, start_n_top, hsz)
thomwolf's avatar
thomwolf committed
1515
1516
            p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
            end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
1517
            end_log_probs = F.softmax(end_logits, dim=1)  # shape (bsz, slen, start_n_top)
thomwolf's avatar
thomwolf committed
1518

1519
1520
1521
            end_top_log_probs, end_top_index = torch.topk(
                end_log_probs, self.end_n_top, dim=1
            )  # shape (bsz, end_n_top, start_n_top)
thomwolf's avatar
thomwolf committed
1522
1523
1524
1525
1526
1527
            end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
            end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)

            start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs)
            cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index)

1528
            if not return_dict:
1529
1530
1531
1532
1533
1534
1535
1536
1537
                return (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits)
            else:
                return SquadHeadOutput(
                    start_top_log_probs=start_top_log_probs,
                    start_top_index=start_top_index,
                    end_top_log_probs=end_top_log_probs,
                    end_top_index=end_top_index,
                    cls_logits=cls_logits,
                )
thomwolf's avatar
thomwolf committed
1538
1539
1540


class SequenceSummary(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
1541
1542
1543
1544
1545
    r"""
    Compute a single vector summary of a sequence hidden states.

    Args:
        config (:class:`~transformers.PretrainedConfig`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1546
1547
            The config used by the model. Relevant arguments in the config class of the model are (refer to the actual
            config class of your model for the default values it uses):
Sylvain Gugger's avatar
Sylvain Gugger committed
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559

            - **summary_type** (:obj:`str`) -- The method to use to make this summary. Accepted values are:

                - :obj:`"last"` -- Take the last token hidden state (like XLNet)
                - :obj:`"first"` -- Take the first token hidden state (like Bert)
                - :obj:`"mean"` -- Take the mean of all tokens hidden states
                - :obj:`"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2)
                - :obj:`"attn"` -- Not implemented now, use multi-head attention

            - **summary_use_proj** (:obj:`bool`) -- Add a projection after the vector extraction.
            - **summary_proj_to_labels** (:obj:`bool`) -- If :obj:`True`, the projection outputs to
              :obj:`config.num_labels` classes (otherwise to :obj:`config.hidden_size`).
Sylvain Gugger's avatar
Sylvain Gugger committed
1560
            - **summary_activation** (:obj:`Optional[str]`) -- Set to :obj:`"tanh"` to add a tanh activation to the
Sylvain Gugger's avatar
Sylvain Gugger committed
1561
1562
1563
1564
1565
              output, another string or :obj:`None` will add no activation.
            - **summary_first_dropout** (:obj:`float`) -- Optional dropout probability before the projection and
              activation.
            - **summary_last_dropout** (:obj:`float`)-- Optional dropout probability after the projection and
              activation.
thomwolf's avatar
thomwolf committed
1566
    """
1567

1568
    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
1569
        super().__init__()
thomwolf's avatar
thomwolf committed
1570

1571
        self.summary_type = getattr(config, "summary_type", "last")
1572
        if self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
1573
1574
1575
1576
1577
            # We should use a standard multi-head attention module with absolute positional embedding for that.
            # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
            # We can probably just use the multi-head attention module of PyTorch >=1.1.0
            raise NotImplementedError

thomwolf's avatar
thomwolf committed
1578
        self.summary = Identity()
1579
1580
        if hasattr(config, "summary_use_proj") and config.summary_use_proj:
            if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0:
1581
                num_classes = config.num_labels
thomwolf's avatar
thomwolf committed
1582
1583
1584
1585
            else:
                num_classes = config.hidden_size
            self.summary = nn.Linear(config.hidden_size, num_classes)

1586
        activation_string = getattr(config, "summary_activation", None)
Lysandre's avatar
Lysandre committed
1587
        self.activation: Callable = get_activation(activation_string) if activation_string else Identity()
thomwolf's avatar
thomwolf committed
1588

thomwolf's avatar
thomwolf committed
1589
        self.first_dropout = Identity()
1590
        if hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0:
1591
1592
            self.first_dropout = nn.Dropout(config.summary_first_dropout)

thomwolf's avatar
thomwolf committed
1593
        self.last_dropout = Identity()
1594
        if hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0:
1595
            self.last_dropout = nn.Dropout(config.summary_last_dropout)
thomwolf's avatar
thomwolf committed
1596

Sylvain Gugger's avatar
Sylvain Gugger committed
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
    def forward(
        self, hidden_states: torch.FloatTensor, cls_index: Optional[torch.LongTensor] = None
    ) -> torch.FloatTensor:
        """
        Compute a single vector summary of a sequence hidden states.

        Args:
            hidden_states (:obj:`torch.FloatTensor` of shape :obj:`[batch_size, seq_len, hidden_size]`):
                The hidden states of the last layer.
            cls_index (:obj:`torch.LongTensor` of shape :obj:`[batch_size]` or :obj:`[batch_size, ...]` where ... are optional leading dimensions of :obj:`hidden_states`, `optional`):
                Used if :obj:`summary_type == "cls_index"` and takes the last token of the sequence as classification
                token.

        Returns:
            :obj:`torch.FloatTensor`: The summary of the sequence hidden states.
thomwolf's avatar
thomwolf committed
1612
        """
1613
        if self.summary_type == "last":
thomwolf's avatar
thomwolf committed
1614
            output = hidden_states[:, -1]
1615
        elif self.summary_type == "first":
thomwolf's avatar
thomwolf committed
1616
            output = hidden_states[:, 0]
1617
        elif self.summary_type == "mean":
thomwolf's avatar
thomwolf committed
1618
            output = hidden_states.mean(dim=1)
1619
        elif self.summary_type == "cls_index":
thomwolf's avatar
thomwolf committed
1620
            if cls_index is None:
Lysandre's avatar
Lysandre committed
1621
1622
1623
1624
1625
                cls_index = torch.full_like(
                    hidden_states[..., :1, :],
                    hidden_states.shape[-2] - 1,
                    dtype=torch.long,
                )
thomwolf's avatar
thomwolf committed
1626
            else:
thomwolf's avatar
thomwolf committed
1627
                cls_index = cls_index.unsqueeze(-1).unsqueeze(-1)
1628
                cls_index = cls_index.expand((-1,) * (cls_index.dim() - 1) + (hidden_states.size(-1),))
thomwolf's avatar
thomwolf committed
1629
            # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
1630
1631
            output = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, XX, hidden_size)
        elif self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
1632
1633
            raise NotImplementedError

1634
        output = self.first_dropout(output)
thomwolf's avatar
thomwolf committed
1635
1636
        output = self.summary(output)
        output = self.activation(output)
1637
        output = self.last_dropout(output)
thomwolf's avatar
thomwolf committed
1638
1639
1640
1641

        return output


1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
def unwrap_model(model: torch.nn.Module) -> torch.nn.Module:
    """
    Recursively unwraps a model from potential containers (as used in distributed training).

    Args:
        model (:obj:`torch.nn.Module`): The model to unwrap.
    """
    # since there could be multiple levels of wrapping, unwrap recursively
    if hasattr(model, "module"):
        return unwrap_model(model.module)
    else:
        return model


Sylvain Gugger's avatar
Sylvain Gugger committed
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
def prune_linear_layer(layer: torch.nn.Linear, index: torch.LongTensor, dim: int = 0) -> torch.nn.Linear:
    """
    Prune a linear layer to keep only entries in index.

    Used to remove heads.

    Args:
        layer (:obj:`torch.nn.Linear`): The layer to prune.
        index (:obj:`torch.LongTensor`): The indices to keep in the layer.
        dim (:obj:`int`, `optional`, defaults to 0): The dimension on which to keep the indices.

    Returns:
        :obj:`torch.nn.Linear`: The pruned layer as a new layer with :obj:`requires_grad=True`.
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
    """
    index = index.to(layer.weight.device)
    W = layer.weight.index_select(dim, index).clone().detach()
    if layer.bias is not None:
        if dim == 1:
            b = layer.bias.clone().detach()
        else:
            b = layer.bias[index].clone().detach()
    new_size = list(layer.weight.size())
    new_size[dim] = len(index)
    new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(layer.weight.device)
    new_layer.weight.requires_grad = False
    new_layer.weight.copy_(W.contiguous())
    new_layer.weight.requires_grad = True
    if layer.bias is not None:
        new_layer.bias.requires_grad = False
        new_layer.bias.copy_(b.contiguous())
        new_layer.bias.requires_grad = True
    return new_layer


Sylvain Gugger's avatar
Sylvain Gugger committed
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
def prune_conv1d_layer(layer: Conv1D, index: torch.LongTensor, dim: int = 1) -> Conv1D:
    """
    Prune a Conv1D layer to keep only entries in index. A Conv1D work as a Linear layer (see e.g. BERT) but the weights
    are transposed.

    Used to remove heads.

    Args:
        layer (:class:`~transformers.modeling_utils.Conv1D`): The layer to prune.
        index (:obj:`torch.LongTensor`): The indices to keep in the layer.
        dim (:obj:`int`, `optional`, defaults to 1): The dimension on which to keep the indices.

    Returns:
        :class:`~transformers.modeling_utils.Conv1D`: The pruned layer as a new layer with :obj:`requires_grad=True`.
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
    """
    index = index.to(layer.weight.device)
    W = layer.weight.index_select(dim, index).clone().detach()
    if dim == 0:
        b = layer.bias.clone().detach()
    else:
        b = layer.bias[index].clone().detach()
    new_size = list(layer.weight.size())
    new_size[dim] = len(index)
    new_layer = Conv1D(new_size[1], new_size[0]).to(layer.weight.device)
    new_layer.weight.requires_grad = False
    new_layer.weight.copy_(W.contiguous())
    new_layer.weight.requires_grad = True
    new_layer.bias.requires_grad = False
    new_layer.bias.copy_(b.contiguous())
    new_layer.bias.requires_grad = True
    return new_layer
1721
1722


Sylvain Gugger's avatar
Sylvain Gugger committed
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
def prune_layer(
    layer: Union[torch.nn.Linear, Conv1D], index: torch.LongTensor, dim: Optional[int] = None
) -> Union[torch.nn.Linear, Conv1D]:
    """
    Prune a Conv1D or linear layer to keep only entries in index.

    Used to remove heads.

    Args:
        layer (:obj:`Union[torch.nn.Linear, Conv1D]`): The layer to prune.
        index (:obj:`torch.LongTensor`): The indices to keep in the layer.
        dim (:obj:`int`, `optional`): The dimension on which to keep the indices.

    Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
1737
1738
        :obj:`torch.nn.Linear` or :class:`~transformers.modeling_utils.Conv1D`: The pruned layer as a new layer with
        :obj:`requires_grad=True`.
1739
1740
1741
1742
1743
1744
1745
    """
    if isinstance(layer, nn.Linear):
        return prune_linear_layer(layer, index, dim=0 if dim is None else dim)
    elif isinstance(layer, Conv1D):
        return prune_conv1d_layer(layer, index, dim=1 if dim is None else dim)
    else:
        raise ValueError("Can't prune layer of class {}".format(layer.__class__))
Patrick von Platen's avatar
Patrick von Platen committed
1746
1747
1748


def apply_chunking_to_forward(
1749
    forward_fn: Callable[..., torch.Tensor], chunk_size: int, chunk_dim: int, *input_tensors
Patrick von Platen's avatar
Patrick von Platen committed
1750
1751
) -> torch.Tensor:
    """
1752
1753
1754
1755
1756
    This function chunks the :obj:`input_tensors` into smaller input tensor parts of size :obj:`chunk_size` over the
    dimension :obj:`chunk_dim`. It then applies a layer :obj:`forward_fn` to each chunk independently to save memory.

    If the :obj:`forward_fn` is independent across the :obj:`chunk_dim` this function will yield the same result as
    directly applying :obj:`forward_fn` to :obj:`input_tensors`.
Patrick von Platen's avatar
Patrick von Platen committed
1757
1758

    Args:
1759
1760
        forward_fn (:obj:`Callable[..., torch.Tensor]`):
            The forward function of the model.
1761
1762
1763
1764
1765
        chunk_size (:obj:`int`):
            The chunk size of a chunked tensor: :obj:`num_chunks = len(input_tensors[0]) / chunk_size`.
        chunk_dim (:obj:`int`):
            The dimension over which the :obj:`input_tensors` should be chunked.
        input_tensors (:obj:`Tuple[torch.Tensor]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1766
1767
            The input tensors of ``forward_fn`` which will be chunked

Patrick von Platen's avatar
Patrick von Platen committed
1768
    Returns:
1769
        :obj:`torch.Tensor`: A tensor with the same shape as the :obj:`forward_fn` would have given if applied`.
Patrick von Platen's avatar
Patrick von Platen committed
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780


    Examples::

        # rename the usual forward() fn to forward_chunk()
        def forward_chunk(self, hidden_states):
            hidden_states = self.decoder(hidden_states)
            return hidden_states

        # implement a chunked forward function
        def forward(self, hidden_states):
1781
            return apply_chunking_to_forward(self.forward_chunk, self.chunk_size_lm_head, self.seq_len_dim, hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
1782
1783
1784
    """

    assert len(input_tensors) > 0, "{} has to be a tuple/list of tensors".format(input_tensors)
1785
    tensor_shape = input_tensors[0].shape[chunk_dim]
Patrick von Platen's avatar
Patrick von Platen committed
1786
    assert all(
1787
        input_tensor.shape[chunk_dim] == tensor_shape for input_tensor in input_tensors
Patrick von Platen's avatar
Patrick von Platen committed
1788
1789
    ), "All input tenors have to be of the same shape"

1790
    # inspect.signature exist since python 3.5 and is a python method -> no problem with backward compatibility
Patrick von Platen's avatar
Patrick von Platen committed
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
    num_args_in_forward_chunk_fn = len(inspect.signature(forward_fn).parameters)
    assert num_args_in_forward_chunk_fn == len(
        input_tensors
    ), "forward_chunk_fn expects {} arguments, but only {} input tensors are given".format(
        num_args_in_forward_chunk_fn, len(input_tensors)
    )

    if chunk_size > 0:
        assert (
            input_tensors[0].shape[chunk_dim] % chunk_size == 0
        ), "The dimension to be chunked {} has to be a multiple of the chunk size {}".format(
1802
            input_tensors[0].shape[chunk_dim], chunk_size
Patrick von Platen's avatar
Patrick von Platen committed
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
        )

        num_chunks = input_tensors[0].shape[chunk_dim] // chunk_size

        # chunk input tensor into tuples
        input_tensors_chunks = tuple(input_tensor.chunk(num_chunks, dim=chunk_dim) for input_tensor in input_tensors)
        # apply forward fn to every tuple
        output_chunks = tuple(forward_fn(*input_tensors_chunk) for input_tensors_chunk in zip(*input_tensors_chunks))
        # concatenate output at same dimension
        return torch.cat(output_chunks, dim=chunk_dim)

    return forward_fn(*input_tensors)