modeling_utils.py 236 KB
Newer Older
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
16
import collections
17
import copy
18
import functools
19
import gc
20
import importlib.metadata
Yih-Dar's avatar
Yih-Dar committed
21
import inspect
22
import itertools
Sylvain Gugger's avatar
Sylvain Gugger committed
23
import json
24
import os
25
import re
Sylvain Gugger's avatar
Sylvain Gugger committed
26
27
import shutil
import tempfile
28
import warnings
29
from contextlib import contextmanager
30
from dataclasses import dataclass
31
from functools import partial, wraps
32
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
33
from zipfile import is_zipfile
34
35

import torch
36
from packaging import version
Sylvain Gugger's avatar
Sylvain Gugger committed
37
from torch import Tensor, nn
38
from torch.nn import CrossEntropyLoss, Identity
39
from torch.utils.checkpoint import checkpoint
40

41
from .activations import get_activation
42
from .configuration_utils import PretrainedConfig
43
from .dynamic_module_utils import custom_object_save
44
from .generation import GenerationConfig, GenerationMixin
45
from .integrations import PeftAdapterMixin, deepspeed_config, is_deepspeed_zero3_enabled
46
47
48
49
from .pytorch_utils import (  # noqa: F401
    Conv1D,
    apply_chunking_to_forward,
    find_pruneable_heads_and_indices,
Thomas Wang's avatar
Thomas Wang committed
50
    id_tensor_storage,
51
52
53
54
    prune_conv1d_layer,
    prune_layer,
    prune_linear_layer,
)
55
from .safetensors_conversion import auto_conversion
56
from .utils import (
57
58
    ADAPTER_SAFE_WEIGHTS_NAME,
    ADAPTER_WEIGHTS_NAME,
59
    CONFIG_NAME,
Aymeric Augustin's avatar
Aymeric Augustin committed
60
    DUMMY_INPUTS,
61
    FLAX_WEIGHTS_NAME,
62
63
    SAFE_WEIGHTS_INDEX_NAME,
    SAFE_WEIGHTS_NAME,
64
65
    TF2_WEIGHTS_NAME,
    TF_WEIGHTS_NAME,
Sylvain Gugger's avatar
Sylvain Gugger committed
66
    WEIGHTS_INDEX_NAME,
67
    WEIGHTS_NAME,
68
    ContextManagers,
69
    ModelOutput,
Sylvain Gugger's avatar
Sylvain Gugger committed
70
    PushToHubMixin,
71
    cached_file,
72
    copy_func,
73
    download_url,
74
    extract_commit_hash,
75
    has_file,
76
    is_accelerate_available,
77
    is_auto_awq_available,
Marc Sun's avatar
Marc Sun committed
78
    is_auto_gptq_available,
79
    is_bitsandbytes_available,
80
    is_flash_attn_2_available,
81
    is_offline_mode,
82
    is_optimum_available,
83
    is_peft_available,
84
    is_remote_url,
85
    is_safetensors_available,
86
    is_torch_sdpa_available,
87
    is_torch_tpu_available,
88
    logging,
Sylvain Gugger's avatar
Sylvain Gugger committed
89
    replace_return_docstrings,
90
    strtobool,
91
)
92
from .utils.hub import convert_file_size_to_int, get_checkpoint_shard_files
93
94
95
96
97
98
from .utils.import_utils import (
    ENV_VARS_TRUE_VALUES,
    is_sagemaker_mp_enabled,
    is_torch_fx_proxy,
    is_torchdynamo_compiling,
)
99
from .utils.quantization_config import AwqConfig, BitsAndBytesConfig, GPTQConfig, QuantizationMethod
100

Aymeric Augustin's avatar
Aymeric Augustin committed
101

102
103
104
XLA_USE_BF16 = os.environ.get("XLA_USE_BF16", "0").upper()
XLA_DOWNCAST_BF16 = os.environ.get("XLA_DOWNCAST_BF16", "0").upper()

105
106
if is_accelerate_available():
    from accelerate import dispatch_model, infer_auto_device_map, init_empty_weights
107
    from accelerate.hooks import add_hook_to_module
108
    from accelerate.utils import (
109
        check_tied_parameters_on_same_device,
110
        find_tied_parameters,
111
        get_balanced_memory,
Marc Sun's avatar
Marc Sun committed
112
        get_max_memory,
113
114
115
116
117
118
        load_offloaded_weights,
        offload_weight,
        save_offload_index,
        set_module_tensor_to_device,
    )

119
120
121
122
if is_safetensors_available():
    from safetensors import safe_open
    from safetensors.torch import load_file as safe_load_file
    from safetensors.torch import save_file as safe_save_file
123

Lysandre Debut's avatar
Lysandre Debut committed
124
logger = logging.get_logger(__name__)
125

126
127
128
129

_init_weights = True


130
def is_fsdp_enabled():
131
132
133
134
    return (
        torch.distributed.is_available()
        and torch.distributed.is_initialized()
        and strtobool(os.environ.get("ACCELERATE_USE_FSDP", "False")) == 1
135
        and strtobool(os.environ.get("FSDP_CPU_RAM_EFFICIENT_LOADING", "False")) == 1
136
    )
137
138


139
140
141
142
143
144
def is_local_dist_rank_0():
    return (
        torch.distributed.is_available()
        and torch.distributed.is_initialized()
        and int(os.environ.get("LOCAL_RANK", -1)) == 0
    )
145
146


147
148
149
150
151
152
153
154
if is_sagemaker_mp_enabled():
    import smdistributed.modelparallel.torch as smp
    from smdistributed.modelparallel import __version__ as SMP_VERSION

    IS_SAGEMAKER_MP_POST_1_10 = version.parse(SMP_VERSION) >= version.parse("1.10")
else:
    IS_SAGEMAKER_MP_POST_1_10 = False

155
156
157
if is_peft_available():
    from .utils import find_adapter_config_file

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
TORCH_INIT_FUNCTIONS = {
    "uniform_": nn.init.uniform_,
    "normal_": nn.init.normal_,
    "trunc_normal_": nn.init.trunc_normal_,
    "constant_": nn.init.constant_,
    "xavier_uniform_": nn.init.xavier_uniform_,
    "xavier_normal_": nn.init.xavier_normal_,
    "kaiming_uniform_": nn.init.kaiming_uniform_,
    "kaiming_normal_": nn.init.kaiming_normal_,
    "uniform": nn.init.uniform,
    "normal": nn.init.normal,
    "xavier_uniform": nn.init.xavier_uniform,
    "xavier_normal": nn.init.xavier_normal,
    "kaiming_uniform": nn.init.kaiming_uniform,
    "kaiming_normal": nn.init.kaiming_normal,
}

175

176
177
178
179
180
181
182
183
@contextmanager
def no_init_weights(_enable=True):
    """
    Context manager to globally disable weight initialization to speed up loading large models.

    TODO(Patrick): Delete safety argument `_enable=True` at next major version. .
    """
    global _init_weights
184
    old_init_weights = _init_weights
185

186
187
    if _enable:
        _init_weights = False
188
189
190
191
192
193
194

        def _skip_init(*args, **kwargs):
            pass

        # # Save the original initialization functions
        for name, init_func in TORCH_INIT_FUNCTIONS.items():
            setattr(torch.nn.init, name, _skip_init)
195
196
197
    try:
        yield
    finally:
198
        _init_weights = old_init_weights
199
200
201
202
        if _enable:
            # # Restore the original initialization functions
            for name, init_func in TORCH_INIT_FUNCTIONS.items():
                setattr(torch.nn.init, name, init_func)
203
204


Lysandre Debut's avatar
Lysandre Debut committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
def get_parameter_device(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    try:
        return next(parameter.parameters()).device
    except StopIteration:
        # For nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].device


220
221
222
223
def get_first_parameter_dtype(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    """
    Returns the first parameter dtype (can be non-floating) or asserts if none were found.
    """
Lysandre Debut's avatar
Lysandre Debut committed
224
225
226
    try:
        return next(parameter.parameters()).dtype
    except StopIteration:
Sylvain Gugger's avatar
Sylvain Gugger committed
227
        # For nn.DataParallel compatibility in PyTorch > 1.5
Lysandre Debut's avatar
Lysandre Debut committed
228
229
230
231
232
233
234
235
236
237

        def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].dtype


238
239
def get_parameter_dtype(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
240
    Returns the first found floating dtype in parameters if there is one, otherwise returns the last dtype it found.
241
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
242
243
244
245
    last_dtype = None
    for t in parameter.parameters():
        last_dtype = t.dtype
        if t.is_floating_point():
246
247
248
            # Adding fix for https://github.com/pytorch/xla/issues/4152
            # Fixes issue where the model code passes a value that is out of range for XLA_USE_BF16=1
            # and XLA_DOWNCAST_BF16=1 so the conversion would cast it to -inf
249
250
251
252
253
            # NOTE: `is_torch_tpu_available()` is checked last as it induces a graph break in torch dynamo
            if XLA_USE_BF16 in ENV_VARS_TRUE_VALUES and is_torch_tpu_available():
                return torch.bfloat16
            if XLA_DOWNCAST_BF16 in ENV_VARS_TRUE_VALUES and is_torch_tpu_available():
                if t.dtype == torch.float:
254
                    return torch.bfloat16
255
256
                if t.dtype == torch.double:
                    return torch.float32
Sylvain Gugger's avatar
Sylvain Gugger committed
257
            return t.dtype
258

Sylvain Gugger's avatar
Sylvain Gugger committed
259
260
261
    if last_dtype is not None:
        # if no floating dtype was found return whatever the first dtype is
        return last_dtype
262

263
264
265
266
267
268
269
270
271
272
273
274
275
    # For nn.DataParallel compatibility in PyTorch > 1.5
    def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
        tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
        return tuples

    gen = parameter._named_members(get_members_fn=find_tensor_attributes)
    last_tuple = None
    for tuple in gen:
        last_tuple = tuple
        if tuple[1].is_floating_point():
            return tuple[1].dtype

    if last_tuple is not None:
276
277
        # fallback to the last dtype
        return last_tuple[1].dtype
278

279
280
281
282
283
284
285
    # fallback to buffer dtype
    for t in parameter.buffers():
        last_dtype = t.dtype
        if t.is_floating_point():
            return t.dtype
    return last_dtype

286
287
288
289
290
291
292
293
294
295
296
297
298
299

def get_state_dict_float_dtype(state_dict):
    """
    Returns the first found floating dtype in `state_dict` or asserts if none were found.
    """
    for t in state_dict.values():
        if t.is_floating_point():
            return t.dtype

    raise ValueError("couldn't find any floating point dtypes in state_dict")


def get_state_dict_dtype(state_dict):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
300
    Returns the first found floating dtype in `state_dict` if there is one, otherwise returns the first dtype.
301
302
303
304
305
306
307
    """
    for t in state_dict.values():
        if t.is_floating_point():
            return t.dtype

    # if no floating dtype was found return whatever the first dtype is
    else:
Sylvain Gugger's avatar
Sylvain Gugger committed
308
        return next(state_dict.values()).dtype
309
310


Sylvain Gugger's avatar
Sylvain Gugger committed
311
312
313
314
315
316
317
318
319
320
321
322
323
def dtype_byte_size(dtype):
    """
    Returns the size (in bytes) occupied by one parameter of type `dtype`.

    Example:

    ```py
    >>> dtype_byte_size(torch.float32)
    4
    ```
    """
    if dtype == torch.bool:
        return 1 / 8
324
    bit_search = re.search(r"[^\d](\d+)$", str(dtype))
Sylvain Gugger's avatar
Sylvain Gugger committed
325
326
327
328
329
330
    if bit_search is None:
        raise ValueError(f"`dtype` is not a valid dtype: {dtype}.")
    bit_size = int(bit_search.groups()[0])
    return bit_size // 8


331
332
333
def shard_checkpoint(
    state_dict: Dict[str, torch.Tensor], max_shard_size: Union[int, str] = "10GB", weights_name: str = WEIGHTS_NAME
):
Sylvain Gugger's avatar
Sylvain Gugger committed
334
335
336
337
338
339
340
341
342
343
344
    """
    Splits a model state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a
    given size.

    The sub-checkpoints are determined by iterating through the `state_dict` in the order of its keys, so there is no
    optimization made to make each sub-checkpoint as close as possible to the maximum size passed. For example, if the
    limit is 10GB and we have weights of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as [6GB], [6+2GB],
    [6+2+2GB] and not [6+2+2GB], [6+2GB], [6GB].

    <Tip warning={true}>

Alan Ji's avatar
Alan Ji committed
345
    If one of the model's weight is bigger than `max_shard_size`, it will end up in its own sub-checkpoint which will
Sylvain Gugger's avatar
Sylvain Gugger committed
346
347
348
349
350
351
352
353
354
    have a size greater than `max_shard_size`.

    </Tip>

    Args:
        state_dict (`Dict[str, torch.Tensor]`): The state dictionary of a model to save.
        max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
            The maximum size of each sub-checkpoint. If expressed as a string, needs to be digits followed by a unit
            (like `"5MB"`).
355
356
        weights_name (`str`, *optional*, defaults to `"pytorch_model.bin"`):
            The name of the model save file.
Sylvain Gugger's avatar
Sylvain Gugger committed
357
358
359
    """
    max_shard_size = convert_file_size_to_int(max_shard_size)

Thomas Wang's avatar
Thomas Wang committed
360
361
    sharded_state_dicts = [{}]
    last_block_size = 0
Sylvain Gugger's avatar
Sylvain Gugger committed
362
    total_size = 0
Thomas Wang's avatar
Thomas Wang committed
363
    storage_id_to_block = {}
Sylvain Gugger's avatar
Sylvain Gugger committed
364
365

    for key, weight in state_dict.items():
366
367
368
369
370
371
        # when bnb serialization is used the weights in the state dict can be strings
        # check: https://github.com/huggingface/transformers/pull/24416 for more details
        if isinstance(weight, str):
            continue
        else:
            storage_id = id_tensor_storage(weight)
Thomas Wang's avatar
Thomas Wang committed
372
373
374
375
376
377
378

        # If a `weight` shares the same underlying storage as another tensor, we put `weight` in the same `block`
        if storage_id in storage_id_to_block:
            block_id = storage_id_to_block[storage_id]
            sharded_state_dicts[block_id][key] = weight
            continue

Sylvain Gugger's avatar
Sylvain Gugger committed
379
380
        weight_size = weight.numel() * dtype_byte_size(weight.dtype)

Sylvain Gugger's avatar
Sylvain Gugger committed
381
382
383
        # If this weight is going to tip up over the maximal size, we split, but only if we have put at least one
        # weight in the current shard.
        if last_block_size + weight_size > max_shard_size and len(sharded_state_dicts[-1]) > 0:
Thomas Wang's avatar
Thomas Wang committed
384
385
            sharded_state_dicts.append({})
            last_block_size = 0
Sylvain Gugger's avatar
Sylvain Gugger committed
386

Thomas Wang's avatar
Thomas Wang committed
387
388
        sharded_state_dicts[-1][key] = weight
        last_block_size += weight_size
Sylvain Gugger's avatar
Sylvain Gugger committed
389
        total_size += weight_size
Thomas Wang's avatar
Thomas Wang committed
390
        storage_id_to_block[storage_id] = len(sharded_state_dicts) - 1
Sylvain Gugger's avatar
Sylvain Gugger committed
391
392
393

    # If we only have one shard, we return it
    if len(sharded_state_dicts) == 1:
394
        return {weights_name: sharded_state_dicts[0]}, None
Sylvain Gugger's avatar
Sylvain Gugger committed
395
396
397
398
399

    # Otherwise, let's build the index
    weight_map = {}
    shards = {}
    for idx, shard in enumerate(sharded_state_dicts):
400
401
402
403
        shard_file = weights_name.replace(".bin", f"-{idx+1:05d}-of-{len(sharded_state_dicts):05d}.bin")
        shard_file = shard_file.replace(
            ".safetensors", f"-{idx + 1:05d}-of-{len(sharded_state_dicts):05d}.safetensors"
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
404
405
406
407
408
409
410
411
412
413
        shards[shard_file] = shard
        for key in shard.keys():
            weight_map[key] = shard_file

    # Add the metadata
    metadata = {"total_size": total_size}
    index = {"metadata": metadata, "weight_map": weight_map}
    return shards, index


414
def load_sharded_checkpoint(model, folder, strict=True, prefer_safe=True):
415
416
417
418
419
420
421
422
423
424
425
426
427
    """
    This is the same as
    [`torch.nn.Module.load_state_dict`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html?highlight=load_state_dict#torch.nn.Module.load_state_dict)
    but for a sharded checkpoint.

    This load is performed efficiently: each checkpoint shard is loaded one by one in RAM and deleted after being
    loaded in the model.

    Args:
        model (`torch.nn.Module`): The model in which to load the checkpoint.
        folder (`str` or `os.PathLike`): A path to a folder containing the sharded checkpoint.
        strict (`bool`, *optional`, defaults to `True`):
            Whether to strictly enforce that the keys in the model state dict match the keys in the sharded checkpoint.
428
429
430
        prefer_safe (`bool`, *optional*, defaults to `False`)
            If both safetensors and PyTorch save files are present in checkpoint and `prefer_safe` is True, the
            safetensors files will be loaded. Otherwise, PyTorch files are always loaded when possible.
431
432
433
434
435
436
437
438

    Returns:
        `NamedTuple`: A named tuple with `missing_keys` and `unexpected_keys` fields
            - `missing_keys` is a list of str containing the missing keys
            - `unexpected_keys` is a list of str containing the unexpected keys
    """
    # Load the index
    index_file = os.path.join(folder, WEIGHTS_INDEX_NAME)
439
    safe_index_file = os.path.join(folder, SAFE_WEIGHTS_INDEX_NAME)
440

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
    index_present = os.path.isfile(index_file)
    safe_index_present = os.path.isfile(safe_index_file)

    if not index_present and not (safe_index_present and is_safetensors_available()):
        filenames = (
            (WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_INDEX_NAME) if is_safetensors_available() else (WEIGHTS_INDEX_NAME,)
        )
        raise ValueError(f"Can't find a checkpoint index ({' or '.join(filenames)}) in {folder}.")

    load_safe = False
    if safe_index_present:
        if prefer_safe:
            if is_safetensors_available():
                load_safe = True  # load safe due to preference
            else:
                logger.warning(
                    f"Cannot load sharded checkpoint at {folder} safely since safetensors is not installed!"
                )
        elif not index_present:
            load_safe = True  # load safe since we have no other choice

    load_index = safe_index_file if load_safe else index_file

    with open(load_index, "r", encoding="utf-8") as f:
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
        index = json.load(f)

    shard_files = list(set(index["weight_map"].values()))

    # If strict=True, error before loading any of the state dicts.
    loaded_keys = index["weight_map"].keys()
    model_keys = model.state_dict().keys()
    missing_keys = [key for key in model_keys if key not in loaded_keys]
    unexpected_keys = [key for key in loaded_keys if key not in model_keys]
    if strict and (len(missing_keys) > 0 or len(unexpected_keys) > 0):
        error_message = f"Error(s) in loading state_dict for {model.__class__.__name__}"
        if len(missing_keys) > 0:
            str_missing_keys = ",".join([f'"{k}"' for k in missing_keys])
            error_message += f"\nMissing key(s): {str_missing_keys}."
        if len(unexpected_keys) > 0:
            str_unexpected_keys = ",".join([f'"{k}"' for k in unexpected_keys])
            error_message += f"\nMissing key(s): {str_unexpected_keys}."
        raise RuntimeError(error_message)

484
    loader = safe_load_file if load_safe else partial(torch.load, map_location="cpu", weights_only=True)
485

486
    for shard_file in shard_files:
487
        state_dict = loader(os.path.join(folder, shard_file))
488
489
        model.load_state_dict(state_dict, strict=False)

490
        # Make sure memory is freed before we load the next state dict.
491
492
493
494
495
496
497
        del state_dict
        gc.collect()

    # Return the same thing as PyTorch load_state_dict function.
    return torch.nn.modules.module._IncompatibleKeys(missing_keys, unexpected_keys)


Sylvain Gugger's avatar
Sylvain Gugger committed
498
499
500
501
def load_state_dict(checkpoint_file: Union[str, os.PathLike]):
    """
    Reads a PyTorch checkpoint file, returning properly formatted errors if they arise.
    """
502
503
504
505
506
507
508
509
510
511
    if checkpoint_file.endswith(".safetensors") and is_safetensors_available():
        # Check format of the archive
        with safe_open(checkpoint_file, framework="pt") as f:
            metadata = f.metadata()
        if metadata.get("format") not in ["pt", "tf", "flax"]:
            raise OSError(
                f"The safetensors archive passed at {checkpoint_file} does not contain the valid metadata. Make sure "
                "you save your model with the `save_pretrained` method."
            )
        return safe_load_file(checkpoint_file)
Sylvain Gugger's avatar
Sylvain Gugger committed
512
    try:
513
        if (
514
515
            is_deepspeed_zero3_enabled() and torch.distributed.is_initialized() and torch.distributed.get_rank() > 0
        ) or (is_fsdp_enabled() and not is_local_dist_rank_0()):
516
517
518
            map_location = "meta"
        else:
            map_location = "cpu"
519
520
521
522
523
524
525
526
527
528
        extra_args = {}
        # mmap can only be used with files serialized with zipfile-based format.
        if (
            isinstance(checkpoint_file, str)
            and map_location != "meta"
            and version.parse(torch.__version__) >= version.parse("2.1.0")
            and is_zipfile(checkpoint_file)
        ):
            extra_args = {"mmap": True}
        return torch.load(checkpoint_file, map_location=map_location, weights_only=True, **extra_args)
Sylvain Gugger's avatar
Sylvain Gugger committed
529
530
531
    except Exception as e:
        try:
            with open(checkpoint_file) as f:
532
                if f.read(7) == "version":
Sylvain Gugger's avatar
Sylvain Gugger committed
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
                    raise OSError(
                        "You seem to have cloned a repository without having git-lfs installed. Please install "
                        "git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
                        "you cloned."
                    )
                else:
                    raise ValueError(
                        f"Unable to locate the file {checkpoint_file} which is necessary to load this pretrained "
                        "model. Make sure you have saved the model properly."
                    ) from e
        except (UnicodeDecodeError, ValueError):
            raise OSError(
                f"Unable to load weights from pytorch checkpoint file for '{checkpoint_file}' "
                f"at '{checkpoint_file}'. "
                "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True."
            )


551
552
553
554
555
def set_initialized_submodules(model, state_dict_keys):
    """
    Sets the `_is_hf_initialized` flag in all submodules of a given model when all its weights are in the loaded state
    dict.
    """
556
    not_initialized_submodules = {}
557
    for module_name, module in model.named_modules():
558
559
        loaded_keys = {k.replace(f"{module_name}.", "") for k in state_dict_keys if k.startswith(f"{module_name}.")}
        if loaded_keys.issuperset(module.state_dict()):
560
            module._is_hf_initialized = True
561
562
563
        else:
            not_initialized_submodules[module_name] = module
    return not_initialized_submodules
564
565


Sylvain Gugger's avatar
Sylvain Gugger committed
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
def _load_state_dict_into_model(model_to_load, state_dict, start_prefix):
    # Convert old format to new format if needed from a PyTorch state_dict
    old_keys = []
    new_keys = []
    for key in state_dict.keys():
        new_key = None
        if "gamma" in key:
            new_key = key.replace("gamma", "weight")
        if "beta" in key:
            new_key = key.replace("beta", "bias")
        if new_key:
            old_keys.append(key)
            new_keys.append(new_key)
    for old_key, new_key in zip(old_keys, new_keys):
        state_dict[new_key] = state_dict.pop(old_key)

    # copy state_dict so _load_from_state_dict can modify it
    metadata = getattr(state_dict, "_metadata", None)
    state_dict = state_dict.copy()
    if metadata is not None:
        state_dict._metadata = metadata

    error_msgs = []

    # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
    # so we need to apply the function recursively.
592
    def load(module: nn.Module, state_dict, prefix=""):
Sylvain Gugger's avatar
Sylvain Gugger committed
593
594
        local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
        args = (state_dict, prefix, local_metadata, True, [], [], error_msgs)
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
        # Parameters of module and children will start with prefix. We can exit early if there are none in this
        # state_dict
        if len([key for key in state_dict if key.startswith(prefix)]) > 0:
            if is_deepspeed_zero3_enabled():
                import deepspeed

                # In sharded models, each shard has only part of the full state_dict, so only gather
                # parameters that are in the current state_dict.
                named_parameters = dict(module.named_parameters(prefix=prefix[:-1], recurse=False))
                params_to_gather = [named_parameters[k] for k in state_dict.keys() if k in named_parameters]
                if len(params_to_gather) > 0:
                    # because zero3 puts placeholders in model params, this context
                    # manager gathers (unpartitions) the params of the current layer, then loads from
                    # the state dict and then re-partitions them again
                    with deepspeed.zero.GatheredParameters(params_to_gather, modifier_rank=0):
                        if torch.distributed.get_rank() == 0:
                            module._load_from_state_dict(*args)
            else:
                module._load_from_state_dict(*args)
Sylvain Gugger's avatar
Sylvain Gugger committed
614
615
616

        for name, child in module._modules.items():
            if child is not None:
617
                load(child, state_dict, prefix + name + ".")
Sylvain Gugger's avatar
Sylvain Gugger committed
618

619
620
621
622
    load(model_to_load, state_dict, prefix=start_prefix)
    # Delete `state_dict` so it could be collected by GC earlier. Note that `state_dict` is a copy of the argument, so
    # it's safe to delete it.
    del state_dict
Sylvain Gugger's avatar
Sylvain Gugger committed
623
624
625
626

    return error_msgs


627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
def find_submodule_and_param_name(model, long_key, start_prefix):
    """
    A helper util to find the last sub-module and the param/buffer name. If `start_prefix` is supplied it'll be removed
    from the start of the key
    """

    if len(start_prefix) > 0 and long_key.startswith(start_prefix):
        long_key = ".".join(long_key.split(".")[1:])

    split_key = long_key.split(".")
    submodule = model
    while len(split_key) > 1:
        if hasattr(submodule, split_key[0]):
            submodule = getattr(submodule, split_key[0])
            del split_key[0]
        else:
            submodule = None
            break
    if submodule == model:
        submodule = None
    return submodule, split_key[0]


def _move_model_to_meta(model, loaded_state_dict_keys, start_prefix):
    """
    Moves `loaded_state_dict_keys` in model to meta device which frees up the memory taken by those params.

    `start_prefix` is used for models which insert their name into model keys, e.g. `bert` in
    `bert.pooler.dense.weight`

    """

    # dematerialize param storage for keys that are going to be replaced by state_dict, by
    # putting those on the meta device
    for k in loaded_state_dict_keys:
        submodule, param_name = find_submodule_and_param_name(model, k, start_prefix)
        if submodule is not None:
            # selectively switch to the meta device only those params/buffers that will
            # be next replaced from state_dict. This a complex way to do p.to_("meta")
            # since we have no in-place to_ for tensors.
            new_val = getattr(submodule, param_name)
            if isinstance(new_val, torch.nn.Parameter):
                # isinstance returns False for Params on meta device, so switch after the check
                new_val = torch.nn.Parameter(new_val.to("meta"))
            else:
                new_val = new_val.to("meta")
            setattr(submodule, param_name, new_val)


676
677
678
679
680
681
682
683
684
685
686
687
def _load_state_dict_into_meta_model(
    model,
    state_dict,
    loaded_state_dict_keys,  # left for now but could be removed, see below
    start_prefix,
    expected_keys,
    device_map=None,
    offload_folder=None,
    offload_index=None,
    state_dict_folder=None,
    state_dict_index=None,
    dtype=None,
688
    is_quantized=False,
Sylvain Gugger's avatar
Sylvain Gugger committed
689
    is_safetensors=False,
690
    keep_in_fp32_modules=None,
691
    unexpected_keys=None,  # passing `unexpected` for cleanup from quantization items
692
):
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
    """
    This is somewhat similar to `_load_state_dict_into_model`, but deals with a model that has some or all of its
    params on a `meta` device. It replaces the model params with the data from the `state_dict`, while moving the
    params back to the normal device, but only for `loaded_state_dict_keys`.

    `start_prefix` is used for models which insert their name into model keys, e.g. `bert` in
    `bert.pooler.dense.weight`

    """

    # XXX: remaining features to implement to be fully compatible with _load_state_dict_into_model
    # - deepspeed zero 3 support
    # - need to copy metadata if any - see _load_state_dict_into_model
    # - handling error_msgs - mimicking the error handling in module._load_from_state_dict()
    # - Is there a situation where some keys aren't in `loaded_state_dict_keys` and in which case
    #   they won't get loaded.

710
    if is_quantized:
711
        from .integrations import set_module_quantized_tensor_to_device
712

713
714
    error_msgs = []

715
716
717
718
719
720
721
722
723
724
725
726
727
    old_keys = []
    new_keys = []
    for key in state_dict.keys():
        new_key = None
        if "gamma" in key:
            new_key = key.replace("gamma", "weight")
        if "beta" in key:
            new_key = key.replace("beta", "bias")
        if new_key:
            old_keys.append(key)
            new_keys.append(new_key)
    for old_key, new_key in zip(old_keys, new_keys):
        state_dict[new_key] = state_dict.pop(old_key)
728

729
730
731
732
733
734
735
736
737
    for param_name, param in state_dict.items():
        # First part of the test is always true as load_state_dict_keys always contains state_dict keys.
        if param_name not in loaded_state_dict_keys or param_name not in expected_keys:
            continue

        if param_name.startswith(start_prefix):
            param_name = param_name[len(start_prefix) :]

        module_name = param_name
738
        set_module_kwargs = {}
739

740
        # We convert floating dtypes to the `dtype` passed. We want to keep the buffers/params
741
742
        # in int/uint/bool and not cast them.
        if dtype is not None and torch.is_floating_point(param):
743
744
            if (
                keep_in_fp32_modules is not None
745
746
747
                and any(
                    module_to_keep_in_fp32 in param_name.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules
                )
748
749
750
                and dtype == torch.float16
            ):
                param = param.to(torch.float32)
751
752
753
754
755

                # For backward compatibility with older versions of `accelerate`
                # TODO: @sgugger replace this check with version check at the next `accelerate` release
                if "dtype" in list(inspect.signature(set_module_tensor_to_device).parameters):
                    set_module_kwargs["dtype"] = torch.float32
756
757
            else:
                param = param.to(dtype)
758
759
760
761
762
763
764
765
766
767
768
769

        # For compatibility with PyTorch load_state_dict which converts state dict dtype to existing dtype in model
        if dtype is None:
            old_param = model
            splits = param_name.split(".")
            for split in splits:
                old_param = getattr(old_param, split)
                if old_param is None:
                    break

            if old_param is not None:
                param = param.to(old_param.dtype)
770

771
772
        set_module_kwargs["value"] = param

773
774
775
776
777
778
779
780
781
782
783
        if device_map is None:
            param_device = "cpu"
        else:
            # find next higher level module that is defined in device_map:
            # bert.lm_head.weight -> bert.lm_head -> bert -> ''
            while len(module_name) > 0 and module_name not in device_map:
                module_name = ".".join(module_name.split(".")[:-1])
            if module_name == "" and "" not in device_map:
                # TODO: group all errors and raise at the end.
                raise ValueError(f"{param_name} doesn't have any device set.")
            param_device = device_map[module_name]
784

785
        if param_device == "disk":
Sylvain Gugger's avatar
Sylvain Gugger committed
786
787
            if not is_safetensors:
                offload_index = offload_weight(param, param_name, offload_folder, offload_index)
788
789
        elif param_device == "cpu" and state_dict_index is not None:
            state_dict_index = offload_weight(param, param_name, state_dict_folder, state_dict_index)
790
        elif not is_quantized:
791
792
            # For backward compatibility with older versions of `accelerate`
            set_module_tensor_to_device(model, param_name, param_device, **set_module_kwargs)
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
        elif param.dtype in (torch.int8, torch.uint8) and is_quantized:
            # handling newly quantized weights and loaded quantized weights
            # edit the param.dtype restrictions and is_quantized condition when adding new quant methods
            quantized_stats = {}

            if (param_name + ".quant_state.bitsandbytes__fp4" in state_dict) or (
                param_name + ".quant_state.bitsandbytes__nf4" in state_dict
            ):
                # 4bit loading. Collecting components for restoring quantized weight
                # This can be expanded to make a universal call for any quantized weight loading
                for k, v in state_dict.items():
                    if param_name + "." in k:
                        quantized_stats[k] = v
                        unexpected_keys.remove(k)

                set_module_quantized_tensor_to_device(
                    model, param_name, param_device, value=param, quantized_stats=quantized_stats
                )
811

812
813
814
815
816
            elif param.dtype == torch.int8 and param_name.replace("weight", "SCB") in state_dict.keys():
                # 8bit loading. Could be combined with the above 4bit call.
                # condition looks unreliable
                fp16_statistics_key = param_name.replace("weight", "SCB")
                unexpected_keys.remove(fp16_statistics_key)
817
                set_module_quantized_tensor_to_device(
818
819
820
821
822
                    model,
                    param_name,
                    param_device,
                    value=param,
                    quantized_stats={"SCB": state_dict[fp16_statistics_key]},
823
                )
824
825
826
        else:
            # loading not quantized params in quantized model
            set_module_quantized_tensor_to_device(model, param_name, param_device, value=param)
827
828

    return error_msgs, offload_index, state_dict_index
829
830


831
832
833
834
835
836
837
838
839
def _add_variant(weights_name: str, variant: Optional[str] = None) -> str:
    if variant is not None:
        splits = weights_name.split(".")
        splits = splits[:-1] + [variant] + splits[-1:]
        weights_name = ".".join(splits)

    return weights_name


840
class ModuleUtilsMixin:
Julien Chaumond's avatar
Julien Chaumond committed
841
    """
842
    A few utilities for `torch.nn.Modules`, to be used as a mixin.
Julien Chaumond's avatar
Julien Chaumond committed
843
844
    """

845
846
847
848
    @staticmethod
    def _hook_rss_memory_pre_forward(module, *args, **kwargs):
        try:
            import psutil
Sylvain Gugger's avatar
Sylvain Gugger committed
849
        except ImportError:
850
851
852
853
854
855
856
857
858
859
860
            raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")

        process = psutil.Process(os.getpid())
        mem = process.memory_info()
        module.mem_rss_pre_forward = mem.rss
        return None

    @staticmethod
    def _hook_rss_memory_post_forward(module, *args, **kwargs):
        try:
            import psutil
Sylvain Gugger's avatar
Sylvain Gugger committed
861
        except ImportError:
862
863
864
865
866
867
868
869
870
871
            raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")

        process = psutil.Process(os.getpid())
        mem = process.memory_info()
        module.mem_rss_post_forward = mem.rss
        mem_rss_diff = module.mem_rss_post_forward - module.mem_rss_pre_forward
        module.mem_rss_diff = mem_rss_diff + (module.mem_rss_diff if hasattr(module, "mem_rss_diff") else 0)
        return None

    def add_memory_hooks(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
872
873
874
        """
        Add a memory hook before and after each sub-module forward pass to record increase in memory consumption.

Sylvain Gugger's avatar
Sylvain Gugger committed
875
876
        Increase in memory consumption is stored in a `mem_rss_diff` attribute for each module and can be reset to zero
        with `model.reset_memory_hooks_state()`.
877
878
879
880
881
882
883
        """
        for module in self.modules():
            module.register_forward_pre_hook(self._hook_rss_memory_pre_forward)
            module.register_forward_hook(self._hook_rss_memory_post_forward)
        self.reset_memory_hooks_state()

    def reset_memory_hooks_state(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
884
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
885
        Reset the `mem_rss_diff` attribute of each module (see [`~modeling_utils.ModuleUtilsMixin.add_memory_hooks`]).
Sylvain Gugger's avatar
Sylvain Gugger committed
886
        """
887
888
889
890
891
        for module in self.modules():
            module.mem_rss_diff = 0
            module.mem_rss_post_forward = 0
            module.mem_rss_pre_forward = 0

892
    @property
Sylvain Gugger's avatar
Sylvain Gugger committed
893
    def device(self) -> torch.device:
894
        """
895
        `torch.device`: The device on which the module is (assuming that all the module parameters are on the same
896
        device).
897
        """
Lysandre Debut's avatar
Lysandre Debut committed
898
        return get_parameter_device(self)
899

900
    @property
901
    def dtype(self) -> torch.dtype:
902
        """
903
        `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
904
        """
Lysandre Debut's avatar
Lysandre Debut committed
905
        return get_parameter_dtype(self)
906
907

    def invert_attention_mask(self, encoder_attention_mask: Tensor) -> Tensor:
Sylvain Gugger's avatar
Sylvain Gugger committed
908
909
910
911
        """
        Invert an attention mask (e.g., switches 0. and 1.).

        Args:
912
            encoder_attention_mask (`torch.Tensor`): An attention mask.
Sylvain Gugger's avatar
Sylvain Gugger committed
913
914

        Returns:
915
            `torch.Tensor`: The inverted attention mask.
Sylvain Gugger's avatar
Sylvain Gugger committed
916
        """
917
918
919
920
921
922
923
924
925
926
        if encoder_attention_mask.dim() == 3:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
        if encoder_attention_mask.dim() == 2:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
        # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
        # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
        # /transformer/transformer_layers.py#L270
        # encoder_extended_attention_mask = (encoder_extended_attention_mask ==
        # encoder_extended_attention_mask.transpose(-1, -2))
        encoder_extended_attention_mask = encoder_extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
Yih-Dar's avatar
Yih-Dar committed
927
        encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * torch.finfo(self.dtype).min
928

929
930
        return encoder_extended_attention_mask

931
    @staticmethod
932
933
934
935
936
937
938
    def create_extended_attention_mask_for_decoder(input_shape, attention_mask, device=None):
        if device is not None:
            warnings.warn(
                "The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
            )
        else:
            device = attention_mask.device
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
        batch_size, seq_length = input_shape
        seq_ids = torch.arange(seq_length, device=device)
        causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
        # in case past_key_values are used we need to add a prefix ones mask to the causal mask
        # causal and attention masks must have same type with pytorch version < 1.3
        causal_mask = causal_mask.to(attention_mask.dtype)

        if causal_mask.shape[1] < attention_mask.shape[1]:
            prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
            causal_mask = torch.cat(
                [
                    torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype),
                    causal_mask,
                ],
                axis=-1,
            )

        extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
        return extended_attention_mask

959
    def get_extended_attention_mask(
960
        self, attention_mask: Tensor, input_shape: Tuple[int], device: torch.device = None, dtype: torch.float = None
961
    ) -> Tensor:
Sylvain Gugger's avatar
Sylvain Gugger committed
962
963
        """
        Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
964
965

        Arguments:
966
            attention_mask (`torch.Tensor`):
Sylvain Gugger's avatar
Sylvain Gugger committed
967
                Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
968
            input_shape (`Tuple[int]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
969
                The shape of the input to the model.
970
971

        Returns:
972
            `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
973
        """
Yih-Dar's avatar
Yih-Dar committed
974
975
976
        if dtype is None:
            dtype = self.dtype

977
978
979
980
981
982
        if not (attention_mask.dim() == 2 and self.config.is_decoder):
            # show warning only if it won't be shown in `create_extended_attention_mask_for_decoder`
            if device is not None:
                warnings.warn(
                    "The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
                )
983
984
985
986
987
988
989
990
991
        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        if attention_mask.dim() == 3:
            extended_attention_mask = attention_mask[:, None, :, :]
        elif attention_mask.dim() == 2:
            # Provided a padding mask of dimensions [batch_size, seq_length]
            # - if the model is a decoder, apply a causal mask in addition to the padding mask
            # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
            if self.config.is_decoder:
992
                extended_attention_mask = ModuleUtilsMixin.create_extended_attention_mask_for_decoder(
993
994
                    input_shape, attention_mask, device
                )
995
996
997
998
            else:
                extended_attention_mask = attention_mask[:, None, None, :]
        else:
            raise ValueError(
999
                f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})"
1000
1001
1002
1003
            )

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
1004
        # positions we want to attend and the dtype's smallest value for masked positions.
1005
1006
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
Yih-Dar's avatar
Yih-Dar committed
1007
1008
        extended_attention_mask = extended_attention_mask.to(dtype=dtype)  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(dtype).min
1009
1010
        return extended_attention_mask

Sylvain Gugger's avatar
Sylvain Gugger committed
1011
1012
1013
    def get_head_mask(
        self, head_mask: Optional[Tensor], num_hidden_layers: int, is_attention_chunked: bool = False
    ) -> Tensor:
1014
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1015
1016
1017
        Prepare the head mask if needed.

        Args:
1018
            head_mask (`torch.Tensor` with shape `[num_heads]` or `[num_hidden_layers x num_heads]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1019
                The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard).
1020
            num_hidden_layers (`int`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1021
                The number of hidden layers in the model.
1022
            is_attention_chunked (`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1023
1024
                Whether or not the attentions scores are computed by chunks or not.

1025
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
1026
1027
            `torch.Tensor` with shape `[num_hidden_layers x batch x num_heads x seq_length x seq_length]` or list with
            `[None]` for each layer.
1028
1029
1030
        """
        if head_mask is not None:
            head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
1031
1032
            if is_attention_chunked is True:
                head_mask = head_mask.unsqueeze(-1)
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
        else:
            head_mask = [None] * num_hidden_layers

        return head_mask

    def _convert_head_mask_to_5d(self, head_mask, num_hidden_layers):
        """-> [num_hidden_layers x batch x num_heads x seq_length x seq_length]"""
        if head_mask.dim() == 1:
            head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
            head_mask = head_mask.expand(num_hidden_layers, -1, -1, -1, -1)
        elif head_mask.dim() == 2:
            head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
        assert head_mask.dim() == 5, f"head_mask.dim != 5, instead {head_mask.dim()}"
1046
        head_mask = head_mask.to(dtype=self.dtype)  # switch to float if need + fp16 compatibility
1047
1048
        return head_mask

1049
1050
1051
1052
1053
    def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int:
        """
        Get number of (optionally, trainable or non-embeddings) parameters in the module.

        Args:
1054
            only_trainable (`bool`, *optional*, defaults to `False`):
1055
1056
                Whether or not to return only the number of trainable parameters

1057
            exclude_embeddings (`bool`, *optional*, defaults to `False`):
1058
1059
1060
                Whether or not to return only the number of non-embeddings parameters

        Returns:
1061
            `int`: The number of parameters.
1062
1063
        """

1064
1065
1066
1067
        if exclude_embeddings:
            embedding_param_names = [
                f"{name}.weight" for name, module_type in self.named_modules() if isinstance(module_type, nn.Embedding)
            ]
1068
            total_parameters = [
1069
1070
1071
                parameter for name, parameter in self.named_parameters() if name not in embedding_param_names
            ]
        else:
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
            total_parameters = list(self.parameters())

        total_numel = []
        is_loaded_in_4bit = getattr(self, "is_loaded_in_4bit", False)
        if is_loaded_in_4bit:
            if is_bitsandbytes_available():
                import bitsandbytes as bnb
            else:
                raise ValueError(
                    "bitsandbytes is not installed but it seems that the model has been loaded in 4bit precision, something went wrong"
1082
                    " make sure to install bitsandbytes with `pip install bitsandbytes`. You also need a GPU. "
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
                )

        for param in total_parameters:
            if param.requires_grad or not only_trainable:
                # For 4bit models, we need to multiply the number of parameters by 2 as half of the parameters are
                # used for the 4bit quantization (uint8 tensors are stored)
                if is_loaded_in_4bit and isinstance(param, bnb.nn.Params4bit):
                    total_numel.append(param.numel() * 2)
                else:
                    total_numel.append(param.numel())

        return sum(total_numel)
1095
1096
1097
1098
1099
1100

    def estimate_tokens(self, input_dict: Dict[str, Union[torch.Tensor, Any]]) -> int:
        """
        Helper function to estimate the total number of tokens from the model inputs.

        Args:
1101
            inputs (`dict`): The model inputs.
1102
1103

        Returns:
1104
            `int`: The total number of tokens.
1105
        """
1106
1107
        if not hasattr(self, "warnings_issued"):
            self.warnings_issued = {}
1108
1109
        if self.main_input_name in input_dict:
            return input_dict[self.main_input_name].numel()
1110
        elif "estimate_tokens" not in self.warnings_issued:
1111
            logger.warning(
1112
1113
                "Could not estimate the number of tokens of the input, floating-point operations will not be computed"
            )
1114
1115
            self.warnings_issued["estimate_tokens"] = True
        return 0
1116
1117
1118
1119
1120
1121
1122

    def floating_point_ops(
        self, input_dict: Dict[str, Union[torch.Tensor, Any]], exclude_embeddings: bool = True
    ) -> int:
        """
        Get number of (optionally, non-embeddings) floating-point operations for the forward and backward passes of a
        batch with this transformer model. Default approximation neglects the quadratic dependency on the number of
Sylvain Gugger's avatar
Sylvain Gugger committed
1123
1124
        tokens (valid if `12 * d_model << sequence_length`) as laid out in [this
        paper](https://arxiv.org/pdf/2001.08361.pdf) section 2.1. Should be overridden for transformers with parameter
Sylvain Gugger's avatar
Sylvain Gugger committed
1125
        re-use e.g. Albert or Universal Transformers, or if doing long-range modeling with very high sequence lengths.
1126
1127

        Args:
1128
            batch_size (`int`):
1129
1130
                The batch size for the forward pass.

1131
            sequence_length (`int`):
1132
1133
                The number of tokens in each line of the batch.

1134
            exclude_embeddings (`bool`, *optional*, defaults to `True`):
1135
1136
1137
                Whether or not to count embedding and softmax operations.

        Returns:
1138
            `int`: The number of floating-point operations.
1139
1140
1141
1142
        """

        return 6 * self.estimate_tokens(input_dict) * self.num_parameters(exclude_embeddings=exclude_embeddings)

Julien Chaumond's avatar
Julien Chaumond committed
1143

1144
class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMixin, PeftAdapterMixin):
1145
1146
    r"""
    Base class for all models.
1147

Sylvain Gugger's avatar
Sylvain Gugger committed
1148
1149
    [`PreTrainedModel`] takes care of storing the configuration of the models and handles methods for loading,
    downloading and saving models as well as a few methods common to all models to:
1150

1151
1152
        - resize the input embeddings,
        - prune heads in the self-attention heads.
1153

1154
    Class attributes (overridden by derived classes):
Sylvain Gugger's avatar
Sylvain Gugger committed
1155

Sylvain Gugger's avatar
Sylvain Gugger committed
1156
1157
1158
1159
        - **config_class** ([`PretrainedConfig`]) -- A subclass of [`PretrainedConfig`] to use as configuration class
          for this model architecture.
        - **load_tf_weights** (`Callable`) -- A python *method* for loading a TensorFlow checkpoint in a PyTorch model,
          taking as arguments:
1160

Sylvain Gugger's avatar
Sylvain Gugger committed
1161
1162
            - **model** ([`PreTrainedModel`]) -- An instance of the model on which to load the TensorFlow checkpoint.
            - **config** ([`PreTrainedConfig`]) -- An instance of the configuration associated to the model.
1163
            - **path** (`str`) -- A path to the TensorFlow checkpoint.
1164

Sylvain Gugger's avatar
Sylvain Gugger committed
1165
1166
        - **base_model_prefix** (`str`) -- A string indicating the attribute associated to the base model in derived
          classes of the same architecture adding modules on top of the base model.
1167
        - **is_parallelizable** (`bool`) -- A flag indicating whether this model supports model parallelization.
Sylvain Gugger's avatar
Sylvain Gugger committed
1168
1169
        - **main_input_name** (`str`) -- The name of the principal input to the model (often `input_ids` for NLP
          models, `pixel_values` for vision models and `input_values` for speech models).
1170
    """
1171

1172
    config_class = None
1173
    base_model_prefix = ""
1174
    main_input_name = "input_ids"
1175
    _auto_class = None
1176
    _no_split_modules = None
1177
    _skip_keys_device_placement = None
1178
    _keep_in_fp32_modules = None
1179

1180
1181
    # a list of `re` patterns of `state_dict` keys that should be removed from the list of missing
    # keys we find (keys inside the model but not in the checkpoint) and avoid unnecessary warnings.
1182
    _keys_to_ignore_on_load_missing = None
1183
1184
1185
    # a list of `re` patterns of `state_dict` keys that should be removed from the list of
    # unexpected keys we find (keys inside the checkpoint but not the model) and avoid unnecessary
    # warnings.
1186
    _keys_to_ignore_on_load_unexpected = None
1187
1188
    # a list of `state_dict` keys to ignore when saving the model (useful for keys that aren't
    # trained, but which are either deterministic or tied variables)
1189
    _keys_to_ignore_on_save = None
Sylvain Gugger's avatar
Sylvain Gugger committed
1190
1191
    # a list of `state_dict` keys that are potentially tied to another key in the state_dict.
    _tied_weights_keys = None
1192

1193
    is_parallelizable = False
1194
    supports_gradient_checkpointing = False
1195

1196
1197
1198
    # Flash Attention 2 support
    _supports_flash_attn_2 = False

1199
1200
1201
    # SDPA support
    _supports_sdpa = False

1202
1203
1204
    # Has support for a `Cache` instance as `past_key_values`
    _supports_cache_class = False

1205
    @property
1206
    def dummy_inputs(self) -> Dict[str, torch.Tensor]:
1207
        """
1208
        `Dict[str, torch.Tensor]`: Dummy inputs to do a forward pass in the network.
1209
        """
1210
        return {"input_ids": torch.tensor(DUMMY_INPUTS)}
1211

1212
1213
1214
1215
1216
1217
1218
    @property
    def framework(self) -> str:
        """
        :str: Identifies that this is a PyTorch model.
        """
        return "pt"

1219
    def __init__(self, config: PretrainedConfig, *inputs, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
1220
        super().__init__()
1221
1222
        if not isinstance(config, PretrainedConfig):
            raise ValueError(
1223
1224
1225
                f"Parameter config in `{self.__class__.__name__}(config)` should be an instance of class "
                "`PretrainedConfig`. To create a model from a pretrained model use "
                f"`model = {self.__class__.__name__}.from_pretrained(PRETRAINED_MODEL_NAME)`"
1226
            )
1227
        # Save config and origin of the pretrained weights if given in model
1228
1229
1230
        config = self._autoset_attn_implementation(
            config, torch_dtype=torch.get_default_dtype(), check_device_map=False
        )
1231
        self.config = config
1232

1233
        self.name_or_path = config.name_or_path
1234
        self.warnings_issued = {}
1235
        self.generation_config = GenerationConfig.from_model_config(config) if self.can_generate() else None
1236
1237
1238
1239
        # Overwrite the class attribute to make it an instance attribute, so models like
        # `InstructBlipForConditionalGeneration` can dynamically update it without modifying the class attribute
        # when a different component (e.g. language_model) is used.
        self._keep_in_fp32_modules = copy.copy(self.__class__._keep_in_fp32_modules)
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253

    def post_init(self):
        """
        A method executed at the end of each Transformer model initialization, to execute code that needs the model's
        modules properly initialized (such as weight initialization).
        """
        self.init_weights()
        self._backward_compatibility_gradient_checkpointing()

    def _backward_compatibility_gradient_checkpointing(self):
        if self.supports_gradient_checkpointing and getattr(self.config, "gradient_checkpointing", False):
            self.gradient_checkpointing_enable()
            # Remove the attribute now that is has been consumed, so it's no saved in the config.
            delattr(self.config, "gradient_checkpointing")
1254

1255
1256
1257
1258
1259
1260
    @classmethod
    def _from_config(cls, config, **kwargs):
        """
        All context managers that the model should be initialized under go here.

        Args:
1261
1262
            torch_dtype (`torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model under this dtype.
1263
1264
        """
        torch_dtype = kwargs.pop("torch_dtype", None)
1265
        use_flash_attention_2 = kwargs.pop("use_flash_attention_2", False)
1266
1267
1268
1269
1270
1271

        # override default dtype if needed
        dtype_orig = None
        if torch_dtype is not None:
            dtype_orig = cls._set_default_torch_dtype(torch_dtype)

1272
1273
1274
1275
1276
        config = copy.deepcopy(config)  # We do not want to modify the config inplace in _from_config.
        config._attn_implementation = kwargs.pop("attn_implementation", None)
        config = cls._autoset_attn_implementation(
            config, use_flash_attention_2=use_flash_attention_2, check_device_map=False
        )
1277

1278
1279
1280
1281
1282
1283
        if is_deepspeed_zero3_enabled():
            import deepspeed

            logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
            # this immediately partitions the model across all gpus, to avoid the overhead in time
            # and memory copying it on CPU or each GPU first
1284
            with deepspeed.zero.Init(config_dict_or_path=deepspeed_config()):
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
                model = cls(config, **kwargs)
        else:
            model = cls(config, **kwargs)

        # restore default dtype if it was modified
        if dtype_orig is not None:
            torch.set_default_dtype(dtype_orig)

        return model

1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
    @classmethod
    def _autoset_attn_implementation(
        cls,
        config,
        use_flash_attention_2: bool = False,
        torch_dtype: Optional[torch.dtype] = None,
        device_map: Optional[Union[str, Dict[str, int]]] = None,
        check_device_map: bool = True,
    ):
        """
        Automatically checks and dispatches to a default attention implementation. In order of priority:
            1. An implementation specified in `config._attn_implementation` (due for example to the argument attn_implementation="sdpa" in from_pretrained).
            2. DEPRECATED: if use_flash_attention_2 is set to `True` and `flash_attn` is available, flash attention. (`LlamaFlashAttention` for example)
            3. SDPA implementation, if available and supported by the model type. (`LlamaSdpaAttention` for example)
            4. The default model's implementation otherwise (`LlamaAttention` for example) .
        """
        # Here we use config._attn_implementation_internal to check whether the attention implementation was explicitely set by the user.
        # The property `PretrainedConfig._attn_implementation` is never `None`, for backward compatibility (always fall back on "eager").
        # The `hasattr` here is used as some Transformers tests for some reason do not call PretrainedConfig __init__ (e.g. test_no_super_init_config_and_model)
1314
        requested_attn_implementation = None
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
        if hasattr(config, "_attn_implementation_internal") and config._attn_implementation_internal is not None:
            if config._attn_implementation != "flash_attention_2" and use_flash_attention_2:
                raise ValueError(
                    f'Both attn_implementation="{config._attn_implementation}" and `use_flash_attention_2=True` were used when loading the model, which are not compatible.'
                    ' We recommend to just use `attn_implementation="flash_attention_2"` when loading the model.'
                )

            if config._attn_implementation not in ["eager", "sdpa", "flash_attention_2"]:
                message = f'Specified `attn_implementation="{config._attn_implementation}"` is not supported. The only possible arguments are `attn_implementation="eager"` (manual attention implementation)'
                if cls._supports_flash_attn_2:
                    message += ', `"attn_implementation=flash_attention_2"` (implementation using flash attention 2)'
                if cls._supports_sdpa:
                    message += ', `"attn_implementation=sdpa"` (implementation using torch.nn.functional.scaled_dot_product_attention)'
                raise ValueError(message + ".")

            # If a config is passed with a preset attn_implementation, we skip the automatic dispatch and use the user-provided config, with hard checks that the requested attention implementation is available.
1331
            requested_attn_implementation = config._attn_implementation_internal
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343

        if use_flash_attention_2:
            logger.warning_once(
                'The model was loaded with use_flash_attention_2=True, which is deprecated and may be removed in a future release. Please use `attn_implementation="flash_attention_2"` instead.'
            )
            config._attn_implementation = "flash_attention_2"

        if config._attn_implementation == "flash_attention_2":
            cls._check_and_enable_flash_attn_2(
                config,
                torch_dtype=torch_dtype,
                device_map=device_map,
1344
                hard_check_only=False,
1345
1346
                check_device_map=check_device_map,
            )
1347
        elif requested_attn_implementation in [None, "sdpa"]:
1348
            # use_flash_attention_2 takes priority over SDPA, hence SDPA treated in this elif.
1349
1350
1351
1352
            config = cls._check_and_enable_sdpa(
                config, hard_check_only=False if requested_attn_implementation is None else True
            )
        else:
1353
1354
1355
1356
            config._attn_implementation = "eager"

        return config

1357
1358
1359
1360
1361
1362
1363
    @classmethod
    def _set_default_torch_dtype(cls, dtype: torch.dtype) -> torch.dtype:
        """
        Change the default dtype and return the previous one. This is needed when wanting to instantiate the model
        under specific dtype.

        Args:
1364
            dtype (`torch.dtype`):
1365
1366
1367
                a floating dtype to set to.

        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
1368
1369
            `torch.dtype`: the original `dtype` that can be used to restore `torch.set_default_dtype(dtype)` if it was
            modified. If it wasn't, returns `None`.
1370

1371
1372
        Note `set_default_dtype` currently only works with floating-point types and asserts if for example,
        `torch.int64` is passed. So if a non-float `dtype` is passed this functions will throw an exception.
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
        """
        if not dtype.is_floating_point:
            raise ValueError(
                f"Can't instantiate {cls.__name__} model under dtype={dtype} since it is not a floating point dtype"
            )

        logger.info(f"Instantiating {cls.__name__} model under default dtype {dtype}.")
        dtype_orig = torch.get_default_dtype()
        torch.set_default_dtype(dtype)
        return dtype_orig

1384
    @property
1385
1386
    def base_model(self) -> nn.Module:
        """
1387
        `torch.nn.Module`: The main body of the model.
1388
        """
1389
        return getattr(self, self.base_model_prefix, self)
thomwolf's avatar
thomwolf committed
1390

1391
1392
    @classmethod
    def can_generate(cls) -> bool:
1393
1394
1395
1396
1397
1398
        """
        Returns whether this model can generate sequences with `.generate()`.

        Returns:
            `bool`: Whether this model can generate sequences with `.generate()`.
        """
1399
1400
1401
        # Detects whether `prepare_inputs_for_generation` has been overwritten, which is a requirement for generation.
        # Alternativelly, the model can also have a custom `generate` function.
        if "GenerationMixin" in str(cls.prepare_inputs_for_generation) and "GenerationMixin" in str(cls.generate):
1402
1403
1404
            return False
        return True

1405
1406
    @classmethod
    def _check_and_enable_flash_attn_2(
1407
1408
1409
1410
1411
1412
        cls,
        config,
        torch_dtype: Optional[torch.dtype] = None,
        device_map: Optional[Union[str, Dict[str, int]]] = None,
        check_device_map: bool = True,
        hard_check_only: bool = False,
1413
1414
    ) -> PretrainedConfig:
        """
1415
        Checks the availability of Flash Attention 2 and compatibility with the current model.
1416

1417
        If all checks pass and `hard_check_only` is False, the method will set the config attribute `attn_implementation` to "flash_attention_2" so that the model can initialize the correct attention module.
1418
1419
1420
        """
        if not cls._supports_flash_attn_2:
            raise ValueError(
1421
1422
1423
                f"{cls.__name__} does not support Flash Attention 2.0 yet. Please request to add support where"
                f" the model is hosted, on its model hub page: https://huggingface.co/{config._name_or_path}/discussions/new"
                " or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new"
1424
1425
            )

1426
        if not is_flash_attn_2_available():
1427
1428
1429
            preface = "FlashAttention2 has been toggled on, but it cannot be used due to the following error:"
            install_message = "Please refer to the documentation of https://huggingface.co/docs/transformers/perf_infer_gpu_one#flashattention-2 to install Flash Attention 2."

1430
1431
1432
1433
1434
            if importlib.util.find_spec("flash_attn") is None:
                raise ImportError(f"{preface} the package flash_attn seems to be not installed. {install_message}")

            flash_attention_version = version.parse(importlib.metadata.version("flash_attn"))
            if torch.version.cuda:
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
                if flash_attention_version < version.parse("2.1.0"):
                    raise ImportError(
                        f"{preface} you need flash_attn package version to be greater or equal than 2.1.0. Detected version {flash_attention_version}. {install_message}"
                    )
                else:
                    raise ImportError(f"{preface} Flash Attention 2 is not available. {install_message}")
            elif torch.version.hip:
                if flash_attention_version < version.parse("2.0.4"):
                    raise ImportError(
                        f"{preface} you need flash_attn package version to be greater or equal than 2.0.4. Make sure to have that version installed - detected version {flash_attention_version}. {install_message}"
                    )
                else:
                    raise ImportError(f"{preface} Flash Attention 2 is not available. {install_message}")
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460

        _is_bettertransformer = getattr(cls, "use_bettertransformer", False)

        if _is_bettertransformer:
            raise ValueError(
                "Flash Attention 2 and BetterTransformer API are not compatible. Please make sure to disable BetterTransformers by doing model.reverse_bettertransformer()"
            )

        if torch_dtype is None:
            logger.warning(
                "You are attempting to use Flash Attention 2.0 without specifying a torch dtype. This might lead to unexpected behaviour"
            )
        elif torch_dtype is not None and torch_dtype not in [torch.float16, torch.bfloat16]:
1461
1462
1463
            logger.warning(
                "Flash Attention 2.0 only supports torch.float16 and torch.bfloat16 dtypes. "
                "No dtype was provided, you should run training or inference using Automatic Mixed-Precision via the `with torch.autocast(device_type='torch_device'):` decorator."
1464
1465
            )

1466
1467
1468
        # The check `torch.empty(0).device.type != "cuda"` is needed as the model may be initialized after `torch.set_default_device` has been called,
        # or the model may be initialized under the context manager `with torch.device("cuda"):`.
        if check_device_map and device_map is None and torch.empty(0).device.type != "cuda":
1469
1470
            if torch.cuda.is_available():
                logger.warning(
1471
                    "You are attempting to use Flash Attention 2.0 with a model not initialized on GPU. Make sure to move the model to GPU"
1472
1473
1474
1475
                    " after initializing it on CPU with `model.to('cuda')`."
                )
            else:
                raise ValueError(
1476
                    "You are attempting to use Flash Attention 2.0 with a model not initialized on GPU and with no GPU available. "
1477
1478
1479
1480
                    "This is not supported yet. Please make sure to have access to a GPU and either initialise the model on a GPU by passing a device_map "
                    "or initialising the model on CPU and then moving it to GPU."
                )
        elif (
1481
1482
            check_device_map
            and device_map is not None
1483
1484
1485
1486
1487
1488
1489
            and isinstance(device_map, dict)
            and ("cpu" in device_map.values() or "disk" in device_map.values())
        ):
            raise ValueError(
                "You are attempting to use Flash Attention 2.0 with a model dispatched on CPU or disk. This is not supported. Please make sure to "
                "initialise the model on a GPU by passing a device_map that contains only GPU devices as keys."
            )
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
        if not hard_check_only:
            config._attn_implementation = "flash_attention_2"
        return config

    @classmethod
    def _check_and_enable_sdpa(cls, config, hard_check_only: bool = False) -> PretrainedConfig:
        """
        Checks the availability of SDPA for a given model.

        If all checks pass and `hard_check_only` is False, the method will set the config attribute `_attn_implementation` to "flash_attention_2" so that the model can initialize the correct attention module.
        """
        if hard_check_only:
            if not cls._supports_sdpa:
                raise ValueError(
                    f"{cls.__name__} does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please open an issue on GitHub to "
                    "request support for this architecture: https://github.com/huggingface/transformers/issues/new"
                )
            if not is_torch_sdpa_available():
                raise ImportError(
                    "PyTorch SDPA requirements in Transformers are not met. Please install torch>=2.1.1."
                )

        if not is_torch_sdpa_available() or not cls._supports_sdpa:
            return config

        _is_bettertransformer = getattr(cls, "use_bettertransformer", False)
        if _is_bettertransformer:
            return config

        if not hard_check_only:
            config._attn_implementation = "sdpa"
1521
1522
        return config

1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
    def enable_input_require_grads(self):
        """
        Enables the gradients for the input embeddings. This is useful for fine-tuning adapter weights while keeping
        the model weights fixed.
        """

        def make_inputs_require_grads(module, input, output):
            output.requires_grad_(True)

        self._require_grads_hook = self.get_input_embeddings().register_forward_hook(make_inputs_require_grads)

    def disable_input_require_grads(self):
        """
        Removes the `_require_grads_hook`.
        """
        self._require_grads_hook.remove()

1540
    def get_input_embeddings(self) -> nn.Module:
1541
1542
1543
1544
        """
        Returns the model's input embeddings.

        Returns:
1545
            `nn.Module`: A torch module mapping vocabulary to hidden states.
thomwolf's avatar
thomwolf committed
1546
        """
1547
        base_model = getattr(self, self.base_model_prefix, self)
thomwolf's avatar
thomwolf committed
1548
1549
1550
1551
        if base_model is not self:
            return base_model.get_input_embeddings()
        else:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
1552

1553
    def set_input_embeddings(self, value: nn.Module):
1554
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1555
        Set model's input embeddings.
1556
1557

        Args:
1558
            value (`nn.Module`): A module mapping vocabulary to hidden states.
thomwolf's avatar
thomwolf committed
1559
1560
1561
1562
1563
1564
        """
        base_model = getattr(self, self.base_model_prefix, self)
        if base_model is not self:
            base_model.set_input_embeddings(value)
        else:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
1565

1566
    def get_output_embeddings(self) -> nn.Module:
1567
1568
1569
1570
        """
        Returns the model's output embeddings.

        Returns:
1571
            `nn.Module`: A torch module mapping hidden states to vocabulary.
thomwolf's avatar
thomwolf committed
1572
        """
1573
        return None  # Overwrite for models with output embeddings
thomwolf's avatar
thomwolf committed
1574

1575
1576
    def _init_weights(self, module):
        """
1577
1578
1579
1580
        Initialize the weights. This method should be overridden by derived class and is
        the only initialization method that will be called when loading a checkpoint
        using `from_pretrained`. Any attempt to initialize outside of this function
        will be useless as the torch.nn.init function are all replaced with skip.
1581
        """
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
        pass

    def _initialize_weights(self, module):
        """
        Initialize the weights if they are not already initialized.
        """
        if getattr(module, "_is_hf_initialized", False):
            return
        self._init_weights(module)
        module._is_hf_initialized = True
1592

1593
    def tie_weights(self):
1594
1595
        """
        Tie the weights between the input embeddings and the output embeddings.
1596

Sylvain Gugger's avatar
Sylvain Gugger committed
1597
1598
        If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the
        weights instead.
thomwolf's avatar
thomwolf committed
1599
        """
1600
1601
1602
1603
        if getattr(self.config, "tie_word_embeddings", True):
            output_embeddings = self.get_output_embeddings()
            if output_embeddings is not None:
                self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings())
thomwolf's avatar
thomwolf committed
1604

1605
        if getattr(self.config, "is_encoder_decoder", False) and getattr(self.config, "tie_encoder_decoder", False):
Weizhen's avatar
Weizhen committed
1606
1607
            if hasattr(self, self.base_model_prefix):
                self = getattr(self, self.base_model_prefix)
1608
1609
            self._tie_encoder_decoder_weights(self.encoder, self.decoder, self.base_model_prefix)

Sylvain Gugger's avatar
Sylvain Gugger committed
1610
1611
1612
1613
        for module in self.modules():
            if hasattr(module, "_tie_weights"):
                module._tie_weights()

1614
1615
1616
    @staticmethod
    def _tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str):
        uninitialized_encoder_weights: List[str] = []
Weizhen's avatar
Weizhen committed
1617
1618
        if decoder.__class__ != encoder.__class__:
            logger.info(
Sylvain Gugger's avatar
Sylvain Gugger committed
1619
1620
                f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder"
                " weights are correctly initialized."
Weizhen's avatar
Weizhen committed
1621
            )
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631

        def tie_encoder_to_decoder_recursively(
            decoder_pointer: nn.Module,
            encoder_pointer: nn.Module,
            module_name: str,
            uninitialized_encoder_weights: List[str],
            depth=0,
        ):
            assert isinstance(decoder_pointer, nn.Module) and isinstance(
                encoder_pointer, nn.Module
1632
            ), f"{decoder_pointer} and {encoder_pointer} have to be of type nn.Module"
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
            if hasattr(decoder_pointer, "weight"):
                assert hasattr(encoder_pointer, "weight")
                encoder_pointer.weight = decoder_pointer.weight
                if hasattr(decoder_pointer, "bias"):
                    assert hasattr(encoder_pointer, "bias")
                    encoder_pointer.bias = decoder_pointer.bias
                return

            encoder_modules = encoder_pointer._modules
            decoder_modules = decoder_pointer._modules
            if len(decoder_modules) > 0:
                assert (
                    len(encoder_modules) > 0
                ), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"

1648
                all_encoder_weights = {module_name + "/" + sub_name for sub_name in encoder_modules.keys()}
1649
1650
1651
1652
1653
                encoder_layer_pos = 0
                for name, module in decoder_modules.items():
                    if name.isdigit():
                        encoder_name = str(int(name) + encoder_layer_pos)
                        decoder_name = name
Weizhen's avatar
Weizhen committed
1654
1655
1656
                        if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len(
                            encoder_modules
                        ) != len(decoder_modules):
1657
1658
                            # this can happen if the name corresponds to the position in a list module list of layers
                            # in this case the decoder has added a cross-attention that the encoder does not have
1659
                            # thus skip this step and subtract one layer pos from encoder
1660
1661
1662
1663
1664
1665
                            encoder_layer_pos -= 1
                            continue
                    elif name not in encoder_modules:
                        continue
                    elif depth > 500:
                        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1666
1667
                            "Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is"
                            " a circular dependency between two or more `nn.Modules` of your model."
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
                        )
                    else:
                        decoder_name = encoder_name = name
                    tie_encoder_to_decoder_recursively(
                        decoder_modules[decoder_name],
                        encoder_modules[encoder_name],
                        module_name + "/" + name,
                        uninitialized_encoder_weights,
                        depth=depth + 1,
                    )
                    all_encoder_weights.remove(module_name + "/" + encoder_name)

                uninitialized_encoder_weights += list(all_encoder_weights)

        # tie weights recursively
        tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights)
        if len(uninitialized_encoder_weights) > 0:
            logger.warning(
                f"The following encoder weights were not tied to the decoder {uninitialized_encoder_weights}"
            )

1689
    def _tie_or_clone_weights(self, output_embeddings, input_embeddings):
Lysandre's avatar
Lysandre committed
1690
        """Tie or clone module weights depending of whether we are using TorchScript or not"""
thomwolf's avatar
thomwolf committed
1691
        if self.config.torchscript:
1692
            output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone())
thomwolf's avatar
thomwolf committed
1693
        else:
1694
            output_embeddings.weight = input_embeddings.weight
thomwolf's avatar
thomwolf committed
1695

Sam Shleifer's avatar
Sam Shleifer committed
1696
        if getattr(output_embeddings, "bias", None) is not None:
1697
            output_embeddings.bias.data = nn.functional.pad(
1698
                output_embeddings.bias.data,
Lysandre's avatar
Lysandre committed
1699
1700
1701
1702
                (
                    0,
                    output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0],
                ),
1703
1704
                "constant",
                0,
1705
            )
1706
        if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"):
1707
            output_embeddings.out_features = input_embeddings.num_embeddings
1708

Marc Sun's avatar
Marc Sun committed
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
    def _get_no_split_modules(self, device_map: str):
        """
        Get the modules of the model that should not be spit when using device_map. We iterate through the modules to
        get the underlying `_no_split_modules`.

        Args:
            device_map (`str`):
                The device map value. Options are ["auto", "balanced", "balanced_low_0", "sequential"]

        Returns:
            `List[str]`: List of modules that should not be split
        """
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
        _no_split_modules = set()
        modules_to_check = [self]
        while len(modules_to_check) > 0:
            module = modules_to_check.pop(-1)
            # if the module does not appear in _no_split_modules, we also check the children
            if module.__class__.__name__ not in _no_split_modules:
                if isinstance(module, PreTrainedModel):
                    if module._no_split_modules is None:
                        raise ValueError(
                            f"{module.__class__.__name__} does not support `device_map='{device_map}'`. To implement support, the model "
                            "class needs to implement the `_no_split_modules` attribute."
                        )
                    else:
                        _no_split_modules = _no_split_modules | set(module._no_split_modules)
                modules_to_check += list(module.children())
Marc Sun's avatar
Marc Sun committed
1736
1737
        return list(_no_split_modules)

1738
1739
1740
    def resize_token_embeddings(
        self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None
    ) -> nn.Embedding:
1741
        """
1742
        Resizes input token embeddings matrix of the model if `new_num_tokens != config.vocab_size`.
1743

1744
        Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
thomwolf's avatar
thomwolf committed
1745

1746
        Arguments:
1747
            new_num_tokens (`int`, *optional*):
1748
                The new number of tokens in the embedding matrix. Increasing the size will add newly initialized
Sylvain Gugger's avatar
Sylvain Gugger committed
1749
1750
                vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
                returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything.
1751
            pad_to_multiple_of (`int`, *optional*):
Arthur's avatar
Arthur committed
1752
1753
                If set will pad the embedding matrix to a multiple of the provided value.If `new_num_tokens` is set to
                `None` will just pad the embedding to a multiple of `pad_to_multiple_of`.
1754
1755
1756
1757
1758

                This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
                `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more
                details about this, or help on choosing the correct value for resizing, refer to this guide:
                https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc
1759
1760

        Return:
1761
            `torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model.
thomwolf's avatar
thomwolf committed
1762
        """
1763
        model_embeds = self._resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
Arthur's avatar
Arthur committed
1764
        if new_num_tokens is None and pad_to_multiple_of is None:
thomwolf's avatar
thomwolf committed
1765
            return model_embeds
thomwolf's avatar
thomwolf committed
1766
1767

        # Update base model and current model config
Arthur's avatar
Arthur committed
1768
1769
        self.config.vocab_size = model_embeds.weight.shape[0]
        self.vocab_size = model_embeds.weight.shape[0]
thomwolf's avatar
thomwolf committed
1770
1771

        # Tie weights again if needed
1772
        self.tie_weights()
thomwolf's avatar
thomwolf committed
1773

thomwolf's avatar
thomwolf committed
1774
1775
        return model_embeds

1776
    def _resize_token_embeddings(self, new_num_tokens, pad_to_multiple_of=None):
thomwolf's avatar
thomwolf committed
1777
        old_embeddings = self.get_input_embeddings()
1778
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens, pad_to_multiple_of)
1779
1780
1781
        if hasattr(old_embeddings, "_hf_hook"):
            hook = old_embeddings._hf_hook
            add_hook_to_module(new_embeddings, hook)
1782
1783
        old_embeddings_requires_grad = old_embeddings.weight.requires_grad
        new_embeddings.requires_grad_(old_embeddings_requires_grad)
thomwolf's avatar
thomwolf committed
1784
        self.set_input_embeddings(new_embeddings)
1785

1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
        # Update new_num_tokens with the actual size of new_embeddings
        if pad_to_multiple_of is not None:
            if is_deepspeed_zero3_enabled():
                import deepspeed

                with deepspeed.zero.GatheredParameters(new_embeddings.weight, modifier_rank=None):
                    new_num_tokens = new_embeddings.weight.shape[0]
            else:
                new_num_tokens = new_embeddings.weight.shape[0]

1796
1797
1798
        # if word embeddings are not tied, make sure that lm head is resized as well
        if self.get_output_embeddings() is not None and not self.config.tie_word_embeddings:
            old_lm_head = self.get_output_embeddings()
1799
            new_lm_head = self._get_resized_lm_head(old_lm_head, new_num_tokens)
1800
1801
1802
            if hasattr(old_lm_head, "_hf_hook"):
                hook = old_lm_head._hf_hook
                add_hook_to_module(new_lm_head, hook)
1803
1804
            old_lm_head_requires_grad = old_lm_head.weight.requires_grad
            new_lm_head.requires_grad_(old_lm_head_requires_grad)
1805
1806
            self.set_output_embeddings(new_lm_head)

thomwolf's avatar
thomwolf committed
1807
        return self.get_input_embeddings()
1808

1809
    def _get_resized_embeddings(
1810
1811
1812
1813
        self,
        old_embeddings: nn.Embedding,
        new_num_tokens: Optional[int] = None,
        pad_to_multiple_of: Optional[int] = None,
1814
    ) -> nn.Embedding:
1815
1816
1817
        """
        Build a resized Embedding Module from a provided token Embedding Module. Increasing the size will add newly
        initialized vectors at the end. Reducing the size will remove vectors from the end
1818
1819

        Args:
1820
            old_embeddings (`torch.nn.Embedding`):
1821
                Old embeddings to be resized.
1822
            new_num_tokens (`int`, *optional*):
1823
                New number of tokens in the embedding matrix.
1824
1825

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
1826
                vectors from the end. If not provided or `None`, just returns a pointer to the input tokens
1827
                `torch.nn.Embedding` module of the model without doing anything.
1828
            pad_to_multiple_of (`int`, *optional*):
Arthur's avatar
Arthur committed
1829
1830
                If set will pad the embedding matrix to a multiple of the provided value. If `new_num_tokens` is set to
                `None` will just pad the embedding to a multiple of `pad_to_multiple_of`.
1831
1832
1833
1834
1835
1836

                This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
                `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more
                details about this, or help on choosing the correct value for resizing, refer to this guide:
                https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc

1837
1838

        Return:
1839
1840
            `torch.nn.Embedding`: Pointer to the resized Embedding Module or the old Embedding Module if
            `new_num_tokens` is `None`
1841
        """
1842
1843
1844
1845
1846
1847
1848
1849

        if pad_to_multiple_of is not None:
            if not isinstance(pad_to_multiple_of, int):
                raise ValueError(
                    f"Asking to pad the embedding matrix to a multiple of `{pad_to_multiple_of}`, which is not and integer. Please make sure to pass an integer"
                )
            if new_num_tokens is None:
                new_num_tokens = old_embeddings.weight.shape[0]
1850
            new_num_tokens = ((new_num_tokens + pad_to_multiple_of - 1) // pad_to_multiple_of) * pad_to_multiple_of
1851
        else:
1852
            logger.info(
1853
                "You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding"
1854
                f" dimension will be {new_num_tokens}. This might induce some performance reduction as *Tensor Cores* will not be available."
1855
                " For more details about this, or help on choosing the correct value for resizing, refer to this guide:"
1856
1857
1858
                " https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc"
            )

1859
1860
1861
        if new_num_tokens is None:
            return old_embeddings

1862
1863
1864
1865
1866
1867
1868
1869
        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_embeddings.weight, modifier_rank=None):
                old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
        else:
            old_num_tokens, old_embedding_dim = old_embeddings.weight.size()

1870
        if old_num_tokens == new_num_tokens and not is_deepspeed_zero3_enabled():
1871
1872
            return old_embeddings

1873
1874
        if not isinstance(old_embeddings, nn.Embedding):
            raise TypeError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1875
1876
1877
                f"Old embeddings are of type {type(old_embeddings)}, which is not an instance of {nn.Embedding}. You"
                " should either use a different resize function or make sure that `old_embeddings` are an instance of"
                f" {nn.Embedding}."
1878
1879
            )

1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
        # Build new embeddings

        # When using DeepSpeed ZeRO-3, we shouldn't create new embeddings with DeepSpeed init
        # because the shape of the new embedding layer is used across various modeling files
        # as well as to update config vocab size. Shape will be 0 when using DeepSpeed init leading
        # to errors when training.
        new_embeddings = nn.Embedding(
            new_num_tokens,
            old_embedding_dim,
            device=old_embeddings.weight.device,
            dtype=old_embeddings.weight.dtype,
        )

        # initialize all new embeddings (in particular added tokens)
        self._init_weights(new_embeddings)

        # Copy token embeddings from the previous weights

1898
1899
        # numbers of tokens to copy
        n = min(old_num_tokens, new_num_tokens)
1900

1901
1902
1903
        if is_deepspeed_zero3_enabled():
            import deepspeed

1904
1905
1906
            params = [old_embeddings.weight, new_embeddings.weight]
            with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
                new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :]
1907
1908
        else:
            new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :]
1909
1910
1911

        return new_embeddings

1912
    def _get_resized_lm_head(
1913
1914
        self, old_lm_head: nn.Linear, new_num_tokens: Optional[int] = None, transposed: Optional[bool] = False
    ) -> nn.Linear:
1915
1916
1917
1918
1919
        """
        Build a resized Linear Module from a provided old Linear Module. Increasing the size will add newly initialized
        vectors at the end. Reducing the size will remove vectors from the end

        Args:
1920
            old_lm_head (`torch.nn.Linear`):
1921
                Old lm head liner layer to be resized.
1922
            new_num_tokens (`int`, *optional*):
1923
1924
1925
                New number of tokens in the linear matrix.

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
1926
                vectors from the end. If not provided or `None`, just returns a pointer to the input tokens
1927
1928
1929
                `torch.nn.Linear` module of the model without doing anything. transposed (`bool`, *optional*, defaults
                to `False`): Whether `old_lm_head` is transposed or not. If True `old_lm_head.size()` is `lm_head_dim,
                vocab_size` else `vocab_size, lm_head_dim`.
1930
1931

        Return:
Sylvain Gugger's avatar
Sylvain Gugger committed
1932
1933
            `torch.nn.Linear`: Pointer to the resized Linear Module or the old Linear Module if `new_num_tokens` is
            `None`
1934
1935
1936
1937
        """
        if new_num_tokens is None:
            return old_lm_head

1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_lm_head.weight, modifier_rank=None):
                old_num_tokens, old_lm_head_dim = (
                    old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
                )
        else:
            old_num_tokens, old_lm_head_dim = (
                old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
            )
1949

1950
        if old_num_tokens == new_num_tokens and not is_deepspeed_zero3_enabled():
1951
1952
1953
1954
            return old_lm_head

        if not isinstance(old_lm_head, nn.Linear):
            raise TypeError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1955
1956
1957
                f"Old language model head is of type {type(old_lm_head)}, which is not an instance of {nn.Linear}. You"
                " should either use a different resize function or make sure that `old_lm_head` are an instance of"
                f" {nn.Linear}."
1958
1959
1960
1961
1962
1963
            )

        # Build new lm head
        new_lm_head_shape = (old_lm_head_dim, new_num_tokens) if not transposed else (new_num_tokens, old_lm_head_dim)
        has_new_lm_head_bias = old_lm_head.bias is not None

1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
        # When using DeepSpeed ZeRO-3, we shouldn't create new embeddings with DeepSpeed init
        # because the shape of the new embedding layer is used across various modeling files
        # as well as to update config vocab size. Shape will be 0 when using DeepSpeed init leading
        # to errors when training.
        new_lm_head = nn.Linear(
            *new_lm_head_shape,
            bias=has_new_lm_head_bias,
            device=old_lm_head.weight.device,
            dtype=old_lm_head.weight.dtype,
        )

        # initialize new lm head (in particular added tokens)
        self._init_weights(new_lm_head)

1978
1979
        num_tokens_to_copy = min(old_num_tokens, new_num_tokens)

1980
1981
1982
        if is_deepspeed_zero3_enabled():
            import deepspeed

1983
1984
            params = [old_lm_head.weight, old_lm_head.bias, new_lm_head.weight, new_lm_head.bias]
            with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
1985
1986
1987
                self._copy_lm_head_original_to_resized(
                    new_lm_head, old_lm_head, num_tokens_to_copy, transposed, has_new_lm_head_bias
                )
1988
        else:
1989
1990
            self._copy_lm_head_original_to_resized(
                new_lm_head, old_lm_head, num_tokens_to_copy, transposed, has_new_lm_head_bias
1991
            )
1992
1993
1994

        return new_lm_head

1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
    def _copy_lm_head_original_to_resized(
        self, new_lm_head, old_lm_head, num_tokens_to_copy, transposed, has_new_lm_head_bias
    ):
        # Copy old lm head weights to new lm head
        if not transposed:
            new_lm_head.weight.data[:num_tokens_to_copy, :] = old_lm_head.weight.data[:num_tokens_to_copy, :]
        else:
            new_lm_head.weight.data[:, :num_tokens_to_copy] = old_lm_head.weight.data[:, :num_tokens_to_copy]

        # Copy bias weights to new lm head
        if has_new_lm_head_bias:
            new_lm_head.bias.data[:num_tokens_to_copy] = old_lm_head.bias.data[:num_tokens_to_copy]

2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
    def resize_position_embeddings(self, new_num_position_embeddings: int):
        raise NotImplementedError(
            f"`resize_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should "
            f"overwrite this method in the class {self.__class__} in `modeling_{self.__class__.__module__}.py`"
        )

    def get_position_embeddings(self) -> Union[nn.Embedding, Tuple[nn.Embedding]]:
        raise NotImplementedError(
            f"`get_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should "
            f"overwrite this method in the class {self.__class__} in `modeling_{self.__class__.__module__}.py`"
        )

2020
    def init_weights(self):
2021
        """
2022
2023
        If needed prunes and maybe initializes weights. If using a custom `PreTrainedModel`, you need to implement any
        initialization logic in `_init_weights`.
2024
        """
2025
2026
2027
2028
        # Prune heads if needed
        if self.config.pruned_heads:
            self.prune_heads(self.config.pruned_heads)

2029
2030
        if _init_weights:
            # Initialize weights
2031
            self.apply(self._initialize_weights)
2032
2033
2034
2035

            # Tie weights should be skipped when not initializing all weights
            # since from_pretrained(...) calls tie weights anyways
            self.tie_weights()
2036

2037
2038
2039
    def prune_heads(self, heads_to_prune: Dict[int, List[int]]):
        """
        Prunes heads of the base model.
2040

2041
        Arguments:
2042
            heads_to_prune (`Dict[int, List[int]]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2043
2044
2045
                Dictionary with keys being selected layer indices (`int`) and associated values being the list of heads
                to prune in said layer (list of `int`). For instance {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on
                layer 1 and heads 2 and 3 on layer 2.
thomwolf's avatar
thomwolf committed
2046
        """
2047
        # save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads
2048
        for layer, heads in heads_to_prune.items():
2049
2050
2051
            union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads)
            self.config.pruned_heads[layer] = list(union_heads)  # Unfortunately we have to store it as list for JSON

2052
        self.base_model._prune_heads(heads_to_prune)
thomwolf's avatar
thomwolf committed
2053

2054
    def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None):
2055
2056
2057
2058
2059
        """
        Activates gradient checkpointing for the current model.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
2060
2061
2062
2063
2064
2065
2066

        We pass the `__call__` method of the modules instead of `forward` because `__call__` attaches all the hooks of
        the module. https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2

        Args:
            gradient_checkpointing_kwargs (dict, *optional*):
                Additional keyword arguments passed along to the `torch.utils.checkpoint.checkpoint` function.
2067
2068
2069
        """
        if not self.supports_gradient_checkpointing:
            raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
2070
2071
2072
2073

        if gradient_checkpointing_kwargs is None:
            gradient_checkpointing_kwargs = {}

2074
        gradient_checkpointing_func = functools.partial(checkpoint, **gradient_checkpointing_kwargs)
2075

2076
        # For old GC format (transformers < 4.35.0) for models that live on the Hub
Stas Bekman's avatar
Stas Bekman committed
2077
        # we will fall back to the overwritten `_set_gradient_checkpointing` method
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
        _is_using_old_format = "value" in inspect.signature(self._set_gradient_checkpointing).parameters

        if not _is_using_old_format:
            self._set_gradient_checkpointing(enable=True, gradient_checkpointing_func=gradient_checkpointing_func)
        else:
            self.apply(partial(self._set_gradient_checkpointing, value=True))
            logger.warn(
                "You are using an old version of the checkpointing format that is deprecated (We will also silently ignore `gradient_checkpointing_kwargs` in case you passed it)."
                "Please update to the new format on your modeling file. To use the new format, you need to completely remove the definition of the method `_set_gradient_checkpointing` in your model."
            )
2088

2089
2090
2091
2092
2093
2094
2095
        if getattr(self, "_hf_peft_config_loaded", False):
            # When using PEFT + gradient checkpointing + Trainer we need to make sure the input has requires_grad=True
            # we do it also on PEFT: https://github.com/huggingface/peft/blob/85013987aa82aa1af3da1236b6902556ce3e483e/src/peft/peft_model.py#L334
            # When training with PEFT, only LoRA layers will have requires grad set to True, but the output of frozen layers need to propagate
            # the gradients to make sure the gradient flows.
            self.enable_input_require_grads()

2096
    def _set_gradient_checkpointing(self, enable: bool = True, gradient_checkpointing_func: Callable = checkpoint):
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
        is_gradient_checkpointing_set = False

        # Apply it on the top-level module in case the top-level modules supports it
        # for example, LongT5Stack inherits from `PreTrainedModel`.
        if hasattr(self, "gradient_checkpointing"):
            self._gradient_checkpointing_func = gradient_checkpointing_func
            self.gradient_checkpointing = enable
            is_gradient_checkpointing_set = True

        for module in self.modules():
            if hasattr(module, "gradient_checkpointing"):
                module._gradient_checkpointing_func = gradient_checkpointing_func
                module.gradient_checkpointing = enable
                is_gradient_checkpointing_set = True

        if not is_gradient_checkpointing_set:
            raise ValueError(
                f"{self.__class__.__name__} is not compatible with gradient checkpointing. Make sure all the architecture support it by setting a boolean attribute"
                " `gradient_checkpointing` to modules of the model that uses checkpointing."
            )

2118
    def gradient_checkpointing_disable(self):
2119
2120
2121
2122
2123
2124
2125
        """
        Deactivates gradient checkpointing for the current model.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        if self.supports_gradient_checkpointing:
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
            # For old GC format (transformers < 4.35.0) for models that live on the Hub
            # we will fall back to the overwritten `_set_gradient_checkpointing` methid
            _is_using_old_format = "value" in inspect.signature(self._set_gradient_checkpointing).parameters
            if not _is_using_old_format:
                self._set_gradient_checkpointing(enable=False)
            else:
                logger.warn(
                    "You are using an old version of the checkpointing format that is deprecated (We will also silently ignore `gradient_checkpointing_kwargs` in case you passed it)."
                    "Please update to the new format on your modeling file. To use the new format, you need to completely remove the definition of the method `_set_gradient_checkpointing` in your model."
                )
                self.apply(partial(self._set_gradient_checkpointing, value=False))
2137

2138
2139
2140
        if getattr(self, "_hf_peft_config_loaded", False):
            self.disable_input_require_grads()

2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
    @property
    def is_gradient_checkpointing(self) -> bool:
        """
        Whether gradient checkpointing is activated for this model or not.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules())

2151
2152
2153
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
2154
        is_main_process: bool = True,
2155
2156
        state_dict: Optional[dict] = None,
        save_function: Callable = torch.save,
Sylvain Gugger's avatar
Sylvain Gugger committed
2157
        push_to_hub: bool = False,
2158
        max_shard_size: Union[int, str] = "5GB",
2159
        safe_serialization: bool = True,
2160
        variant: Optional[str] = None,
2161
        token: Optional[Union[str, bool]] = None,
2162
        save_peft_format: bool = True,
Sylvain Gugger's avatar
Sylvain Gugger committed
2163
        **kwargs,
2164
    ):
2165
2166
        """
        Save a model and its configuration file to a directory, so that it can be re-loaded using the
2167
        [`~PreTrainedModel.from_pretrained`] class method.
2168

2169
        Arguments:
2170
            save_directory (`str` or `os.PathLike`):
2171
                Directory to which to save. Will be created if it doesn't exist.
2172
2173
2174
2175
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful when in distributed training like
                TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on
                the main process to avoid race conditions.
2176
            state_dict (nested dictionary of `torch.Tensor`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2177
2178
2179
                The state dictionary of the model to save. Will default to `self.state_dict()`, but can be used to only
                save parts of the model or if special precautions need to be taken when recovering the state dictionary
                of a model (like when using model parallelism).
2180
            save_function (`Callable`):
2181
                The function to use to save the state dictionary. Useful on distributed training like TPUs when one
2182
2183
                need to replace `torch.save` by another method.
            push_to_hub (`bool`, *optional*, defaults to `False`):
2184
2185
2186
                Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
2187
            max_shard_size (`int` or `str`, *optional*, defaults to `"5GB"`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2188
2189
                The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size
                lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`).
2190
2191
                We default it to 5GB in order for models to be able to run easily on free-tier google colab instances
                without CPU OOM issues.
Sylvain Gugger's avatar
Sylvain Gugger committed
2192
2193
2194
2195
2196
2197
2198
2199

                <Tip warning={true}>

                If a single weight of the model is bigger than `max_shard_size`, it will be in its own checkpoint shard
                which will be bigger than `max_shard_size`.

                </Tip>

2200
            safe_serialization (`bool`, *optional*, defaults to `True`):
2201
                Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
2202
2203
            variant (`str`, *optional*):
                If specified, weights are saved in the format pytorch_model.<variant>.bin.
2204
2205
2206
            token (`str` or `bool`, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
                the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
2207
2208
2209
2210
            save_peft_format (`bool`, *optional*, defaults to `True`):
                For backward compatibility with PEFT library, in case adapter weights are attached to the model, all
                keys of the state dict of adapters needs to be pre-pended with `base_model.model`. Advanced users can
                disable this behaviours by setting `save_peft_format` to `False`.
2211
            kwargs (`Dict[str, Any]`, *optional*):
2212
                Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
2213
        """
2214
2215
2216
2217
        use_auth_token = kwargs.pop("use_auth_token", None)

        if use_auth_token is not None:
            warnings.warn(
2218
2219
                "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
                FutureWarning,
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
            )
            if token is not None:
                raise ValueError(
                    "`token` and `use_auth_token` are both specified. Please set only the argument `token`."
                )
            token = use_auth_token

        if token is not None:
            kwargs["token"] = token

Younes Belkada's avatar
Younes Belkada committed
2230
2231
        _hf_peft_config_loaded = getattr(self, "_hf_peft_config_loaded", False)

2232
        # Checks if the model has been loaded in 8-bit
Younes Belkada's avatar
Younes Belkada committed
2233
2234
2235
2236
2237
        if (
            getattr(self, "is_loaded_in_8bit", False)
            and not getattr(self, "is_8bit_serializable", False)
            and not _hf_peft_config_loaded
        ):
2238
2239
2240
            raise NotImplementedError(
                "You are calling `save_pretrained` to a 8-bit converted model, but your `bitsandbytes` version doesn't support it. "
                "If you want to save 8-bit models, make sure to have `bitsandbytes>0.37.2` installed."
2241
2242
            )

2243
2244
2245
2246
2247
        if (
            getattr(self, "is_loaded_in_4bit", False)
            and not getattr(self, "is_4bit_serializable", False)
            and not _hf_peft_config_loaded
        ):
2248
            raise NotImplementedError(
2249
2250
                "You are calling `save_pretrained` to a 4-bit converted model, but your `bitsandbytes` version doesn't support it. "
                "If you want to save 4-bit models, make sure to have `bitsandbytes>=0.41.3` installed."
2251
2252
            )

2253
2254
2255
        if getattr(self, "_awq_is_fused", False):
            raise ValueError("You cannot save an AWQ model that uses fused modules!")

2256
2257
2258
2259
2260
        if "save_config" in kwargs:
            warnings.warn(
                "`save_config` is deprecated and will be removed in v5 of Transformers. Use `is_main_process` instead."
            )
            is_main_process = kwargs.pop("save_config")
2261
2262
        if safe_serialization and not is_safetensors_available():
            raise ImportError("`safe_serialization` requires the `safetensors library: `pip install safetensors`.")
2263

2264
        if os.path.isfile(save_directory):
2265
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
2266
            return
2267

2268
2269
        os.makedirs(save_directory, exist_ok=True)

2270
2271
        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
2272
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
2273
            repo_id = self._create_repo(repo_id, **kwargs)
2274
            files_timestamps = self._get_files_timestamps(save_directory)
2275

Julien Chaumond's avatar
Julien Chaumond committed
2276
        # Only save the model itself if we are using distributed training
2277
        model_to_save = unwrap_model(self)
2278

2279
2280
2281
2282
2283
        # save the string version of dtype to the config, e.g. convert torch.float32 => "float32"
        # we currently don't use this setting automatically, but may start to use with v5
        dtype = get_parameter_dtype(model_to_save)
        model_to_save.config.torch_dtype = str(dtype).split(".")[1]

Julien Chaumond's avatar
Julien Chaumond committed
2284
2285
2286
        # Attach architecture to the config
        model_to_save.config.architectures = [model_to_save.__class__.__name__]

2287
2288
2289
2290
2291
        # If we have a custom model, we copy the file defining it in the folder and set the attributes so it can be
        # loaded from the Hub.
        if self._auto_class is not None:
            custom_object_save(self, save_directory, config=self.config)

2292
        # Save the config
2293
        if is_main_process:
2294
2295
            if not _hf_peft_config_loaded:
                model_to_save.config.save_pretrained(save_directory)
2296
2297
            if self.can_generate():
                model_to_save.generation_config.save_pretrained(save_directory)
2298

2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
            if _hf_peft_config_loaded:
                logger.info(
                    "Detected adapters on the model, saving the model in the PEFT format, only adapter weights will be saved."
                )
                state_dict = model_to_save.get_adapter_state_dict()

                if save_peft_format:
                    logger.info(
                        "To match the expected format of the PEFT library, all keys of the state dict of adapters will be pre-pended with `base_model.model`."
                    )
                    peft_state_dict = {}
                    for key, value in state_dict.items():
                        peft_state_dict[f"base_model.model.{key}"] = value
                    state_dict = peft_state_dict

2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
                active_adapter = self.active_adapters()

                if len(active_adapter) > 1:
                    raise ValueError(
                        "Multiple active adapters detected, saving multiple active adapters is not supported yet. You can save adapters separately one by one "
                        "by iteratively calling `model.set_adapter(adapter_name)` then `model.save_pretrained(...)`"
                    )
                active_adapter = active_adapter[0]

                current_peft_config = self.peft_config[active_adapter]
2324
2325
                current_peft_config.save_pretrained(save_directory)

2326
2327
2328
        # Save the model
        if state_dict is None:
            state_dict = model_to_save.state_dict()
2329

2330
2331
2332
2333
2334
        # Translate state_dict from smp to hf if saving with smp >= 1.10
        if IS_SAGEMAKER_MP_POST_1_10:
            for smp_to_hf, _ in smp.state.module_manager.translate_functions:
                state_dict = smp_to_hf(state_dict)

2335
        # Handle the case where some state_dict keys shouldn't be saved
2336
        if self._keys_to_ignore_on_save is not None:
2337
            for ignore_key in self._keys_to_ignore_on_save:
2338
2339
                if ignore_key in state_dict.keys():
                    del state_dict[ignore_key]
2340
2341
2342
2343
2344
        if safe_serialization:
            # Safetensors does not allow tensor aliasing.
            # We're going to remove aliases before saving
            ptrs = collections.defaultdict(list)
            for name, tensor in state_dict.items():
2345
2346
2347
2348
2349
2350
2351
                # Sometimes in the state_dict we have non-tensor objects.
                # e.g. in bitsandbytes we have some `str` objects in the state_dict
                if isinstance(tensor, torch.Tensor):
                    ptrs[id_tensor_storage(tensor)].append(name)
                else:
                    # In the non-tensor case, fall back to the pointer of the object itself
                    ptrs[id(tensor)].append(name)
2352
2353
2354
2355
2356
2357
2358

            # These are all the pointers of shared tensors.
            shared_ptrs = {ptr: names for ptr, names in ptrs.items() if len(names) > 1}
            warn_names = set()
            for names in shared_ptrs.values():
                # Removing the keys which are declared as known duplicates on
                # load. This allows to make sure the name which is kept is consistent.
Sylvain Gugger's avatar
Sylvain Gugger committed
2359
                if self._tied_weights_keys is not None:
2360
2361
                    found = 0
                    for name in sorted(names):
Sylvain Gugger's avatar
Sylvain Gugger committed
2362
                        matches_pattern = any(re.search(pat, name) for pat in self._tied_weights_keys)
2363
                        if matches_pattern and name in state_dict:
2364
2365
2366
                            found += 1
                            if found < len(names):
                                del state_dict[name]
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383

                # When not all duplicates have been cleaned, still remove those keys, but put a clear warning.
                # If the link between tensors was done at runtime then `from_pretrained` will not get
                # the key back leading to random tensor. A proper warning will be shown
                # during reload (if applicable), but since the file is not necessarily compatible with
                # the config, better show a proper warning.
                found = 0
                for name in names:
                    if name in state_dict:
                        found += 1
                        if found > 1:
                            del state_dict[name]
                            warn_names.add(name)
            if len(warn_names) > 0:
                logger.warning_once(
                    f"Removed shared tensor {warn_names} while saving. This should be OK, but check by verifying that you don't receive any warning while reloading",
                )
2384

Sylvain Gugger's avatar
Sylvain Gugger committed
2385
        # Shard the model if it is too big.
2386
2387
2388
2389
2390
        if not _hf_peft_config_loaded:
            weights_name = SAFE_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME
            weights_name = _add_variant(weights_name, variant)
        else:
            weights_name = ADAPTER_SAFE_WEIGHTS_NAME if safe_serialization else ADAPTER_WEIGHTS_NAME
2391

2392
        shards, index = shard_checkpoint(state_dict, max_shard_size=max_shard_size, weights_name=weights_name)
Sylvain Gugger's avatar
Sylvain Gugger committed
2393
2394
2395
2396

        # Clean the folder from a previous save
        for filename in os.listdir(save_directory):
            full_filename = os.path.join(save_directory, filename)
2397
2398
            # If we have a shard file that is not going to be replaced, we delete it, but only from the main process
            # in distributed settings to avoid race conditions.
2399
            weights_no_suffix = weights_name.replace(".bin", "").replace(".safetensors", "")
2400
2401
2402

            # make sure that file to be deleted matches format of sharded file, e.g. pytorch_model-00001-of-00005
            filename_no_suffix = filename.replace(".bin", "").replace(".safetensors", "")
2403
            reg = re.compile(r"(.*?)-\d{5}-of-\d{5}")
2404

2405
            if (
2406
                filename.startswith(weights_no_suffix)
2407
2408
2409
                and os.path.isfile(full_filename)
                and filename not in shards.keys()
                and is_main_process
2410
                and reg.fullmatch(filename_no_suffix) is not None
2411
            ):
Sylvain Gugger's avatar
Sylvain Gugger committed
2412
                os.remove(full_filename)
2413

Sylvain Gugger's avatar
Sylvain Gugger committed
2414
2415
        # Save the model
        for shard_file, shard in shards.items():
2416
2417
2418
2419
2420
2421
            if safe_serialization:
                # At some point we will need to deal better with save_function (used for TPU and other distributed
                # joyfulness), but for now this enough.
                safe_save_file(shard, os.path.join(save_directory, shard_file), metadata={"format": "pt"})
            else:
                save_function(shard, os.path.join(save_directory, shard_file))
Sylvain Gugger's avatar
Sylvain Gugger committed
2422
2423

        if index is None:
2424
2425
            weights_file_name = SAFE_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME
            path_to_weights = os.path.join(save_directory, _add_variant(weights_file_name, variant))
2426
            logger.info(f"Model weights saved in {path_to_weights}")
Sylvain Gugger's avatar
Sylvain Gugger committed
2427
        else:
2428
            save_index_file = SAFE_WEIGHTS_INDEX_NAME if safe_serialization else WEIGHTS_INDEX_NAME
2429
            save_index_file = os.path.join(save_directory, _add_variant(save_index_file, variant))
Sylvain Gugger's avatar
Sylvain Gugger committed
2430
2431
2432
2433
2434
2435
2436
2437
2438
            # Save the index as well
            with open(save_index_file, "w", encoding="utf-8") as f:
                content = json.dumps(index, indent=2, sort_keys=True) + "\n"
                f.write(content)
            logger.info(
                f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be "
                f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the "
                f"index located at {save_index_file}."
            )
2439

Sylvain Gugger's avatar
Sylvain Gugger committed
2440
        if push_to_hub:
2441
            self._upload_modified_files(
2442
2443
2444
2445
                save_directory,
                repo_id,
                files_timestamps,
                commit_message=commit_message,
2446
                token=token,
2447
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
2448

2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
    def get_memory_footprint(self, return_buffers=True):
        r"""
        Get the memory footprint of a model. This will return the memory footprint of the current model in bytes.
        Useful to benchmark the memory footprint of the current model and design some tests. Solution inspired from the
        PyTorch discussions: https://discuss.pytorch.org/t/gpu-memory-that-model-uses/56822/2

        Arguments:
            return_buffers (`bool`, *optional*, defaults to `True`):
                Whether to return the size of the buffer tensors in the computation of the memory footprint. Buffers
                are tensors that do not require gradients and not registered as parameters. E.g. mean and std in batch
                norm layers. Please see: https://discuss.pytorch.org/t/what-pytorch-means-by-buffers/120266/2
        """
        mem = sum([param.nelement() * param.element_size() for param in self.parameters()])
        if return_buffers:
            mem_bufs = sum([buf.nelement() * buf.element_size() for buf in self.buffers()])
            mem = mem + mem_bufs
        return mem

2467
    @wraps(torch.nn.Module.cuda)
2468
2469
    def cuda(self, *args, **kwargs):
        # Checks if the model has been loaded in 8-bit
Marc Sun's avatar
Marc Sun committed
2470
        if getattr(self, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES:
2471
2472
2473
2474
2475
2476
2477
            raise ValueError(
                "Calling `cuda()` is not supported for `4-bit` or `8-bit` quantized models. Please use the model as it is, since the"
                " model has already been set to the correct devices and casted to the correct `dtype`."
            )
        else:
            return super().cuda(*args, **kwargs)

2478
    @wraps(torch.nn.Module.to)
2479
2480
    def to(self, *args, **kwargs):
        # Checks if the model has been loaded in 8-bit
Marc Sun's avatar
Marc Sun committed
2481
        if getattr(self, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES:
2482
            raise ValueError(
Marc Sun's avatar
Marc Sun committed
2483
                "`.to` is not supported for `4-bit` or `8-bit` bitsandbytes models. Please use the model as it is, since the"
2484
2485
                " model has already been set to the correct devices and casted to the correct `dtype`."
            )
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
        elif getattr(self, "quantization_method", None) == QuantizationMethod.GPTQ:
            # For GPTQ models, we prevent users from casting the model to another dytpe to restrict unwanted behaviours.
            # the correct API should be to load the model with the desired dtype directly through `from_pretrained`.
            dtype_present_in_args = False

            if "dtype" not in kwargs:
                for arg in args:
                    if isinstance(arg, torch.dtype):
                        dtype_present_in_args = True
                        break
            else:
                dtype_present_in_args = True

            if dtype_present_in_args:
                raise ValueError(
                    "You cannot cast a GPTQ model in a new `dtype`. Make sure to load the model using `from_pretrained` using the desired"
                    " `dtype` by passing the correct `torch_dtype` argument."
                )
        return super().to(*args, **kwargs)
2505
2506

    def half(self, *args):
Marc Sun's avatar
Marc Sun committed
2507
        # Checks if the model is quantized
2508
        if getattr(self, "is_quantized", False):
2509
            raise ValueError(
Marc Sun's avatar
Marc Sun committed
2510
                "`.half()` is not supported for quantized model. Please use the model as it is, since the"
2511
2512
2513
2514
2515
2516
                " model has already been casted to the correct `dtype`."
            )
        else:
            return super().half(*args)

    def float(self, *args):
Marc Sun's avatar
Marc Sun committed
2517
        # Checks if the model is quantized
2518
        if getattr(self, "is_quantized", False):
2519
            raise ValueError(
Marc Sun's avatar
Marc Sun committed
2520
                "`.float()` is not supported for quantized model. Please use the model as it is, since the"
2521
2522
2523
2524
2525
                " model has already been casted to the correct `dtype`."
            )
        else:
            return super().float(*args)

2526
    @classmethod
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
    def from_pretrained(
        cls,
        pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
        *model_args,
        config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
        cache_dir: Optional[Union[str, os.PathLike]] = None,
        ignore_mismatched_sizes: bool = False,
        force_download: bool = False,
        local_files_only: bool = False,
        token: Optional[Union[str, bool]] = None,
        revision: str = "main",
        use_safetensors: bool = None,
        **kwargs,
    ):
2541
2542
        r"""
        Instantiate a pretrained pytorch model from a pre-trained model configuration.
2543

Sylvain Gugger's avatar
Sylvain Gugger committed
2544
2545
        The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
        the model, you should first set it back in training mode with `model.train()`.
2546

2547
        The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
2548
2549
        pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
        task.
2550

2551
        The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
2552
        weights are discarded.
2553

2554
        Parameters:
2555
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
2556
2557
                Can be either:

2558
                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
Sylvain Gugger's avatar
Sylvain Gugger committed
2559
2560
                      Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a
                      user or organization name, like `dbmdz/bert-base-german-cased`.
2561
2562
2563
                    - A path to a *directory* containing model weights saved using
                      [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
                    - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
Sylvain Gugger's avatar
Sylvain Gugger committed
2564
2565
2566
                      this case, `from_tf` should be set to `True` and a configuration object should be provided as
                      `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
                      PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
2567
                    - A path or url to a model folder containing a *flax checkpoint file* in *.msgpack* format (e.g,
Sylvain Gugger's avatar
Sylvain Gugger committed
2568
2569
                      `./flax_model/` containing `flax_model.msgpack`). In this case, `from_flax` should be set to
                      `True`.
2570
2571
2572
2573
2574
                    - `None` if you are both providing the configuration and state dictionary (resp. with keyword
                      arguments `config` and `state_dict`).
            model_args (sequence of positional arguments, *optional*):
                All remaining positional arguments will be passed to the underlying model's `__init__` method.
            config (`Union[PretrainedConfig, str, os.PathLike]`, *optional*):
2575
2576
                Can be either:

2577
2578
                    - an instance of a class derived from [`PretrainedConfig`],
                    - a string or path valid as input to [`~PretrainedConfig.from_pretrained`].
2579

2580
                Configuration for the model to use instead of an automatically loaded configuration. Configuration can
2581
2582
                be automatically loaded when:

2583
                    - The model is a model provided by the library (loaded with the *model id* string of a pretrained
2584
                      model).
Sylvain Gugger's avatar
Sylvain Gugger committed
2585
2586
                    - The model was saved using [`~PreTrainedModel.save_pretrained`] and is reloaded by supplying the
                      save directory.
2587
2588
2589
                    - The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a
                      configuration JSON file named *config.json* is found in the directory.
            state_dict (`Dict[str, torch.Tensor]`, *optional*):
2590
2591
2592
                A state dictionary to use instead of a state dictionary loaded from saved weights file.

                This option can be used if you want to create a model from a pretrained configuration but load your own
Sylvain Gugger's avatar
Sylvain Gugger committed
2593
                weights. In this case though, you should check if using [`~PreTrainedModel.save_pretrained`] and
2594
2595
                [`~PreTrainedModel.from_pretrained`] is not a simpler option.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
2596
2597
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
2598
            from_tf (`bool`, *optional*, defaults to `False`):
2599
                Load the model weights from a TensorFlow checkpoint save file (see docstring of
2600
2601
                `pretrained_model_name_or_path` argument).
            from_flax (`bool`, *optional*, defaults to `False`):
2602
                Load the model weights from a Flax checkpoint save file (see docstring of
2603
2604
                `pretrained_model_name_or_path` argument).
            ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`):
2605
2606
2607
                Whether or not to raise an error if some of the weights from the checkpoint do not have the same size
                as the weights of the model (if for instance, you are instantiating a model with 10 labels from a
                checkpoint with 3 labels).
2608
            force_download (`bool`, *optional*, defaults to `False`):
2609
2610
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
2611
            resume_download (`bool`, *optional*, defaults to `False`):
2612
2613
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
2614
            proxies (`Dict[str, str]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2615
2616
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
2617
            output_loading_info(`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2618
                Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
2619
            local_files_only(`bool`, *optional*, defaults to `False`):
Stas Bekman's avatar
Stas Bekman committed
2620
                Whether or not to only look at local files (i.e., do not try to download the model).
2621
            token (`str` or `bool`, *optional*):
2622
2623
                The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
                the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
2624
            revision (`str`, *optional*, defaults to `"main"`):
Julien Chaumond's avatar
Julien Chaumond committed
2625
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
2626
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
Julien Chaumond's avatar
Julien Chaumond committed
2627
                identifier allowed by git.
2628
2629
2630
2631
2632
2633
2634

                <Tip>

                To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>".

                </Tip>

2635
            mirror (`str`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2636
2637
2638
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information.
2639
            _fast_init(`bool`, *optional*, defaults to `True`):
2640
2641
                Whether or not to disable fast initialization.

2642
2643
                <Tip warning={true}>

Sylvain Gugger's avatar
Sylvain Gugger committed
2644
2645
2646
                One should only disable *_fast_init* to ensure backwards compatibility with `transformers.__version__ <
                4.6.0` for seeded model initialization. This argument will be removed at the next major version. See
                [pull request 11471](https://github.com/huggingface/transformers/pull/11471) for more information.
2647

2648
                </Tip>
2649

2650
2651
2652
            > Parameters for big model inference

            low_cpu_mem_usage(`bool`, *optional*):
2653
2654
2655
                Tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                This is an experimental feature and a subject to change at any moment.
            torch_dtype (`str` or `torch.dtype`, *optional*):
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
                Override the default `torch.dtype` and load the model under a specific `dtype`. The different options
                are:

                1. `torch.float16` or `torch.bfloat16` or `torch.float`: load in a specified
                  `dtype`, ignoring the model's `config.torch_dtype` if one exists. If not specified
                  - the model will get loaded in `torch.float` (fp32).

                2. `"auto"` - A `torch_dtype` entry in the `config.json` file of the model will be
                  attempted to be used. If this entry isn't found then next check the `dtype` of the first weight in
                  the checkpoint that's of a floating point type and use that as `dtype`. This will load the model
                  using the `dtype` it was saved in at the end of the training. It can't be used as an indicator of how
                  the model was trained. Since it could be trained in one of half precision dtypes, but saved in fp32.

                <Tip>

                For some models the `dtype` they were trained in is unknown - you may try to check the model's paper or
                reach out to the authors and ask them to add this information to the model's card and to insert the
                `torch_dtype` entry in `config.json` on the hub.

                </Tip>

2677
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]` or `int` or `torch.device`, *optional*):
2678
2679
                A map that specifies where each submodule should go. It doesn't need to be refined to each
                parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the
2680
2681
2682
                same device. If we only pass the device (*e.g.*, `"cpu"`, `"cuda:1"`, `"mps"`, or a GPU ordinal rank
                like `1`) on which the model will be allocated, the device map will map the entire model to this
                device. Passing `device_map = 0` means put the whole model on GPU 0.
2683

2684
2685
                To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For
                more information about each option see [designing a device
Patrick von Platen's avatar
Patrick von Platen committed
2686
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
2687
2688
2689
            max_memory (`Dict`, *optional*):
                A dictionary device identifier to maximum memory. Will default to the maximum memory available for each
                GPU and the available CPU RAM if unset.
2690
2691
            offload_folder (`str` or `os.PathLike`, *optional*):
                If the `device_map` contains any value `"disk"`, the folder where we will offload weights.
2692
            offload_state_dict (`bool`, *optional*):
2693
                If `True`, will temporarily offload the CPU state dict to the hard drive to avoid getting out of CPU
2694
2695
                RAM if the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to
                `True` when there is some disk offload.
2696
2697
            load_in_8bit (`bool`, *optional*, defaults to `False`):
                If `True`, will convert the loaded model into mixed-8bit quantized model. To use this feature please
2698
2699
2700
2701
                install `bitsandbytes` (`pip install -U bitsandbytes`).
            load_in_4bit (`bool`, *optional*, defaults to `False`):
                If `True`, will convert the loaded model into 4bit precision quantized model. To use this feature
                install the latest version of `bitsandbytes` (`pip install -U bitsandbytes`).
Marc Sun's avatar
Marc Sun committed
2702
2703
2704
            quantization_config (`Union[QuantizationConfigMixin,Dict]`, *optional*):
                A dictionary of configuration parameters or a QuantizationConfigMixin object for quantization (e.g
                bitsandbytes, gptq)
2705
2706
2707
            subfolder (`str`, *optional*, defaults to `""`):
                In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
                specify the folder name here.
2708
2709
2710
            variant (`str`, *optional*):
                If specified load weights from `variant` filename, *e.g.* pytorch_model.<variant>.bin. `variant` is
                ignored when using `from_tf` or `from_flax`.
2711
2712
2713
            use_safetensors (`bool`, *optional*, defaults to `None`):
                Whether or not to use `safetensors` checkpoints. Defaults to `None`. If not specified and `safetensors`
                is not installed, it will be set to `False`.
2714

2715
            kwargs (remaining dictionary of keyword arguments, *optional*):
2716
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
2717
                `output_attentions=True`). Behaves differently depending on whether a `config` is provided or
2718
2719
                automatically loaded:

2720
2721
                    - If a configuration is provided with `config`, `**kwargs` will be directly passed to the
                      underlying model's `__init__` method (we assume all relevant updates to the configuration have
2722
                      already been done)
2723
                    - If a configuration is not provided, `kwargs` will be first passed to the configuration class
Sylvain Gugger's avatar
Sylvain Gugger committed
2724
2725
2726
2727
                      initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that
                      corresponds to a configuration attribute will be used to override said attribute with the
                      supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute
                      will be passed to the underlying model's `__init__` function.
2728
2729
2730

        <Tip>

Sylvain Gugger's avatar
Sylvain Gugger committed
2731
2732
        Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to
        use this method in a firewalled environment.
2733
2734
2735
2736
2737
2738
2739

        </Tip>

        Examples:

        ```python
        >>> from transformers import BertConfig, BertModel
Sylvain Gugger's avatar
Sylvain Gugger committed
2740

2741
        >>> # Download model and configuration from huggingface.co and cache.
Sylvain Gugger's avatar
Sylvain Gugger committed
2742
        >>> model = BertModel.from_pretrained("bert-base-uncased")
2743
        >>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable).
Sylvain Gugger's avatar
Sylvain Gugger committed
2744
        >>> model = BertModel.from_pretrained("./test/saved_model/")
2745
        >>> # Update configuration during loading.
Sylvain Gugger's avatar
Sylvain Gugger committed
2746
        >>> model = BertModel.from_pretrained("bert-base-uncased", output_attentions=True)
2747
2748
        >>> assert model.config.output_attentions == True
        >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable).
Sylvain Gugger's avatar
Sylvain Gugger committed
2749
2750
        >>> config = BertConfig.from_json_file("./tf_model/my_tf_model_config.json")
        >>> model = BertModel.from_pretrained("./tf_model/my_tf_checkpoint.ckpt.index", from_tf=True, config=config)
2751
        >>> # Loading from a Flax checkpoint file instead of a PyTorch model (slower)
Sylvain Gugger's avatar
Sylvain Gugger committed
2752
        >>> model = BertModel.from_pretrained("bert-base-uncased", from_flax=True)
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
        ```

        * `low_cpu_mem_usage` algorithm:

        This is an experimental function that loads the model using ~1x model size CPU memory

        Here is how it works:

        1. save which state_dict keys we have
        2. drop state_dict before the model is created, since the latter takes 1x model size CPU memory
        3. after the model has been instantiated switch to the meta device all params/buffers that
        are going to be replaced from the loaded state_dict
        4. load state_dict 2nd time
        5. replace the params/buffers from the state_dict

        Currently, it can't handle deepspeed ZeRO stage 3 and ignores loading errors

        """
2771
2772
        state_dict = kwargs.pop("state_dict", None)
        from_tf = kwargs.pop("from_tf", False)
2773
        from_flax = kwargs.pop("from_flax", False)
2774
2775
2776
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        output_loading_info = kwargs.pop("output_loading_info", False)
2777
        use_auth_token = kwargs.pop("use_auth_token", None)
2778
        trust_remote_code = kwargs.pop("trust_remote_code", None)
Sylvain Gugger's avatar
Sylvain Gugger committed
2779
        _ = kwargs.pop("mirror", None)
2780
2781
        from_pipeline = kwargs.pop("_from_pipeline", None)
        from_auto_class = kwargs.pop("_from_auto", False)
2782
        _fast_init = kwargs.pop("_fast_init", True)
2783
        torch_dtype = kwargs.pop("torch_dtype", None)
2784
2785
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", None)
        device_map = kwargs.pop("device_map", None)
2786
        max_memory = kwargs.pop("max_memory", None)
2787
        offload_folder = kwargs.pop("offload_folder", None)
2788
2789
        offload_state_dict = kwargs.pop("offload_state_dict", False)
        load_in_8bit = kwargs.pop("load_in_8bit", False)
2790
        load_in_4bit = kwargs.pop("load_in_4bit", False)
2791
        quantization_config = kwargs.pop("quantization_config", None)
2792
        subfolder = kwargs.pop("subfolder", "")
2793
        commit_hash = kwargs.pop("_commit_hash", None)
2794
        variant = kwargs.pop("variant", None)
2795
        adapter_kwargs = kwargs.pop("adapter_kwargs", {})
2796
        adapter_name = kwargs.pop("adapter_name", "default")
2797
        use_flash_attention_2 = kwargs.pop("use_flash_attention_2", False)
2798

2799
2800
2801
        if is_fsdp_enabled():
            low_cpu_mem_usage = True

2802
2803
        if use_auth_token is not None:
            warnings.warn(
2804
2805
                "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
                FutureWarning,
2806
2807
2808
2809
2810
2811
2812
            )
            if token is not None:
                raise ValueError(
                    "`token` and `use_auth_token` are both specified. Please set only the argument `token`."
                )
            token = use_auth_token

2813
        if token is not None and adapter_kwargs is not None and "token" not in adapter_kwargs:
2814
2815
            adapter_kwargs["token"] = token

2816
2817
        if use_safetensors is None and not is_safetensors_available():
            use_safetensors = False
2818

2819
        if is_bitsandbytes_available():
2820
            is_4bit_serializable = version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse("0.41.3")
2821
            is_8bit_serializable = version.parse(importlib.metadata.version("bitsandbytes")) > version.parse("0.37.2")
2822
        else:
2823
            is_4bit_serializable = False
2824
2825
            is_8bit_serializable = False

2826
2827
2828
2829
2830
        if trust_remote_code is True:
            logger.warning(
                "The argument `trust_remote_code` is to be used with Auto classes. It has no effect here and is"
                " ignored."
            )
2831

2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
        if commit_hash is None:
            if not isinstance(config, PretrainedConfig):
                # We make a call to the config file first (which may be absent) to get the commit hash as soon as possible
                resolved_config_file = cached_file(
                    pretrained_model_name_or_path,
                    CONFIG_NAME,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    token=token,
                    revision=revision,
                    subfolder=subfolder,
                    _raise_exceptions_for_missing_entries=False,
                    _raise_exceptions_for_connection_errors=False,
                )
                commit_hash = extract_commit_hash(resolved_config_file, commit_hash)
            else:
                commit_hash = getattr(config, "_commit_hash", None)

2853
        if is_peft_available():
2854
2855
            _adapter_model_path = adapter_kwargs.pop("_adapter_model_path", None)

2856
2857
2858
2859
2860
2861
2862
2863
2864
            if _adapter_model_path is None:
                _adapter_model_path = find_adapter_config_file(
                    pretrained_model_name_or_path,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    _commit_hash=commit_hash,
2865
                    **adapter_kwargs,
2866
2867
                )
            if _adapter_model_path is not None and os.path.isfile(_adapter_model_path):
2868
                with open(_adapter_model_path, "r", encoding="utf-8") as f:
2869
                    _adapter_model_path = pretrained_model_name_or_path
2870
                    pretrained_model_name_or_path = json.load(f)["base_model_name_or_path"]
2871
2872
        else:
            _adapter_model_path = None
2873

2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
        # change device_map into a map if we passed an int, a str or a torch.device
        if isinstance(device_map, torch.device):
            device_map = {"": device_map}
        elif isinstance(device_map, str) and device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
            try:
                device_map = {"": torch.device(device_map)}
            except RuntimeError:
                raise ValueError(
                    "When passing device_map as a string, the value needs to be a device name (e.g. cpu, cuda:0) or "
                    f"'auto', 'balanced', 'balanced_low_0', 'sequential' but found {device_map}."
                )
        elif isinstance(device_map, int):
            if device_map < 0:
                raise ValueError(
                    "You can't pass device_map as a negative int. If you want to put the model on the cpu, pass device_map = 'cpu' "
                )
            else:
                device_map = {"": device_map}

2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
        if device_map is not None:
            if low_cpu_mem_usage is None:
                low_cpu_mem_usage = True
            elif not low_cpu_mem_usage:
                raise ValueError("Passing along a `device_map` requires `low_cpu_mem_usage=True`")

        if low_cpu_mem_usage:
            if is_deepspeed_zero3_enabled():
                raise ValueError(
                    "DeepSpeed Zero-3 is not compatible with `low_cpu_mem_usage=True` or with passing a `device_map`."
                )
            elif not is_accelerate_available():
                raise ImportError(
                    "Using `low_cpu_mem_usage=True` or a `device_map` requires Accelerate: `pip install accelerate`"
                )
2908

Marc Sun's avatar
Marc Sun committed
2909
        quantization_method_from_args = None
2910

Marc Sun's avatar
Marc Sun committed
2911
2912
2913
2914
2915
2916
2917
        if quantization_config is not None:
            quantization_method_from_args = getattr(
                quantization_config, "quant_method", QuantizationMethod.BITS_AND_BYTES
            )

        if quantization_config is None and (load_in_8bit or load_in_4bit):
            quantization_method_from_args = QuantizationMethod.BITS_AND_BYTES
2918
            quantization_config, kwargs = BitsAndBytesConfig.from_dict(
2919
2920
2921
                config_dict={"load_in_8bit": load_in_8bit, "load_in_4bit": load_in_4bit},
                return_unused_kwargs=True,
                **kwargs,
2922
            )
Marc Sun's avatar
Marc Sun committed
2923
        elif quantization_method_from_args == QuantizationMethod.BITS_AND_BYTES:
2924
            load_in_8bit = quantization_config.load_in_8bit
2925
            load_in_4bit = quantization_config.load_in_4bit
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936

            quantization_config_kwargs = {
                k: v for k, v in kwargs.items() if k in inspect.signature(BitsAndBytesConfig).parameters
            }

            if len(quantization_config_kwargs) > 0:
                raise ValueError(
                    "You can't pass `load_in_8bit` or any other `BitsAndBytesConfig` argument as a kwarg when passing "
                    "`quantization_config` argument at the same time."
                )

2937
        if load_in_8bit or load_in_4bit:
2938
2939
            if not torch.cuda.is_available():
                raise RuntimeError("No GPU found. A GPU is needed for quantization.")
2940
2941
2942
2943
            if not (is_accelerate_available() and is_bitsandbytes_available()):
                raise ImportError(
                    "Using `load_in_8bit=True` requires Accelerate: `pip install accelerate` and the latest version of"
                    " bitsandbytes `pip install -i https://test.pypi.org/simple/ bitsandbytes` or"
2944
                    " `pip install bitsandbytes`."
2945
                )
2946
2947

            if torch_dtype is None:
2948
                # We force the `dtype` to be float16, this is a requirement from `bitsandbytes`
2949
                logger.info(
2950
                    f"Overriding torch_dtype={torch_dtype} with `torch_dtype=torch.float16` due to "
2951
                    "requirements of `bitsandbytes` to enable model loading in 8-bit or 4-bit. "
2952
2953
                    "Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass"
                    " torch_dtype=torch.float16 to remove this warning."
2954
                )
2955
                torch_dtype = torch.float16
2956

2957
            if device_map is None:
2958
                device_map = {"": torch.cuda.current_device()}
2959
                logger.info(
2960
2961
                    "The device_map was not initialized. "
                    "Setting device_map to {'':torch.cuda.current_device()}. "
2962
                    "If you want to use the model for inference, please set device_map ='auto' "
2963
                )
2964
2965
2966
                if low_cpu_mem_usage is None:
                    low_cpu_mem_usage = True

2967
2968
            if from_tf or from_flax:
                raise ValueError(
2969
                    "Converting into 4-bit or 8-bit weights from tf/flax weights is currently not supported, please make"
2970
2971
2972
                    " sure the weights are in PyTorch format."
                )

2973
2974
2975
        user_agent = {"file_type": "model", "framework": "pytorch", "from_auto_class": from_auto_class}
        if from_pipeline is not None:
            user_agent["using_pipeline"] = from_pipeline
thomwolf's avatar
thomwolf committed
2976

2977
2978
2979
2980
        if is_offline_mode() and not local_files_only:
            logger.info("Offline mode: forcing local_files_only=True")
            local_files_only = True

2981
2982
2983
        # Load config if we don't provide a configuration
        if not isinstance(config, PretrainedConfig):
            config_path = config if config is not None else pretrained_model_name_or_path
2984
            config, model_kwargs = cls.config_class.from_pretrained(
2985
2986
2987
                config_path,
                cache_dir=cache_dir,
                return_unused_kwargs=True,
2988
                force_download=force_download,
2989
                resume_download=resume_download,
2990
                proxies=proxies,
2991
                local_files_only=local_files_only,
2992
                token=token,
Julien Chaumond's avatar
Julien Chaumond committed
2993
                revision=revision,
2994
                subfolder=subfolder,
2995
2996
                _from_auto=from_auto_class,
                _from_pipeline=from_pipeline,
2997
                **kwargs,
2998
2999
            )
        else:
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
            # In case one passes a config to `from_pretrained` + "attn_implementation"
            # override the `_attn_implementation` attribute to `attn_implementation` of the kwargs
            # Please see: https://github.com/huggingface/transformers/issues/28038

            # Overwrite `config._attn_implementation` by the one from the kwargs --> in auto-factory
            # we pop attn_implementation from the kwargs but this handles the case where users
            # passes manually the config to `from_pretrained`.
            config = copy.deepcopy(config)

            kwarg_attn_imp = kwargs.pop("attn_implementation", None)
            if kwarg_attn_imp is not None and config._attn_implementation != kwarg_attn_imp:
                config._attn_implementation = kwarg_attn_imp
3012
            model_kwargs = kwargs
3013

Marc Sun's avatar
Marc Sun committed
3014
3015
3016
3017
3018
3019
        quantizer = None
        quantization_method_from_config = None
        if hasattr(config, "quantization_config"):
            quantization_method_from_config = config.quantization_config.get(
                "quant_method", QuantizationMethod.BITS_AND_BYTES
            )
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030

        if (
            quantization_method_from_args is not None
            and quantization_method_from_args == QuantizationMethod.AWQ
            and quantization_method_from_config is None
        ):
            raise ValueError(
                "You cannot quantize with AWQ a non-quantized model using transformers, please refer to the quantization documentation"
                " to read more about how to quantize models with AWQ algorithm https://huggingface.co/docs/transformers/main_classes/quantization"
            )

3031
3032
3033
3034
3035
3036
        if quantization_method_from_config is not None and quantization_method_from_args is not None:
            if quantization_method_from_config != quantization_method_from_args:
                raise ValueError(
                    f"The model is already quantized with {quantization_method_from_config}. "
                    f"You can't quantize it again with {quantization_method_from_args}"
                )
3037
3038
3039
3040
3041

        if (
            quantization_method_from_config in (QuantizationMethod.GPTQ, QuantizationMethod.AWQ)
            and quantization_method_from_args is not None
        ):
Marc Sun's avatar
Marc Sun committed
3042
3043
3044
3045
3046
            loading_attr_dict = quantization_config.get_loading_attributes()
            for attr, val in loading_attr_dict.items():
                config.quantization_config[attr] = val
            quantization_method_from_args = None
            logger.warning(
3047
3048
3049
                f"You passed `quantization_config` to `from_pretrained` but the model you're loading already has a "
                f"`quantization_config` attribute and has already quantized weights. However, loading attributes"
                f" (e.g. {list(loading_attr_dict.keys())}) will be overwritten with the one you passed to `from_pretrained`. The rest will be ignored."
Marc Sun's avatar
Marc Sun committed
3050
3051
3052
3053
3054
            )
        if (
            quantization_method_from_args == QuantizationMethod.GPTQ
            or quantization_method_from_config == QuantizationMethod.GPTQ
        ):
3055
3056
            gptq_supports_cpu = version.parse(importlib.metadata.version("auto-gptq")) > version.parse("0.4.2")
            if not gptq_supports_cpu and not torch.cuda.is_available():
Marc Sun's avatar
Marc Sun committed
3057
3058
3059
                raise RuntimeError("GPU is required to quantize or run quantize model.")
            elif not (is_optimum_available() and is_auto_gptq_available()):
                raise ImportError(
3060
3061
3062
3063
3064
                    "Loading a GPTQ quantized model requires optimum (`pip install optimum`) and auto-gptq library (`pip install auto-gptq`)"
                )
            elif version.parse(importlib.metadata.version("auto_gptq")) < version.parse("0.4.2"):
                raise ImportError(
                    "You need a version of auto_gptq >= 0.4.2 to use GPTQ: `pip install --upgrade auto-gptq`"
Marc Sun's avatar
Marc Sun committed
3065
3066
3067
3068
3069
3070
3071
                )
            else:
                # Need to protect the import
                from optimum.gptq import GPTQQuantizer
            if quantization_method_from_config == QuantizationMethod.GPTQ:
                quantization_config = GPTQConfig.from_dict(config.quantization_config)
                config.quantization_config = quantization_config
3072
3073
3074
3075
            if torch_dtype is None:
                torch_dtype = torch.float16
            else:
                logger.info("We suggest you to set `torch_dtype=torch.float16` for better efficiency with GPTQ.")
Marc Sun's avatar
Marc Sun committed
3076
            quantizer = GPTQQuantizer.from_dict(quantization_config.to_dict_optimum())
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
        elif quantization_method_from_config == QuantizationMethod.AWQ:
            if not torch.cuda.is_available():
                raise RuntimeError("GPU is required to run AWQ quantized model.")

            if not is_auto_awq_available():
                raise ImportError("Loading an AWQ quantized model requires auto-awq library (`pip install autoawq`)")

            if not is_accelerate_available():
                raise ImportError("Loading an AWQ quantized model requires accelerate (`pip install accelerate`)")

            if device_map is None:
                logger.warning(
                    "You have loaded an AWQ model on CPU and have a CUDA device available, make sure to set "
                    "your model on a GPU device in order to run your model."
                )
            elif device_map is not None:
                if isinstance(device_map, dict) and ("cpu" in device_map.values() or "disk" in device_map.values()):
                    raise ValueError(
                        "You are attempting to load an AWQ model with a device_map that contains a CPU or disk device."
                        " This is not supported. Please remove the CPU or disk device from the device_map."
                    )

            if torch_dtype is None:
                torch_dtype = torch.float16
            else:
                logger.info("We suggest you to set `torch_dtype=torch.float16` for better efficiency with AWQ.")

            # Force-set to `True` for more mem efficiency
            if low_cpu_mem_usage is None:
                low_cpu_mem_usage = True
Marc Sun's avatar
Marc Sun committed
3107

3108
3109
        if quantization_method_from_args == QuantizationMethod.BITS_AND_BYTES and (
            (is_8bit_serializable and load_in_8bit) or (is_4bit_serializable and load_in_4bit)
Marc Sun's avatar
Marc Sun committed
3110
3111
        ):
            if quantization_method_from_config == QuantizationMethod.BITS_AND_BYTES:
3112
3113
3114
3115
3116
3117
                logger.warning(
                    "You passed `quantization_config` to `from_pretrained` but the model you're loading already has a"
                    " `quantization_config` attribute. The `quantization_config` attribute will be overwritten with the"
                    " one you passed to `from_pretrained`."
                )
            config.quantization_config = quantization_config
Marc Sun's avatar
Marc Sun committed
3118
        elif (
3119
3120
            (is_8bit_serializable or is_4bit_serializable)
            and not (load_in_8bit or load_in_4bit)
Marc Sun's avatar
Marc Sun committed
3121
3122
            and quantization_method_from_config == QuantizationMethod.BITS_AND_BYTES
        ):
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
            quantization_config = config.quantization_config
            if isinstance(quantization_config, dict):
                quantization_config = BitsAndBytesConfig.from_dict(quantization_config, return_unused_kwargs=False)
            elif isinstance(quantization_config, BitsAndBytesConfig):
                pass
            else:
                raise ValueError(
                    f"Invalid type for `quantization_config`: {type(quantization_config)}. Should be a `dict` or a"
                    " `BitsAndBytesConfig` instance."
                )

            load_in_8bit = quantization_config.load_in_8bit
3135
            load_in_4bit = quantization_config.load_in_4bit
3136

3137
            if load_in_8bit or load_in_4bit:
3138
3139
                if torch_dtype is None:
                    torch_dtype = torch.float16
3140
                if device_map is None:
3141
3142
3143
3144
3145
                    if torch.cuda.is_available():
                        device_map = {"": torch.cuda.current_device()}
                    else:
                        raise RuntimeError("No GPU found. A GPU is needed for quantization.")
                    logger.info(
3146
3147
                        "The device_map was not initialized. "
                        "Setting device_map to {'':torch.cuda.current_device()}. "
3148
3149
3150
3151
                        "If you want to use the model for inference, please set device_map ='auto' "
                    )
                    if low_cpu_mem_usage is None:
                        low_cpu_mem_usage = True
3152

Marc Sun's avatar
Marc Sun committed
3153
3154
        elif (
            not is_8bit_serializable
3155
            and not (load_in_8bit or load_in_4bit)
Marc Sun's avatar
Marc Sun committed
3156
3157
            and quantization_method_from_config == QuantizationMethod.BITS_AND_BYTES
        ):
3158
3159
            logger.warning(
                "Detected the presence of a `quantization_config` attribute in the model's configuration but you don't have the correct"
3160
                " `bitsandbytes` version to support 4 and 8 bit serialization. Please install the latest version of `bitsandbytes` with "
3161
3162
3163
                " `pip install --upgrade bitsandbytes`."
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
3164
3165
3166
3167
        # This variable will flag if we're loading a sharded checkpoint. In this case the archive file is just the
        # index of the files.
        is_sharded = False
        sharded_metadata = None
thomwolf's avatar
thomwolf committed
3168
        # Load model
Yih-Dar's avatar
Yih-Dar committed
3169
3170
        loading_info = None

3171
3172
3173
3174
        # Keep in fp32 modules
        keep_in_fp32_modules = None
        use_keep_in_fp32_modules = False

thomwolf's avatar
thomwolf committed
3175
        if pretrained_model_name_or_path is not None:
3176
            pretrained_model_name_or_path = str(pretrained_model_name_or_path)
3177
3178
            is_local = os.path.isdir(pretrained_model_name_or_path)
            if is_local:
3179
3180
3181
                if from_tf and os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index")
                ):
3182
                    # Load from a TF 1.0 checkpoint in priority if from_tf
3183
3184
3185
3186
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index")
                elif from_tf and os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME)
                ):
3187
                    # Load from a TF 2.0 checkpoint in priority if from_tf
3188
3189
3190
3191
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME)
                elif from_flax and os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)
                ):
3192
                    # Load from a Flax checkpoint in priority if from_flax
3193
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)
3194
                elif use_safetensors is not False and os.path.isfile(
3195
                    os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_NAME, variant))
3196
3197
                ):
                    # Load from a safetensors checkpoint
3198
3199
3200
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_NAME, variant)
                    )
3201
                elif use_safetensors is not False and os.path.isfile(
3202
3203
3204
                    os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)
                    )
3205
3206
                ):
                    # Load from a sharded safetensors checkpoint
3207
3208
3209
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)
                    )
3210
                    is_sharded = True
3211
3212
3213
                elif os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_NAME, variant))
                ):
thomwolf's avatar
thomwolf committed
3214
                    # Load from a PyTorch checkpoint
3215
3216
3217
3218
3219
3220
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_NAME, variant)
                    )
                elif os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_INDEX_NAME, variant))
                ):
Sylvain Gugger's avatar
Sylvain Gugger committed
3221
                    # Load from a sharded PyTorch checkpoint
3222
3223
3224
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_INDEX_NAME, variant)
                    )
Sylvain Gugger's avatar
Sylvain Gugger committed
3225
                    is_sharded = True
3226
3227
                # At this stage we don't have a weight file so we will raise an error.
                elif os.path.isfile(
3228
3229
                    os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index")
                ) or os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME)):
3230
                    raise EnvironmentError(
3231
3232
3233
                        f"Error no file named {_add_variant(WEIGHTS_NAME, variant)} found in directory"
                        f" {pretrained_model_name_or_path} but there is a file for TensorFlow weights. Use"
                        " `from_tf=True` to load this model from those weights."
3234
                    )
3235
                elif os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)):
3236
                    raise EnvironmentError(
3237
3238
3239
                        f"Error no file named {_add_variant(WEIGHTS_NAME, variant)} found in directory"
                        f" {pretrained_model_name_or_path} but there is a file for Flax weights. Use `from_flax=True`"
                        " to load this model from those weights."
3240
                    )
3241
3242
3243
3244
3245
                elif use_safetensors:
                    raise EnvironmentError(
                        f"Error no file named {_add_variant(SAFE_WEIGHTS_NAME, variant)} found in directory"
                        f" {pretrained_model_name_or_path}."
                    )
thomwolf's avatar
thomwolf committed
3246
                else:
3247
                    raise EnvironmentError(
3248
3249
3250
                        f"Error no file named {_add_variant(WEIGHTS_NAME, variant)}, {TF2_WEIGHTS_NAME},"
                        f" {TF_WEIGHTS_NAME + '.index'} or {FLAX_WEIGHTS_NAME} found in directory"
                        f" {pretrained_model_name_or_path}."
3251
                    )
3252
            elif os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path)):
3253
                archive_file = pretrained_model_name_or_path
3254
                is_local = True
3255
            elif os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path + ".index")):
3256
3257
3258
3259
3260
                if not from_tf:
                    raise ValueError(
                        f"We found a TensorFlow checkpoint at {pretrained_model_name_or_path + '.index'}, please set "
                        "from_tf to True to load from this checkpoint."
                    )
3261
                archive_file = os.path.join(subfolder, pretrained_model_name_or_path + ".index")
3262
                is_local = True
3263
            elif is_remote_url(pretrained_model_name_or_path):
3264
                filename = pretrained_model_name_or_path
3265
                resolved_archive_file = download_url(pretrained_model_name_or_path)
3266
            else:
3267
3268
3269
3270
3271
                # set correct filename
                if from_tf:
                    filename = TF2_WEIGHTS_NAME
                elif from_flax:
                    filename = FLAX_WEIGHTS_NAME
3272
                elif use_safetensors is not False:
3273
                    filename = _add_variant(SAFE_WEIGHTS_NAME, variant)
3274
                else:
3275
                    filename = _add_variant(WEIGHTS_NAME, variant)
3276

3277
3278
                try:
                    # Load from URL or cache if already cached
3279
3280
3281
3282
3283
3284
                    cached_file_kwargs = {
                        "cache_dir": cache_dir,
                        "force_download": force_download,
                        "proxies": proxies,
                        "resume_download": resume_download,
                        "local_files_only": local_files_only,
3285
                        "token": token,
3286
3287
3288
3289
3290
3291
                        "user_agent": user_agent,
                        "revision": revision,
                        "subfolder": subfolder,
                        "_raise_exceptions_for_missing_entries": False,
                        "_commit_hash": commit_hash,
                    }
3292
                    resolved_archive_file = cached_file(pretrained_model_name_or_path, filename, **cached_file_kwargs)
3293

3294
                    # Since we set _raise_exceptions_for_missing_entries=False, we don't get an exception but a None
3295
                    # result when internet is up, the repo and revision exist, but the file does not.
3296
                    if resolved_archive_file is None and filename == _add_variant(SAFE_WEIGHTS_NAME, variant):
3297
3298
                        # Maybe the checkpoint is sharded, we try to grab the index name in this case.
                        resolved_archive_file = cached_file(
3299
3300
3301
                            pretrained_model_name_or_path,
                            _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant),
                            **cached_file_kwargs,
3302
3303
3304
                        )
                        if resolved_archive_file is not None:
                            is_sharded = True
3305
                        elif use_safetensors:
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
                            if revision == "main":
                                resolved_archive_file, revision, is_sharded = auto_conversion(
                                    pretrained_model_name_or_path, **cached_file_kwargs
                                )
                            cached_file_kwargs["revision"] = revision
                            if resolved_archive_file is None:
                                raise EnvironmentError(
                                    f"{pretrained_model_name_or_path} does not appear to have a file named"
                                    f" {_add_variant(SAFE_WEIGHTS_NAME, variant)} or {_add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)} "
                                    "and thus cannot be loaded with `safetensors`. Please make sure that the model has "
                                    "been saved with `safe_serialization=True` or do not set `use_safetensors=True`."
                                )
3318
3319
                        else:
                            # This repo has no safetensors file of any kind, we switch to PyTorch.
3320
                            filename = _add_variant(WEIGHTS_NAME, variant)
3321
                            resolved_archive_file = cached_file(
3322
                                pretrained_model_name_or_path, filename, **cached_file_kwargs
3323
                            )
3324
                    if resolved_archive_file is None and filename == _add_variant(WEIGHTS_NAME, variant):
Sylvain Gugger's avatar
Sylvain Gugger committed
3325
                        # Maybe the checkpoint is sharded, we try to grab the index name in this case.
3326
                        resolved_archive_file = cached_file(
3327
3328
3329
                            pretrained_model_name_or_path,
                            _add_variant(WEIGHTS_INDEX_NAME, variant),
                            **cached_file_kwargs,
3330
                        )
3331
3332
3333
                        if resolved_archive_file is not None:
                            is_sharded = True
                    if resolved_archive_file is None:
Sylvain Gugger's avatar
Sylvain Gugger committed
3334
3335
3336
3337
3338
                        # Otherwise, maybe there is a TF or Flax model file.  We try those to give a helpful error
                        # message.
                        has_file_kwargs = {
                            "revision": revision,
                            "proxies": proxies,
3339
                            "token": token,
Sylvain Gugger's avatar
Sylvain Gugger committed
3340
3341
3342
                        }
                        if has_file(pretrained_model_name_or_path, TF2_WEIGHTS_NAME, **has_file_kwargs):
                            raise EnvironmentError(
Sylvain Gugger's avatar
Sylvain Gugger committed
3343
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
3344
3345
                                f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file for TensorFlow weights."
                                " Use `from_tf=True` to load this model from those weights."
Sylvain Gugger's avatar
Sylvain Gugger committed
3346
3347
3348
                            )
                        elif has_file(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME, **has_file_kwargs):
                            raise EnvironmentError(
Sylvain Gugger's avatar
Sylvain Gugger committed
3349
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
                                f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file for Flax weights. Use"
                                " `from_flax=True` to load this model from those weights."
                            )
                        elif variant is not None and has_file(
                            pretrained_model_name_or_path, WEIGHTS_NAME, **has_file_kwargs
                        ):
                            raise EnvironmentError(
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
                                f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file without the variant"
                                f" {variant}. Use `variant=None` to load this model from those weights."
Sylvain Gugger's avatar
Sylvain Gugger committed
3360
3361
3362
                            )
                        else:
                            raise EnvironmentError(
3363
3364
3365
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
                                f" {_add_variant(WEIGHTS_NAME, variant)}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or"
                                f" {FLAX_WEIGHTS_NAME}."
Sylvain Gugger's avatar
Sylvain Gugger committed
3366
                            )
3367
3368
3369
3370
                except EnvironmentError:
                    # Raise any environment error raise by `cached_file`. It will have a helpful error message adapted
                    # to the original exception.
                    raise
3371
                except Exception as e:
3372
                    # For any other exception, we throw a generic error.
3373
                    raise EnvironmentError(
3374
3375
3376
                        f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it"
                        " from 'https://huggingface.co/models', make sure you don't have a local directory with the"
                        f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a"
3377
3378
                        f" directory containing a file named {_add_variant(WEIGHTS_NAME, variant)},"
                        f" {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or {FLAX_WEIGHTS_NAME}."
3379
                    ) from e
3380

3381
            if is_local:
3382
                logger.info(f"loading weights file {archive_file}")
3383
                resolved_archive_file = archive_file
3384
            else:
3385
                logger.info(f"loading weights file {filename} from cache at {resolved_archive_file}")
3386
        else:
thomwolf's avatar
thomwolf committed
3387
            resolved_archive_file = None
3388

Sylvain Gugger's avatar
Sylvain Gugger committed
3389
3390
        # We'll need to download and cache each checkpoint shard if the checkpoint is sharded.
        if is_sharded:
3391
            # rsolved_archive_file becomes a list of files that point to the different checkpoint shards in this case.
Sylvain Gugger's avatar
Sylvain Gugger committed
3392
3393
3394
3395
3396
3397
3398
3399
            resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(
                pretrained_model_name_or_path,
                resolved_archive_file,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                resume_download=resume_download,
                local_files_only=local_files_only,
3400
                token=token,
Sylvain Gugger's avatar
Sylvain Gugger committed
3401
3402
                user_agent=user_agent,
                revision=revision,
3403
                subfolder=subfolder,
3404
                _commit_hash=commit_hash,
Sylvain Gugger's avatar
Sylvain Gugger committed
3405
3406
            )

3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
        if (
            is_safetensors_available()
            and isinstance(resolved_archive_file, str)
            and resolved_archive_file.endswith(".safetensors")
        ):
            with safe_open(resolved_archive_file, framework="pt") as f:
                metadata = f.metadata()

            if metadata.get("format") == "pt":
                pass
            elif metadata.get("format") == "tf":
                from_tf = True
                logger.info("A TensorFlow safetensors file is being loaded in a PyTorch model.")
            elif metadata.get("format") == "flax":
                from_flax = True
                logger.info("A Flax safetensors file is being loaded in a PyTorch model.")
            else:
                raise ValueError(
                    f"Incompatible safetensors file. File metadata is not ['pt', 'tf', 'flax'] but {metadata.get('format')}"
                )

        from_pt = not (from_tf | from_flax)

3430
3431
        # load pt weights early so that we know which dtype to init the model under
        if from_pt:
3432
            if not is_sharded and state_dict is None:
Sylvain Gugger's avatar
Sylvain Gugger committed
3433
3434
                # Time to load the checkpoint
                state_dict = load_state_dict(resolved_archive_file)
3435

3436
3437
3438
            # set dtype to instantiate the model under:
            # 1. If torch_dtype is not None, we use that dtype
            # 2. If torch_dtype is "auto", we auto-detect dtype from the loaded state_dict, by checking its first
3439
            #    weights entry that is of a floating type - we assume all floating dtype weights are of the same dtype
3440
3441
            # we also may have config.torch_dtype available, but we won't rely on it till v5
            dtype_orig = None
3442

3443
3444
3445
            if torch_dtype is not None:
                if isinstance(torch_dtype, str):
                    if torch_dtype == "auto":
3446
3447
3448
                        if hasattr(config, "torch_dtype") and config.torch_dtype is not None:
                            torch_dtype = config.torch_dtype
                            logger.info(f"Will use torch_dtype={torch_dtype} as defined in model's config object")
Sylvain Gugger's avatar
Sylvain Gugger committed
3449
                        else:
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
                            if is_sharded and "dtype" in sharded_metadata:
                                torch_dtype = sharded_metadata["dtype"]
                            elif not is_sharded:
                                torch_dtype = get_state_dict_dtype(state_dict)
                            else:
                                one_state_dict = load_state_dict(resolved_archive_file[0])
                                torch_dtype = get_state_dict_dtype(one_state_dict)
                                del one_state_dict  # free CPU memory
                            logger.info(
                                "Since the `torch_dtype` attribute can't be found in model's config object, "
                                "will use torch_dtype={torch_dtype} as derived from model's weights"
                            )
3462
3463
                    else:
                        raise ValueError(
3464
                            f'`torch_dtype` can be either `torch.dtype` or `"auto"`, but received {torch_dtype}'
3465
3466
3467
                        )
                dtype_orig = cls._set_default_torch_dtype(torch_dtype)

3468
            # Check if `_keep_in_fp32_modules` is not None
3469
3470
            use_keep_in_fp32_modules = (cls._keep_in_fp32_modules is not None) and (
                torch_dtype == torch.float16 or load_in_4bit or load_in_8bit
3471
3472
            )

3473
3474
3475
            if is_sharded:
                loaded_state_dict_keys = sharded_metadata["all_checkpoint_keys"]
            else:
3476
                loaded_state_dict_keys = list(state_dict.keys())
3477
3478
3479
3480
            if low_cpu_mem_usage or (use_keep_in_fp32_modules and is_accelerate_available()):
                # In case some weights need to be kept in float32 and accelerate is not installed,
                # we later on want to take the path where state_dict is not None, that is the one
                # that do not require accelerate.
3481
                state_dict = None
3482

3483
3484
        config.name_or_path = pretrained_model_name_or_path

3485
        # Instantiate model.
3486
3487
        init_contexts = [no_init_weights(_enable=_fast_init)]

3488
3489
3490
3491
        if is_deepspeed_zero3_enabled():
            import deepspeed

            logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
3492
            init_contexts = [deepspeed.zero.Init(config_dict_or_path=deepspeed_config())] + init_contexts
3493
        elif load_in_8bit or load_in_4bit or low_cpu_mem_usage:
3494
3495
            init_contexts.append(init_empty_weights())

3496
3497
3498
3499
        config = copy.deepcopy(config)  # We do not want to modify the config inplace in from_pretrained.
        config = cls._autoset_attn_implementation(
            config, use_flash_attention_2=use_flash_attention_2, torch_dtype=torch_dtype, device_map=device_map
        )
3500

3501
        with ContextManagers(init_contexts):
3502
            # Let's make sure we don't run the init function of buffer modules
3503
3504
            model = cls(config, *model_args, **model_kwargs)

3505
3506
3507
        # make sure we use the model's config since the __init__ call might have copied it
        config = model.config

3508
3509
        # Check first if we are `from_pt`
        if use_keep_in_fp32_modules:
3510
            if is_accelerate_available() and not is_deepspeed_zero3_enabled():
3511
                low_cpu_mem_usage = True
3512
3513
3514
3515
            keep_in_fp32_modules = model._keep_in_fp32_modules
        else:
            keep_in_fp32_modules = []

3516
        if load_in_8bit or load_in_4bit:
3517
            from .integrations import get_keys_to_not_convert, replace_with_bnb_linear
3518

3519
            llm_int8_skip_modules = quantization_config.llm_int8_skip_modules
3520
            load_in_8bit_fp32_cpu_offload = quantization_config.llm_int8_enable_fp32_cpu_offload
3521
3522
3523
3524
            if load_in_8bit:
                logger.info("Detected 8-bit loading: activating 8-bit loading for this model")
            else:
                logger.info("Detected 4-bit loading: activating 4-bit loading for this model")
3525

3526
            # We keep some modules such as the lm_head in their original dtype for numerical stability reasons
3527
            if llm_int8_skip_modules is None:
3528
3529
                modules_to_not_convert = get_keys_to_not_convert(model)
            else:
3530
                modules_to_not_convert = llm_int8_skip_modules
3531
3532
3533
3534
3535
3536

            if not isinstance(modules_to_not_convert, list):
                modules_to_not_convert = [modules_to_not_convert]

            modules_to_not_convert.extend(keep_in_fp32_modules)

3537
3538
3539
3540
3541
3542
3543
            # Extend the modules to not convert to keys that are supposed to be offloaded to `cpu` or `disk`
            if isinstance(device_map, dict) and len(device_map.keys()) > 1:
                keys_on_cpu = [key for key, value in device_map.items() if value in ["disk", "cpu"]]

                if len(keys_on_cpu) > 0 and not load_in_8bit_fp32_cpu_offload:
                    raise ValueError(
                        "If you want to offload some keys to `cpu` or `disk`, you need to set "
Younes Belkada's avatar
Younes Belkada committed
3544
                        "`llm_int8_enable_fp32_cpu_offload=True`. Note that these modules will not be "
3545
3546
3547
3548
3549
                        " converted to 8-bit but kept in 32-bit."
                    )

                modules_to_not_convert.extend(keys_on_cpu)

3550
            supports_4bit = version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse("0.39.0")
3551
3552
3553
3554
3555
3556
3557
3558
3559

            if load_in_4bit and not supports_4bit:
                raise ValueError(
                    "You have a version of `bitsandbytes` that is not compatible with 4bit inference and training"
                    " make sure you have the latest version of `bitsandbytes` installed"
                )

            model = replace_with_bnb_linear(
                model, modules_to_not_convert=modules_to_not_convert, quantization_config=quantization_config
3560
            )
3561
            # training in 8-bit is only available in 0.37.0+
3562
            model._is_quantized_training_enabled = version.parse(
3563
                importlib.metadata.version("bitsandbytes")
3564
            ) >= version.parse("0.37.0")
3565

3566
            config.quantization_config = quantization_config
3567
            model.is_8bit_serializable = is_8bit_serializable
3568
            model.is_4bit_serializable = is_4bit_serializable
3569

3570
3571
        if load_in_8bit and torch_dtype is None:
            logger.warning(
3572
                "You are loading your model in 8bit but you did not specify a `torch_dtype` attribute. "
3573
3574
                "All non-linear modules will be loaded in full precision."
                " If you want to load the other modules in other precision, please specify a `torch_dtype` attribute."
3575
            )
Marc Sun's avatar
Marc Sun committed
3576
3577
3578
        if quantization_method_from_config == QuantizationMethod.GPTQ:
            model = quantizer.convert_model(model)
            model._is_quantized_training_enabled = True
3579
        elif quantization_method_from_config == QuantizationMethod.AWQ:
3580
            from .integrations import fuse_awq_modules, get_keys_to_not_convert, replace_with_awq_linear
3581
3582
3583
3584
3585

            modules_to_not_convert = get_keys_to_not_convert(model)

            if quantization_config is None:
                quantization_config = AwqConfig.from_dict(config.quantization_config)
3586
3587
3588
3589
            # In case a user passes a `AwqConfig` with `do_fuse=True` for models that have
            # a `modules_to_not_convert` attribute we need to manually set that attribute into the
            # passed `quantization_config`
            elif (
3590
                getattr(quantization_config, "modules_to_not_convert", None) is None
3591
3592
3593
                and "modules_to_not_convert" in config.quantization_config
            ):
                quantization_config.modules_to_not_convert = config.quantization_config["modules_to_not_convert"]
3594

3595
3596
3597
            if quantization_config.modules_to_not_convert is not None:
                modules_to_not_convert.extend(quantization_config.modules_to_not_convert)

3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
            model, has_been_replaced = replace_with_awq_linear(
                model, quantization_config=quantization_config, modules_to_not_convert=modules_to_not_convert
            )
            model._is_quantized_training_enabled = False

            if not has_been_replaced:
                logger.warning(
                    "You are loading an AWQ model but no linear modules were found in your model."
                    " Please double check your model architecture, or submit an issue on github if you think this is"
                    " a bug."
                )
Marc Sun's avatar
Marc Sun committed
3609
3610
3611
3612
3613
3614
3615

        if quantization_method_from_config is not None:
            model.quantization_method = quantization_method_from_config
        elif quantization_method_from_args is not None:
            model.quantization_method = quantization_method_from_args
        if hasattr(model, "quantization_method"):
            model.is_quantized = True
3616

3617
3618
3619
3620
3621
3622
            # We store the original dtype for quantized models as we cannot easily retrieve it
            # once the weights have been quantized
            # Note that once you have loaded a quantized model, you can't change its dtype so this will
            # remain a single source of truth
            config._pre_quantization_dtype = torch_dtype

3623
        if isinstance(device_map, str):
3624
            special_dtypes = {}
3625
            if load_in_8bit or load_in_4bit:
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
                special_dtypes.update(
                    {
                        name: torch_dtype
                        for name, _ in model.named_parameters()
                        if any(m in name for m in modules_to_not_convert)
                    }
                )

            special_dtypes.update(
                {
                    name: torch.float32
                    for name, _ in model.named_parameters()
                    if any(m in name for m in keep_in_fp32_modules)
                }
            )

3642
3643
3644
            target_dtype = torch_dtype

            if load_in_4bit:
3645
                if version.parse(importlib.metadata.version("accelerate")) > version.parse("0.19.0"):
3646
3647
3648
3649
3650
3651
                    from accelerate.utils import CustomDtype

                    target_dtype = CustomDtype.INT4
                else:
                    raise ValueError(
                        "You are using `device_map='auto'` on a 4bit loaded version of the model. To automatically compute"
3652
3653
                        " the appropriate device map, you should upgrade your `accelerate` library, "
                        "`pip install --upgrade accelerate` or install it from source to support fp4 auto device map "
3654
3655
3656
3657
3658
                        "calculation. You may encounter unexpected behavior, or pass your own device map"
                    )
            elif load_in_8bit:
                target_dtype = torch.int8

Marc Sun's avatar
Marc Sun committed
3659
            no_split_modules = model._get_no_split_modules(device_map)
3660
3661
3662
3663
3664
            if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
                raise ValueError(
                    "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or "
                    "'sequential'."
                )
3665

3666
            device_map_kwargs = {"no_split_module_classes": no_split_modules}
3667
            if "special_dtypes" in inspect.signature(infer_auto_device_map).parameters:
3668
                device_map_kwargs["special_dtypes"] = special_dtypes
3669
            elif len(special_dtypes) > 0:
3670
                logger.warning(
3671
3672
3673
                    "This model has some weights that should be kept in higher precision, you need to upgrade "
                    "`accelerate` to properly deal with them (`pip install --upgrade accelerate`)."
                )
3674
            if device_map != "sequential":
3675
3676
                max_memory = get_balanced_memory(
                    model,
3677
                    dtype=target_dtype,
3678
                    low_zero=(device_map == "balanced_low_0"),
3679
                    max_memory=max_memory,
3680
                    **device_map_kwargs,
3681
                )
Marc Sun's avatar
Marc Sun committed
3682
3683
3684
3685
3686
            else:
                max_memory = get_max_memory(max_memory)
            if getattr(model, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES:
                # need more space for buffers that are created during quantization
                max_memory = {key: val * 0.90 for key, val in max_memory.items()}
3687
            device_map_kwargs["max_memory"] = max_memory
Marc Sun's avatar
Marc Sun committed
3688

3689
3690
            # Make sure tied weights are tied before creating the device map.
            model.tie_weights()
3691
            device_map = infer_auto_device_map(model, dtype=target_dtype, **device_map_kwargs)
3692

3693
            if load_in_8bit or load_in_4bit:
3694
                # The LM head / tied weights or any last module can stay on disk / CPU
3695
                device_map_without_lm_head = {
3696
                    key: device_map[key] for key in device_map.keys() if key not in modules_to_not_convert
3697
3698
                }
                if "cpu" in device_map_without_lm_head.values() or "disk" in device_map_without_lm_head.values():
3699
3700
3701
                    raise ValueError(
                        """
                        Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit
3702
3703
3704
3705
3706
                        the quantized model. If you want to dispatch the model on the CPU or the disk while keeping
                        these modules in 32-bit, you need to set `load_in_8bit_fp32_cpu_offload=True` and pass a custom
                        `device_map` to `from_pretrained`. Check
                        https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu
                        for more details.
3707
3708
                        """
                    )
3709
3710
                del device_map_without_lm_head

3711
3712
3713
3714
        elif device_map is not None:
            model.tie_weights()
            tied_params = find_tied_parameters(model)
            # check if we don't have tied param in different devices
3715
            check_tied_parameters_on_same_device(tied_params, device_map)
3716

3717
        if from_tf:
3718
            if resolved_archive_file.endswith(".index"):
3719
3720
3721
3722
3723
                # Load from a TensorFlow 1.X checkpoint - provided by original authors
                model = cls.load_tf_weights(model, config, resolved_archive_file[:-6])  # Remove the '.index'
            else:
                # Load from our TensorFlow 2.0 checkpoints
                try:
3724
                    from .modeling_tf_pytorch_utils import load_tf2_checkpoint_in_pytorch_model
3725

Yih-Dar's avatar
Yih-Dar committed
3726
3727
3728
                    model, loading_info = load_tf2_checkpoint_in_pytorch_model(
                        model, resolved_archive_file, allow_missing_keys=True, output_loading_info=True
                    )
3729
                except ImportError:
3730
                    logger.error(
Sylvain Gugger's avatar
Sylvain Gugger committed
3731
3732
3733
                        "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed."
                        " Please see https://pytorch.org/ and https://www.tensorflow.org/install/ for installation"
                        " instructions."
3734
                    )
3735
                    raise
3736
3737
3738
3739
3740
3741
3742
        elif from_flax:
            try:
                from .modeling_flax_pytorch_utils import load_flax_checkpoint_in_pytorch_model

                model = load_flax_checkpoint_in_pytorch_model(model, resolved_archive_file)
            except ImportError:
                logger.error(
Sylvain Gugger's avatar
Sylvain Gugger committed
3743
3744
3745
                    "Loading a Flax model in PyTorch, requires both PyTorch and Flax to be installed. Please see"
                    " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for"
                    " installation instructions."
3746
3747
                )
                raise
3748
        elif from_pt:
3749
3750
3751
            # restore default dtype
            if dtype_orig is not None:
                torch.set_default_dtype(dtype_orig)
Sylvain Gugger's avatar
Sylvain Gugger committed
3752
3753
3754
3755
3756
3757
3758
3759
            (
                model,
                missing_keys,
                unexpected_keys,
                mismatched_keys,
                offload_index,
                error_msgs,
            ) = cls._load_pretrained_model(
3760
3761
3762
3763
3764
3765
3766
3767
3768
                model,
                state_dict,
                loaded_state_dict_keys,  # XXX: rename?
                resolved_archive_file,
                pretrained_model_name_or_path,
                ignore_mismatched_sizes=ignore_mismatched_sizes,
                sharded_metadata=sharded_metadata,
                _fast_init=_fast_init,
                low_cpu_mem_usage=low_cpu_mem_usage,
3769
3770
3771
3772
                device_map=device_map,
                offload_folder=offload_folder,
                offload_state_dict=offload_state_dict,
                dtype=torch_dtype,
Marc Sun's avatar
Marc Sun committed
3773
                is_quantized=(getattr(model, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES),
3774
                keep_in_fp32_modules=keep_in_fp32_modules,
3775
            )
3776

3777
        model.is_loaded_in_4bit = load_in_4bit
Younes Belkada's avatar
Younes Belkada committed
3778
        model.is_loaded_in_8bit = load_in_8bit
3779

3780
3781
        # make sure token embedding weights are still tied if needed
        model.tie_weights()
3782

3783
        # Set model in evaluation mode to deactivate DropOut modules by default
3784
3785
        model.eval()

3786
        # If it is a model with generation capabilities, attempt to load the generation config
3787
        if model.can_generate() and pretrained_model_name_or_path is not None:
3788
3789
3790
3791
3792
3793
3794
3795
            try:
                model.generation_config = GenerationConfig.from_pretrained(
                    pretrained_model_name_or_path,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
3796
                    token=token,
3797
3798
3799
3800
3801
3802
                    revision=revision,
                    subfolder=subfolder,
                    _from_auto=from_auto_class,
                    _from_pipeline=from_pipeline,
                    **kwargs,
                )
3803
            except OSError:
3804
3805
3806
3807
3808
                logger.info(
                    "Generation config file not found, using a generation config created from the model config."
                )
                pass

3809
3810
3811
3812
3813
3814
3815
3816
        if (
            quantization_config is not None
            and quantization_config.quant_method == QuantizationMethod.AWQ
            and quantization_config.do_fuse
        ):
            model = fuse_awq_modules(model, config.quantization_config)
            model._awq_is_fused = True

3817
3818
        # Dispatch model with hooks on all devices if necessary
        if device_map is not None:
3819
3820
3821
3822
3823
            device_map_kwargs = {
                "device_map": device_map,
                "offload_dir": offload_folder,
                "offload_index": offload_index,
            }
3824
            if "skip_keys" in inspect.signature(dispatch_model).parameters:
3825
3826
                device_map_kwargs["skip_keys"] = model._skip_keys_device_placement
            dispatch_model(model, **device_map_kwargs)
3827

Marc Sun's avatar
Marc Sun committed
3828
3829
3830
3831
3832
3833
        if quantization_method_from_args == QuantizationMethod.GPTQ:
            if quantization_config.tokenizer is None:
                quantization_config.tokenizer = pretrained_model_name_or_path
            if cls.main_input_name != "input_ids":
                raise RuntimeError("We can only quantize pure text model.")
            quantizer.quantize_model(model, quantization_config.tokenizer)
Marc Sun's avatar
Marc Sun committed
3834
            config.quantization_config = GPTQConfig.from_dict_optimum(quantizer.to_dict())
Marc Sun's avatar
Marc Sun committed
3835
3836
3837
3838
            model._is_quantized_training_enabled = True
        if quantization_method_from_config == QuantizationMethod.GPTQ:
            model = quantizer.post_init_model(model)

3839
        if _adapter_model_path is not None:
3840
            model.load_adapter(
3841
                _adapter_model_path,
3842
3843
                adapter_name=adapter_name,
                token=token,
3844
                adapter_kwargs=adapter_kwargs,
3845
3846
            )

thomwolf's avatar
thomwolf committed
3847
        if output_loading_info:
Yih-Dar's avatar
Yih-Dar committed
3848
3849
3850
3851
3852
3853
3854
            if loading_info is None:
                loading_info = {
                    "missing_keys": missing_keys,
                    "unexpected_keys": unexpected_keys,
                    "mismatched_keys": mismatched_keys,
                    "error_msgs": error_msgs,
                }
thomwolf's avatar
thomwolf committed
3855
3856
            return model, loading_info

3857
3858
        return model

3859
    @classmethod
Sylvain Gugger's avatar
Sylvain Gugger committed
3860
3861
3862
3863
    def _load_pretrained_model(
        cls,
        model,
        state_dict,
3864
        loaded_keys,
Sylvain Gugger's avatar
Sylvain Gugger committed
3865
3866
3867
3868
3869
        resolved_archive_file,
        pretrained_model_name_or_path,
        ignore_mismatched_sizes=False,
        sharded_metadata=None,
        _fast_init=True,
3870
        low_cpu_mem_usage=False,
3871
3872
        device_map=None,
        offload_folder=None,
3873
        offload_state_dict=None,
3874
        dtype=None,
3875
        is_quantized=False,
3876
        keep_in_fp32_modules=None,
3877
    ):
Sylvain Gugger's avatar
Sylvain Gugger committed
3878
        is_safetensors = False
3879
        if is_quantized:
3880
            from .integrations import set_module_quantized_tensor_to_device
3881

Sylvain Gugger's avatar
Sylvain Gugger committed
3882
        if device_map is not None and "disk" in device_map.values():
Sylvain Gugger's avatar
Sylvain Gugger committed
3883
3884
3885
3886
3887
            archive_file = (
                resolved_archive_file[0] if isinstance(resolved_archive_file, (list, tuple)) else resolved_archive_file
            )
            is_safetensors = archive_file.endswith(".safetensors")
            if offload_folder is None and not is_safetensors:
Sylvain Gugger's avatar
Sylvain Gugger committed
3888
3889
                raise ValueError(
                    "The current `device_map` had weights offloaded to the disk. Please provide an `offload_folder`"
Sylvain Gugger's avatar
Sylvain Gugger committed
3890
3891
                    " for them. Alternatively, make sure you have `safetensors` installed if the model you are using"
                    " offers the weights in this format."
Sylvain Gugger's avatar
Sylvain Gugger committed
3892
                )
Sylvain Gugger's avatar
Sylvain Gugger committed
3893
3894
            if offload_folder is not None:
                os.makedirs(offload_folder, exist_ok=True)
3895
3896
3897
            if offload_state_dict is None:
                offload_state_dict = True

3898
        is_sharded_safetensors = is_safetensors and sharded_metadata is not None
Patrick von Platen's avatar
Patrick von Platen committed
3899
3900
3901
3902

        # tie the model weights before retrieving the state_dict
        model.tie_weights()

3903
        # Retrieve missing & unexpected_keys
3904
3905
        model_state_dict = model.state_dict()
        expected_keys = list(model_state_dict.keys())
3906
3907
        prefix = model.base_model_prefix

Sylvain Gugger's avatar
Sylvain Gugger committed
3908
3909
3910
3911
3912
3913
3914
        def _fix_key(key):
            if "beta" in key:
                return key.replace("beta", "bias")
            if "gamma" in key:
                return key.replace("gamma", "weight")
            return key

3915
        original_loaded_keys = loaded_keys
Sylvain Gugger's avatar
Sylvain Gugger committed
3916
3917
        loaded_keys = [_fix_key(key) for key in loaded_keys]

3918
3919
3920
3921
3922
3923
        if len(prefix) > 0:
            has_prefix_module = any(s.startswith(prefix) for s in loaded_keys)
            expects_prefix_module = any(s.startswith(prefix) for s in expected_keys)
        else:
            has_prefix_module = False
            expects_prefix_module = False
Patrick von Platen's avatar
Patrick von Platen committed
3924
3925
3926

        # key re-naming operations are never done on the keys
        # that are loaded, but always on the keys of the newly initialized model
3927
3928
        remove_prefix_from_model = not has_prefix_module and expects_prefix_module
        add_prefix_to_model = has_prefix_module and not expects_prefix_module
3929

3930
        if remove_prefix_from_model:
3931
3932
3933
            _prefix = f"{prefix}."
            expected_keys_not_prefixed = [s for s in expected_keys if not s.startswith(_prefix)]
            expected_keys = [s[len(_prefix) :] if s.startswith(_prefix) else s for s in expected_keys]
3934
        elif add_prefix_to_model:
3935
3936
            expected_keys = [".".join([prefix, s]) for s in expected_keys]

3937
        missing_keys = sorted(set(expected_keys) - set(loaded_keys))
Sylvain Gugger's avatar
Sylvain Gugger committed
3938
3939
3940
3941
3942
3943
3944
3945
        unexpected_keys = set(loaded_keys) - set(expected_keys)
        # Remove nonpersistent buffers from unexpected keys: they are not in the state dict but will be in the model
        # buffers
        model_buffers = {n for n, _ in model.named_buffers()}
        if remove_prefix_from_model:
            model_buffers = {key[len(_prefix) :] if key.startswith(_prefix) else key for key in model_buffers}
        elif add_prefix_to_model:
            model_buffers = {".".join([prefix, key]) for key in model_buffers}
3946
        unexpected_keys = sorted(unexpected_keys - model_buffers)
3947

3948
        model.tie_weights()
3949
        if device_map is None and not is_fsdp_enabled() and not is_deepspeed_zero3_enabled():
3950
3951
3952
3953
            ptrs = collections.defaultdict(list)
            for name, tensor in model.state_dict().items():
                id_tensor = id_tensor_storage(tensor)
                ptrs[id_tensor].append(name)
Sylvain Gugger's avatar
Sylvain Gugger committed
3954

3955
3956
3957
3958
3959
            # These are all the pointers of shared tensors.
            tied_params = [names for _, names in ptrs.items() if len(names) > 1]
        else:
            # id function doesn't work for meta tensor so we need this function
            tied_params = find_tied_parameters(model)
Sylvain Gugger's avatar
Sylvain Gugger committed
3960
3961

        for group in tied_params:
Sylvain Gugger's avatar
Sylvain Gugger committed
3962
3963
3964
3965
            if remove_prefix_from_model:
                group = [key[len(_prefix) :] if key.startswith(_prefix) else key for key in group]
            elif add_prefix_to_model:
                group = [".".join([prefix, key]) for key in group]
Sylvain Gugger's avatar
Sylvain Gugger committed
3966
3967
3968
            missing_in_group = [k for k in missing_keys if k in group]
            if len(missing_in_group) > 0 and len(missing_in_group) < len(group):
                missing_keys = [k for k in missing_keys if k not in missing_in_group]
3969

3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
        # Some models may have keys that are not in the state by design, removing them before needlessly warning
        # the user.
        if cls._keys_to_ignore_on_load_missing is not None:
            for pat in cls._keys_to_ignore_on_load_missing:
                missing_keys = [k for k in missing_keys if re.search(pat, k) is None]

        if cls._keys_to_ignore_on_load_unexpected is not None:
            for pat in cls._keys_to_ignore_on_load_unexpected:
                unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

3980
3981
3982
3983
        # retrieve weights on meta device and put them back on CPU.
        # This is not ideal in terms of memory, but if we don't do that not, we can't initialize them in the next step
        if low_cpu_mem_usage:
            for key in missing_keys:
Susnato Dhar's avatar
Susnato Dhar committed
3984
3985
                if key in list(model_state_dict.keys()):
                    key = key
3986
3987
                elif f"{prefix}.{key}" in list(model_state_dict.keys()):
                    key = f"{prefix}.{key}"
Susnato Dhar's avatar
Susnato Dhar committed
3988
                elif key.startswith(prefix) and ".".join(key.split(".")[1:]) in list(model_state_dict.keys()):
3989
3990
                    key = ".".join(key.split(".")[1:])
                param = model_state_dict[key]
3991
3992
3993
3994
3995
3996

                # upcast in fp32 if any
                target_dtype = dtype
                if (
                    keep_in_fp32_modules is not None
                    and dtype == torch.float16
3997
3998
3999
                    and any(
                        module_to_keep_in_fp32 in key.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules
                    )
4000
4001
4002
                ):
                    target_dtype = torch.float32

4003
                if param.device == torch.device("meta"):
4004
                    if not (is_quantized):
4005
                        set_module_tensor_to_device(model, key, "cpu", torch.empty(*param.size(), dtype=target_dtype))
4006
                    else:
4007
                        set_module_quantized_tensor_to_device(
4008
4009
                            model, key, "cpu", torch.empty(*param.size(), dtype=target_dtype)
                        )
4010
4011

        # retrieve unintialized modules and initialize before maybe overriding that with the pretrained weights.
4012
        if _fast_init:
4013
4014
4015
4016
4017
4018
4019
            if not ignore_mismatched_sizes:
                if remove_prefix_from_model:
                    _loaded_keys = [f"{prefix}.{k}" for k in loaded_keys]
                elif add_prefix_to_model:
                    _loaded_keys = [k[len(prefix) + 1 :] for k in loaded_keys]
                else:
                    _loaded_keys = loaded_keys
4020
4021
4022
                not_initialized_submodules = set_initialized_submodules(model, _loaded_keys)
            else:
                not_initialized_submodules = dict(model.named_modules())
4023
            # This will only initialize submodules that are not marked as initialized by the line above.
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
            if is_deepspeed_zero3_enabled():
                import deepspeed

                not_initialized_parameters = list(
                    set(
                        itertools.chain.from_iterable(
                            submodule.parameters(recurse=False) for submodule in not_initialized_submodules.values()
                        )
                    )
                )
                with deepspeed.zero.GatheredParameters(not_initialized_parameters, modifier_rank=0):
                    model.apply(model._initialize_weights)
            else:
                model.apply(model._initialize_weights)
4038

4039
4040
4041
        # Set some modules to fp32 if any
        if keep_in_fp32_modules is not None:
            for name, param in model.named_parameters():
4042
                if any(module_to_keep_in_fp32 in name.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules):
4043
4044
                    # param = param.to(torch.float32) does not work here as only in the local scope.
                    param.data = param.data.to(torch.float32)
4045

4046
4047
4048
        # Make sure we are able to load base models as well as derived models (with heads)
        start_prefix = ""
        model_to_load = model
4049
        if len(cls.base_model_prefix) > 0 and not hasattr(model, cls.base_model_prefix) and has_prefix_module:
4050
            start_prefix = cls.base_model_prefix + "."
4051
        if len(cls.base_model_prefix) > 0 and hasattr(model, cls.base_model_prefix) and not has_prefix_module:
4052
            model_to_load = getattr(model, cls.base_model_prefix)
Sylvain Gugger's avatar
Sylvain Gugger committed
4053
4054
            base_model_expected_keys = list(model_to_load.state_dict().keys())
            if any(key in expected_keys_not_prefixed and key not in base_model_expected_keys for key in loaded_keys):
4055
                raise ValueError(
4056
                    "The state dictionary of the model you are trying to load is corrupted. Are you sure it was "
4057
4058
                    "properly saved?"
                )
4059
4060
            if device_map is not None:
                device_map = {k.replace(f"{cls.base_model_prefix}.", ""): v for k, v in device_map.items()}
4061

4062
4063
4064
4065
4066
4067
4068
4069
        def _find_mismatched_keys(
            state_dict,
            model_state_dict,
            loaded_keys,
            add_prefix_to_model,
            remove_prefix_from_model,
            ignore_mismatched_sizes,
        ):
Sylvain Gugger's avatar
Sylvain Gugger committed
4070
4071
4072
            mismatched_keys = []
            if ignore_mismatched_sizes:
                for checkpoint_key in loaded_keys:
4073
4074
4075
                    # If the checkpoint is sharded, we may not have the key here.
                    if checkpoint_key not in state_dict:
                        continue
Sylvain Gugger's avatar
Sylvain Gugger committed
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
                    model_key = checkpoint_key
                    if remove_prefix_from_model:
                        # The model key starts with `prefix` but `checkpoint_key` doesn't so we add it.
                        model_key = f"{prefix}.{checkpoint_key}"
                    elif add_prefix_to_model:
                        # The model key doesn't start with `prefix` but `checkpoint_key` does so we remove it.
                        model_key = ".".join(checkpoint_key.split(".")[1:])

                    if (
                        model_key in model_state_dict
                        and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
                    ):
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
                        if (
                            state_dict[checkpoint_key].shape[-1] == 1
                            and state_dict[checkpoint_key].numel() * 2 == model_state_dict[model_key].numel()
                        ):
                            # This skips size mismatches for 4-bit weights. Two 4-bit values share an 8-bit container, causing size differences.
                            # Without matching with module type or paramter type it seems like a practical way to detect valid 4bit weights.
                            pass
                        else:
                            mismatched_keys.append(
                                (checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
                            )
                            del state_dict[checkpoint_key]
4100
4101
            return mismatched_keys

4102
4103
4104
4105
        if resolved_archive_file is not None:
            folder = os.path.sep.join(resolved_archive_file[0].split(os.path.sep)[:-1])
        else:
            folder = None
Sylvain Gugger's avatar
Sylvain Gugger committed
4106
        if device_map is not None and is_safetensors:
4107
            param_device_map = expand_device_map(device_map, original_loaded_keys, start_prefix)
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
            str_dtype = str(dtype).replace("torch.", "") if dtype is not None else "float32"
            if sharded_metadata is None:
                archive_file = (
                    resolved_archive_file[0]
                    if isinstance(resolved_archive_file, (list, tuple))
                    else resolved_archive_file
                )
                weight_map = {p: archive_file for p in original_loaded_keys}
            else:
                weight_map = {p: os.path.join(folder, f) for p, f in sharded_metadata["weight_map"].items()}
Sylvain Gugger's avatar
Sylvain Gugger committed
4118
            offload_index = {
4119
                p[len(start_prefix) :]: {"safetensors_file": f, "weight_name": p, "dtype": str_dtype}
4120
                for p, f in weight_map.items()
4121
                if p.startswith(start_prefix) and param_device_map[p[len(start_prefix) :]] == "disk"
Sylvain Gugger's avatar
Sylvain Gugger committed
4122
4123
            }

4124
4125
4126
4127
4128
        if state_dict is not None:
            # Whole checkpoint
            mismatched_keys = _find_mismatched_keys(
                state_dict,
                model_state_dict,
4129
                original_loaded_keys,
4130
4131
4132
4133
                add_prefix_to_model,
                remove_prefix_from_model,
                ignore_mismatched_sizes,
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
4134
            error_msgs = _load_state_dict_into_model(model_to_load, state_dict, start_prefix)
Sylvain Gugger's avatar
Sylvain Gugger committed
4135
            offload_index = None
Sylvain Gugger's avatar
Sylvain Gugger committed
4136
        else:
4137
4138
            # Sharded checkpoint or whole but low_cpu_mem_usage==True

Sylvain Gugger's avatar
Sylvain Gugger committed
4139
4140
4141
4142
4143
            # This should always be a list but, just to be sure.
            if not isinstance(resolved_archive_file, list):
                resolved_archive_file = [resolved_archive_file]

            error_msgs = []
4144
            mismatched_keys = []
Sylvain Gugger's avatar
Sylvain Gugger committed
4145
4146
            if not is_safetensors:
                offload_index = {} if device_map is not None and "disk" in device_map.values() else None
4147
4148
4149
4150
4151
4152
4153
            if offload_state_dict:
                state_dict_folder = tempfile.mkdtemp()
                state_dict_index = {}
            else:
                state_dict_folder = None
                state_dict_index = None

4154
            if is_sharded_safetensors:
4155
4156
4157
                disk_only_shard_files = get_disk_only_shard_files(
                    device_map, sharded_metadata=sharded_metadata, start_prefix=start_prefix
                )
Sylvain Gugger's avatar
Sylvain Gugger committed
4158
4159
4160
4161
                disk_only_shard_files = [os.path.join(folder, f) for f in disk_only_shard_files]
            else:
                disk_only_shard_files = []

4162
4163
            if len(resolved_archive_file) > 1:
                resolved_archive_file = logging.tqdm(resolved_archive_file, desc="Loading checkpoint shards")
Sylvain Gugger's avatar
Sylvain Gugger committed
4164
            for shard_file in resolved_archive_file:
Sylvain Gugger's avatar
Sylvain Gugger committed
4165
4166
4167
                # Skip the load for shards that only contain disk-offloaded weights when using safetensors for the offload.
                if shard_file in disk_only_shard_files:
                    continue
Sylvain Gugger's avatar
Sylvain Gugger committed
4168
                state_dict = load_state_dict(shard_file)
4169

Sylvain Gugger's avatar
Sylvain Gugger committed
4170
4171
                # Mistmatched keys contains tuples key/shape1/shape2 of weights in the checkpoint that have a shape not
                # matching the weights in the model.
4172
4173
4174
                mismatched_keys += _find_mismatched_keys(
                    state_dict,
                    model_state_dict,
4175
                    original_loaded_keys,
4176
4177
4178
4179
                    add_prefix_to_model,
                    remove_prefix_from_model,
                    ignore_mismatched_sizes,
                )
4180
                if low_cpu_mem_usage:
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
                    if is_fsdp_enabled() and not is_local_dist_rank_0():
                        for key, param in model_to_load.state_dict().items():
                            if param.device == torch.device("meta"):
                                if not (is_quantized):
                                    set_module_tensor_to_device(
                                        model_to_load, key, "cpu", torch.empty(*param.size(), dtype=dtype)
                                    )
                                else:
                                    set_module_quantized_tensor_to_device(
                                        model_to_load, key, "cpu", torch.empty(*param.size(), dtype=dtype)
                                    )
                    else:
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
                        new_error_msgs, offload_index, state_dict_index = _load_state_dict_into_meta_model(
                            model_to_load,
                            state_dict,
                            loaded_keys,
                            start_prefix,
                            expected_keys,
                            device_map=device_map,
                            offload_folder=offload_folder,
                            offload_index=offload_index,
                            state_dict_folder=state_dict_folder,
                            state_dict_index=state_dict_index,
                            dtype=dtype,
                            is_quantized=is_quantized,
                            is_safetensors=is_safetensors,
                            keep_in_fp32_modules=keep_in_fp32_modules,
4208
                            unexpected_keys=unexpected_keys,
4209
4210
                        )
                        error_msgs += new_error_msgs
4211
4212
                else:
                    error_msgs += _load_state_dict_into_model(model_to_load, state_dict, start_prefix)
4213

4214
4215
4216
4217
                # force memory release
                del state_dict
                gc.collect()

4218
            if offload_index is not None and len(offload_index) > 0:
Sylvain Gugger's avatar
Sylvain Gugger committed
4219
4220
4221
                if model != model_to_load:
                    # We need to add the prefix of the base model
                    prefix = cls.base_model_prefix
Sylvain Gugger's avatar
Sylvain Gugger committed
4222
4223
4224
4225
4226
4227
                    if not is_safetensors:
                        for weight_name in offload_index:
                            shutil.move(
                                os.path.join(offload_folder, f"{weight_name}.dat"),
                                os.path.join(offload_folder, f"{prefix}.{weight_name}.dat"),
                            )
Sylvain Gugger's avatar
Sylvain Gugger committed
4228
                    offload_index = {f"{prefix}.{key}": value for key, value in offload_index.items()}
Sylvain Gugger's avatar
Sylvain Gugger committed
4229
4230
4231
                if not is_safetensors:
                    save_offload_index(offload_index, offload_folder)
                    offload_index = None
4232
4233
4234

            if offload_state_dict:
                # Load back temporarily offloaded state dict
4235
                load_offloaded_weights(model_to_load, state_dict_index, state_dict_folder)
4236
4237
                shutil.rmtree(state_dict_folder)

4238
4239
        if len(error_msgs) > 0:
            error_msg = "\n\t".join(error_msgs)
4240
4241
4242
4243
            if "size mismatch" in error_msg:
                error_msg += (
                    "\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
                )
4244
4245
            raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")

4246
        if len(unexpected_keys) > 0:
Sylvain Gugger's avatar
Sylvain Gugger committed
4247
            archs = [] if model.config.architectures is None else model.config.architectures
4248
            warner = logger.warning if model.__class__.__name__ in archs else logger.info
Sylvain Gugger's avatar
Sylvain Gugger committed
4249
            warner(
Sylvain Gugger's avatar
Sylvain Gugger committed
4250
4251
4252
4253
4254
4255
4256
                f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
                f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
                f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task or"
                " with another architecture (e.g. initializing a BertForSequenceClassification model from a"
                " BertForPreTraining model).\n- This IS NOT expected if you are initializing"
                f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly identical"
                " (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
4257
4258
4259
4260
4261
            )
        else:
            logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
        if len(missing_keys) > 0:
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
4262
4263
4264
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
                " TRAIN this model on a down-stream task to be able to use it for predictions and inference."
4265
            )
4266
        elif len(mismatched_keys) == 0:
4267
            logger.info(
Sylvain Gugger's avatar
Sylvain Gugger committed
4268
4269
4270
4271
                f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the checkpoint"
                f" was trained on, you can already use {model.__class__.__name__} for predictions without further"
                " training."
4272
            )
4273
4274
4275
4276
4277
4278
4279
4280
        if len(mismatched_keys) > 0:
            mismatched_warning = "\n".join(
                [
                    f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
                    for key, shape1, shape2 in mismatched_keys
                ]
            )
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
4281
4282
4283
4284
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
                f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be able"
                " to use it for predictions and inference."
4285
            )
4286

Sylvain Gugger's avatar
Sylvain Gugger committed
4287
        return model, missing_keys, unexpected_keys, mismatched_keys, offload_index, error_msgs
4288
4289

    def retrieve_modules_from_names(self, names, add_prefix=False, remove_prefix=False):
4290
        module_keys = {".".join(key.split(".")[:-1]) for key in names}
4291

Patrick von Platen's avatar
Patrick von Platen committed
4292
4293
        # torch.nn.ParameterList is a special case where two parameter keywords
        # are appended to the module name, *e.g.* bert.special_embeddings.0
4294
        module_keys = module_keys.union(
4295
            {".".join(key.split(".")[:-2]) for key in names if len(key) > 0 and key[-1].isdigit()}
4296
        )
Patrick von Platen's avatar
Patrick von Platen committed
4297

4298
4299
4300
4301
        retrieved_modules = []
        # retrieve all modules that has at least one missing weight name
        for name, module in self.named_modules():
            if remove_prefix:
4302
4303
                _prefix = f"{self.base_model_prefix}."
                name = name[len(_prefix) :] if name.startswith(_prefix) else name
4304
            elif add_prefix:
Patrick von Platen's avatar
Patrick von Platen committed
4305
                name = ".".join([self.base_model_prefix, name]) if len(name) > 0 else self.base_model_prefix
4306
4307
4308
4309
4310
4311

            if name in module_keys:
                retrieved_modules.append(module)

        return retrieved_modules

4312
    @staticmethod
4313
    def _load_pretrained_model_low_mem(model, loaded_state_dict_keys, resolved_archive_file, start_prefix=""):
4314
4315
4316
        """
        This is an experimental function that loads the model using ~1.x model size CPU memory

4317
        Before you call it do:
4318

4319
        1. save which state_dict keys are available
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
        2. drop state_dict before model is created, since the latter takes 1x model size memory

        Here then we continue:

        3. switch to the meta device all params/buffers that are going to be replaced from the loaded state_dict
        4. load state_dict 2nd time
        5. replace the params/buffers from the state_dict

        Currently, it doesn't handle missing_keys, unexpected_keys, mismatched_keys. It can't handle deepspeed.
        """

4331
4332
4333
4334
        _move_model_to_meta(model, loaded_state_dict_keys, start_prefix)
        state_dict = load_state_dict(resolved_archive_file)
        error_msgs = _load_state_dict_into_meta_model(model, state_dict, loaded_state_dict_keys, start_prefix)
        return error_msgs
4335

4336
4337
4338
4339
4340
4341
    @classmethod
    def register_for_auto_class(cls, auto_class="AutoModel"):
        """
        Register this class with a given auto class. This should only be used for custom models as the ones in the
        library are already mapped with an auto class.

4342
4343
4344
4345
4346
4347
        <Tip warning={true}>

        This API is experimental and may have some slight breaking changes in the next releases.

        </Tip>

4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
        Args:
            auto_class (`str` or `type`, *optional*, defaults to `"AutoModel"`):
                The auto class to register this new model with.
        """
        if not isinstance(auto_class, str):
            auto_class = auto_class.__name__

        import transformers.models.auto as auto_module

        if not hasattr(auto_module, auto_class):
            raise ValueError(f"{auto_class} is not a valid auto class.")

        cls._auto_class = auto_class

4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
    def to_bettertransformer(self) -> "PreTrainedModel":
        """
        Converts the model to use [PyTorch's native attention
        implementation](https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html), integrated to
        Transformers through [Optimum library](https://huggingface.co/docs/optimum/bettertransformer/overview). Only a
        subset of all Transformers models are supported.

        PyTorch's attention fastpath allows to speed up inference through kernel fusions and the use of [nested
        tensors](https://pytorch.org/docs/stable/nested.html). Detailed benchmarks can be found in [this blog
        post](https://medium.com/pytorch/bettertransformer-out-of-the-box-performance-for-huggingface-transformers-3fbe27d50ab2).

        Returns:
            [`PreTrainedModel`]: The model converted to BetterTransformer.
        """
        if not is_optimum_available():
            raise ImportError("The package `optimum` is required to use Better Transformer.")

        from optimum.version import __version__ as optimum_version

        if version.parse(optimum_version) < version.parse("1.7.0"):
            raise ImportError(
                f"Please install optimum>=1.7.0 to use Better Transformer. The version {optimum_version} was found."
            )

        from optimum.bettertransformer import BetterTransformer

        return BetterTransformer.transform(self)

    def reverse_bettertransformer(self):
        """
        Reverts the transformation from [`~PreTrainedModel.to_bettertransformer`] so that the original modeling is
        used, for example in order to save the model.

        Returns:
            [`PreTrainedModel`]: The model converted back to the original modeling.
        """
        if not is_optimum_available():
            raise ImportError("The package `optimum` is required to use Better Transformer.")

        from optimum.version import __version__ as optimum_version

        if version.parse(optimum_version) < version.parse("1.7.0"):
            raise ImportError(
                f"Please install optimum>=1.7.0 to use Better Transformer. The version {optimum_version} was found."
            )

        from optimum.bettertransformer import BetterTransformer

        return BetterTransformer.reverse(self)

4412
4413
4414
4415
    def warn_if_padding_and_no_attention_mask(self, input_ids, attention_mask):
        """
        Shows a one-time warning if the input_ids appear to contain padding and no attention mask was given.
        """
4416
4417

        # Skip the check during tracing.
4418
        if is_torch_fx_proxy(input_ids) or torch.jit.is_tracing() or is_torchdynamo_compiling():
4419
4420
            return

4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
        if (attention_mask is not None) or (self.config.pad_token_id is None):
            return

        # Check only the first and last input IDs to reduce overhead.
        if self.config.pad_token_id in input_ids[:, [-1, 0]]:
            warn_string = (
                "We strongly recommend passing in an `attention_mask` since your input_ids may be padded. See "
                "https://huggingface.co/docs/transformers/troubleshooting"
                "#incorrect-output-when-padding-tokens-arent-masked."
            )

            # If the pad token is equal to either BOS, EOS, or SEP, we do not know whether the user should use an
            # attention_mask or not. In this case, we should still show a warning because this is a rare case.
            if (
                (self.config.bos_token_id is not None and self.config.bos_token_id == self.config.pad_token_id)
                or (self.config.eos_token_id is not None and self.config.eos_token_id == self.config.pad_token_id)
                or (self.config.sep_token_id is not None and self.config.sep_token_id == self.config.pad_token_id)
            ):
                warn_string += (
                    f"\nYou may ignore this warning if your `pad_token_id` ({self.config.pad_token_id}) is identical "
                    f"to the `bos_token_id` ({self.config.bos_token_id}), `eos_token_id` ({self.config.eos_token_id}), "
                    f"or the `sep_token_id` ({self.config.sep_token_id}), and your input is not padded."
                )

            logger.warning_once(warn_string)

thomwolf's avatar
thomwolf committed
4447

4448
PreTrainedModel.push_to_hub = copy_func(PreTrainedModel.push_to_hub)
4449
4450
4451
4452
if PreTrainedModel.push_to_hub.__doc__ is not None:
    PreTrainedModel.push_to_hub.__doc__ = PreTrainedModel.push_to_hub.__doc__.format(
        object="model", object_class="AutoModel", object_files="model file"
    )
4453
4454


thomwolf's avatar
thomwolf committed
4455
class PoolerStartLogits(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
4456
4457
    """
    Compute SQuAD start logits from sequence hidden states.
4458

Sylvain Gugger's avatar
Sylvain Gugger committed
4459
    Args:
4460
4461
        config ([`PretrainedConfig`]):
            The config used by the model, will be used to grab the `hidden_size` of the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
4462
4463
4464
    """

    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
4465
        super().__init__()
thomwolf's avatar
thomwolf committed
4466
4467
        self.dense = nn.Linear(config.hidden_size, 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
4468
4469
4470
4471
4472
    def forward(
        self, hidden_states: torch.FloatTensor, p_mask: Optional[torch.FloatTensor] = None
    ) -> torch.FloatTensor:
        """
        Args:
4473
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
4474
                The final hidden states of the model.
4475
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4476
4477
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
Sylvain Gugger's avatar
Sylvain Gugger committed
4478
4479

        Returns:
4480
            `torch.FloatTensor`: The start logits for SQuAD.
thomwolf's avatar
thomwolf committed
4481
        """
thomwolf's avatar
thomwolf committed
4482
4483
4484
        x = self.dense(hidden_states).squeeze(-1)

        if p_mask is not None:
Lysandre Debut's avatar
Lysandre Debut committed
4485
            if get_parameter_dtype(self) == torch.float16:
4486
4487
4488
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask
thomwolf's avatar
thomwolf committed
4489
4490
4491
4492
4493
4494

        return x


class PoolerEndLogits(nn.Module):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
4495
    Compute SQuAD end logits from sequence hidden states.
4496

Sylvain Gugger's avatar
Sylvain Gugger committed
4497
    Args:
4498
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
4499
4500
            The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps`
            to use.
Sylvain Gugger's avatar
Sylvain Gugger committed
4501
4502
4503
    """

    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
4504
        super().__init__()
thomwolf's avatar
thomwolf committed
4505
4506
4507
4508
4509
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dense_1 = nn.Linear(config.hidden_size, 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
4510
4511
4512
4513
4514
4515
4516
4517
4518
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        start_states: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        p_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
        """
        Args:
4519
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
4520
                The final hidden states of the model.
4521
            start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4522
                The hidden states of the first tokens for the labeled span.
4523
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4524
                The position of the first token for the labeled span.
4525
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4526
4527
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
Sylvain Gugger's avatar
Sylvain Gugger committed
4528

4529
        <Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
4530

Stas Bekman's avatar
Stas Bekman committed
4531
4532
        One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides
        `start_states`.
4533
4534

        </Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
4535
4536

        Returns:
4537
            `torch.FloatTensor`: The end logits for SQuAD.
thomwolf's avatar
thomwolf committed
4538
        """
4539
4540
4541
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
thomwolf's avatar
thomwolf committed
4542
        if start_positions is not None:
4543
            slen, hsz = hidden_states.shape[-2:]
4544
4545
4546
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions)  # shape (bsz, 1, hsz)
            start_states = start_states.expand(-1, slen, -1)  # shape (bsz, slen, hsz)
thomwolf's avatar
thomwolf committed
4547
4548
4549
4550
4551
4552
4553

        x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1))
        x = self.activation(x)
        x = self.LayerNorm(x)
        x = self.dense_1(x).squeeze(-1)

        if p_mask is not None:
Lysandre Debut's avatar
Lysandre Debut committed
4554
            if get_parameter_dtype(self) == torch.float16:
4555
4556
4557
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask
thomwolf's avatar
thomwolf committed
4558
4559
4560
4561
4562

        return x


class PoolerAnswerClass(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
4563
4564
4565
4566
    """
    Compute SQuAD 2.0 answer class from classification and start tokens hidden states.

    Args:
4567
4568
        config ([`PretrainedConfig`]):
            The config used by the model, will be used to grab the `hidden_size` of the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
4569
    """
4570

thomwolf's avatar
thomwolf committed
4571
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
4572
        super().__init__()
thomwolf's avatar
thomwolf committed
4573
4574
4575
4576
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False)

Sylvain Gugger's avatar
Sylvain Gugger committed
4577
4578
4579
4580
4581
4582
4583
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        start_states: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        cls_index: Optional[torch.LongTensor] = None,
    ) -> torch.FloatTensor:
4584
4585
        """
        Args:
4586
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
4587
                The final hidden states of the model.
4588
            start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4589
                The hidden states of the first tokens for the labeled span.
4590
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4591
                The position of the first token for the labeled span.
4592
4593
4594
4595
            cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
                Position of the CLS token for each sentence in the batch. If `None`, takes the last token.

        <Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
4596

Stas Bekman's avatar
Stas Bekman committed
4597
4598
        One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides
        `start_states`.
Sylvain Gugger's avatar
Sylvain Gugger committed
4599

4600
        </Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
4601
4602

        Returns:
4603
            `torch.FloatTensor`: The SQuAD 2.0 answer class.
thomwolf's avatar
thomwolf committed
4604
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
4605
        # No dependency on end_feature so that we can obtain one single `cls_logits` for each sample.
4606
        hsz = hidden_states.shape[-1]
4607
4608
4609
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
thomwolf's avatar
thomwolf committed
4610
        if start_positions is not None:
4611
4612
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions).squeeze(-2)  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
4613
4614

        if cls_index is not None:
4615
4616
            cls_index = cls_index[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
4617
        else:
4618
            cls_token_state = hidden_states[:, -1, :]  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
4619
4620
4621
4622
4623
4624
4625
4626

        x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1))
        x = self.activation(x)
        x = self.dense_1(x).squeeze(-1)

        return x


4627
4628
4629
@dataclass
class SquadHeadOutput(ModelOutput):
    """
4630
    Base class for outputs of question answering models using a [`~modeling_utils.SQuADHead`].
4631
4632

    Args:
4633
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned if both `start_positions` and `end_positions` are provided):
Sylvain Gugger's avatar
Sylvain Gugger committed
4634
4635
            Classification loss as the sum of start token, end token (and is_impossible if provided) classification
            losses.
4636
        start_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
4637
            Log probabilities for the top config.start_n_top start token possibilities (beam-search).
4638
        start_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
4639
            Indices for the top config.start_n_top start token possibilities (beam-search).
4640
4641
        end_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Log probabilities for the top `config.start_n_top * config.end_n_top` end token possibilities
Sylvain Gugger's avatar
Sylvain Gugger committed
4642
            (beam-search).
4643
4644
4645
4646
        end_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Indices for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search).
        cls_logits (`torch.FloatTensor` of shape `(batch_size,)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Log probabilities for the `is_impossible` label of the answers.
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657

    """

    loss: Optional[torch.FloatTensor] = None
    start_top_log_probs: Optional[torch.FloatTensor] = None
    start_top_index: Optional[torch.LongTensor] = None
    end_top_log_probs: Optional[torch.FloatTensor] = None
    end_top_index: Optional[torch.LongTensor] = None
    cls_logits: Optional[torch.FloatTensor] = None


thomwolf's avatar
thomwolf committed
4658
class SQuADHead(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
4659
4660
    r"""
    A SQuAD head inspired by XLNet.
4661

Sylvain Gugger's avatar
Sylvain Gugger committed
4662
    Args:
4663
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
4664
4665
            The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps`
            to use.
thomwolf's avatar
thomwolf committed
4666
    """
4667

thomwolf's avatar
thomwolf committed
4668
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
4669
        super().__init__()
thomwolf's avatar
thomwolf committed
4670
4671
4672
4673
4674
4675
4676
        self.start_n_top = config.start_n_top
        self.end_n_top = config.end_n_top

        self.start_logits = PoolerStartLogits(config)
        self.end_logits = PoolerEndLogits(config)
        self.answer_class = PoolerAnswerClass(config)

Sylvain Gugger's avatar
Sylvain Gugger committed
4677
    @replace_return_docstrings(output_type=SquadHeadOutput, config_class=PretrainedConfig)
4678
    def forward(
4679
        self,
Sylvain Gugger's avatar
Sylvain Gugger committed
4680
4681
4682
4683
4684
4685
        hidden_states: torch.FloatTensor,
        start_positions: Optional[torch.LongTensor] = None,
        end_positions: Optional[torch.LongTensor] = None,
        cls_index: Optional[torch.LongTensor] = None,
        is_impossible: Optional[torch.LongTensor] = None,
        p_mask: Optional[torch.FloatTensor] = None,
4686
        return_dict: bool = False,
Sylvain Gugger's avatar
Sylvain Gugger committed
4687
4688
    ) -> Union[SquadHeadOutput, Tuple[torch.FloatTensor]]:
        """
Lysandre's avatar
Lysandre committed
4689
        Args:
4690
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Lysandre's avatar
Lysandre committed
4691
                Final hidden states of the model on the sequence tokens.
4692
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
4693
                Positions of the first token for the labeled span.
4694
            end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
4695
                Positions of the last token for the labeled span.
4696
4697
4698
            cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
                Position of the CLS token for each sentence in the batch. If `None`, takes the last token.
            is_impossible (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
4699
                Whether the question has a possible answer in the paragraph or not.
4700
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4701
4702
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
4703
            return_dict (`bool`, *optional*, defaults to `False`):
4704
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Sylvain Gugger's avatar
Sylvain Gugger committed
4705

Lysandre's avatar
Lysandre committed
4706
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
4707
        """
thomwolf's avatar
thomwolf committed
4708
        start_logits = self.start_logits(hidden_states, p_mask=p_mask)
thomwolf's avatar
thomwolf committed
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731

        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, let's remove the dimension added by batch splitting
            for x in (start_positions, end_positions, cls_index, is_impossible):
                if x is not None and x.dim() > 1:
                    x.squeeze_(-1)

            # during training, compute the end logits based on the ground truth of the start position
            end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)

            loss_fct = CrossEntropyLoss()
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

            if cls_index is not None and is_impossible is not None:
                # Predict answerability from the representation of CLS and START
                cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
                loss_fct_cls = nn.BCEWithLogitsLoss()
                cls_loss = loss_fct_cls(cls_logits, is_impossible)

                # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss
                total_loss += cls_loss * 0.5
4732

4733
            return SquadHeadOutput(loss=total_loss) if return_dict else (total_loss,)
thomwolf's avatar
thomwolf committed
4734
4735
4736
4737

        else:
            # during inference, compute the end logits based on beam search
            bsz, slen, hsz = hidden_states.size()
4738
            start_log_probs = nn.functional.softmax(start_logits, dim=-1)  # shape (bsz, slen)
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749

            start_top_log_probs, start_top_index = torch.topk(
                start_log_probs, self.start_n_top, dim=-1
            )  # shape (bsz, start_n_top)
            start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz)  # shape (bsz, start_n_top, hsz)
            start_states = torch.gather(hidden_states, -2, start_top_index_exp)  # shape (bsz, start_n_top, hsz)
            start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1)  # shape (bsz, slen, start_n_top, hsz)

            hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(
                start_states
            )  # shape (bsz, slen, start_n_top, hsz)
thomwolf's avatar
thomwolf committed
4750
4751
            p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
            end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
4752
            end_log_probs = nn.functional.softmax(end_logits, dim=1)  # shape (bsz, slen, start_n_top)
thomwolf's avatar
thomwolf committed
4753

4754
4755
4756
            end_top_log_probs, end_top_index = torch.topk(
                end_log_probs, self.end_n_top, dim=1
            )  # shape (bsz, end_n_top, start_n_top)
thomwolf's avatar
thomwolf committed
4757
4758
4759
4760
4761
4762
            end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
            end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)

            start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs)
            cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index)

4763
            if not return_dict:
4764
4765
4766
4767
4768
4769
4770
4771
4772
                return (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits)
            else:
                return SquadHeadOutput(
                    start_top_log_probs=start_top_log_probs,
                    start_top_index=start_top_index,
                    end_top_log_probs=end_top_log_probs,
                    end_top_index=end_top_index,
                    cls_logits=cls_logits,
                )
thomwolf's avatar
thomwolf committed
4773
4774
4775


class SequenceSummary(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
4776
4777
4778
4779
    r"""
    Compute a single vector summary of a sequence hidden states.

    Args:
4780
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
4781
4782
            The config used by the model. Relevant arguments in the config class of the model are (refer to the actual
            config class of your model for the default values it uses):
Sylvain Gugger's avatar
Sylvain Gugger committed
4783

4784
            - **summary_type** (`str`) -- The method to use to make this summary. Accepted values are:
Sylvain Gugger's avatar
Sylvain Gugger committed
4785

4786
4787
4788
4789
4790
                - `"last"` -- Take the last token hidden state (like XLNet)
                - `"first"` -- Take the first token hidden state (like Bert)
                - `"mean"` -- Take the mean of all tokens hidden states
                - `"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2)
                - `"attn"` -- Not implemented now, use multi-head attention
Sylvain Gugger's avatar
Sylvain Gugger committed
4791

4792
            - **summary_use_proj** (`bool`) -- Add a projection after the vector extraction.
Sylvain Gugger's avatar
Sylvain Gugger committed
4793
4794
4795
4796
4797
4798
            - **summary_proj_to_labels** (`bool`) -- If `True`, the projection outputs to `config.num_labels` classes
              (otherwise to `config.hidden_size`).
            - **summary_activation** (`Optional[str]`) -- Set to `"tanh"` to add a tanh activation to the output,
              another string or `None` will add no activation.
            - **summary_first_dropout** (`float`) -- Optional dropout probability before the projection and activation.
            - **summary_last_dropout** (`float`)-- Optional dropout probability after the projection and activation.
thomwolf's avatar
thomwolf committed
4799
    """
4800

4801
    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
4802
        super().__init__()
thomwolf's avatar
thomwolf committed
4803

4804
        self.summary_type = getattr(config, "summary_type", "last")
4805
        if self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
4806
4807
4808
4809
4810
            # We should use a standard multi-head attention module with absolute positional embedding for that.
            # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
            # We can probably just use the multi-head attention module of PyTorch >=1.1.0
            raise NotImplementedError

thomwolf's avatar
thomwolf committed
4811
        self.summary = Identity()
4812
4813
        if hasattr(config, "summary_use_proj") and config.summary_use_proj:
            if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0:
4814
                num_classes = config.num_labels
thomwolf's avatar
thomwolf committed
4815
4816
4817
4818
            else:
                num_classes = config.hidden_size
            self.summary = nn.Linear(config.hidden_size, num_classes)

4819
        activation_string = getattr(config, "summary_activation", None)
Lysandre's avatar
Lysandre committed
4820
        self.activation: Callable = get_activation(activation_string) if activation_string else Identity()
thomwolf's avatar
thomwolf committed
4821

thomwolf's avatar
thomwolf committed
4822
        self.first_dropout = Identity()
4823
        if hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0:
4824
4825
            self.first_dropout = nn.Dropout(config.summary_first_dropout)

thomwolf's avatar
thomwolf committed
4826
        self.last_dropout = Identity()
4827
        if hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0:
4828
            self.last_dropout = nn.Dropout(config.summary_last_dropout)
thomwolf's avatar
thomwolf committed
4829

Sylvain Gugger's avatar
Sylvain Gugger committed
4830
4831
4832
4833
4834
4835
4836
    def forward(
        self, hidden_states: torch.FloatTensor, cls_index: Optional[torch.LongTensor] = None
    ) -> torch.FloatTensor:
        """
        Compute a single vector summary of a sequence hidden states.

        Args:
4837
            hidden_states (`torch.FloatTensor` of shape `[batch_size, seq_len, hidden_size]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
4838
                The hidden states of the last layer.
4839
            cls_index (`torch.LongTensor` of shape `[batch_size]` or `[batch_size, ...]` where ... are optional leading dimensions of `hidden_states`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4840
                Used if `summary_type == "cls_index"` and takes the last token of the sequence as classification token.
Sylvain Gugger's avatar
Sylvain Gugger committed
4841
4842

        Returns:
4843
            `torch.FloatTensor`: The summary of the sequence hidden states.
thomwolf's avatar
thomwolf committed
4844
        """
4845
        if self.summary_type == "last":
thomwolf's avatar
thomwolf committed
4846
            output = hidden_states[:, -1]
4847
        elif self.summary_type == "first":
thomwolf's avatar
thomwolf committed
4848
            output = hidden_states[:, 0]
4849
        elif self.summary_type == "mean":
thomwolf's avatar
thomwolf committed
4850
            output = hidden_states.mean(dim=1)
4851
        elif self.summary_type == "cls_index":
thomwolf's avatar
thomwolf committed
4852
            if cls_index is None:
Lysandre's avatar
Lysandre committed
4853
4854
4855
4856
4857
                cls_index = torch.full_like(
                    hidden_states[..., :1, :],
                    hidden_states.shape[-2] - 1,
                    dtype=torch.long,
                )
thomwolf's avatar
thomwolf committed
4858
            else:
thomwolf's avatar
thomwolf committed
4859
                cls_index = cls_index.unsqueeze(-1).unsqueeze(-1)
4860
                cls_index = cls_index.expand((-1,) * (cls_index.dim() - 1) + (hidden_states.size(-1),))
thomwolf's avatar
thomwolf committed
4861
            # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
4862
4863
            output = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, XX, hidden_size)
        elif self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
4864
4865
            raise NotImplementedError

4866
        output = self.first_dropout(output)
thomwolf's avatar
thomwolf committed
4867
4868
        output = self.summary(output)
        output = self.activation(output)
4869
        output = self.last_dropout(output)
thomwolf's avatar
thomwolf committed
4870
4871
4872
4873

        return output


4874
def unwrap_model(model: nn.Module) -> nn.Module:
4875
4876
4877
4878
    """
    Recursively unwraps a model from potential containers (as used in distributed training).

    Args:
4879
        model (`torch.nn.Module`): The model to unwrap.
4880
4881
4882
4883
4884
4885
    """
    # since there could be multiple levels of wrapping, unwrap recursively
    if hasattr(model, "module"):
        return unwrap_model(model.module)
    else:
        return model
Sylvain Gugger's avatar
Sylvain Gugger committed
4886
4887


4888
def expand_device_map(device_map, param_names, start_prefix):
Sylvain Gugger's avatar
Sylvain Gugger committed
4889
4890
4891
4892
    """
    Expand a device map to return the correspondance parameter name to device.
    """
    new_device_map = {}
4893
    param_names = [p[len(start_prefix) :] for p in param_names if p.startswith(start_prefix)]
Sylvain Gugger's avatar
Sylvain Gugger committed
4894
    for module, device in device_map.items():
4895
4896
4897
        new_device_map.update(
            {p: device for p in param_names if p == module or p.startswith(f"{module}.") or module == ""}
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
4898
4899
4900
    return new_device_map


4901
def get_disk_only_shard_files(device_map, sharded_metadata, start_prefix):
Sylvain Gugger's avatar
Sylvain Gugger committed
4902
4903
4904
    """
    Returns the list of shard files containing only weights offloaded to disk.
    """
4905
4906
4907
4908

    weight_map = {
        p[len(start_prefix) :]: v for p, v in sharded_metadata["weight_map"].items() if p.startswith(start_prefix)
    }
Sylvain Gugger's avatar
Sylvain Gugger committed
4909
    files_content = collections.defaultdict(list)
4910
    for weight_name, filename in weight_map.items():
Sylvain Gugger's avatar
Sylvain Gugger committed
4911
4912
4913
4914
4915
        while len(weight_name) > 0 and weight_name not in device_map:
            weight_name = ".".join(weight_name.split(".")[:-1])
        files_content[filename].append(device_map[weight_name])

    return [fname for fname, devices in files_content.items() if set(devices) == {"disk"}]