modeling_utils.py 115 KB
Newer Older
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
Patrick von Platen committed
17
import inspect
18
import os
19
import re
20
from contextlib import contextmanager
21
from dataclasses import dataclass
22
from functools import partial
23
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
24
25

import torch
26
from torch import Tensor, device, nn
27
from torch.nn import CrossEntropyLoss
28

29
30
from requests import HTTPError

31
from .activations import get_activation
32
from .configuration_utils import PretrainedConfig
33
from .deepspeed import deepspeed_config, is_deepspeed_zero3_enabled
34
from .dynamic_module_utils import custom_object_save
35
from .file_utils import (
Aymeric Augustin's avatar
Aymeric Augustin committed
36
    DUMMY_INPUTS,
37
    FLAX_WEIGHTS_NAME,
38
39
40
    TF2_WEIGHTS_NAME,
    TF_WEIGHTS_NAME,
    WEIGHTS_NAME,
41
    EntryNotFoundError,
42
    ModelOutput,
Sylvain Gugger's avatar
Sylvain Gugger committed
43
    PushToHubMixin,
44
45
    RepositoryNotFoundError,
    RevisionNotFoundError,
46
    cached_path,
47
    copy_func,
48
    has_file,
49
    hf_bucket_url,
50
    is_offline_mode,
51
    is_remote_url,
Sylvain Gugger's avatar
Sylvain Gugger committed
52
    replace_return_docstrings,
53
)
54
from .generation_utils import GenerationMixin
Lysandre Debut's avatar
Lysandre Debut committed
55
from .utils import logging
56
from .utils.versions import require_version_core
57

Aymeric Augustin's avatar
Aymeric Augustin committed
58

Lysandre Debut's avatar
Lysandre Debut committed
59
logger = logging.get_logger(__name__)
60

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

_init_weights = True


@contextmanager
def no_init_weights(_enable=True):
    """
    Context manager to globally disable weight initialization to speed up loading large models.

    TODO(Patrick): Delete safety argument `_enable=True` at next major version. .
    """
    global _init_weights
    if _enable:
        _init_weights = False
    try:
        yield
    finally:
        _init_weights = True


thomwolf's avatar
thomwolf committed
81
82
83
84
85
try:
    from torch.nn import Identity
except ImportError:
    # Older PyTorch compatibility
    class Identity(nn.Module):
Lysandre's avatar
Lysandre committed
86
        r"""A placeholder identity operator that is argument-insensitive."""
87

thomwolf's avatar
thomwolf committed
88
        def __init__(self, *args, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
89
            super().__init__()
thomwolf's avatar
thomwolf committed
90
91
92
93

        def forward(self, input):
            return input

94

95
def find_pruneable_heads_and_indices(
Sylvain Gugger's avatar
Sylvain Gugger committed
96
97
98
    heads: List[int], n_heads: int, head_size: int, already_pruned_heads: Set[int]
) -> Tuple[Set[int], torch.LongTensor]:
    """
99
    Finds the heads and their indices taking `already_pruned_heads` into account.
Sylvain Gugger's avatar
Sylvain Gugger committed
100
101

    Args:
102
103
104
105
        heads (`List[int]`): List of the indices of heads to prune.
        n_heads (`int`): The number of heads in the model.
        head_size (`int`): The size of each head.
        already_pruned_heads (`Set[int]`): A set of already pruned heads.
Sylvain Gugger's avatar
Sylvain Gugger committed
106
107

    Returns:
108
        `Tuple[Set[int], torch.LongTensor]`: A tuple with the remaining heads and their corresponding indices.
Sylvain Gugger's avatar
Sylvain Gugger committed
109
    """
110
111
112
113
114
115
116
117
118
119
120
    mask = torch.ones(n_heads, head_size)
    heads = set(heads) - already_pruned_heads  # Convert to set and remove already pruned heads
    for head in heads:
        # Compute how many pruned heads are before the head and move the index accordingly
        head = head - sum(1 if h < head else 0 for h in already_pruned_heads)
        mask[head] = 0
    mask = mask.view(-1).contiguous().eq(1)
    index: torch.LongTensor = torch.arange(len(mask))[mask].long()
    return heads, index


Lysandre Debut's avatar
Lysandre Debut committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
def get_parameter_device(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    try:
        return next(parameter.parameters()).device
    except StopIteration:
        # For nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].device


def get_parameter_dtype(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    try:
        return next(parameter.parameters()).dtype
    except StopIteration:
        # For nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].dtype


151
class ModuleUtilsMixin:
Julien Chaumond's avatar
Julien Chaumond committed
152
    """
153
    A few utilities for `torch.nn.Modules`, to be used as a mixin.
Julien Chaumond's avatar
Julien Chaumond committed
154
155
    """

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    @staticmethod
    def _hook_rss_memory_pre_forward(module, *args, **kwargs):
        try:
            import psutil
        except (ImportError):
            raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")

        process = psutil.Process(os.getpid())
        mem = process.memory_info()
        module.mem_rss_pre_forward = mem.rss
        return None

    @staticmethod
    def _hook_rss_memory_post_forward(module, *args, **kwargs):
        try:
            import psutil
        except (ImportError):
            raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")

        process = psutil.Process(os.getpid())
        mem = process.memory_info()
        module.mem_rss_post_forward = mem.rss
        mem_rss_diff = module.mem_rss_post_forward - module.mem_rss_pre_forward
        module.mem_rss_diff = mem_rss_diff + (module.mem_rss_diff if hasattr(module, "mem_rss_diff") else 0)
        return None

    def add_memory_hooks(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
183
184
185
        """
        Add a memory hook before and after each sub-module forward pass to record increase in memory consumption.

Sylvain Gugger's avatar
Sylvain Gugger committed
186
187
        Increase in memory consumption is stored in a `mem_rss_diff` attribute for each module and can be reset to zero
        with `model.reset_memory_hooks_state()`.
188
189
190
191
192
193
194
        """
        for module in self.modules():
            module.register_forward_pre_hook(self._hook_rss_memory_pre_forward)
            module.register_forward_hook(self._hook_rss_memory_post_forward)
        self.reset_memory_hooks_state()

    def reset_memory_hooks_state(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
195
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
196
        Reset the `mem_rss_diff` attribute of each module (see [`~modeling_utils.ModuleUtilsMixin.add_memory_hooks`]).
Sylvain Gugger's avatar
Sylvain Gugger committed
197
        """
198
199
200
201
202
        for module in self.modules():
            module.mem_rss_diff = 0
            module.mem_rss_post_forward = 0
            module.mem_rss_pre_forward = 0

203
    @property
204
    def device(self) -> device:
205
        """
206
        `torch.device`: The device on which the module is (assuming that all the module parameters are on the same
207
        device).
208
        """
Lysandre Debut's avatar
Lysandre Debut committed
209
        return get_parameter_device(self)
210

211
    @property
212
    def dtype(self) -> torch.dtype:
213
        """
214
        `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
215
        """
Lysandre Debut's avatar
Lysandre Debut committed
216
        return get_parameter_dtype(self)
217
218

    def invert_attention_mask(self, encoder_attention_mask: Tensor) -> Tensor:
Sylvain Gugger's avatar
Sylvain Gugger committed
219
220
221
222
        """
        Invert an attention mask (e.g., switches 0. and 1.).

        Args:
223
            encoder_attention_mask (`torch.Tensor`): An attention mask.
Sylvain Gugger's avatar
Sylvain Gugger committed
224
225

        Returns:
226
            `torch.Tensor`: The inverted attention mask.
Sylvain Gugger's avatar
Sylvain Gugger committed
227
        """
228
229
230
231
232
233
234
235
236
237
        if encoder_attention_mask.dim() == 3:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
        if encoder_attention_mask.dim() == 2:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
        # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
        # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
        # /transformer/transformer_layers.py#L270
        # encoder_extended_attention_mask = (encoder_extended_attention_mask ==
        # encoder_extended_attention_mask.transpose(-1, -2))
        encoder_extended_attention_mask = encoder_extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
238
239
240

        if self.dtype == torch.float16:
            encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -1e4
241
        elif self.dtype in [torch.bfloat16, torch.float32]:
242
243
244
            encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -1e9
        else:
            raise ValueError(
245
                f"{self.dtype} not recognized. `dtype` should be set to either `torch.float32` or `torch.float16`"
246
247
            )

248
249
        return encoder_extended_attention_mask

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
    def create_extended_attention_mask_for_decoder(self, input_shape, attention_mask, device):
        batch_size, seq_length = input_shape
        seq_ids = torch.arange(seq_length, device=device)
        causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
        # in case past_key_values are used we need to add a prefix ones mask to the causal mask
        # causal and attention masks must have same type with pytorch version < 1.3
        causal_mask = causal_mask.to(attention_mask.dtype)

        if causal_mask.shape[1] < attention_mask.shape[1]:
            prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
            causal_mask = torch.cat(
                [
                    torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype),
                    causal_mask,
                ],
                axis=-1,
            )

        extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
        return extended_attention_mask

Sylvain Gugger's avatar
Sylvain Gugger committed
271
272
273
    def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device) -> Tensor:
        """
        Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
274
275

        Arguments:
276
            attention_mask (`torch.Tensor`):
Sylvain Gugger's avatar
Sylvain Gugger committed
277
                Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
278
            input_shape (`Tuple[int]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
279
                The shape of the input to the model.
280
            device: (`torch.device`):
Sylvain Gugger's avatar
Sylvain Gugger committed
281
                The device of the input to the model.
282
283

        Returns:
284
            `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
285
286
287
288
289
290
291
292
293
294
        """
        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        if attention_mask.dim() == 3:
            extended_attention_mask = attention_mask[:, None, :, :]
        elif attention_mask.dim() == 2:
            # Provided a padding mask of dimensions [batch_size, seq_length]
            # - if the model is a decoder, apply a causal mask in addition to the padding mask
            # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
            if self.config.is_decoder:
295
296
297
                extended_attention_mask = self.create_extended_attention_mask_for_decoder(
                    input_shape, attention_mask, device
                )
298
299
300
301
            else:
                extended_attention_mask = attention_mask[:, None, None, :]
        else:
            raise ValueError(
302
                f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})"
303
304
305
306
307
308
309
310
311
312
313
            )

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
        return extended_attention_mask

Sylvain Gugger's avatar
Sylvain Gugger committed
314
315
316
    def get_head_mask(
        self, head_mask: Optional[Tensor], num_hidden_layers: int, is_attention_chunked: bool = False
    ) -> Tensor:
317
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
318
319
320
        Prepare the head mask if needed.

        Args:
321
            head_mask (`torch.Tensor` with shape `[num_heads]` or `[num_hidden_layers x num_heads]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
322
                The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard).
323
            num_hidden_layers (`int`):
Sylvain Gugger's avatar
Sylvain Gugger committed
324
                The number of hidden layers in the model.
325
            is_attention_chunked: (`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
326
327
                Whether or not the attentions scores are computed by chunks or not.

328
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
329
330
            `torch.Tensor` with shape `[num_hidden_layers x batch x num_heads x seq_length x seq_length]` or list with
            `[None]` for each layer.
331
332
333
        """
        if head_mask is not None:
            head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
334
335
            if is_attention_chunked is True:
                head_mask = head_mask.unsqueeze(-1)
336
337
338
339
340
341
342
343
344
345
346
347
348
        else:
            head_mask = [None] * num_hidden_layers

        return head_mask

    def _convert_head_mask_to_5d(self, head_mask, num_hidden_layers):
        """-> [num_hidden_layers x batch x num_heads x seq_length x seq_length]"""
        if head_mask.dim() == 1:
            head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
            head_mask = head_mask.expand(num_hidden_layers, -1, -1, -1, -1)
        elif head_mask.dim() == 2:
            head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
        assert head_mask.dim() == 5, f"head_mask.dim != 5, instead {head_mask.dim()}"
349
        head_mask = head_mask.to(dtype=self.dtype)  # switch to float if need + fp16 compatibility
350
351
        return head_mask

352
353
354
355
356
    def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int:
        """
        Get number of (optionally, trainable or non-embeddings) parameters in the module.

        Args:
357
            only_trainable (`bool`, *optional*, defaults to `False`):
358
359
                Whether or not to return only the number of trainable parameters

360
            exclude_embeddings (`bool`, *optional*, defaults to `False`):
361
362
363
                Whether or not to return only the number of non-embeddings parameters

        Returns:
364
            `int`: The number of parameters.
365
366
        """

367
368
369
370
371
372
373
374
375
376
        if exclude_embeddings:
            embedding_param_names = [
                f"{name}.weight" for name, module_type in self.named_modules() if isinstance(module_type, nn.Embedding)
            ]
            non_embedding_parameters = [
                parameter for name, parameter in self.named_parameters() if name not in embedding_param_names
            ]
            return sum(p.numel() for p in non_embedding_parameters if p.requires_grad or not only_trainable)
        else:
            return sum(p.numel() for p in self.parameters() if p.requires_grad or not only_trainable)
377
378
379
380
381
382

    def estimate_tokens(self, input_dict: Dict[str, Union[torch.Tensor, Any]]) -> int:
        """
        Helper function to estimate the total number of tokens from the model inputs.

        Args:
383
            inputs (`dict`): The model inputs.
384
385

        Returns:
386
            `int`: The total number of tokens.
387
        """
388
389
        if self.main_input_name in input_dict:
            return input_dict[self.main_input_name].numel()
390
        else:
391
            logger.warning(
392
393
394
395
396
397
398
399
400
401
                "Could not estimate the number of tokens of the input, floating-point operations will not be computed"
            )
            return 0

    def floating_point_ops(
        self, input_dict: Dict[str, Union[torch.Tensor, Any]], exclude_embeddings: bool = True
    ) -> int:
        """
        Get number of (optionally, non-embeddings) floating-point operations for the forward and backward passes of a
        batch with this transformer model. Default approximation neglects the quadratic dependency on the number of
Sylvain Gugger's avatar
Sylvain Gugger committed
402
403
        tokens (valid if `12 * d_model << sequence_length`) as laid out in [this
        paper](https://arxiv.org/pdf/2001.08361.pdf) section 2.1. Should be overridden for transformers with parameter
Sylvain Gugger's avatar
Sylvain Gugger committed
404
        re-use e.g. Albert or Universal Transformers, or if doing long-range modeling with very high sequence lengths.
405
406

        Args:
407
            batch_size (`int`):
408
409
                The batch size for the forward pass.

410
            sequence_length (`int`):
411
412
                The number of tokens in each line of the batch.

413
            exclude_embeddings (`bool`, *optional*, defaults to `True`):
414
415
416
                Whether or not to count embedding and softmax operations.

        Returns:
417
            `int`: The number of floating-point operations.
418
419
420
421
        """

        return 6 * self.estimate_tokens(input_dict) * self.num_parameters(exclude_embeddings=exclude_embeddings)

Julien Chaumond's avatar
Julien Chaumond committed
422

Sylvain Gugger's avatar
Sylvain Gugger committed
423
class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMixin):
424
425
    r"""
    Base class for all models.
426

Sylvain Gugger's avatar
Sylvain Gugger committed
427
428
    [`PreTrainedModel`] takes care of storing the configuration of the models and handles methods for loading,
    downloading and saving models as well as a few methods common to all models to:
429

430
431
        - resize the input embeddings,
        - prune heads in the self-attention heads.
432

433
    Class attributes (overridden by derived classes):
Sylvain Gugger's avatar
Sylvain Gugger committed
434

Sylvain Gugger's avatar
Sylvain Gugger committed
435
436
437
438
        - **config_class** ([`PretrainedConfig`]) -- A subclass of [`PretrainedConfig`] to use as configuration class
          for this model architecture.
        - **load_tf_weights** (`Callable`) -- A python *method* for loading a TensorFlow checkpoint in a PyTorch model,
          taking as arguments:
439

Sylvain Gugger's avatar
Sylvain Gugger committed
440
441
            - **model** ([`PreTrainedModel`]) -- An instance of the model on which to load the TensorFlow checkpoint.
            - **config** ([`PreTrainedConfig`]) -- An instance of the configuration associated to the model.
442
            - **path** (`str`) -- A path to the TensorFlow checkpoint.
443

Sylvain Gugger's avatar
Sylvain Gugger committed
444
445
        - **base_model_prefix** (`str`) -- A string indicating the attribute associated to the base model in derived
          classes of the same architecture adding modules on top of the base model.
446
        - **is_parallelizable** (`bool`) -- A flag indicating whether this model supports model parallelization.
Sylvain Gugger's avatar
Sylvain Gugger committed
447
448
        - **main_input_name** (`str`) -- The name of the principal input to the model (often `input_ids` for NLP
          models, `pixel_values` for vision models and `input_values` for speech models).
449
    """
450
    config_class = None
451
    base_model_prefix = ""
452
    main_input_name = "input_ids"
453
    _auto_class = None
454

455
456
457
458
459
460
461
    # a list of re pattern of tensor names to ignore from the model when loading the model weights
    # (and avoid unnecessary warnings).
    _keys_to_ignore_on_load_missing = None
    # a list of re pattern of tensor names to ignore from the weights when loading the model weights
    # (and avoid unnecessary warnings).
    _keys_to_ignore_on_load_unexpected = None
    # a list of of tensor names to ignore when saving the model (useful for keys that aren't
462
    # trained, but which are deterministic, or tied variables)
463
    _keys_to_ignore_on_save = None
464

465
    is_parallelizable = False
466
    supports_gradient_checkpointing = False
467

468
    @property
469
    def dummy_inputs(self) -> Dict[str, torch.Tensor]:
470
        """
471
        `Dict[str, torch.Tensor]`: Dummy inputs to do a forward pass in the network.
472
        """
473
        return {"input_ids": torch.tensor(DUMMY_INPUTS)}
474

475
476
477
478
479
480
481
    @property
    def framework(self) -> str:
        """
        :str: Identifies that this is a PyTorch model.
        """
        return "pt"

482
    def __init__(self, config: PretrainedConfig, *inputs, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
483
        super().__init__()
484
485
        if not isinstance(config, PretrainedConfig):
            raise ValueError(
486
487
488
                f"Parameter config in `{self.__class__.__name__}(config)` should be an instance of class "
                "`PretrainedConfig`. To create a model from a pretrained model use "
                f"`model = {self.__class__.__name__}.from_pretrained(PRETRAINED_MODEL_NAME)`"
489
            )
490
        # Save config and origin of the pretrained weights if given in model
491
        self.config = config
492
        self.name_or_path = config.name_or_path
493
494
495
496
497
498
499
500
501
502
503
504
505
506

    def post_init(self):
        """
        A method executed at the end of each Transformer model initialization, to execute code that needs the model's
        modules properly initialized (such as weight initialization).
        """
        self.init_weights()
        self._backward_compatibility_gradient_checkpointing()

    def _backward_compatibility_gradient_checkpointing(self):
        if self.supports_gradient_checkpointing and getattr(self.config, "gradient_checkpointing", False):
            self.gradient_checkpointing_enable()
            # Remove the attribute now that is has been consumed, so it's no saved in the config.
            delattr(self.config, "gradient_checkpointing")
507

508
509
510
511
512
513
    @classmethod
    def _from_config(cls, config, **kwargs):
        """
        All context managers that the model should be initialized under go here.

        Args:
514
515
            torch_dtype (`torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model under this dtype.
516
517
518
519
520
521
522
523
524
525
526
527
528
529
        """
        torch_dtype = kwargs.pop("torch_dtype", None)

        # override default dtype if needed
        dtype_orig = None
        if torch_dtype is not None:
            dtype_orig = cls._set_default_torch_dtype(torch_dtype)

        if is_deepspeed_zero3_enabled():
            import deepspeed

            logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
            # this immediately partitions the model across all gpus, to avoid the overhead in time
            # and memory copying it on CPU or each GPU first
530
            with deepspeed.zero.Init(config_dict_or_path=deepspeed_config()):
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
                model = cls(config, **kwargs)
        else:
            model = cls(config, **kwargs)

        # restore default dtype if it was modified
        if dtype_orig is not None:
            torch.set_default_dtype(dtype_orig)

        return model

    @classmethod
    def _set_default_torch_dtype(cls, dtype: torch.dtype) -> torch.dtype:
        """
        Change the default dtype and return the previous one. This is needed when wanting to instantiate the model
        under specific dtype.

        Args:
548
            dtype (`torch.dtype`):
549
550
551
                a floating dtype to set to.

        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
552
553
            `torch.dtype`: the original `dtype` that can be used to restore `torch.set_default_dtype(dtype)` if it was
            modified. If it wasn't, returns `None`.
554

555
556
        Note `set_default_dtype` currently only works with floating-point types and asserts if for example,
        `torch.int64` is passed. So if a non-float `dtype` is passed this functions will throw an exception.
557
558
559
560
561
562
563
564
565
566
567
        """
        if not dtype.is_floating_point:
            raise ValueError(
                f"Can't instantiate {cls.__name__} model under dtype={dtype} since it is not a floating point dtype"
            )

        logger.info(f"Instantiating {cls.__name__} model under default dtype {dtype}.")
        dtype_orig = torch.get_default_dtype()
        torch.set_default_dtype(dtype)
        return dtype_orig

568
    @property
569
570
    def base_model(self) -> nn.Module:
        """
571
        `torch.nn.Module`: The main body of the model.
572
        """
573
        return getattr(self, self.base_model_prefix, self)
thomwolf's avatar
thomwolf committed
574

575
    def get_input_embeddings(self) -> nn.Module:
576
577
578
579
        """
        Returns the model's input embeddings.

        Returns:
580
            `nn.Module`: A torch module mapping vocabulary to hidden states.
thomwolf's avatar
thomwolf committed
581
        """
582
        base_model = getattr(self, self.base_model_prefix, self)
thomwolf's avatar
thomwolf committed
583
584
585
586
        if base_model is not self:
            return base_model.get_input_embeddings()
        else:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
587

588
    def set_input_embeddings(self, value: nn.Module):
589
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
590
        Set model's input embeddings.
591
592

        Args:
593
            value (`nn.Module`): A module mapping vocabulary to hidden states.
thomwolf's avatar
thomwolf committed
594
595
596
597
598
599
        """
        base_model = getattr(self, self.base_model_prefix, self)
        if base_model is not self:
            base_model.set_input_embeddings(value)
        else:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
600

601
    def get_output_embeddings(self) -> nn.Module:
602
603
604
605
        """
        Returns the model's output embeddings.

        Returns:
606
            `nn.Module`: A torch module mapping hidden states to vocabulary.
thomwolf's avatar
thomwolf committed
607
        """
608
        return None  # Overwrite for models with output embeddings
thomwolf's avatar
thomwolf committed
609

610
611
612
613
    def _init_weights(self, module):
        """
        Initialize the weights. This method should be overridden by derived class.
        """
614
        raise NotImplementedError(f"Make sure `_init_weights` is implemented for {self.__class__}")
615

616
    def tie_weights(self):
617
618
        """
        Tie the weights between the input embeddings and the output embeddings.
619

Sylvain Gugger's avatar
Sylvain Gugger committed
620
621
        If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the
        weights instead.
thomwolf's avatar
thomwolf committed
622
        """
thomwolf's avatar
thomwolf committed
623
        output_embeddings = self.get_output_embeddings()
624
        if output_embeddings is not None and getattr(self.config, "tie_word_embeddings", True):
thomwolf's avatar
thomwolf committed
625
            self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings())
thomwolf's avatar
thomwolf committed
626

627
        if getattr(self.config, "is_encoder_decoder", False) and getattr(self.config, "tie_encoder_decoder", False):
Weizhen's avatar
Weizhen committed
628
629
            if hasattr(self, self.base_model_prefix):
                self = getattr(self, self.base_model_prefix)
630
631
            self._tie_encoder_decoder_weights(self.encoder, self.decoder, self.base_model_prefix)

Sylvain Gugger's avatar
Sylvain Gugger committed
632
633
634
635
        for module in self.modules():
            if hasattr(module, "_tie_weights"):
                module._tie_weights()

636
637
638
    @staticmethod
    def _tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str):
        uninitialized_encoder_weights: List[str] = []
Weizhen's avatar
Weizhen committed
639
640
641
642
        if decoder.__class__ != encoder.__class__:
            logger.info(
                f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder weights are correctly initialized."
            )
643
644
645
646
647
648
649
650
651
652

        def tie_encoder_to_decoder_recursively(
            decoder_pointer: nn.Module,
            encoder_pointer: nn.Module,
            module_name: str,
            uninitialized_encoder_weights: List[str],
            depth=0,
        ):
            assert isinstance(decoder_pointer, nn.Module) and isinstance(
                encoder_pointer, nn.Module
653
            ), f"{decoder_pointer} and {encoder_pointer} have to be of type nn.Module"
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
            if hasattr(decoder_pointer, "weight"):
                assert hasattr(encoder_pointer, "weight")
                encoder_pointer.weight = decoder_pointer.weight
                if hasattr(decoder_pointer, "bias"):
                    assert hasattr(encoder_pointer, "bias")
                    encoder_pointer.bias = decoder_pointer.bias
                return

            encoder_modules = encoder_pointer._modules
            decoder_modules = decoder_pointer._modules
            if len(decoder_modules) > 0:
                assert (
                    len(encoder_modules) > 0
                ), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"

                all_encoder_weights = set([module_name + "/" + sub_name for sub_name in encoder_modules.keys()])
                encoder_layer_pos = 0
                for name, module in decoder_modules.items():
                    if name.isdigit():
                        encoder_name = str(int(name) + encoder_layer_pos)
                        decoder_name = name
Weizhen's avatar
Weizhen committed
675
676
677
                        if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len(
                            encoder_modules
                        ) != len(decoder_modules):
678
679
                            # this can happen if the name corresponds to the position in a list module list of layers
                            # in this case the decoder has added a cross-attention that the encoder does not have
680
                            # thus skip this step and subtract one layer pos from encoder
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
                            encoder_layer_pos -= 1
                            continue
                    elif name not in encoder_modules:
                        continue
                    elif depth > 500:
                        raise ValueError(
                            "Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model."
                        )
                    else:
                        decoder_name = encoder_name = name
                    tie_encoder_to_decoder_recursively(
                        decoder_modules[decoder_name],
                        encoder_modules[encoder_name],
                        module_name + "/" + name,
                        uninitialized_encoder_weights,
                        depth=depth + 1,
                    )
                    all_encoder_weights.remove(module_name + "/" + encoder_name)

                uninitialized_encoder_weights += list(all_encoder_weights)

        # tie weights recursively
        tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights)
        if len(uninitialized_encoder_weights) > 0:
            logger.warning(
                f"The following encoder weights were not tied to the decoder {uninitialized_encoder_weights}"
            )

709
    def _tie_or_clone_weights(self, output_embeddings, input_embeddings):
Lysandre's avatar
Lysandre committed
710
        """Tie or clone module weights depending of whether we are using TorchScript or not"""
thomwolf's avatar
thomwolf committed
711
        if self.config.torchscript:
712
            output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone())
thomwolf's avatar
thomwolf committed
713
        else:
714
            output_embeddings.weight = input_embeddings.weight
thomwolf's avatar
thomwolf committed
715

Sam Shleifer's avatar
Sam Shleifer committed
716
        if getattr(output_embeddings, "bias", None) is not None:
717
            output_embeddings.bias.data = nn.functional.pad(
718
                output_embeddings.bias.data,
Lysandre's avatar
Lysandre committed
719
720
721
722
                (
                    0,
                    output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0],
                ),
723
724
                "constant",
                0,
725
            )
726
        if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"):
727
            output_embeddings.out_features = input_embeddings.num_embeddings
728

729
    def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding:
730
        """
731
        Resizes input token embeddings matrix of the model if `new_num_tokens != config.vocab_size`.
732

733
        Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
thomwolf's avatar
thomwolf committed
734

735
        Arguments:
736
            new_num_tokens (`int`, *optional*):
737
                The number of new tokens in the embedding matrix. Increasing the size will add newly initialized
Sylvain Gugger's avatar
Sylvain Gugger committed
738
739
                vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
                returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything.
740
741

        Return:
742
            `torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model.
thomwolf's avatar
thomwolf committed
743
        """
744
        model_embeds = self._resize_token_embeddings(new_num_tokens)
thomwolf's avatar
thomwolf committed
745
746
        if new_num_tokens is None:
            return model_embeds
thomwolf's avatar
thomwolf committed
747
748
749

        # Update base model and current model config
        self.config.vocab_size = new_num_tokens
750
        self.vocab_size = new_num_tokens
thomwolf's avatar
thomwolf committed
751
752

        # Tie weights again if needed
753
        self.tie_weights()
thomwolf's avatar
thomwolf committed
754

thomwolf's avatar
thomwolf committed
755
756
        return model_embeds

757
    def _resize_token_embeddings(self, new_num_tokens):
thomwolf's avatar
thomwolf committed
758
759
760
        old_embeddings = self.get_input_embeddings()
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)
        self.set_input_embeddings(new_embeddings)
761
762
763
764
765
766
767

        # if word embeddings are not tied, make sure that lm head is resized as well
        if self.get_output_embeddings() is not None and not self.config.tie_word_embeddings:
            old_lm_head = self.get_output_embeddings()
            new_lm_head = self._get_resized_lm_head(old_lm_head, new_num_tokens)
            self.set_output_embeddings(new_lm_head)

thomwolf's avatar
thomwolf committed
768
        return self.get_input_embeddings()
769

770
    def _get_resized_embeddings(
771
772
        self, old_embeddings: nn.Embedding, new_num_tokens: Optional[int] = None
    ) -> nn.Embedding:
773
774
775
        """
        Build a resized Embedding Module from a provided token Embedding Module. Increasing the size will add newly
        initialized vectors at the end. Reducing the size will remove vectors from the end
776
777

        Args:
778
            old_embeddings (`torch.nn.Embedding`):
779
                Old embeddings to be resized.
780
            new_num_tokens (`int`, *optional*):
781
                New number of tokens in the embedding matrix.
782
783

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
784
785
                vectors from the end. If not provided or `None`, just returns a pointer to the input tokens
                ``torch.nn.Embedding``` module of the model without doing anything.
786
787

        Return:
788
789
            `torch.nn.Embedding`: Pointer to the resized Embedding Module or the old Embedding Module if
            `new_num_tokens` is `None`
790
791
792
793
        """
        if new_num_tokens is None:
            return old_embeddings

794
795
796
797
798
799
800
801
        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_embeddings.weight, modifier_rank=None):
                old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
        else:
            old_num_tokens, old_embedding_dim = old_embeddings.weight.size()

802
803
804
        if old_num_tokens == new_num_tokens:
            return old_embeddings

805
806
        if not isinstance(old_embeddings, nn.Embedding):
            raise TypeError(
807
                f"Old embeddings are of type {type(old_embeddings)}, which is not an instance of {nn.Embedding}. "
808
809
810
                f"You should either use a different resize function or make sure that `old_embeddings` are an instance of {nn.Embedding}."
            )

811
        # Build new embeddings
812
813
        new_embeddings = nn.Embedding(new_num_tokens, old_embedding_dim)
        new_embeddings.to(self.device, dtype=old_embeddings.weight.dtype)
814
815
816
817

        # initialize all new embeddings (in particular added tokens)
        self._init_weights(new_embeddings)

818
        # Copy token embeddings from the previous weights
819
820
821
822
823
824
825
826
827
828
829

        # numbers of tokens to copy
        n = min(old_num_tokens, new_num_tokens)
        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_embeddings.weight, modifier_rank=0):
                if torch.distributed.get_rank() == 0:
                    new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :]
        else:
            new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :]
830
831
832

        return new_embeddings

833
    def _get_resized_lm_head(
834
835
        self, old_lm_head: nn.Linear, new_num_tokens: Optional[int] = None, transposed: Optional[bool] = False
    ) -> nn.Linear:
836
837
838
839
840
        """
        Build a resized Linear Module from a provided old Linear Module. Increasing the size will add newly initialized
        vectors at the end. Reducing the size will remove vectors from the end

        Args:
841
            old_lm_head (`torch.nn.Linear`):
842
                Old lm head liner layer to be resized.
843
            new_num_tokens (`int`, *optional*):
844
845
846
                New number of tokens in the linear matrix.

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
847
                vectors from the end. If not provided or `None`, just returns a pointer to the input tokens
Sylvain Gugger's avatar
Sylvain Gugger committed
848
849
850
                ``torch.nn.Linear``` module of the model without doing anything. transposed (`bool`, *optional*,
                defaults to `False`): Whether `old_lm_head` is transposed or not. If True `old_lm_head.size()` is
                `lm_head_dim, vocab_size` else `vocab_size, lm_head_dim`.
851
852

        Return:
Sylvain Gugger's avatar
Sylvain Gugger committed
853
854
            `torch.nn.Linear`: Pointer to the resized Linear Module or the old Linear Module if `new_num_tokens` is
            `None`
855
856
857
858
        """
        if new_num_tokens is None:
            return old_lm_head

859
860
861
862
863
864
865
866
867
868
869
        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_lm_head.weight, modifier_rank=None):
                old_num_tokens, old_lm_head_dim = (
                    old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
                )
        else:
            old_num_tokens, old_lm_head_dim = (
                old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
            )
870
871
872
873
874
875

        if old_num_tokens == new_num_tokens:
            return old_lm_head

        if not isinstance(old_lm_head, nn.Linear):
            raise TypeError(
876
                f"Old language model head is of type {type(old_lm_head)}, which is not an instance of {nn.Linear}. "
877
                f"You should either use a different resize function or make sure that `old_lm_head` are an instance of {nn.Linear}."
878
879
880
881
882
            )

        # Build new lm head
        new_lm_head_shape = (old_lm_head_dim, new_num_tokens) if not transposed else (new_num_tokens, old_lm_head_dim)
        has_new_lm_head_bias = old_lm_head.bias is not None
883
884
        new_lm_head = nn.Linear(*new_lm_head_shape, bias=has_new_lm_head_bias)
        new_lm_head = new_lm_head.to(self.device, dtype=old_lm_head.weight.dtype)
885
886
887
888
889
890

        # initialize new lm head (in particular added tokens)
        self._init_weights(new_lm_head)

        num_tokens_to_copy = min(old_num_tokens, new_num_tokens)

891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
        # XXX: put the long block of code in a wrapper
        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_lm_head.weight, modifier_rank=0):
                if torch.distributed.get_rank() == 0:
                    # Copy old lm head weights to new lm head
                    if not transposed:
                        new_lm_head.weight.data[:num_tokens_to_copy, :] = old_lm_head.weight.data[
                            :num_tokens_to_copy, :
                        ]
                    else:
                        new_lm_head.weight.data[:, :num_tokens_to_copy] = old_lm_head.weight.data[
                            :, :num_tokens_to_copy
                        ]

                    # Copy bias weights to new lm head
                    if has_new_lm_head_bias:
                        new_lm_head.bias.data[:num_tokens_to_copy] = old_lm_head.bias.data[:num_tokens_to_copy]
910
        else:
911
912
913
914
915
            # Copy old lm head weights to new lm head
            if not transposed:
                new_lm_head.weight.data[:num_tokens_to_copy, :] = old_lm_head.weight.data[:num_tokens_to_copy, :]
            else:
                new_lm_head.weight.data[:, :num_tokens_to_copy] = old_lm_head.weight.data[:, :num_tokens_to_copy]
916

917
918
919
            # Copy bias weights to new lm head
            if has_new_lm_head_bias:
                new_lm_head.bias.data[:num_tokens_to_copy] = old_lm_head.bias.data[:num_tokens_to_copy]
920
921
922

        return new_lm_head

923
924
925
926
927
928
929
930
931
932
933
934
    def resize_position_embeddings(self, new_num_position_embeddings: int):
        raise NotImplementedError(
            f"`resize_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should "
            f"overwrite this method in the class {self.__class__} in `modeling_{self.__class__.__module__}.py`"
        )

    def get_position_embeddings(self) -> Union[nn.Embedding, Tuple[nn.Embedding]]:
        raise NotImplementedError(
            f"`get_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should "
            f"overwrite this method in the class {self.__class__} in `modeling_{self.__class__.__module__}.py`"
        )

935
    def init_weights(self):
936
        """
937
        If needed prunes and maybe initializes weights.
938
        """
939
940
941
942
        # Prune heads if needed
        if self.config.pruned_heads:
            self.prune_heads(self.config.pruned_heads)

943
944
945
946
947
948
949
        if _init_weights:
            # Initialize weights
            self.apply(self._init_weights)

            # Tie weights should be skipped when not initializing all weights
            # since from_pretrained(...) calls tie weights anyways
            self.tie_weights()
950

951
952
953
    def prune_heads(self, heads_to_prune: Dict[int, List[int]]):
        """
        Prunes heads of the base model.
954

955
        Arguments:
956
            heads_to_prune (`Dict[int, List[int]]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
957
958
959
                Dictionary with keys being selected layer indices (`int`) and associated values being the list of heads
                to prune in said layer (list of `int`). For instance {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on
                layer 1 and heads 2 and 3 on layer 2.
thomwolf's avatar
thomwolf committed
960
        """
961
        # save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads
962
        for layer, heads in heads_to_prune.items():
963
964
965
            union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads)
            self.config.pruned_heads[layer] = list(union_heads)  # Unfortunately we have to store it as list for JSON

966
        self.base_model._prune_heads(heads_to_prune)
thomwolf's avatar
thomwolf committed
967

968
    def gradient_checkpointing_enable(self):
969
970
971
972
973
974
975
976
977
978
        """
        Activates gradient checkpointing for the current model.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        if not self.supports_gradient_checkpointing:
            raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
        self.apply(partial(self._set_gradient_checkpointing, value=True))

979
    def gradient_checkpointing_disable(self):
980
981
982
983
984
985
986
987
988
        """
        Deactivates gradient checkpointing for the current model.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        if self.supports_gradient_checkpointing:
            self.apply(partial(self._set_gradient_checkpointing, value=False))

989
990
991
992
993
994
995
996
997
998
    @property
    def is_gradient_checkpointing(self) -> bool:
        """
        Whether gradient checkpointing is activated for this model or not.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules())

999
1000
1001
1002
1003
1004
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
        save_config: bool = True,
        state_dict: Optional[dict] = None,
        save_function: Callable = torch.save,
Sylvain Gugger's avatar
Sylvain Gugger committed
1005
1006
        push_to_hub: bool = False,
        **kwargs,
1007
    ):
1008
1009
        """
        Save a model and its configuration file to a directory, so that it can be re-loaded using the
1010
        `[`~PreTrainedModel.from_pretrained`]` class method.
1011

1012
        Arguments:
1013
            save_directory (`str` or `os.PathLike`):
1014
                Directory to which to save. Will be created if it doesn't exist.
1015
            save_config (`bool`, *optional*, defaults to `True`):
1016
                Whether or not to save the config of the model. Useful when in distributed training like TPUs and need
Sylvain Gugger's avatar
Sylvain Gugger committed
1017
1018
                to call this function on all processes. In this case, set `save_config=True` only on the main process
                to avoid race conditions.
1019
            state_dict (nested dictionary of `torch.Tensor`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1020
1021
1022
                The state dictionary of the model to save. Will default to `self.state_dict()`, but can be used to only
                save parts of the model or if special precautions need to be taken when recovering the state dictionary
                of a model (like when using model parallelism).
1023
            save_function (`Callable`):
1024
                The function to use to save the state dictionary. Useful on distributed training like TPUs when one
1025
1026
                need to replace `torch.save` by another method.
            push_to_hub (`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1027
                Whether or not to push your model to the Hugging Face model hub after saving it.
1028

1029
                <Tip warning={true}>
1030

Sylvain Gugger's avatar
Sylvain Gugger committed
1031
1032
1033
                Using `push_to_hub=True` will synchronize the repository you are pushing to with `save_directory`,
                which requires `save_directory` to be a local clone of the repo you are pushing to if it's an existing
                folder. Pass along `temp_dir=True` to use a temporary directory instead.
1034
1035

                </Tip>
1036

Sylvain Gugger's avatar
Sylvain Gugger committed
1037
            kwargs:
Sylvain Gugger's avatar
Sylvain Gugger committed
1038
                Additional key word arguments passed along to the [`~file_utils.PushToHubMixin.push_to_hub`] method.
1039
        """
1040
        if os.path.isfile(save_directory):
1041
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
1042
            return
1043
1044
1045
1046
1047

        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
            repo = self._create_or_get_repo(save_directory, **kwargs)

1048
        os.makedirs(save_directory, exist_ok=True)
1049

Julien Chaumond's avatar
Julien Chaumond committed
1050
        # Only save the model itself if we are using distributed training
1051
        model_to_save = unwrap_model(self)
1052

1053
1054
1055
1056
1057
        # save the string version of dtype to the config, e.g. convert torch.float32 => "float32"
        # we currently don't use this setting automatically, but may start to use with v5
        dtype = get_parameter_dtype(model_to_save)
        model_to_save.config.torch_dtype = str(dtype).split(".")[1]

Julien Chaumond's avatar
Julien Chaumond committed
1058
1059
1060
        # Attach architecture to the config
        model_to_save.config.architectures = [model_to_save.__class__.__name__]

1061
1062
1063
1064
1065
        # If we have a custom model, we copy the file defining it in the folder and set the attributes so it can be
        # loaded from the Hub.
        if self._auto_class is not None:
            custom_object_save(self, save_directory, config=self.config)

1066
1067
1068
1069
1070
1071
1072
        # Save the config
        if save_config:
            model_to_save.config.save_pretrained(save_directory)

        # Save the model
        if state_dict is None:
            state_dict = model_to_save.state_dict()
1073
1074

        # Handle the case where some state_dict keys shouldn't be saved
1075
        if self._keys_to_ignore_on_save is not None:
1076
            for ignore_key in self._keys_to_ignore_on_save:
1077
1078
                if ignore_key in state_dict.keys():
                    del state_dict[ignore_key]
1079

1080
1081
        # If we save using the predefined names, we can load using `from_pretrained`
        output_model_file = os.path.join(save_directory, WEIGHTS_NAME)
1082
        save_function(state_dict, output_model_file)
1083

1084
        logger.info(f"Model weights saved in {output_model_file}")
1085

Sylvain Gugger's avatar
Sylvain Gugger committed
1086
        if push_to_hub:
1087
            url = self._push_to_hub(repo, commit_message=commit_message)
Sylvain Gugger's avatar
Sylvain Gugger committed
1088
1089
            logger.info(f"Model pushed to the hub in this commit: {url}")

1090
    @classmethod
1091
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
1092
1093
        r"""
        Instantiate a pretrained pytorch model from a pre-trained model configuration.
1094

Sylvain Gugger's avatar
Sylvain Gugger committed
1095
1096
        The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
        the model, you should first set it back in training mode with `model.train()`.
1097

1098
        The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
1099
1100
        pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
        task.
1101

1102
        The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
1103
        weights are discarded.
1104

1105
        Parameters:
1106
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
1107
1108
                Can be either:

1109
                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
Sylvain Gugger's avatar
Sylvain Gugger committed
1110
1111
                      Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a
                      user or organization name, like `dbmdz/bert-base-german-cased`.
1112
1113
1114
                    - A path to a *directory* containing model weights saved using
                      [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
                    - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
Sylvain Gugger's avatar
Sylvain Gugger committed
1115
1116
1117
                      this case, `from_tf` should be set to `True` and a configuration object should be provided as
                      `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
                      PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
1118
                    - A path or url to a model folder containing a *flax checkpoint file* in *.msgpack* format (e.g,
Sylvain Gugger's avatar
Sylvain Gugger committed
1119
1120
                      `./flax_model/` containing `flax_model.msgpack`). In this case, `from_flax` should be set to
                      `True`.
1121
1122
1123
1124
1125
                    - `None` if you are both providing the configuration and state dictionary (resp. with keyword
                      arguments `config` and `state_dict`).
            model_args (sequence of positional arguments, *optional*):
                All remaining positional arguments will be passed to the underlying model's `__init__` method.
            config (`Union[PretrainedConfig, str, os.PathLike]`, *optional*):
1126
1127
                Can be either:

1128
1129
                    - an instance of a class derived from [`PretrainedConfig`],
                    - a string or path valid as input to [`~PretrainedConfig.from_pretrained`].
1130

1131
                Configuration for the model to use instead of an automatically loaded configuration. Configuration can
1132
1133
                be automatically loaded when:

1134
                    - The model is a model provided by the library (loaded with the *model id* string of a pretrained
1135
                      model).
Sylvain Gugger's avatar
Sylvain Gugger committed
1136
1137
                    - The model was saved using [`~PreTrainedModel.save_pretrained`] and is reloaded by supplying the
                      save directory.
1138
1139
1140
                    - The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a
                      configuration JSON file named *config.json* is found in the directory.
            state_dict (`Dict[str, torch.Tensor]`, *optional*):
1141
1142
1143
                A state dictionary to use instead of a state dictionary loaded from saved weights file.

                This option can be used if you want to create a model from a pretrained configuration but load your own
Sylvain Gugger's avatar
Sylvain Gugger committed
1144
                weights. In this case though, you should check if using [`~PreTrainedModel.save_pretrained`] and
1145
1146
                [`~PreTrainedModel.from_pretrained`] is not a simpler option.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
1147
1148
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
1149
            from_tf (`bool`, *optional*, defaults to `False`):
1150
                Load the model weights from a TensorFlow checkpoint save file (see docstring of
1151
1152
                `pretrained_model_name_or_path` argument).
            from_flax (`bool`, *optional*, defaults to `False`):
1153
                Load the model weights from a Flax checkpoint save file (see docstring of
1154
1155
                `pretrained_model_name_or_path` argument).
            ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`):
1156
1157
1158
                Whether or not to raise an error if some of the weights from the checkpoint do not have the same size
                as the weights of the model (if for instance, you are instantiating a model with 10 labels from a
                checkpoint with 3 labels).
1159
            force_download (`bool`, *optional*, defaults to `False`):
1160
1161
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
1162
            resume_download (`bool`, *optional*, defaults to `False`):
1163
1164
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
1165
            proxies (`Dict[str, str]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1166
1167
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
1168
            output_loading_info(`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1169
                Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
1170
            local_files_only(`bool`, *optional*, defaults to `False`):
Stas Bekman's avatar
Stas Bekman committed
1171
                Whether or not to only look at local files (i.e., do not try to download the model).
1172
            use_auth_token (`str` or *bool*, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1173
1174
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `transformers-cli login` (stored in `~/.huggingface`).
1175
            revision(`str`, *optional*, defaults to `"main"`):
Julien Chaumond's avatar
Julien Chaumond committed
1176
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
1177
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
Julien Chaumond's avatar
Julien Chaumond committed
1178
                identifier allowed by git.
1179
            mirror(`str`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1180
1181
1182
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information.
1183
            _fast_init(`bool`, *optional*, defaults to ```True`):
1184
                Whether or not to disable fast initialization.
1185
            low_cpu_mem_usage(`bool``, *optional*, defaults to ```False`):
1186
1187
                Tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                This is an experimental feature and a subject to change at any moment.
1188
            torch_dtype (`str` or `torch.dtype`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1189
1190
                Override the default `torch.dtype` and load the model under this dtype. If `"auto"` is passed the dtype
                will be automatically derived from the model's weights.
1191

1192
1193
                <Tip warning={true}>

Sylvain Gugger's avatar
Sylvain Gugger committed
1194
1195
1196
                One should only disable *_fast_init* to ensure backwards compatibility with `transformers.__version__ <
                4.6.0` for seeded model initialization. This argument will be removed at the next major version. See
                [pull request 11471](https://github.com/huggingface/transformers/pull/11471) for more information.
1197

1198
                </Tip>
1199

1200
            kwargs (remaining dictionary of keyword arguments, *optional*):
1201
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
1202
                `output_attentions=True`). Behaves differently depending on whether a `config` is provided or
1203
1204
                automatically loaded:

1205
1206
                    - If a configuration is provided with `config`, `**kwargs` will be directly passed to the
                      underlying model's `__init__` method (we assume all relevant updates to the configuration have
1207
                      already been done)
1208
                    - If a configuration is not provided, `kwargs` will be first passed to the configuration class
Sylvain Gugger's avatar
Sylvain Gugger committed
1209
1210
1211
1212
                      initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that
                      corresponds to a configuration attribute will be used to override said attribute with the
                      supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute
                      will be passed to the underlying model's `__init__` function.
1213
1214
1215
1216
1217
1218
1219
1220
1221

        <Tip>

        Passing `use_auth_token=True`` is required when you want to use a private model.

        </Tip>

        <Tip>

Sylvain Gugger's avatar
Sylvain Gugger committed
1222
1223
        Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to
        use this method in a firewalled environment.
1224
1225
1226
1227
1228
1229
1230

        </Tip>

        Examples:

        ```python
        >>> from transformers import BertConfig, BertModel
Sylvain Gugger's avatar
Sylvain Gugger committed
1231

1232
        >>> # Download model and configuration from huggingface.co and cache.
Sylvain Gugger's avatar
Sylvain Gugger committed
1233
        >>> model = BertModel.from_pretrained("bert-base-uncased")
1234
        >>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable).
Sylvain Gugger's avatar
Sylvain Gugger committed
1235
        >>> model = BertModel.from_pretrained("./test/saved_model/")
1236
        >>> # Update configuration during loading.
Sylvain Gugger's avatar
Sylvain Gugger committed
1237
        >>> model = BertModel.from_pretrained("bert-base-uncased", output_attentions=True)
1238
1239
        >>> assert model.config.output_attentions == True
        >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable).
Sylvain Gugger's avatar
Sylvain Gugger committed
1240
1241
        >>> config = BertConfig.from_json_file("./tf_model/my_tf_model_config.json")
        >>> model = BertModel.from_pretrained("./tf_model/my_tf_checkpoint.ckpt.index", from_tf=True, config=config)
1242
        >>> # Loading from a Flax checkpoint file instead of a PyTorch model (slower)
Sylvain Gugger's avatar
Sylvain Gugger committed
1243
        >>> model = BertModel.from_pretrained("bert-base-uncased", from_flax=True)
1244
        ```"""
1245
1246
1247
1248
        config = kwargs.pop("config", None)
        state_dict = kwargs.pop("state_dict", None)
        cache_dir = kwargs.pop("cache_dir", None)
        from_tf = kwargs.pop("from_tf", False)
1249
        from_flax = kwargs.pop("from_flax", False)
1250
        ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
1251
1252
1253
1254
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        output_loading_info = kwargs.pop("output_loading_info", False)
1255
        local_files_only = kwargs.pop("local_files_only", False)
1256
        use_auth_token = kwargs.pop("use_auth_token", None)
Julien Chaumond's avatar
Julien Chaumond committed
1257
        revision = kwargs.pop("revision", None)
1258
        mirror = kwargs.pop("mirror", None)
1259
1260
        from_pipeline = kwargs.pop("_from_pipeline", None)
        from_auto_class = kwargs.pop("_from_auto", False)
1261
        _fast_init = kwargs.pop("_fast_init", True)
1262
        torch_dtype = kwargs.pop("torch_dtype", None)
1263
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", False)
1264
1265

        from_pt = not (from_tf | from_flax)
1266
1267
1268
1269

        user_agent = {"file_type": "model", "framework": "pytorch", "from_auto_class": from_auto_class}
        if from_pipeline is not None:
            user_agent["using_pipeline"] = from_pipeline
thomwolf's avatar
thomwolf committed
1270

1271
1272
1273
1274
        if is_offline_mode() and not local_files_only:
            logger.info("Offline mode: forcing local_files_only=True")
            local_files_only = True

1275
1276
1277
        # Load config if we don't provide a configuration
        if not isinstance(config, PretrainedConfig):
            config_path = config if config is not None else pretrained_model_name_or_path
1278
            config, model_kwargs = cls.config_class.from_pretrained(
1279
1280
1281
                config_path,
                cache_dir=cache_dir,
                return_unused_kwargs=True,
1282
                force_download=force_download,
1283
                resume_download=resume_download,
1284
                proxies=proxies,
1285
                local_files_only=local_files_only,
1286
                use_auth_token=use_auth_token,
Julien Chaumond's avatar
Julien Chaumond committed
1287
                revision=revision,
1288
1289
                _from_auto=from_auto_class,
                _from_pipeline=from_pipeline,
1290
                **kwargs,
1291
1292
1293
            )
        else:
            model_kwargs = kwargs
1294

thomwolf's avatar
thomwolf committed
1295
        # Load model
thomwolf's avatar
thomwolf committed
1296
        if pretrained_model_name_or_path is not None:
1297
            pretrained_model_name_or_path = str(pretrained_model_name_or_path)
1298
            if os.path.isdir(pretrained_model_name_or_path):
thomwolf's avatar
thomwolf committed
1299
                if from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")):
1300
                    # Load from a TF 1.0 checkpoint in priority if from_tf
thomwolf's avatar
thomwolf committed
1301
                    archive_file = os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")
thomwolf's avatar
thomwolf committed
1302
                elif from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)):
1303
                    # Load from a TF 2.0 checkpoint in priority if from_tf
thomwolf's avatar
thomwolf committed
1304
                    archive_file = os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)
1305
1306
1307
                elif from_flax and os.path.isfile(os.path.join(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME)):
                    # Load from a Flax checkpoint in priority if from_flax
                    archive_file = os.path.join(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME)
thomwolf's avatar
thomwolf committed
1308
1309
                elif os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)):
                    # Load from a PyTorch checkpoint
thomwolf's avatar
thomwolf committed
1310
                    archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
                # At this stage we don't have a weight file so we will raise an error.
                elif os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")
                ) or os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)):
                    raise EnvironmentError(
                        f"Error no file named {WEIGHTS_NAME} found in directory {pretrained_model_name_or_path} but "
                        "there is a file for TensorFlow weights. Use `from_tf=True` to load this model from those "
                        "weights."
                    )
                elif os.path.join(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME):
                    raise EnvironmentError(
                        f"Error no file named {WEIGHTS_NAME} found in directory {pretrained_model_name_or_path} but "
                        "there is a file for Flax weights. Use `from_flax=True` to load this model from those "
                        "weights."
                    )
thomwolf's avatar
thomwolf committed
1326
                else:
1327
                    raise EnvironmentError(
1328
1329
                        f"Error no file named {WEIGHTS_NAME}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME + '.index'} or "
                        f"{FLAX_WEIGHTS_NAME} found in directory {pretrained_model_name_or_path}."
1330
                    )
1331
            elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
1332
                archive_file = pretrained_model_name_or_path
1333
            elif os.path.isfile(pretrained_model_name_or_path + ".index"):
1334
1335
1336
1337
1338
                if not from_tf:
                    raise ValueError(
                        f"We found a TensorFlow checkpoint at {pretrained_model_name_or_path + '.index'}, please set "
                        "from_tf to True to load from this checkpoint."
                    )
1339
                archive_file = pretrained_model_name_or_path + ".index"
1340
            else:
1341
1342
1343
1344
1345
1346
1347
1348
                # set correct filename
                if from_tf:
                    filename = TF2_WEIGHTS_NAME
                elif from_flax:
                    filename = FLAX_WEIGHTS_NAME
                else:
                    filename = WEIGHTS_NAME

thomwolf's avatar
thomwolf committed
1349
                archive_file = hf_bucket_url(
Julien Chaumond's avatar
Julien Chaumond committed
1350
                    pretrained_model_name_or_path,
1351
                    filename=filename,
Julien Chaumond's avatar
Julien Chaumond committed
1352
                    revision=revision,
1353
                    mirror=mirror,
thomwolf's avatar
thomwolf committed
1354
                )
1355

thomwolf's avatar
thomwolf committed
1356
            try:
1357
                # Load from URL or cache if already cached
1358
1359
1360
1361
1362
1363
                resolved_archive_file = cached_path(
                    archive_file,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    resume_download=resume_download,
1364
                    local_files_only=local_files_only,
1365
                    use_auth_token=use_auth_token,
1366
                    user_agent=user_agent,
1367
                )
1368

1369
            except RepositoryNotFoundError:
1370
1371
1372
1373
1374
1375
                raise EnvironmentError(
                    f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier "
                    "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a "
                    "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli "
                    "login` and pass `use_auth_token=True`."
                )
1376
            except RevisionNotFoundError:
1377
1378
1379
1380
1381
                raise EnvironmentError(
                    f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for "
                    "this model name. Check the model page at "
                    f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions."
                )
1382
            except EntryNotFoundError:
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
                if filename == WEIGHTS_NAME:
                    has_file_kwargs = {
                        "revision": revision,
                        "mirror": mirror,
                        "proxies": proxies,
                        "use_auth_token": use_auth_token,
                    }
                    if has_file(pretrained_model_name_or_path, TF2_WEIGHTS_NAME, **has_file_kwargs):
                        raise EnvironmentError(
                            f"{pretrained_model_name_or_path} does not appear to have a file named {WEIGHTS_NAME} but "
                            "there is a file for TensorFlow weights. Use `from_tf=True` to load this model from those "
                            "weights."
                        )
                    elif has_file(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME, **has_file_kwargs):
                        raise EnvironmentError(
                            f"{pretrained_model_name_or_path} does not appear to have a file named {WEIGHTS_NAME} but "
                            "there is a file for Flax weights. Use `from_flax=True` to load this model from those "
                            "weights."
                        )
                    else:
                        raise EnvironmentError(
                            f"{pretrained_model_name_or_path} does not appear to have a file named {WEIGHTS_NAME}, "
                            f"{TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or {FLAX_WEIGHTS_NAME}."
                        )
                else:
                    raise EnvironmentError(
                        f"{pretrained_model_name_or_path} does not appear to have a file named {filename}."
                    )
1411
            except HTTPError:
1412
1413
1414
1415
1416
1417
1418
                raise EnvironmentError(
                    "We couldn't connect to 'https://huggingface.co/' to load this model and it looks like "
                    f"{pretrained_model_name_or_path} is not the path to a directory conaining a a file named "
                    f"{WEIGHTS_NAME}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or {FLAX_WEIGHTS_NAME}.\n"
                    "Checkout your internet connection or see how to run the library in offline mode at "
                    "'https://huggingface.co/docs/transformers/installation#offline-mode'."
                )
1419
            except EnvironmentError:
1420
1421
1422
1423
1424
1425
                raise EnvironmentError(
                    f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from "
                    "'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
                    f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
                    f"containing a file named {WEIGHTS_NAME}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or "
                    f"{FLAX_WEIGHTS_NAME}."
1426
                )
1427

thomwolf's avatar
thomwolf committed
1428
            if resolved_archive_file == archive_file:
1429
                logger.info(f"loading weights file {archive_file}")
1430
            else:
1431
                logger.info(f"loading weights file {archive_file} from cache at {resolved_archive_file}")
1432
        else:
thomwolf's avatar
thomwolf committed
1433
            resolved_archive_file = None
1434

1435
1436
1437
1438
1439
        # load pt weights early so that we know which dtype to init the model under
        if from_pt:
            if state_dict is None:
                try:
                    state_dict = torch.load(resolved_archive_file, map_location="cpu")
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
                except Exception as e:
                    try:
                        with open(resolved_archive_file) as f:
                            if f.read().startswith("version"):
                                raise OSError(
                                    "You seem to have cloned a repository without having git-lfs installed. Please install "
                                    "git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
                                    "you cloned."
                                )
                            else:
                                raise ValueError from e
                    except (UnicodeDecodeError, ValueError):
                        raise OSError(
                            f"Unable to load weights from pytorch checkpoint file for '{pretrained_model_name_or_path}' "
1454
1455
                            f"at '{resolved_archive_file}'. "
                            "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True."
1456
                        )
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473

            # set dtype to instantiate the model under:
            # 1. If torch_dtype is not None, we use that dtype
            # 2. If torch_dtype is "auto", we auto-detect dtype from the loaded state_dict, by checking its first
            #    weights entry - we assume all weights are of the same dtype
            # we also may have config.torch_dtype available, but we won't rely on it till v5
            dtype_orig = None
            if torch_dtype is not None:
                if isinstance(torch_dtype, str):
                    if torch_dtype == "auto":
                        torch_dtype = next(iter(state_dict.values())).dtype
                    else:
                        raise ValueError(
                            f"`torch_dtype` can be either a `torch.dtype` or `auto`, but received {torch_dtype}"
                        )
                dtype_orig = cls._set_default_torch_dtype(torch_dtype)

1474
1475
1476
1477
1478
            if low_cpu_mem_usage:
                # save the keys
                loaded_state_dict_keys = [k for k in state_dict.keys()]
                del state_dict  # free CPU memory - will reload again later

1479
1480
        config.name_or_path = pretrained_model_name_or_path

1481
        # Instantiate model.
1482
1483
1484
1485
        if is_deepspeed_zero3_enabled():
            import deepspeed

            logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
1486
1487
            # this immediately partitions the model across all gpus, to avoid the overhead in time
            # and memory copying it on CPU or each GPU first
1488
            with deepspeed.zero.Init(config_dict_or_path=deepspeed_config()):
1489
1490
                with no_init_weights(_enable=_fast_init):
                    model = cls(config, *model_args, **model_kwargs)
1491
        else:
1492
1493
            with no_init_weights(_enable=_fast_init):
                model = cls(config, *model_args, **model_kwargs)
1494

1495
1496
1497
1498
1499
        if from_pt:
            # restore default dtype
            if dtype_orig is not None:
                torch.set_default_dtype(dtype_orig)

1500
        if from_tf:
1501
            if resolved_archive_file.endswith(".index"):
1502
1503
1504
1505
1506
                # Load from a TensorFlow 1.X checkpoint - provided by original authors
                model = cls.load_tf_weights(model, config, resolved_archive_file[:-6])  # Remove the '.index'
            else:
                # Load from our TensorFlow 2.0 checkpoints
                try:
1507
                    from .modeling_tf_pytorch_utils import load_tf2_checkpoint_in_pytorch_model
1508

1509
                    model = load_tf2_checkpoint_in_pytorch_model(model, resolved_archive_file, allow_missing_keys=True)
1510
                except ImportError:
1511
1512
1513
1514
                    logger.error(
                        "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed. Please see "
                        "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions."
                    )
1515
                    raise
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
        elif from_flax:
            try:
                from .modeling_flax_pytorch_utils import load_flax_checkpoint_in_pytorch_model

                model = load_flax_checkpoint_in_pytorch_model(model, resolved_archive_file)
            except ImportError:
                logger.error(
                    "Loading a Flax model in PyTorch, requires both PyTorch and Flax to be installed. Please see "
                    "https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation instructions."
                )
                raise
1527
        elif from_pt:
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538

            if low_cpu_mem_usage:
                cls._load_state_dict_into_model_low_mem(model, loaded_state_dict_keys, resolved_archive_file)
            else:
                model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_state_dict_into_model(
                    model,
                    state_dict,
                    pretrained_model_name_or_path,
                    ignore_mismatched_sizes=ignore_mismatched_sizes,
                    _fast_init=_fast_init,
                )
1539

1540
1541
        # make sure token embedding weights are still tied if needed
        model.tie_weights()
1542

1543
        # Set model in evaluation mode to deactivate DropOut modules by default
1544
1545
        model.eval()

thomwolf's avatar
thomwolf committed
1546
        if output_loading_info:
1547
1548
1549
            loading_info = {
                "missing_keys": missing_keys,
                "unexpected_keys": unexpected_keys,
1550
                "mismatched_keys": mismatched_keys,
1551
1552
                "error_msgs": error_msgs,
            }
thomwolf's avatar
thomwolf committed
1553
1554
            return model, loading_info

1555
1556
        return model

1557
    @classmethod
1558
1559
1560
    def _load_state_dict_into_model(
        cls, model, state_dict, pretrained_model_name_or_path, ignore_mismatched_sizes=False, _fast_init=True
    ):
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577

        # Convert old format to new format if needed from a PyTorch state_dict
        old_keys = []
        new_keys = []
        for key in state_dict.keys():
            new_key = None
            if "gamma" in key:
                new_key = key.replace("gamma", "weight")
            if "beta" in key:
                new_key = key.replace("beta", "bias")
            if new_key:
                old_keys.append(key)
                new_keys.append(new_key)
        for old_key, new_key in zip(old_keys, new_keys):
            state_dict[new_key] = state_dict.pop(old_key)

        # Retrieve missing & unexpected_keys
1578
1579
        model_state_dict = model.state_dict()
        expected_keys = list(model_state_dict.keys())
1580
1581
1582
1583
1584
        loaded_keys = list(state_dict.keys())
        prefix = model.base_model_prefix

        has_prefix_module = any(s.startswith(prefix) for s in loaded_keys)
        expects_prefix_module = any(s.startswith(prefix) for s in expected_keys)
Patrick von Platen's avatar
Patrick von Platen committed
1585
1586
1587

        # key re-naming operations are never done on the keys
        # that are loaded, but always on the keys of the newly initialized model
1588
1589
        remove_prefix_from_model = not has_prefix_module and expects_prefix_module
        add_prefix_to_model = has_prefix_module and not expects_prefix_module
1590

1591
        if remove_prefix_from_model:
1592
            expected_keys_not_prefixed = [s for s in expected_keys if not s.startswith(prefix)]
1593
            expected_keys = [".".join(s.split(".")[1:]) if s.startswith(prefix) else s for s in expected_keys]
1594
        elif add_prefix_to_model:
1595
1596
1597
1598
1599
            expected_keys = [".".join([prefix, s]) for s in expected_keys]

        missing_keys = list(set(expected_keys) - set(loaded_keys))
        unexpected_keys = list(set(loaded_keys) - set(expected_keys))

1600
1601
1602
1603
1604
1605
        # Mistmatched keys contains tuples key/shape1/shape2 of weights in the checkpoint that have a shape not
        # matching the weights in the model.
        mismatched_keys = []
        if ignore_mismatched_sizes:
            for checkpoint_key in loaded_keys:
                model_key = checkpoint_key
1606
1607
                if remove_prefix_from_model:
                    # The model key starts with `prefix` but `checkpoint_key` doesn't so we add it.
1608
                    model_key = f"{prefix}.{checkpoint_key}"
1609
1610
                elif add_prefix_to_model:
                    # The model key doesn't start with `prefix` but `checkpoint_key` does so we remove it.
1611
                    model_key = ".".join(checkpoint_key.split(".")[1:])
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621

                if (
                    model_key in model_state_dict
                    and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
                ):
                    mismatched_keys.append(
                        (checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
                    )
                    del state_dict[checkpoint_key]

1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
        # Some models may have keys that are not in the state by design, removing them before needlessly warning
        # the user.
        if cls._keys_to_ignore_on_load_missing is not None:
            for pat in cls._keys_to_ignore_on_load_missing:
                missing_keys = [k for k in missing_keys if re.search(pat, k) is None]

        if cls._keys_to_ignore_on_load_unexpected is not None:
            for pat in cls._keys_to_ignore_on_load_unexpected:
                unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

1632
1633
        if _fast_init:
            # retrieve unintialized modules and initialize
1634
            uninitialized_modules = model.retrieve_modules_from_names(
1635
                missing_keys, add_prefix=add_prefix_to_model, remove_prefix=remove_prefix_from_model
1636
            )
1637
            for module in uninitialized_modules:
1638
1639
                model._init_weights(module)

1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
        # copy state_dict so _load_from_state_dict can modify it
        metadata = getattr(state_dict, "_metadata", None)
        state_dict = state_dict.copy()
        if metadata is not None:
            state_dict._metadata = metadata

        error_msgs = []

        # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
        # so we need to apply the function recursively.
        def load(module: nn.Module, prefix=""):
            local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
            args = (state_dict, prefix, local_metadata, True, [], [], error_msgs)
            if is_deepspeed_zero3_enabled():
                import deepspeed

                # because zero3 puts placeholders in model params, this context
                # manager gathers (unpartitions) the params of the current layer, then loads from
                # the state dict and then re-partitions them again
                with deepspeed.zero.GatheredParameters(list(module.parameters(recurse=False)), modifier_rank=0):
                    if torch.distributed.get_rank() == 0:
                        module._load_from_state_dict(*args)
            else:
                module._load_from_state_dict(*args)

            for name, child in module._modules.items():
                if child is not None:
                    load(child, prefix + name + ".")

        # Make sure we are able to load base models as well as derived models (with heads)
        start_prefix = ""
        model_to_load = model
        if not hasattr(model, cls.base_model_prefix) and has_prefix_module:
            start_prefix = cls.base_model_prefix + "."
        if hasattr(model, cls.base_model_prefix) and not has_prefix_module:
            model_to_load = getattr(model, cls.base_model_prefix)
1676
1677
1678
1679
1680
            if any(key in expected_keys_not_prefixed for key in loaded_keys):
                raise ValueError(
                    "The state dictionary of the model you are training to load is corrupted. Are you sure it was "
                    "properly saved?"
                )
1681
1682
1683

        load(model_to_load, prefix=start_prefix)

1684
1685
1686
1687
        if len(error_msgs) > 0:
            error_msg = "\n\t".join(error_msgs)
            raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")

1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
        if len(unexpected_keys) > 0:
            logger.warning(
                f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when "
                f"initializing {model.__class__.__name__}: {unexpected_keys}\n"
                f"- This IS expected if you are initializing {model.__class__.__name__} from the checkpoint of a model trained on another task "
                f"or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n"
                f"- This IS NOT expected if you are initializing {model.__class__.__name__} from the checkpoint of a model that you expect "
                f"to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
            )
        else:
            logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
        if len(missing_keys) > 0:
            logger.warning(
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} "
                f"and are newly initialized: {missing_keys}\n"
                f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference."
            )
1705
        elif len(mismatched_keys) == 0:
1706
1707
1708
1709
1710
            logger.info(
                f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at {pretrained_model_name_or_path}.\n"
                f"If your task is similar to the task the model of the checkpoint was trained on, "
                f"you can already use {model.__class__.__name__} for predictions without further training."
            )
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
        if len(mismatched_keys) > 0:
            mismatched_warning = "\n".join(
                [
                    f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
                    for key, shape1, shape2 in mismatched_keys
                ]
            )
            logger.warning(
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} "
                f"and are newly initialized because the shapes did not match:\n{mismatched_warning}\n"
                f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference."
            )
1723

1724
        return model, missing_keys, unexpected_keys, mismatched_keys, error_msgs
1725
1726
1727
1728

    def retrieve_modules_from_names(self, names, add_prefix=False, remove_prefix=False):
        module_keys = set([".".join(key.split(".")[:-1]) for key in names])

Patrick von Platen's avatar
Patrick von Platen committed
1729
1730
1731
1732
        # torch.nn.ParameterList is a special case where two parameter keywords
        # are appended to the module name, *e.g.* bert.special_embeddings.0
        module_keys = module_keys.union(set([".".join(key.split(".")[:-2]) for key in names if key[-1].isdigit()]))

1733
1734
1735
1736
1737
1738
        retrieved_modules = []
        # retrieve all modules that has at least one missing weight name
        for name, module in self.named_modules():
            if remove_prefix:
                name = ".".join(name.split(".")[1:]) if name.startswith(self.base_model_prefix) else name
            elif add_prefix:
Patrick von Platen's avatar
Patrick von Platen committed
1739
                name = ".".join([self.base_model_prefix, name]) if len(name) > 0 else self.base_model_prefix
1740
1741
1742
1743
1744
1745

            if name in module_keys:
                retrieved_modules.append(module)

        return retrieved_modules

1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
    @classmethod
    def _load_state_dict_into_model_low_mem(cls, model, loaded_state_dict_keys, resolved_archive_file):
        """
        This is an experimental function that loads the model using ~1.x model size CPU memory

        Before it gets called we do:

        1. save which state_dict keys we have
        2. drop state_dict before model is created, since the latter takes 1x model size memory

        Here then we continue:

        3. switch to the meta device all params/buffers that are going to be replaced from the loaded state_dict
        4. load state_dict 2nd time
        5. replace the params/buffers from the state_dict

        Currently, it doesn't handle missing_keys, unexpected_keys, mismatched_keys. It can't handle deepspeed.
        """

        require_version_core("torch>=1.9")
        if is_deepspeed_zero3_enabled():
            raise ValueError("low_cpu_mem_usage arg cannot be used with DeepSpeed ZeRO-3")

        # a helper util to find the last sub-module and the param/buffer name
        def find_submodule_and_param_name(model, long_key):
            split_key = long_key.split(".")
            submodule = model
            while len(split_key) > 1:
                if hasattr(submodule, split_key[0]):
                    submodule = getattr(submodule, split_key[0])
                    del split_key[0]
                else:
                    submodule = None
                    break
            return submodule, split_key[0]

        # dematerialize param storage for keys that are going to be replaced by state_dict, by
        # putting those on the meta device
        for k in loaded_state_dict_keys:
            submodule, param_name = find_submodule_and_param_name(model, k)
            if submodule is not None:
                # selectively switch to the meta device only those params/buffers that will
                # be next replaced from state_dict. This a complex way to do p.to_("meta")
                # since we have no in-place to_ for tensors.
                new_val = getattr(submodule, param_name)
                if isinstance(new_val, torch.nn.Parameter):
                    # isinstance returns False for Params on meta device, so switch after the check
                    new_val = torch.nn.Parameter(new_val.to("meta"))
                else:
                    new_val = new_val.to("meta")
                setattr(submodule, param_name, new_val)

        # only now can load state_dict
        state_dict = torch.load(resolved_archive_file, map_location="cpu")

        # materialize state_dict entries one by one on CPU
        for k in loaded_state_dict_keys:
            submodule, param_name = find_submodule_and_param_name(model, k)
            if submodule is not None:
                new_val = state_dict[k]
                if isinstance(getattr(submodule, param_name), torch.nn.Parameter):
                    new_val = torch.nn.Parameter(new_val)
                setattr(submodule, param_name, new_val)

        del state_dict

1812
1813
1814
1815
1816
1817
    @classmethod
    def register_for_auto_class(cls, auto_class="AutoModel"):
        """
        Register this class with a given auto class. This should only be used for custom models as the ones in the
        library are already mapped with an auto class.

1818
1819
1820
1821
1822
1823
        <Tip warning={true}>

        This API is experimental and may have some slight breaking changes in the next releases.

        </Tip>

1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
        Args:
            auto_class (`str` or `type`, *optional*, defaults to `"AutoModel"`):
                The auto class to register this new model with.
        """
        if not isinstance(auto_class, str):
            auto_class = auto_class.__name__

        import transformers.models.auto as auto_module

        if not hasattr(auto_module, auto_class):
            raise ValueError(f"{auto_class} is not a valid auto class.")

        cls._auto_class = auto_class

thomwolf's avatar
thomwolf committed
1838

1839
1840
1841
1842
1843
1844
1845
# To update the docstring, we need to copy the method, otherwise we change the original docstring.
PreTrainedModel.push_to_hub = copy_func(PreTrainedModel.push_to_hub)
PreTrainedModel.push_to_hub.__doc__ = PreTrainedModel.push_to_hub.__doc__.format(
    object="model", object_class="AutoModel", object_files="model checkpoint"
)


thomwolf's avatar
thomwolf committed
1846
class Conv1D(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
1847
1848
1849
1850
1851
1852
    """
    1D-convolutional layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2).

    Basically works like a linear layer but the weights are transposed.

    Args:
1853
1854
        nf (`int`): The number of output features.
        nx (`int`): The number of input features.
Sylvain Gugger's avatar
Sylvain Gugger committed
1855
1856
    """

thomwolf's avatar
thomwolf committed
1857
    def __init__(self, nf, nx):
Julien Chaumond's avatar
Julien Chaumond committed
1858
        super().__init__()
thomwolf's avatar
thomwolf committed
1859
1860
1861
1862
1863
1864
1865
1866
1867
        self.nf = nf
        w = torch.empty(nx, nf)
        nn.init.normal_(w, std=0.02)
        self.weight = nn.Parameter(w)
        self.bias = nn.Parameter(torch.zeros(nf))

    def forward(self, x):
        size_out = x.size()[:-1] + (self.nf,)
        x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
1868
        x = x.view(size_out)
thomwolf's avatar
thomwolf committed
1869
1870
1871
        return x


thomwolf's avatar
thomwolf committed
1872
class PoolerStartLogits(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
1873
1874
    """
    Compute SQuAD start logits from sequence hidden states.
1875

Sylvain Gugger's avatar
Sylvain Gugger committed
1876
    Args:
1877
1878
        config ([`PretrainedConfig`]):
            The config used by the model, will be used to grab the `hidden_size` of the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
1879
1880
1881
    """

    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
1882
        super().__init__()
thomwolf's avatar
thomwolf committed
1883
1884
        self.dense = nn.Linear(config.hidden_size, 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
1885
1886
1887
1888
1889
    def forward(
        self, hidden_states: torch.FloatTensor, p_mask: Optional[torch.FloatTensor] = None
    ) -> torch.FloatTensor:
        """
        Args:
1890
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1891
                The final hidden states of the model.
1892
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1893
1894
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
Sylvain Gugger's avatar
Sylvain Gugger committed
1895
1896

        Returns:
1897
            `torch.FloatTensor`: The start logits for SQuAD.
thomwolf's avatar
thomwolf committed
1898
        """
thomwolf's avatar
thomwolf committed
1899
1900
1901
        x = self.dense(hidden_states).squeeze(-1)

        if p_mask is not None:
Lysandre Debut's avatar
Lysandre Debut committed
1902
            if get_parameter_dtype(self) == torch.float16:
1903
1904
1905
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask
thomwolf's avatar
thomwolf committed
1906
1907
1908
1909
1910
1911

        return x


class PoolerEndLogits(nn.Module):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
1912
    Compute SQuAD end logits from sequence hidden states.
1913

Sylvain Gugger's avatar
Sylvain Gugger committed
1914
    Args:
1915
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
1916
1917
            The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps`
            to use.
Sylvain Gugger's avatar
Sylvain Gugger committed
1918
1919
1920
    """

    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
1921
        super().__init__()
thomwolf's avatar
thomwolf committed
1922
1923
1924
1925
1926
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dense_1 = nn.Linear(config.hidden_size, 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
1927
1928
1929
1930
1931
1932
1933
1934
1935
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        start_states: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        p_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
        """
        Args:
1936
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1937
                The final hidden states of the model.
1938
            start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1939
                The hidden states of the first tokens for the labeled span.
1940
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1941
                The position of the first token for the labeled span.
1942
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1943
1944
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
Sylvain Gugger's avatar
Sylvain Gugger committed
1945

1946
        <Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
1947

Stas Bekman's avatar
Stas Bekman committed
1948
1949
        One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides
        `start_states`.
1950
1951

        </Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
1952
1953

        Returns:
1954
            `torch.FloatTensor`: The end logits for SQuAD.
thomwolf's avatar
thomwolf committed
1955
        """
1956
1957
1958
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
thomwolf's avatar
thomwolf committed
1959
        if start_positions is not None:
1960
            slen, hsz = hidden_states.shape[-2:]
1961
1962
1963
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions)  # shape (bsz, 1, hsz)
            start_states = start_states.expand(-1, slen, -1)  # shape (bsz, slen, hsz)
thomwolf's avatar
thomwolf committed
1964
1965
1966
1967
1968
1969
1970

        x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1))
        x = self.activation(x)
        x = self.LayerNorm(x)
        x = self.dense_1(x).squeeze(-1)

        if p_mask is not None:
Lysandre Debut's avatar
Lysandre Debut committed
1971
            if get_parameter_dtype(self) == torch.float16:
1972
1973
1974
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask
thomwolf's avatar
thomwolf committed
1975
1976
1977
1978
1979

        return x


class PoolerAnswerClass(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
1980
1981
1982
1983
    """
    Compute SQuAD 2.0 answer class from classification and start tokens hidden states.

    Args:
1984
1985
        config ([`PretrainedConfig`]):
            The config used by the model, will be used to grab the `hidden_size` of the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
1986
    """
1987

thomwolf's avatar
thomwolf committed
1988
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
1989
        super().__init__()
thomwolf's avatar
thomwolf committed
1990
1991
1992
1993
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False)

Sylvain Gugger's avatar
Sylvain Gugger committed
1994
1995
1996
1997
1998
1999
2000
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        start_states: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        cls_index: Optional[torch.LongTensor] = None,
    ) -> torch.FloatTensor:
2001
2002
        """
        Args:
2003
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2004
                The final hidden states of the model.
2005
            start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2006
                The hidden states of the first tokens for the labeled span.
2007
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2008
                The position of the first token for the labeled span.
2009
2010
2011
2012
            cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
                Position of the CLS token for each sentence in the batch. If `None`, takes the last token.

        <Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
2013

Stas Bekman's avatar
Stas Bekman committed
2014
2015
        One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides
        `start_states`.
Sylvain Gugger's avatar
Sylvain Gugger committed
2016

2017
        </Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
2018
2019

        Returns:
2020
            `torch.FloatTensor`: The SQuAD 2.0 answer class.
thomwolf's avatar
thomwolf committed
2021
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
2022
        # No dependency on end_feature so that we can obtain one single `cls_logits` for each sample.
2023
        hsz = hidden_states.shape[-1]
2024
2025
2026
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
thomwolf's avatar
thomwolf committed
2027
        if start_positions is not None:
2028
2029
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions).squeeze(-2)  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
2030
2031

        if cls_index is not None:
2032
2033
            cls_index = cls_index[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
2034
        else:
2035
            cls_token_state = hidden_states[:, -1, :]  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
2036
2037
2038
2039
2040
2041
2042
2043

        x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1))
        x = self.activation(x)
        x = self.dense_1(x).squeeze(-1)

        return x


2044
2045
2046
@dataclass
class SquadHeadOutput(ModelOutput):
    """
2047
    Base class for outputs of question answering models using a [`~modeling_utils.SQuADHead`].
2048
2049

    Args:
2050
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned if both `start_positions` and `end_positions` are provided):
Sylvain Gugger's avatar
Sylvain Gugger committed
2051
2052
            Classification loss as the sum of start token, end token (and is_impossible if provided) classification
            losses.
2053
        start_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
2054
            Log probabilities for the top config.start_n_top start token possibilities (beam-search).
2055
        start_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
2056
            Indices for the top config.start_n_top start token possibilities (beam-search).
2057
2058
        end_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Log probabilities for the top `config.start_n_top * config.end_n_top` end token possibilities
Sylvain Gugger's avatar
Sylvain Gugger committed
2059
            (beam-search).
2060
2061
2062
2063
        end_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Indices for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search).
        cls_logits (`torch.FloatTensor` of shape `(batch_size,)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Log probabilities for the `is_impossible` label of the answers.
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074

    """

    loss: Optional[torch.FloatTensor] = None
    start_top_log_probs: Optional[torch.FloatTensor] = None
    start_top_index: Optional[torch.LongTensor] = None
    end_top_log_probs: Optional[torch.FloatTensor] = None
    end_top_index: Optional[torch.LongTensor] = None
    cls_logits: Optional[torch.FloatTensor] = None


thomwolf's avatar
thomwolf committed
2075
class SQuADHead(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
2076
2077
    r"""
    A SQuAD head inspired by XLNet.
2078

Sylvain Gugger's avatar
Sylvain Gugger committed
2079
    Args:
2080
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
2081
2082
            The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps`
            to use.
thomwolf's avatar
thomwolf committed
2083
    """
2084

thomwolf's avatar
thomwolf committed
2085
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
2086
        super().__init__()
thomwolf's avatar
thomwolf committed
2087
2088
2089
2090
2091
2092
2093
        self.start_n_top = config.start_n_top
        self.end_n_top = config.end_n_top

        self.start_logits = PoolerStartLogits(config)
        self.end_logits = PoolerEndLogits(config)
        self.answer_class = PoolerAnswerClass(config)

Sylvain Gugger's avatar
Sylvain Gugger committed
2094
    @replace_return_docstrings(output_type=SquadHeadOutput, config_class=PretrainedConfig)
2095
    def forward(
2096
        self,
Sylvain Gugger's avatar
Sylvain Gugger committed
2097
2098
2099
2100
2101
2102
        hidden_states: torch.FloatTensor,
        start_positions: Optional[torch.LongTensor] = None,
        end_positions: Optional[torch.LongTensor] = None,
        cls_index: Optional[torch.LongTensor] = None,
        is_impossible: Optional[torch.LongTensor] = None,
        p_mask: Optional[torch.FloatTensor] = None,
2103
        return_dict: bool = False,
Sylvain Gugger's avatar
Sylvain Gugger committed
2104
2105
    ) -> Union[SquadHeadOutput, Tuple[torch.FloatTensor]]:
        """
Lysandre's avatar
Lysandre committed
2106
        Args:
2107
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Lysandre's avatar
Lysandre committed
2108
                Final hidden states of the model on the sequence tokens.
2109
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
2110
                Positions of the first token for the labeled span.
2111
            end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
2112
                Positions of the last token for the labeled span.
2113
2114
2115
            cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
                Position of the CLS token for each sentence in the batch. If `None`, takes the last token.
            is_impossible (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
2116
                Whether the question has a possible answer in the paragraph or not.
2117
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2118
2119
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
2120
2121
            return_dict (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
Sylvain Gugger's avatar
Sylvain Gugger committed
2122

Lysandre's avatar
Lysandre committed
2123
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
2124
        """
thomwolf's avatar
thomwolf committed
2125
        start_logits = self.start_logits(hidden_states, p_mask=p_mask)
thomwolf's avatar
thomwolf committed
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148

        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, let's remove the dimension added by batch splitting
            for x in (start_positions, end_positions, cls_index, is_impossible):
                if x is not None and x.dim() > 1:
                    x.squeeze_(-1)

            # during training, compute the end logits based on the ground truth of the start position
            end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)

            loss_fct = CrossEntropyLoss()
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

            if cls_index is not None and is_impossible is not None:
                # Predict answerability from the representation of CLS and START
                cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
                loss_fct_cls = nn.BCEWithLogitsLoss()
                cls_loss = loss_fct_cls(cls_logits, is_impossible)

                # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss
                total_loss += cls_loss * 0.5
2149

2150
            return SquadHeadOutput(loss=total_loss) if return_dict else (total_loss,)
thomwolf's avatar
thomwolf committed
2151
2152
2153
2154

        else:
            # during inference, compute the end logits based on beam search
            bsz, slen, hsz = hidden_states.size()
2155
            start_log_probs = nn.functional.softmax(start_logits, dim=-1)  # shape (bsz, slen)
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166

            start_top_log_probs, start_top_index = torch.topk(
                start_log_probs, self.start_n_top, dim=-1
            )  # shape (bsz, start_n_top)
            start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz)  # shape (bsz, start_n_top, hsz)
            start_states = torch.gather(hidden_states, -2, start_top_index_exp)  # shape (bsz, start_n_top, hsz)
            start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1)  # shape (bsz, slen, start_n_top, hsz)

            hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(
                start_states
            )  # shape (bsz, slen, start_n_top, hsz)
thomwolf's avatar
thomwolf committed
2167
2168
            p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
            end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
2169
            end_log_probs = nn.functional.softmax(end_logits, dim=1)  # shape (bsz, slen, start_n_top)
thomwolf's avatar
thomwolf committed
2170

2171
2172
2173
            end_top_log_probs, end_top_index = torch.topk(
                end_log_probs, self.end_n_top, dim=1
            )  # shape (bsz, end_n_top, start_n_top)
thomwolf's avatar
thomwolf committed
2174
2175
2176
2177
2178
2179
            end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
            end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)

            start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs)
            cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index)

2180
            if not return_dict:
2181
2182
2183
2184
2185
2186
2187
2188
2189
                return (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits)
            else:
                return SquadHeadOutput(
                    start_top_log_probs=start_top_log_probs,
                    start_top_index=start_top_index,
                    end_top_log_probs=end_top_log_probs,
                    end_top_index=end_top_index,
                    cls_logits=cls_logits,
                )
thomwolf's avatar
thomwolf committed
2190
2191
2192


class SequenceSummary(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
2193
2194
2195
2196
    r"""
    Compute a single vector summary of a sequence hidden states.

    Args:
2197
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
2198
2199
            The config used by the model. Relevant arguments in the config class of the model are (refer to the actual
            config class of your model for the default values it uses):
Sylvain Gugger's avatar
Sylvain Gugger committed
2200

2201
            - **summary_type** (`str`) -- The method to use to make this summary. Accepted values are:
Sylvain Gugger's avatar
Sylvain Gugger committed
2202

2203
2204
2205
2206
2207
                - `"last"` -- Take the last token hidden state (like XLNet)
                - `"first"` -- Take the first token hidden state (like Bert)
                - `"mean"` -- Take the mean of all tokens hidden states
                - `"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2)
                - `"attn"` -- Not implemented now, use multi-head attention
Sylvain Gugger's avatar
Sylvain Gugger committed
2208

2209
            - **summary_use_proj** (`bool`) -- Add a projection after the vector extraction.
Sylvain Gugger's avatar
Sylvain Gugger committed
2210
2211
2212
2213
2214
2215
            - **summary_proj_to_labels** (`bool`) -- If `True`, the projection outputs to `config.num_labels` classes
              (otherwise to `config.hidden_size`).
            - **summary_activation** (`Optional[str]`) -- Set to `"tanh"` to add a tanh activation to the output,
              another string or `None` will add no activation.
            - **summary_first_dropout** (`float`) -- Optional dropout probability before the projection and activation.
            - **summary_last_dropout** (`float`)-- Optional dropout probability after the projection and activation.
thomwolf's avatar
thomwolf committed
2216
    """
2217

2218
    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
2219
        super().__init__()
thomwolf's avatar
thomwolf committed
2220

2221
        self.summary_type = getattr(config, "summary_type", "last")
2222
        if self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
2223
2224
2225
2226
2227
            # We should use a standard multi-head attention module with absolute positional embedding for that.
            # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
            # We can probably just use the multi-head attention module of PyTorch >=1.1.0
            raise NotImplementedError

thomwolf's avatar
thomwolf committed
2228
        self.summary = Identity()
2229
2230
        if hasattr(config, "summary_use_proj") and config.summary_use_proj:
            if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0:
2231
                num_classes = config.num_labels
thomwolf's avatar
thomwolf committed
2232
2233
2234
2235
            else:
                num_classes = config.hidden_size
            self.summary = nn.Linear(config.hidden_size, num_classes)

2236
        activation_string = getattr(config, "summary_activation", None)
Lysandre's avatar
Lysandre committed
2237
        self.activation: Callable = get_activation(activation_string) if activation_string else Identity()
thomwolf's avatar
thomwolf committed
2238

thomwolf's avatar
thomwolf committed
2239
        self.first_dropout = Identity()
2240
        if hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0:
2241
2242
            self.first_dropout = nn.Dropout(config.summary_first_dropout)

thomwolf's avatar
thomwolf committed
2243
        self.last_dropout = Identity()
2244
        if hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0:
2245
            self.last_dropout = nn.Dropout(config.summary_last_dropout)
thomwolf's avatar
thomwolf committed
2246

Sylvain Gugger's avatar
Sylvain Gugger committed
2247
2248
2249
2250
2251
2252
2253
    def forward(
        self, hidden_states: torch.FloatTensor, cls_index: Optional[torch.LongTensor] = None
    ) -> torch.FloatTensor:
        """
        Compute a single vector summary of a sequence hidden states.

        Args:
2254
            hidden_states (`torch.FloatTensor` of shape `[batch_size, seq_len, hidden_size]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2255
                The hidden states of the last layer.
2256
            cls_index (`torch.LongTensor` of shape `[batch_size]` or `[batch_size, ...]` where ... are optional leading dimensions of `hidden_states`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2257
                Used if `summary_type == "cls_index"` and takes the last token of the sequence as classification token.
Sylvain Gugger's avatar
Sylvain Gugger committed
2258
2259

        Returns:
2260
            `torch.FloatTensor`: The summary of the sequence hidden states.
thomwolf's avatar
thomwolf committed
2261
        """
2262
        if self.summary_type == "last":
thomwolf's avatar
thomwolf committed
2263
            output = hidden_states[:, -1]
2264
        elif self.summary_type == "first":
thomwolf's avatar
thomwolf committed
2265
            output = hidden_states[:, 0]
2266
        elif self.summary_type == "mean":
thomwolf's avatar
thomwolf committed
2267
            output = hidden_states.mean(dim=1)
2268
        elif self.summary_type == "cls_index":
thomwolf's avatar
thomwolf committed
2269
            if cls_index is None:
Lysandre's avatar
Lysandre committed
2270
2271
2272
2273
2274
                cls_index = torch.full_like(
                    hidden_states[..., :1, :],
                    hidden_states.shape[-2] - 1,
                    dtype=torch.long,
                )
thomwolf's avatar
thomwolf committed
2275
            else:
thomwolf's avatar
thomwolf committed
2276
                cls_index = cls_index.unsqueeze(-1).unsqueeze(-1)
2277
                cls_index = cls_index.expand((-1,) * (cls_index.dim() - 1) + (hidden_states.size(-1),))
thomwolf's avatar
thomwolf committed
2278
            # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
2279
2280
            output = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, XX, hidden_size)
        elif self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
2281
2282
            raise NotImplementedError

2283
        output = self.first_dropout(output)
thomwolf's avatar
thomwolf committed
2284
2285
        output = self.summary(output)
        output = self.activation(output)
2286
        output = self.last_dropout(output)
thomwolf's avatar
thomwolf committed
2287
2288
2289
2290

        return output


2291
def unwrap_model(model: nn.Module) -> nn.Module:
2292
2293
2294
2295
    """
    Recursively unwraps a model from potential containers (as used in distributed training).

    Args:
2296
        model (`torch.nn.Module`): The model to unwrap.
2297
2298
2299
2300
2301
2302
2303
2304
    """
    # since there could be multiple levels of wrapping, unwrap recursively
    if hasattr(model, "module"):
        return unwrap_model(model.module)
    else:
        return model


2305
def prune_linear_layer(layer: nn.Linear, index: torch.LongTensor, dim: int = 0) -> nn.Linear:
Sylvain Gugger's avatar
Sylvain Gugger committed
2306
2307
2308
2309
2310
2311
    """
    Prune a linear layer to keep only entries in index.

    Used to remove heads.

    Args:
2312
2313
2314
        layer (`torch.nn.Linear`): The layer to prune.
        index (`torch.LongTensor`): The indices to keep in the layer.
        dim (`int`, *optional*, defaults to 0): The dimension on which to keep the indices.
Sylvain Gugger's avatar
Sylvain Gugger committed
2315
2316

    Returns:
2317
        `torch.nn.Linear`: The pruned layer as a new layer with `requires_grad=True`.
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
    """
    index = index.to(layer.weight.device)
    W = layer.weight.index_select(dim, index).clone().detach()
    if layer.bias is not None:
        if dim == 1:
            b = layer.bias.clone().detach()
        else:
            b = layer.bias[index].clone().detach()
    new_size = list(layer.weight.size())
    new_size[dim] = len(index)
    new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(layer.weight.device)
    new_layer.weight.requires_grad = False
    new_layer.weight.copy_(W.contiguous())
    new_layer.weight.requires_grad = True
    if layer.bias is not None:
        new_layer.bias.requires_grad = False
        new_layer.bias.copy_(b.contiguous())
        new_layer.bias.requires_grad = True
    return new_layer


Sylvain Gugger's avatar
Sylvain Gugger committed
2339
2340
2341
2342
2343
2344
2345
2346
def prune_conv1d_layer(layer: Conv1D, index: torch.LongTensor, dim: int = 1) -> Conv1D:
    """
    Prune a Conv1D layer to keep only entries in index. A Conv1D work as a Linear layer (see e.g. BERT) but the weights
    are transposed.

    Used to remove heads.

    Args:
2347
2348
2349
        layer ([`~modeling_utils.Conv1D`]): The layer to prune.
        index (`torch.LongTensor`): The indices to keep in the layer.
        dim (`int`, *optional*, defaults to 1): The dimension on which to keep the indices.
Sylvain Gugger's avatar
Sylvain Gugger committed
2350
2351

    Returns:
2352
        [`~modeling_utils.Conv1D`]: The pruned layer as a new layer with `requires_grad=True`.
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
    """
    index = index.to(layer.weight.device)
    W = layer.weight.index_select(dim, index).clone().detach()
    if dim == 0:
        b = layer.bias.clone().detach()
    else:
        b = layer.bias[index].clone().detach()
    new_size = list(layer.weight.size())
    new_size[dim] = len(index)
    new_layer = Conv1D(new_size[1], new_size[0]).to(layer.weight.device)
    new_layer.weight.requires_grad = False
    new_layer.weight.copy_(W.contiguous())
    new_layer.weight.requires_grad = True
    new_layer.bias.requires_grad = False
    new_layer.bias.copy_(b.contiguous())
    new_layer.bias.requires_grad = True
    return new_layer
2370
2371


Sylvain Gugger's avatar
Sylvain Gugger committed
2372
def prune_layer(
2373
2374
    layer: Union[nn.Linear, Conv1D], index: torch.LongTensor, dim: Optional[int] = None
) -> Union[nn.Linear, Conv1D]:
Sylvain Gugger's avatar
Sylvain Gugger committed
2375
2376
2377
2378
2379
2380
    """
    Prune a Conv1D or linear layer to keep only entries in index.

    Used to remove heads.

    Args:
2381
2382
2383
        layer (`Union[torch.nn.Linear, Conv1D]`): The layer to prune.
        index (`torch.LongTensor`): The indices to keep in the layer.
        dim (`int`, *optional*): The dimension on which to keep the indices.
Sylvain Gugger's avatar
Sylvain Gugger committed
2384
2385

    Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
2386
        `torch.nn.Linear` or [`~modeling_utils.Conv1D`]: The pruned layer as a new layer with `requires_grad=True`.
2387
2388
2389
2390
2391
2392
    """
    if isinstance(layer, nn.Linear):
        return prune_linear_layer(layer, index, dim=0 if dim is None else dim)
    elif isinstance(layer, Conv1D):
        return prune_conv1d_layer(layer, index, dim=1 if dim is None else dim)
    else:
2393
        raise ValueError(f"Can't prune layer of class {layer.__class__}")
Patrick von Platen's avatar
Patrick von Platen committed
2394
2395
2396


def apply_chunking_to_forward(
2397
    forward_fn: Callable[..., torch.Tensor], chunk_size: int, chunk_dim: int, *input_tensors
Patrick von Platen's avatar
Patrick von Platen committed
2398
2399
) -> torch.Tensor:
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
2400
2401
    This function chunks the `input_tensors` into smaller input tensor parts of size `chunk_size` over the dimension
    `chunk_dim`. It then applies a layer `forward_fn` to each chunk independently to save memory.
2402

Sylvain Gugger's avatar
Sylvain Gugger committed
2403
2404
    If the `forward_fn` is independent across the `chunk_dim` this function will yield the same result as directly
    applying `forward_fn` to `input_tensors`.
Patrick von Platen's avatar
Patrick von Platen committed
2405
2406

    Args:
2407
        forward_fn (`Callable[..., torch.Tensor]`):
2408
            The forward function of the model.
2409
2410
2411
2412
2413
2414
        chunk_size (`int`):
            The chunk size of a chunked tensor: `num_chunks = len(input_tensors[0]) / chunk_size`.
        chunk_dim (`int`):
            The dimension over which the `input_tensors` should be chunked.
        input_tensors (`Tuple[torch.Tensor]`):
            The input tensors of `forward_fn` which will be chunked
Sylvain Gugger's avatar
Sylvain Gugger committed
2415

Patrick von Platen's avatar
Patrick von Platen committed
2416
    Returns:
2417
        `torch.Tensor`: A tensor with the same shape as the `forward_fn` would have given if applied`.
Patrick von Platen's avatar
Patrick von Platen committed
2418
2419


2420
    Examples:
Patrick von Platen's avatar
Patrick von Platen committed
2421

2422
2423
2424
2425
2426
    ```python
    # rename the usual forward() fn to forward_chunk()
    def forward_chunk(self, hidden_states):
        hidden_states = self.decoder(hidden_states)
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
2427

Sylvain Gugger's avatar
Sylvain Gugger committed
2428

2429
2430
2431
2432
    # implement a chunked forward function
    def forward(self, hidden_states):
        return apply_chunking_to_forward(self.forward_chunk, self.chunk_size_lm_head, self.seq_len_dim, hidden_states)
    ```"""
Patrick von Platen's avatar
Patrick von Platen committed
2433

2434
    assert len(input_tensors) > 0, f"{input_tensors} has to be a tuple/list of tensors"
Patrick von Platen's avatar
Patrick von Platen committed
2435

2436
    # inspect.signature exist since python 3.5 and is a python method -> no problem with backward compatibility
Patrick von Platen's avatar
Patrick von Platen committed
2437
    num_args_in_forward_chunk_fn = len(inspect.signature(forward_fn).parameters)
2438
2439
2440
2441
2442
    if num_args_in_forward_chunk_fn != len(input_tensors):
        raise ValueError(
            f"forward_chunk_fn expects {num_args_in_forward_chunk_fn} arguments, but only {len(input_tensors)} input "
            "tensors are given"
        )
Patrick von Platen's avatar
Patrick von Platen committed
2443
2444

    if chunk_size > 0:
2445
2446
2447
2448
2449
2450
2451
2452
        tensor_shape = input_tensors[0].shape[chunk_dim]
        for input_tensor in input_tensors:
            if input_tensor.shape[chunk_dim] != tensor_shape:
                raise ValueError(
                    f"All input tenors have to be of the same shape: {tensor_shape}, "
                    f"found shape {input_tensor.shape[chunk_dim]}"
                )

2453
2454
2455
2456
2457
        if input_tensors[0].shape[chunk_dim] % chunk_size != 0:
            raise ValueError(
                f"The dimension to be chunked {input_tensors[0].shape[chunk_dim]} has to be a multiple of the chunk "
                f"size {chunk_size}"
            )
Patrick von Platen's avatar
Patrick von Platen committed
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468

        num_chunks = input_tensors[0].shape[chunk_dim] // chunk_size

        # chunk input tensor into tuples
        input_tensors_chunks = tuple(input_tensor.chunk(num_chunks, dim=chunk_dim) for input_tensor in input_tensors)
        # apply forward fn to every tuple
        output_chunks = tuple(forward_fn(*input_tensors_chunk) for input_tensors_chunk in zip(*input_tensors_chunks))
        # concatenate output at same dimension
        return torch.cat(output_chunks, dim=chunk_dim)

    return forward_fn(*input_tensors)