modeling_utils.py 241 KB
Newer Older
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
16
import collections
17
import copy
18
import functools
19
import gc
20
import importlib.metadata
Yih-Dar's avatar
Yih-Dar committed
21
import inspect
22
import itertools
Sylvain Gugger's avatar
Sylvain Gugger committed
23
import json
24
import os
25
import re
Sylvain Gugger's avatar
Sylvain Gugger committed
26
27
import shutil
import tempfile
28
import warnings
29
from contextlib import contextmanager
30
from dataclasses import dataclass
31
from functools import partial, wraps
32
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
33
from zipfile import is_zipfile
34
35

import torch
36
from packaging import version
Sylvain Gugger's avatar
Sylvain Gugger committed
37
from torch import Tensor, nn
38
from torch.nn import CrossEntropyLoss, Identity
39
from torch.utils.checkpoint import checkpoint
40

41
from .activations import get_activation
42
from .configuration_utils import PretrainedConfig
43
from .dynamic_module_utils import custom_object_save
44
from .generation import GenerationConfig, GenerationMixin
45
from .integrations import PeftAdapterMixin, deepspeed_config, is_deepspeed_zero3_enabled
46
47
48
49
from .pytorch_utils import (  # noqa: F401
    Conv1D,
    apply_chunking_to_forward,
    find_pruneable_heads_and_indices,
Thomas Wang's avatar
Thomas Wang committed
50
    id_tensor_storage,
51
    is_torch_greater_or_equal_than_1_13,
52
53
54
55
    prune_conv1d_layer,
    prune_layer,
    prune_linear_layer,
)
56
from .safetensors_conversion import auto_conversion
57
from .utils import (
58
59
    ADAPTER_SAFE_WEIGHTS_NAME,
    ADAPTER_WEIGHTS_NAME,
60
    CONFIG_NAME,
Aymeric Augustin's avatar
Aymeric Augustin committed
61
    DUMMY_INPUTS,
62
    FLAX_WEIGHTS_NAME,
63
64
    SAFE_WEIGHTS_INDEX_NAME,
    SAFE_WEIGHTS_NAME,
65
66
    TF2_WEIGHTS_NAME,
    TF_WEIGHTS_NAME,
Sylvain Gugger's avatar
Sylvain Gugger committed
67
    WEIGHTS_INDEX_NAME,
68
    WEIGHTS_NAME,
69
    ContextManagers,
70
    ModelOutput,
Sylvain Gugger's avatar
Sylvain Gugger committed
71
    PushToHubMixin,
72
    cached_file,
73
    copy_func,
74
    download_url,
75
    extract_commit_hash,
76
    has_file,
77
    is_accelerate_available,
78
    is_auto_awq_available,
Marc Sun's avatar
Marc Sun committed
79
    is_auto_gptq_available,
80
    is_bitsandbytes_available,
81
    is_flash_attn_2_available,
82
    is_offline_mode,
83
    is_optimum_available,
84
    is_peft_available,
85
    is_remote_url,
86
    is_safetensors_available,
87
    is_torch_sdpa_available,
88
    is_torch_tpu_available,
89
    logging,
Sylvain Gugger's avatar
Sylvain Gugger committed
90
    replace_return_docstrings,
91
    strtobool,
92
)
93
from .utils.hub import convert_file_size_to_int, create_and_tag_model_card, get_checkpoint_shard_files
94
95
96
97
98
99
from .utils.import_utils import (
    ENV_VARS_TRUE_VALUES,
    is_sagemaker_mp_enabled,
    is_torch_fx_proxy,
    is_torchdynamo_compiling,
)
100
from .utils.quantization_config import AwqConfig, BitsAndBytesConfig, GPTQConfig, QuantizationMethod
101

Aymeric Augustin's avatar
Aymeric Augustin committed
102

103
104
105
XLA_USE_BF16 = os.environ.get("XLA_USE_BF16", "0").upper()
XLA_DOWNCAST_BF16 = os.environ.get("XLA_DOWNCAST_BF16", "0").upper()

106
107
if is_accelerate_available():
    from accelerate import dispatch_model, infer_auto_device_map, init_empty_weights
108
    from accelerate.hooks import add_hook_to_module
109
    from accelerate.utils import (
110
        check_tied_parameters_on_same_device,
111
        find_tied_parameters,
112
        get_balanced_memory,
Marc Sun's avatar
Marc Sun committed
113
        get_max_memory,
114
115
116
117
118
119
        load_offloaded_weights,
        offload_weight,
        save_offload_index,
        set_module_tensor_to_device,
    )

120
121
122
123
if is_safetensors_available():
    from safetensors import safe_open
    from safetensors.torch import load_file as safe_load_file
    from safetensors.torch import save_file as safe_save_file
124

Lysandre Debut's avatar
Lysandre Debut committed
125
logger = logging.get_logger(__name__)
126

127
128
129
130

_init_weights = True


131
def is_fsdp_enabled():
132
133
134
135
    return (
        torch.distributed.is_available()
        and torch.distributed.is_initialized()
        and strtobool(os.environ.get("ACCELERATE_USE_FSDP", "False")) == 1
136
        and strtobool(os.environ.get("FSDP_CPU_RAM_EFFICIENT_LOADING", "False")) == 1
137
    )
138
139


140
141
142
143
144
145
def is_local_dist_rank_0():
    return (
        torch.distributed.is_available()
        and torch.distributed.is_initialized()
        and int(os.environ.get("LOCAL_RANK", -1)) == 0
    )
146
147


148
149
150
151
152
153
154
155
if is_sagemaker_mp_enabled():
    import smdistributed.modelparallel.torch as smp
    from smdistributed.modelparallel import __version__ as SMP_VERSION

    IS_SAGEMAKER_MP_POST_1_10 = version.parse(SMP_VERSION) >= version.parse("1.10")
else:
    IS_SAGEMAKER_MP_POST_1_10 = False

156
157
158
if is_peft_available():
    from .utils import find_adapter_config_file

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
TORCH_INIT_FUNCTIONS = {
    "uniform_": nn.init.uniform_,
    "normal_": nn.init.normal_,
    "trunc_normal_": nn.init.trunc_normal_,
    "constant_": nn.init.constant_,
    "xavier_uniform_": nn.init.xavier_uniform_,
    "xavier_normal_": nn.init.xavier_normal_,
    "kaiming_uniform_": nn.init.kaiming_uniform_,
    "kaiming_normal_": nn.init.kaiming_normal_,
    "uniform": nn.init.uniform,
    "normal": nn.init.normal,
    "xavier_uniform": nn.init.xavier_uniform,
    "xavier_normal": nn.init.xavier_normal,
    "kaiming_uniform": nn.init.kaiming_uniform,
    "kaiming_normal": nn.init.kaiming_normal,
}

176

177
178
179
180
181
182
183
184
@contextmanager
def no_init_weights(_enable=True):
    """
    Context manager to globally disable weight initialization to speed up loading large models.

    TODO(Patrick): Delete safety argument `_enable=True` at next major version. .
    """
    global _init_weights
185
    old_init_weights = _init_weights
186

187
188
    if _enable:
        _init_weights = False
189
190
191
192
193
194
195

        def _skip_init(*args, **kwargs):
            pass

        # # Save the original initialization functions
        for name, init_func in TORCH_INIT_FUNCTIONS.items():
            setattr(torch.nn.init, name, _skip_init)
196
197
198
    try:
        yield
    finally:
199
        _init_weights = old_init_weights
200
201
202
203
        if _enable:
            # # Restore the original initialization functions
            for name, init_func in TORCH_INIT_FUNCTIONS.items():
                setattr(torch.nn.init, name, init_func)
204
205


Lysandre Debut's avatar
Lysandre Debut committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
def get_parameter_device(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    try:
        return next(parameter.parameters()).device
    except StopIteration:
        # For nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].device


221
222
223
224
def get_first_parameter_dtype(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    """
    Returns the first parameter dtype (can be non-floating) or asserts if none were found.
    """
Lysandre Debut's avatar
Lysandre Debut committed
225
226
227
    try:
        return next(parameter.parameters()).dtype
    except StopIteration:
Sylvain Gugger's avatar
Sylvain Gugger committed
228
        # For nn.DataParallel compatibility in PyTorch > 1.5
Lysandre Debut's avatar
Lysandre Debut committed
229
230
231
232
233
234
235
236
237
238

        def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].dtype


239
240
def get_parameter_dtype(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
241
    Returns the first found floating dtype in parameters if there is one, otherwise returns the last dtype it found.
242
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
243
244
245
246
    last_dtype = None
    for t in parameter.parameters():
        last_dtype = t.dtype
        if t.is_floating_point():
247
248
249
            # Adding fix for https://github.com/pytorch/xla/issues/4152
            # Fixes issue where the model code passes a value that is out of range for XLA_USE_BF16=1
            # and XLA_DOWNCAST_BF16=1 so the conversion would cast it to -inf
250
251
252
253
254
            # NOTE: `is_torch_tpu_available()` is checked last as it induces a graph break in torch dynamo
            if XLA_USE_BF16 in ENV_VARS_TRUE_VALUES and is_torch_tpu_available():
                return torch.bfloat16
            if XLA_DOWNCAST_BF16 in ENV_VARS_TRUE_VALUES and is_torch_tpu_available():
                if t.dtype == torch.float:
255
                    return torch.bfloat16
256
257
                if t.dtype == torch.double:
                    return torch.float32
Sylvain Gugger's avatar
Sylvain Gugger committed
258
            return t.dtype
259

Sylvain Gugger's avatar
Sylvain Gugger committed
260
261
262
    if last_dtype is not None:
        # if no floating dtype was found return whatever the first dtype is
        return last_dtype
263

264
265
266
267
268
269
270
271
272
273
274
275
276
    # For nn.DataParallel compatibility in PyTorch > 1.5
    def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
        tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
        return tuples

    gen = parameter._named_members(get_members_fn=find_tensor_attributes)
    last_tuple = None
    for tuple in gen:
        last_tuple = tuple
        if tuple[1].is_floating_point():
            return tuple[1].dtype

    if last_tuple is not None:
277
278
        # fallback to the last dtype
        return last_tuple[1].dtype
279

280
281
282
283
284
285
286
    # fallback to buffer dtype
    for t in parameter.buffers():
        last_dtype = t.dtype
        if t.is_floating_point():
            return t.dtype
    return last_dtype

287
288
289
290
291
292
293
294
295
296
297
298
299
300

def get_state_dict_float_dtype(state_dict):
    """
    Returns the first found floating dtype in `state_dict` or asserts if none were found.
    """
    for t in state_dict.values():
        if t.is_floating_point():
            return t.dtype

    raise ValueError("couldn't find any floating point dtypes in state_dict")


def get_state_dict_dtype(state_dict):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
301
    Returns the first found floating dtype in `state_dict` if there is one, otherwise returns the first dtype.
302
303
304
305
306
307
308
    """
    for t in state_dict.values():
        if t.is_floating_point():
            return t.dtype

    # if no floating dtype was found return whatever the first dtype is
    else:
Sylvain Gugger's avatar
Sylvain Gugger committed
309
        return next(state_dict.values()).dtype
310
311


Sylvain Gugger's avatar
Sylvain Gugger committed
312
313
314
315
316
317
318
319
320
321
322
323
324
def dtype_byte_size(dtype):
    """
    Returns the size (in bytes) occupied by one parameter of type `dtype`.

    Example:

    ```py
    >>> dtype_byte_size(torch.float32)
    4
    ```
    """
    if dtype == torch.bool:
        return 1 / 8
325
    bit_search = re.search(r"[^\d](\d+)$", str(dtype))
Sylvain Gugger's avatar
Sylvain Gugger committed
326
327
328
329
330
331
    if bit_search is None:
        raise ValueError(f"`dtype` is not a valid dtype: {dtype}.")
    bit_size = int(bit_search.groups()[0])
    return bit_size // 8


332
333
334
def shard_checkpoint(
    state_dict: Dict[str, torch.Tensor], max_shard_size: Union[int, str] = "10GB", weights_name: str = WEIGHTS_NAME
):
Sylvain Gugger's avatar
Sylvain Gugger committed
335
336
337
338
339
340
341
342
343
344
345
    """
    Splits a model state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a
    given size.

    The sub-checkpoints are determined by iterating through the `state_dict` in the order of its keys, so there is no
    optimization made to make each sub-checkpoint as close as possible to the maximum size passed. For example, if the
    limit is 10GB and we have weights of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as [6GB], [6+2GB],
    [6+2+2GB] and not [6+2+2GB], [6+2GB], [6GB].

    <Tip warning={true}>

Alan Ji's avatar
Alan Ji committed
346
    If one of the model's weight is bigger than `max_shard_size`, it will end up in its own sub-checkpoint which will
Sylvain Gugger's avatar
Sylvain Gugger committed
347
348
349
350
351
352
353
354
355
    have a size greater than `max_shard_size`.

    </Tip>

    Args:
        state_dict (`Dict[str, torch.Tensor]`): The state dictionary of a model to save.
        max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
            The maximum size of each sub-checkpoint. If expressed as a string, needs to be digits followed by a unit
            (like `"5MB"`).
356
357
        weights_name (`str`, *optional*, defaults to `"pytorch_model.bin"`):
            The name of the model save file.
Sylvain Gugger's avatar
Sylvain Gugger committed
358
359
360
    """
    max_shard_size = convert_file_size_to_int(max_shard_size)

Thomas Wang's avatar
Thomas Wang committed
361
362
    sharded_state_dicts = [{}]
    last_block_size = 0
Sylvain Gugger's avatar
Sylvain Gugger committed
363
    total_size = 0
Thomas Wang's avatar
Thomas Wang committed
364
    storage_id_to_block = {}
Sylvain Gugger's avatar
Sylvain Gugger committed
365
366

    for key, weight in state_dict.items():
367
368
369
370
371
372
        # when bnb serialization is used the weights in the state dict can be strings
        # check: https://github.com/huggingface/transformers/pull/24416 for more details
        if isinstance(weight, str):
            continue
        else:
            storage_id = id_tensor_storage(weight)
Thomas Wang's avatar
Thomas Wang committed
373
374
375
376
377
378
379

        # If a `weight` shares the same underlying storage as another tensor, we put `weight` in the same `block`
        if storage_id in storage_id_to_block:
            block_id = storage_id_to_block[storage_id]
            sharded_state_dicts[block_id][key] = weight
            continue

Sylvain Gugger's avatar
Sylvain Gugger committed
380
381
        weight_size = weight.numel() * dtype_byte_size(weight.dtype)

Sylvain Gugger's avatar
Sylvain Gugger committed
382
383
384
        # If this weight is going to tip up over the maximal size, we split, but only if we have put at least one
        # weight in the current shard.
        if last_block_size + weight_size > max_shard_size and len(sharded_state_dicts[-1]) > 0:
Thomas Wang's avatar
Thomas Wang committed
385
386
            sharded_state_dicts.append({})
            last_block_size = 0
Sylvain Gugger's avatar
Sylvain Gugger committed
387

Thomas Wang's avatar
Thomas Wang committed
388
389
        sharded_state_dicts[-1][key] = weight
        last_block_size += weight_size
Sylvain Gugger's avatar
Sylvain Gugger committed
390
        total_size += weight_size
Thomas Wang's avatar
Thomas Wang committed
391
        storage_id_to_block[storage_id] = len(sharded_state_dicts) - 1
Sylvain Gugger's avatar
Sylvain Gugger committed
392
393
394

    # If we only have one shard, we return it
    if len(sharded_state_dicts) == 1:
395
        return {weights_name: sharded_state_dicts[0]}, None
Sylvain Gugger's avatar
Sylvain Gugger committed
396
397
398
399
400

    # Otherwise, let's build the index
    weight_map = {}
    shards = {}
    for idx, shard in enumerate(sharded_state_dicts):
401
402
403
404
        shard_file = weights_name.replace(".bin", f"-{idx+1:05d}-of-{len(sharded_state_dicts):05d}.bin")
        shard_file = shard_file.replace(
            ".safetensors", f"-{idx + 1:05d}-of-{len(sharded_state_dicts):05d}.safetensors"
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
405
406
407
408
409
410
411
412
413
414
        shards[shard_file] = shard
        for key in shard.keys():
            weight_map[key] = shard_file

    # Add the metadata
    metadata = {"total_size": total_size}
    index = {"metadata": metadata, "weight_map": weight_map}
    return shards, index


415
def load_sharded_checkpoint(model, folder, strict=True, prefer_safe=True):
416
417
418
419
420
421
422
423
424
425
426
427
428
    """
    This is the same as
    [`torch.nn.Module.load_state_dict`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html?highlight=load_state_dict#torch.nn.Module.load_state_dict)
    but for a sharded checkpoint.

    This load is performed efficiently: each checkpoint shard is loaded one by one in RAM and deleted after being
    loaded in the model.

    Args:
        model (`torch.nn.Module`): The model in which to load the checkpoint.
        folder (`str` or `os.PathLike`): A path to a folder containing the sharded checkpoint.
        strict (`bool`, *optional`, defaults to `True`):
            Whether to strictly enforce that the keys in the model state dict match the keys in the sharded checkpoint.
429
430
431
        prefer_safe (`bool`, *optional*, defaults to `False`)
            If both safetensors and PyTorch save files are present in checkpoint and `prefer_safe` is True, the
            safetensors files will be loaded. Otherwise, PyTorch files are always loaded when possible.
432
433
434
435
436
437
438
439

    Returns:
        `NamedTuple`: A named tuple with `missing_keys` and `unexpected_keys` fields
            - `missing_keys` is a list of str containing the missing keys
            - `unexpected_keys` is a list of str containing the unexpected keys
    """
    # Load the index
    index_file = os.path.join(folder, WEIGHTS_INDEX_NAME)
440
    safe_index_file = os.path.join(folder, SAFE_WEIGHTS_INDEX_NAME)
441

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
    index_present = os.path.isfile(index_file)
    safe_index_present = os.path.isfile(safe_index_file)

    if not index_present and not (safe_index_present and is_safetensors_available()):
        filenames = (
            (WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_INDEX_NAME) if is_safetensors_available() else (WEIGHTS_INDEX_NAME,)
        )
        raise ValueError(f"Can't find a checkpoint index ({' or '.join(filenames)}) in {folder}.")

    load_safe = False
    if safe_index_present:
        if prefer_safe:
            if is_safetensors_available():
                load_safe = True  # load safe due to preference
            else:
                logger.warning(
                    f"Cannot load sharded checkpoint at {folder} safely since safetensors is not installed!"
                )
        elif not index_present:
            load_safe = True  # load safe since we have no other choice

    load_index = safe_index_file if load_safe else index_file

    with open(load_index, "r", encoding="utf-8") as f:
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
        index = json.load(f)

    shard_files = list(set(index["weight_map"].values()))

    # If strict=True, error before loading any of the state dicts.
    loaded_keys = index["weight_map"].keys()
    model_keys = model.state_dict().keys()
    missing_keys = [key for key in model_keys if key not in loaded_keys]
    unexpected_keys = [key for key in loaded_keys if key not in model_keys]
    if strict and (len(missing_keys) > 0 or len(unexpected_keys) > 0):
        error_message = f"Error(s) in loading state_dict for {model.__class__.__name__}"
        if len(missing_keys) > 0:
            str_missing_keys = ",".join([f'"{k}"' for k in missing_keys])
            error_message += f"\nMissing key(s): {str_missing_keys}."
        if len(unexpected_keys) > 0:
            str_unexpected_keys = ",".join([f'"{k}"' for k in unexpected_keys])
            error_message += f"\nMissing key(s): {str_unexpected_keys}."
        raise RuntimeError(error_message)

485
486
487
488
489
    loader = (
        safe_load_file
        if load_safe
        else partial(torch.load, map_location="cpu", weights_only=is_torch_greater_or_equal_than_1_13)
    )
490

491
    for shard_file in shard_files:
492
        state_dict = loader(os.path.join(folder, shard_file))
493
494
        model.load_state_dict(state_dict, strict=False)

495
        # Make sure memory is freed before we load the next state dict.
496
497
498
499
500
501
502
        del state_dict
        gc.collect()

    # Return the same thing as PyTorch load_state_dict function.
    return torch.nn.modules.module._IncompatibleKeys(missing_keys, unexpected_keys)


Sylvain Gugger's avatar
Sylvain Gugger committed
503
504
505
506
def load_state_dict(checkpoint_file: Union[str, os.PathLike]):
    """
    Reads a PyTorch checkpoint file, returning properly formatted errors if they arise.
    """
507
508
509
510
511
512
513
514
515
516
    if checkpoint_file.endswith(".safetensors") and is_safetensors_available():
        # Check format of the archive
        with safe_open(checkpoint_file, framework="pt") as f:
            metadata = f.metadata()
        if metadata.get("format") not in ["pt", "tf", "flax"]:
            raise OSError(
                f"The safetensors archive passed at {checkpoint_file} does not contain the valid metadata. Make sure "
                "you save your model with the `save_pretrained` method."
            )
        return safe_load_file(checkpoint_file)
Sylvain Gugger's avatar
Sylvain Gugger committed
517
    try:
518
        if (
519
520
            is_deepspeed_zero3_enabled() and torch.distributed.is_initialized() and torch.distributed.get_rank() > 0
        ) or (is_fsdp_enabled() and not is_local_dist_rank_0()):
521
522
523
            map_location = "meta"
        else:
            map_location = "cpu"
524
525
526
527
528
529
530
531
532
        extra_args = {}
        # mmap can only be used with files serialized with zipfile-based format.
        if (
            isinstance(checkpoint_file, str)
            and map_location != "meta"
            and version.parse(torch.__version__) >= version.parse("2.1.0")
            and is_zipfile(checkpoint_file)
        ):
            extra_args = {"mmap": True}
533
534
535
536
537
538
        return torch.load(
            checkpoint_file,
            map_location=map_location,
            weights_only=is_torch_greater_or_equal_than_1_13,
            **extra_args,
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
539
540
541
    except Exception as e:
        try:
            with open(checkpoint_file) as f:
542
                if f.read(7) == "version":
Sylvain Gugger's avatar
Sylvain Gugger committed
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
                    raise OSError(
                        "You seem to have cloned a repository without having git-lfs installed. Please install "
                        "git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
                        "you cloned."
                    )
                else:
                    raise ValueError(
                        f"Unable to locate the file {checkpoint_file} which is necessary to load this pretrained "
                        "model. Make sure you have saved the model properly."
                    ) from e
        except (UnicodeDecodeError, ValueError):
            raise OSError(
                f"Unable to load weights from pytorch checkpoint file for '{checkpoint_file}' "
                f"at '{checkpoint_file}'. "
                "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True."
            )


561
562
563
564
565
def set_initialized_submodules(model, state_dict_keys):
    """
    Sets the `_is_hf_initialized` flag in all submodules of a given model when all its weights are in the loaded state
    dict.
    """
566
    not_initialized_submodules = {}
567
    for module_name, module in model.named_modules():
568
569
        loaded_keys = {k.replace(f"{module_name}.", "") for k in state_dict_keys if k.startswith(f"{module_name}.")}
        if loaded_keys.issuperset(module.state_dict()):
570
            module._is_hf_initialized = True
571
572
573
        else:
            not_initialized_submodules[module_name] = module
    return not_initialized_submodules
574
575


Sylvain Gugger's avatar
Sylvain Gugger committed
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
def _load_state_dict_into_model(model_to_load, state_dict, start_prefix):
    # Convert old format to new format if needed from a PyTorch state_dict
    old_keys = []
    new_keys = []
    for key in state_dict.keys():
        new_key = None
        if "gamma" in key:
            new_key = key.replace("gamma", "weight")
        if "beta" in key:
            new_key = key.replace("beta", "bias")
        if new_key:
            old_keys.append(key)
            new_keys.append(new_key)
    for old_key, new_key in zip(old_keys, new_keys):
        state_dict[new_key] = state_dict.pop(old_key)

    # copy state_dict so _load_from_state_dict can modify it
    metadata = getattr(state_dict, "_metadata", None)
    state_dict = state_dict.copy()
    if metadata is not None:
        state_dict._metadata = metadata

    error_msgs = []

    # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
    # so we need to apply the function recursively.
602
    def load(module: nn.Module, state_dict, prefix=""):
Sylvain Gugger's avatar
Sylvain Gugger committed
603
604
        local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
        args = (state_dict, prefix, local_metadata, True, [], [], error_msgs)
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
        # Parameters of module and children will start with prefix. We can exit early if there are none in this
        # state_dict
        if len([key for key in state_dict if key.startswith(prefix)]) > 0:
            if is_deepspeed_zero3_enabled():
                import deepspeed

                # In sharded models, each shard has only part of the full state_dict, so only gather
                # parameters that are in the current state_dict.
                named_parameters = dict(module.named_parameters(prefix=prefix[:-1], recurse=False))
                params_to_gather = [named_parameters[k] for k in state_dict.keys() if k in named_parameters]
                if len(params_to_gather) > 0:
                    # because zero3 puts placeholders in model params, this context
                    # manager gathers (unpartitions) the params of the current layer, then loads from
                    # the state dict and then re-partitions them again
                    with deepspeed.zero.GatheredParameters(params_to_gather, modifier_rank=0):
                        if torch.distributed.get_rank() == 0:
                            module._load_from_state_dict(*args)
            else:
                module._load_from_state_dict(*args)
Sylvain Gugger's avatar
Sylvain Gugger committed
624
625
626

        for name, child in module._modules.items():
            if child is not None:
627
                load(child, state_dict, prefix + name + ".")
Sylvain Gugger's avatar
Sylvain Gugger committed
628

629
630
631
632
    load(model_to_load, state_dict, prefix=start_prefix)
    # Delete `state_dict` so it could be collected by GC earlier. Note that `state_dict` is a copy of the argument, so
    # it's safe to delete it.
    del state_dict
Sylvain Gugger's avatar
Sylvain Gugger committed
633
634
635
636

    return error_msgs


637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
def find_submodule_and_param_name(model, long_key, start_prefix):
    """
    A helper util to find the last sub-module and the param/buffer name. If `start_prefix` is supplied it'll be removed
    from the start of the key
    """

    if len(start_prefix) > 0 and long_key.startswith(start_prefix):
        long_key = ".".join(long_key.split(".")[1:])

    split_key = long_key.split(".")
    submodule = model
    while len(split_key) > 1:
        if hasattr(submodule, split_key[0]):
            submodule = getattr(submodule, split_key[0])
            del split_key[0]
        else:
            submodule = None
            break
    if submodule == model:
        submodule = None
    return submodule, split_key[0]


def _move_model_to_meta(model, loaded_state_dict_keys, start_prefix):
    """
    Moves `loaded_state_dict_keys` in model to meta device which frees up the memory taken by those params.

    `start_prefix` is used for models which insert their name into model keys, e.g. `bert` in
    `bert.pooler.dense.weight`

    """

    # dematerialize param storage for keys that are going to be replaced by state_dict, by
    # putting those on the meta device
    for k in loaded_state_dict_keys:
        submodule, param_name = find_submodule_and_param_name(model, k, start_prefix)
        if submodule is not None:
            # selectively switch to the meta device only those params/buffers that will
            # be next replaced from state_dict. This a complex way to do p.to_("meta")
            # since we have no in-place to_ for tensors.
            new_val = getattr(submodule, param_name)
            if isinstance(new_val, torch.nn.Parameter):
                # isinstance returns False for Params on meta device, so switch after the check
                new_val = torch.nn.Parameter(new_val.to("meta"))
            else:
                new_val = new_val.to("meta")
            setattr(submodule, param_name, new_val)


686
687
688
689
690
691
692
693
694
695
696
697
def _load_state_dict_into_meta_model(
    model,
    state_dict,
    loaded_state_dict_keys,  # left for now but could be removed, see below
    start_prefix,
    expected_keys,
    device_map=None,
    offload_folder=None,
    offload_index=None,
    state_dict_folder=None,
    state_dict_index=None,
    dtype=None,
698
    is_quantized=False,
Sylvain Gugger's avatar
Sylvain Gugger committed
699
    is_safetensors=False,
700
    keep_in_fp32_modules=None,
701
    unexpected_keys=None,  # passing `unexpected` for cleanup from quantization items
702
):
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
    """
    This is somewhat similar to `_load_state_dict_into_model`, but deals with a model that has some or all of its
    params on a `meta` device. It replaces the model params with the data from the `state_dict`, while moving the
    params back to the normal device, but only for `loaded_state_dict_keys`.

    `start_prefix` is used for models which insert their name into model keys, e.g. `bert` in
    `bert.pooler.dense.weight`

    """

    # XXX: remaining features to implement to be fully compatible with _load_state_dict_into_model
    # - deepspeed zero 3 support
    # - need to copy metadata if any - see _load_state_dict_into_model
    # - handling error_msgs - mimicking the error handling in module._load_from_state_dict()
    # - Is there a situation where some keys aren't in `loaded_state_dict_keys` and in which case
    #   they won't get loaded.

720
    if is_quantized:
721
        from .integrations import set_module_quantized_tensor_to_device
722

723
724
    error_msgs = []

725
726
727
728
729
730
731
732
733
734
735
736
737
    old_keys = []
    new_keys = []
    for key in state_dict.keys():
        new_key = None
        if "gamma" in key:
            new_key = key.replace("gamma", "weight")
        if "beta" in key:
            new_key = key.replace("beta", "bias")
        if new_key:
            old_keys.append(key)
            new_keys.append(new_key)
    for old_key, new_key in zip(old_keys, new_keys):
        state_dict[new_key] = state_dict.pop(old_key)
738

739
740
741
742
743
744
745
746
747
    for param_name, param in state_dict.items():
        # First part of the test is always true as load_state_dict_keys always contains state_dict keys.
        if param_name not in loaded_state_dict_keys or param_name not in expected_keys:
            continue

        if param_name.startswith(start_prefix):
            param_name = param_name[len(start_prefix) :]

        module_name = param_name
748
        set_module_kwargs = {}
749

750
        # We convert floating dtypes to the `dtype` passed. We want to keep the buffers/params
751
752
        # in int/uint/bool and not cast them.
        if dtype is not None and torch.is_floating_point(param):
753
754
            if (
                keep_in_fp32_modules is not None
755
756
757
                and any(
                    module_to_keep_in_fp32 in param_name.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules
                )
758
759
760
                and dtype == torch.float16
            ):
                param = param.to(torch.float32)
761
762
763
764
765

                # For backward compatibility with older versions of `accelerate`
                # TODO: @sgugger replace this check with version check at the next `accelerate` release
                if "dtype" in list(inspect.signature(set_module_tensor_to_device).parameters):
                    set_module_kwargs["dtype"] = torch.float32
766
767
            else:
                param = param.to(dtype)
768

769
770
771
772
773
774
775
776
777
778
779
780
        # For compatibility with PyTorch load_state_dict which converts state dict dtype to existing dtype in model, and which
        # uses `param.copy_(input_param)` that preserves the contiguity of the parameter in the model.
        # Reference: https://github.com/pytorch/pytorch/blob/db79ceb110f6646523019a59bbd7b838f43d4a86/torch/nn/modules/module.py#L2040C29-L2040C29
        old_param = model
        splits = param_name.split(".")
        for split in splits:
            old_param = getattr(old_param, split)
            if old_param is None:
                break

        if old_param is not None:
            if dtype is None:
781
                param = param.to(old_param.dtype)
782

783
784
785
            if old_param.is_contiguous():
                param = param.contiguous()

786
787
        set_module_kwargs["value"] = param

788
789
790
791
792
793
794
795
796
797
798
        if device_map is None:
            param_device = "cpu"
        else:
            # find next higher level module that is defined in device_map:
            # bert.lm_head.weight -> bert.lm_head -> bert -> ''
            while len(module_name) > 0 and module_name not in device_map:
                module_name = ".".join(module_name.split(".")[:-1])
            if module_name == "" and "" not in device_map:
                # TODO: group all errors and raise at the end.
                raise ValueError(f"{param_name} doesn't have any device set.")
            param_device = device_map[module_name]
799

800
        if param_device == "disk":
Sylvain Gugger's avatar
Sylvain Gugger committed
801
802
            if not is_safetensors:
                offload_index = offload_weight(param, param_name, offload_folder, offload_index)
803
804
        elif param_device == "cpu" and state_dict_index is not None:
            state_dict_index = offload_weight(param, param_name, state_dict_folder, state_dict_index)
805
        elif not is_quantized:
806
807
            # For backward compatibility with older versions of `accelerate`
            set_module_tensor_to_device(model, param_name, param_device, **set_module_kwargs)
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
        elif param.dtype in (torch.int8, torch.uint8) and is_quantized:
            # handling newly quantized weights and loaded quantized weights
            # edit the param.dtype restrictions and is_quantized condition when adding new quant methods
            quantized_stats = {}

            if (param_name + ".quant_state.bitsandbytes__fp4" in state_dict) or (
                param_name + ".quant_state.bitsandbytes__nf4" in state_dict
            ):
                # 4bit loading. Collecting components for restoring quantized weight
                # This can be expanded to make a universal call for any quantized weight loading
                for k, v in state_dict.items():
                    if param_name + "." in k:
                        quantized_stats[k] = v
                        unexpected_keys.remove(k)

                set_module_quantized_tensor_to_device(
                    model, param_name, param_device, value=param, quantized_stats=quantized_stats
                )
826

827
828
829
830
831
            elif param.dtype == torch.int8 and param_name.replace("weight", "SCB") in state_dict.keys():
                # 8bit loading. Could be combined with the above 4bit call.
                # condition looks unreliable
                fp16_statistics_key = param_name.replace("weight", "SCB")
                unexpected_keys.remove(fp16_statistics_key)
832
                set_module_quantized_tensor_to_device(
833
834
835
836
837
                    model,
                    param_name,
                    param_device,
                    value=param,
                    quantized_stats={"SCB": state_dict[fp16_statistics_key]},
838
                )
839
840
841
        else:
            # loading not quantized params in quantized model
            set_module_quantized_tensor_to_device(model, param_name, param_device, value=param)
842
843

    return error_msgs, offload_index, state_dict_index
844
845


846
847
848
849
850
851
852
853
854
def _add_variant(weights_name: str, variant: Optional[str] = None) -> str:
    if variant is not None:
        splits = weights_name.split(".")
        splits = splits[:-1] + [variant] + splits[-1:]
        weights_name = ".".join(splits)

    return weights_name


855
class ModuleUtilsMixin:
Julien Chaumond's avatar
Julien Chaumond committed
856
    """
857
    A few utilities for `torch.nn.Modules`, to be used as a mixin.
Julien Chaumond's avatar
Julien Chaumond committed
858
859
    """

860
861
862
863
    @staticmethod
    def _hook_rss_memory_pre_forward(module, *args, **kwargs):
        try:
            import psutil
Sylvain Gugger's avatar
Sylvain Gugger committed
864
        except ImportError:
865
866
867
868
869
870
871
872
873
874
875
            raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")

        process = psutil.Process(os.getpid())
        mem = process.memory_info()
        module.mem_rss_pre_forward = mem.rss
        return None

    @staticmethod
    def _hook_rss_memory_post_forward(module, *args, **kwargs):
        try:
            import psutil
Sylvain Gugger's avatar
Sylvain Gugger committed
876
        except ImportError:
877
878
879
880
881
882
883
884
885
886
            raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")

        process = psutil.Process(os.getpid())
        mem = process.memory_info()
        module.mem_rss_post_forward = mem.rss
        mem_rss_diff = module.mem_rss_post_forward - module.mem_rss_pre_forward
        module.mem_rss_diff = mem_rss_diff + (module.mem_rss_diff if hasattr(module, "mem_rss_diff") else 0)
        return None

    def add_memory_hooks(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
887
888
889
        """
        Add a memory hook before and after each sub-module forward pass to record increase in memory consumption.

Sylvain Gugger's avatar
Sylvain Gugger committed
890
891
        Increase in memory consumption is stored in a `mem_rss_diff` attribute for each module and can be reset to zero
        with `model.reset_memory_hooks_state()`.
892
893
894
895
896
897
898
        """
        for module in self.modules():
            module.register_forward_pre_hook(self._hook_rss_memory_pre_forward)
            module.register_forward_hook(self._hook_rss_memory_post_forward)
        self.reset_memory_hooks_state()

    def reset_memory_hooks_state(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
899
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
900
        Reset the `mem_rss_diff` attribute of each module (see [`~modeling_utils.ModuleUtilsMixin.add_memory_hooks`]).
Sylvain Gugger's avatar
Sylvain Gugger committed
901
        """
902
903
904
905
906
        for module in self.modules():
            module.mem_rss_diff = 0
            module.mem_rss_post_forward = 0
            module.mem_rss_pre_forward = 0

907
    @property
Sylvain Gugger's avatar
Sylvain Gugger committed
908
    def device(self) -> torch.device:
909
        """
910
        `torch.device`: The device on which the module is (assuming that all the module parameters are on the same
911
        device).
912
        """
Lysandre Debut's avatar
Lysandre Debut committed
913
        return get_parameter_device(self)
914

915
    @property
916
    def dtype(self) -> torch.dtype:
917
        """
918
        `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
919
        """
Lysandre Debut's avatar
Lysandre Debut committed
920
        return get_parameter_dtype(self)
921
922

    def invert_attention_mask(self, encoder_attention_mask: Tensor) -> Tensor:
Sylvain Gugger's avatar
Sylvain Gugger committed
923
924
925
926
        """
        Invert an attention mask (e.g., switches 0. and 1.).

        Args:
927
            encoder_attention_mask (`torch.Tensor`): An attention mask.
Sylvain Gugger's avatar
Sylvain Gugger committed
928
929

        Returns:
930
            `torch.Tensor`: The inverted attention mask.
Sylvain Gugger's avatar
Sylvain Gugger committed
931
        """
932
933
934
935
936
937
938
939
940
941
        if encoder_attention_mask.dim() == 3:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
        if encoder_attention_mask.dim() == 2:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
        # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
        # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
        # /transformer/transformer_layers.py#L270
        # encoder_extended_attention_mask = (encoder_extended_attention_mask ==
        # encoder_extended_attention_mask.transpose(-1, -2))
        encoder_extended_attention_mask = encoder_extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
Yih-Dar's avatar
Yih-Dar committed
942
        encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * torch.finfo(self.dtype).min
943

944
945
        return encoder_extended_attention_mask

946
    @staticmethod
947
948
949
950
951
952
953
    def create_extended_attention_mask_for_decoder(input_shape, attention_mask, device=None):
        if device is not None:
            warnings.warn(
                "The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
            )
        else:
            device = attention_mask.device
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
        batch_size, seq_length = input_shape
        seq_ids = torch.arange(seq_length, device=device)
        causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
        # in case past_key_values are used we need to add a prefix ones mask to the causal mask
        # causal and attention masks must have same type with pytorch version < 1.3
        causal_mask = causal_mask.to(attention_mask.dtype)

        if causal_mask.shape[1] < attention_mask.shape[1]:
            prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
            causal_mask = torch.cat(
                [
                    torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype),
                    causal_mask,
                ],
                axis=-1,
            )

        extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
        return extended_attention_mask

974
    def get_extended_attention_mask(
975
        self, attention_mask: Tensor, input_shape: Tuple[int], device: torch.device = None, dtype: torch.float = None
976
    ) -> Tensor:
Sylvain Gugger's avatar
Sylvain Gugger committed
977
978
        """
        Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
979
980

        Arguments:
981
            attention_mask (`torch.Tensor`):
Sylvain Gugger's avatar
Sylvain Gugger committed
982
                Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
983
            input_shape (`Tuple[int]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
984
                The shape of the input to the model.
985
986

        Returns:
987
            `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
988
        """
Yih-Dar's avatar
Yih-Dar committed
989
990
991
        if dtype is None:
            dtype = self.dtype

992
993
994
995
996
997
        if not (attention_mask.dim() == 2 and self.config.is_decoder):
            # show warning only if it won't be shown in `create_extended_attention_mask_for_decoder`
            if device is not None:
                warnings.warn(
                    "The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
                )
998
999
1000
1001
1002
1003
1004
1005
1006
        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        if attention_mask.dim() == 3:
            extended_attention_mask = attention_mask[:, None, :, :]
        elif attention_mask.dim() == 2:
            # Provided a padding mask of dimensions [batch_size, seq_length]
            # - if the model is a decoder, apply a causal mask in addition to the padding mask
            # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
            if self.config.is_decoder:
1007
                extended_attention_mask = ModuleUtilsMixin.create_extended_attention_mask_for_decoder(
1008
1009
                    input_shape, attention_mask, device
                )
1010
1011
1012
1013
            else:
                extended_attention_mask = attention_mask[:, None, None, :]
        else:
            raise ValueError(
1014
                f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})"
1015
1016
1017
1018
            )

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
1019
        # positions we want to attend and the dtype's smallest value for masked positions.
1020
1021
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
Yih-Dar's avatar
Yih-Dar committed
1022
1023
        extended_attention_mask = extended_attention_mask.to(dtype=dtype)  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(dtype).min
1024
1025
        return extended_attention_mask

Sylvain Gugger's avatar
Sylvain Gugger committed
1026
1027
1028
    def get_head_mask(
        self, head_mask: Optional[Tensor], num_hidden_layers: int, is_attention_chunked: bool = False
    ) -> Tensor:
1029
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1030
1031
1032
        Prepare the head mask if needed.

        Args:
1033
            head_mask (`torch.Tensor` with shape `[num_heads]` or `[num_hidden_layers x num_heads]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1034
                The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard).
1035
            num_hidden_layers (`int`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1036
                The number of hidden layers in the model.
1037
            is_attention_chunked (`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1038
1039
                Whether or not the attentions scores are computed by chunks or not.

1040
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
1041
1042
            `torch.Tensor` with shape `[num_hidden_layers x batch x num_heads x seq_length x seq_length]` or list with
            `[None]` for each layer.
1043
1044
1045
        """
        if head_mask is not None:
            head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
1046
1047
            if is_attention_chunked is True:
                head_mask = head_mask.unsqueeze(-1)
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
        else:
            head_mask = [None] * num_hidden_layers

        return head_mask

    def _convert_head_mask_to_5d(self, head_mask, num_hidden_layers):
        """-> [num_hidden_layers x batch x num_heads x seq_length x seq_length]"""
        if head_mask.dim() == 1:
            head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
            head_mask = head_mask.expand(num_hidden_layers, -1, -1, -1, -1)
        elif head_mask.dim() == 2:
            head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
        assert head_mask.dim() == 5, f"head_mask.dim != 5, instead {head_mask.dim()}"
1061
        head_mask = head_mask.to(dtype=self.dtype)  # switch to float if need + fp16 compatibility
1062
1063
        return head_mask

1064
1065
1066
1067
1068
    def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int:
        """
        Get number of (optionally, trainable or non-embeddings) parameters in the module.

        Args:
1069
            only_trainable (`bool`, *optional*, defaults to `False`):
1070
1071
                Whether or not to return only the number of trainable parameters

1072
            exclude_embeddings (`bool`, *optional*, defaults to `False`):
1073
1074
1075
                Whether or not to return only the number of non-embeddings parameters

        Returns:
1076
            `int`: The number of parameters.
1077
1078
        """

1079
1080
1081
1082
        if exclude_embeddings:
            embedding_param_names = [
                f"{name}.weight" for name, module_type in self.named_modules() if isinstance(module_type, nn.Embedding)
            ]
1083
            total_parameters = [
1084
1085
1086
                parameter for name, parameter in self.named_parameters() if name not in embedding_param_names
            ]
        else:
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
            total_parameters = list(self.parameters())

        total_numel = []
        is_loaded_in_4bit = getattr(self, "is_loaded_in_4bit", False)
        if is_loaded_in_4bit:
            if is_bitsandbytes_available():
                import bitsandbytes as bnb
            else:
                raise ValueError(
                    "bitsandbytes is not installed but it seems that the model has been loaded in 4bit precision, something went wrong"
1097
                    " make sure to install bitsandbytes with `pip install bitsandbytes`. You also need a GPU. "
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
                )

        for param in total_parameters:
            if param.requires_grad or not only_trainable:
                # For 4bit models, we need to multiply the number of parameters by 2 as half of the parameters are
                # used for the 4bit quantization (uint8 tensors are stored)
                if is_loaded_in_4bit and isinstance(param, bnb.nn.Params4bit):
                    total_numel.append(param.numel() * 2)
                else:
                    total_numel.append(param.numel())

        return sum(total_numel)
1110
1111
1112
1113
1114
1115

    def estimate_tokens(self, input_dict: Dict[str, Union[torch.Tensor, Any]]) -> int:
        """
        Helper function to estimate the total number of tokens from the model inputs.

        Args:
1116
            inputs (`dict`): The model inputs.
1117
1118

        Returns:
1119
            `int`: The total number of tokens.
1120
        """
1121
1122
        if not hasattr(self, "warnings_issued"):
            self.warnings_issued = {}
1123
1124
        if self.main_input_name in input_dict:
            return input_dict[self.main_input_name].numel()
1125
        elif "estimate_tokens" not in self.warnings_issued:
1126
            logger.warning(
1127
1128
                "Could not estimate the number of tokens of the input, floating-point operations will not be computed"
            )
1129
1130
            self.warnings_issued["estimate_tokens"] = True
        return 0
1131
1132
1133
1134
1135
1136
1137

    def floating_point_ops(
        self, input_dict: Dict[str, Union[torch.Tensor, Any]], exclude_embeddings: bool = True
    ) -> int:
        """
        Get number of (optionally, non-embeddings) floating-point operations for the forward and backward passes of a
        batch with this transformer model. Default approximation neglects the quadratic dependency on the number of
Sylvain Gugger's avatar
Sylvain Gugger committed
1138
1139
        tokens (valid if `12 * d_model << sequence_length`) as laid out in [this
        paper](https://arxiv.org/pdf/2001.08361.pdf) section 2.1. Should be overridden for transformers with parameter
Sylvain Gugger's avatar
Sylvain Gugger committed
1140
        re-use e.g. Albert or Universal Transformers, or if doing long-range modeling with very high sequence lengths.
1141
1142

        Args:
1143
            batch_size (`int`):
1144
1145
                The batch size for the forward pass.

1146
            sequence_length (`int`):
1147
1148
                The number of tokens in each line of the batch.

1149
            exclude_embeddings (`bool`, *optional*, defaults to `True`):
1150
1151
1152
                Whether or not to count embedding and softmax operations.

        Returns:
1153
            `int`: The number of floating-point operations.
1154
1155
1156
1157
        """

        return 6 * self.estimate_tokens(input_dict) * self.num_parameters(exclude_embeddings=exclude_embeddings)

Julien Chaumond's avatar
Julien Chaumond committed
1158

1159
class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMixin, PeftAdapterMixin):
1160
1161
    r"""
    Base class for all models.
1162

Sylvain Gugger's avatar
Sylvain Gugger committed
1163
1164
    [`PreTrainedModel`] takes care of storing the configuration of the models and handles methods for loading,
    downloading and saving models as well as a few methods common to all models to:
1165

1166
1167
        - resize the input embeddings,
        - prune heads in the self-attention heads.
1168

1169
    Class attributes (overridden by derived classes):
Sylvain Gugger's avatar
Sylvain Gugger committed
1170

Sylvain Gugger's avatar
Sylvain Gugger committed
1171
1172
1173
1174
        - **config_class** ([`PretrainedConfig`]) -- A subclass of [`PretrainedConfig`] to use as configuration class
          for this model architecture.
        - **load_tf_weights** (`Callable`) -- A python *method* for loading a TensorFlow checkpoint in a PyTorch model,
          taking as arguments:
1175

Sylvain Gugger's avatar
Sylvain Gugger committed
1176
1177
            - **model** ([`PreTrainedModel`]) -- An instance of the model on which to load the TensorFlow checkpoint.
            - **config** ([`PreTrainedConfig`]) -- An instance of the configuration associated to the model.
1178
            - **path** (`str`) -- A path to the TensorFlow checkpoint.
1179

Sylvain Gugger's avatar
Sylvain Gugger committed
1180
1181
        - **base_model_prefix** (`str`) -- A string indicating the attribute associated to the base model in derived
          classes of the same architecture adding modules on top of the base model.
1182
        - **is_parallelizable** (`bool`) -- A flag indicating whether this model supports model parallelization.
Sylvain Gugger's avatar
Sylvain Gugger committed
1183
1184
        - **main_input_name** (`str`) -- The name of the principal input to the model (often `input_ids` for NLP
          models, `pixel_values` for vision models and `input_values` for speech models).
1185
    """
1186

1187
    config_class = None
1188
    base_model_prefix = ""
1189
    main_input_name = "input_ids"
1190
1191
    model_tags = None

1192
    _auto_class = None
1193
    _no_split_modules = None
1194
    _skip_keys_device_placement = None
1195
    _keep_in_fp32_modules = None
1196

1197
1198
    # a list of `re` patterns of `state_dict` keys that should be removed from the list of missing
    # keys we find (keys inside the model but not in the checkpoint) and avoid unnecessary warnings.
1199
    _keys_to_ignore_on_load_missing = None
1200
1201
1202
    # a list of `re` patterns of `state_dict` keys that should be removed from the list of
    # unexpected keys we find (keys inside the checkpoint but not the model) and avoid unnecessary
    # warnings.
1203
    _keys_to_ignore_on_load_unexpected = None
1204
1205
    # a list of `state_dict` keys to ignore when saving the model (useful for keys that aren't
    # trained, but which are either deterministic or tied variables)
1206
    _keys_to_ignore_on_save = None
Sylvain Gugger's avatar
Sylvain Gugger committed
1207
1208
    # a list of `state_dict` keys that are potentially tied to another key in the state_dict.
    _tied_weights_keys = None
1209

1210
    is_parallelizable = False
1211
    supports_gradient_checkpointing = False
1212

1213
1214
1215
    # Flash Attention 2 support
    _supports_flash_attn_2 = False

1216
1217
1218
    # SDPA support
    _supports_sdpa = False

1219
1220
1221
    # Has support for a `Cache` instance as `past_key_values`
    _supports_cache_class = False

1222
    @property
1223
    def dummy_inputs(self) -> Dict[str, torch.Tensor]:
1224
        """
1225
        `Dict[str, torch.Tensor]`: Dummy inputs to do a forward pass in the network.
1226
        """
1227
        return {"input_ids": torch.tensor(DUMMY_INPUTS)}
1228

1229
1230
1231
1232
1233
1234
1235
    @property
    def framework(self) -> str:
        """
        :str: Identifies that this is a PyTorch model.
        """
        return "pt"

1236
    def __init__(self, config: PretrainedConfig, *inputs, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
1237
        super().__init__()
1238
1239
        if not isinstance(config, PretrainedConfig):
            raise ValueError(
1240
1241
1242
                f"Parameter config in `{self.__class__.__name__}(config)` should be an instance of class "
                "`PretrainedConfig`. To create a model from a pretrained model use "
                f"`model = {self.__class__.__name__}.from_pretrained(PRETRAINED_MODEL_NAME)`"
1243
            )
1244
        # Save config and origin of the pretrained weights if given in model
1245
1246
1247
        config = self._autoset_attn_implementation(
            config, torch_dtype=torch.get_default_dtype(), check_device_map=False
        )
1248
        self.config = config
1249

1250
        self.name_or_path = config.name_or_path
1251
        self.warnings_issued = {}
1252
        self.generation_config = GenerationConfig.from_model_config(config) if self.can_generate() else None
1253
1254
1255
1256
        # Overwrite the class attribute to make it an instance attribute, so models like
        # `InstructBlipForConditionalGeneration` can dynamically update it without modifying the class attribute
        # when a different component (e.g. language_model) is used.
        self._keep_in_fp32_modules = copy.copy(self.__class__._keep_in_fp32_modules)
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270

    def post_init(self):
        """
        A method executed at the end of each Transformer model initialization, to execute code that needs the model's
        modules properly initialized (such as weight initialization).
        """
        self.init_weights()
        self._backward_compatibility_gradient_checkpointing()

    def _backward_compatibility_gradient_checkpointing(self):
        if self.supports_gradient_checkpointing and getattr(self.config, "gradient_checkpointing", False):
            self.gradient_checkpointing_enable()
            # Remove the attribute now that is has been consumed, so it's no saved in the config.
            delattr(self.config, "gradient_checkpointing")
1271

1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
    def add_model_tags(self, tags: Union[List[str], str]) -> None:
        r"""
        Add custom tags into the model that gets pushed to the Hugging Face Hub. Will
        not overwrite existing tags in the model.

        Args:
            tags (`Union[List[str], str]`):
                The desired tags to inject in the model

        Examples:

        ```python
        from transformers import AutoModel

        model = AutoModel.from_pretrained("bert-base-cased")

        model.add_model_tags(["custom", "custom-bert"])

        # Push the model to your namespace with the name "my-custom-bert".
        model.push_to_hub("my-custom-bert")
        ```
        """
        if isinstance(tags, str):
            tags = [tags]

        if self.model_tags is None:
            self.model_tags = []

        for tag in tags:
            if tag not in self.model_tags:
                self.model_tags.append(tag)

1304
1305
1306
1307
1308
1309
    @classmethod
    def _from_config(cls, config, **kwargs):
        """
        All context managers that the model should be initialized under go here.

        Args:
1310
1311
            torch_dtype (`torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model under this dtype.
1312
1313
        """
        torch_dtype = kwargs.pop("torch_dtype", None)
1314
        use_flash_attention_2 = kwargs.pop("use_flash_attention_2", False)
1315
1316
1317
1318
1319
1320

        # override default dtype if needed
        dtype_orig = None
        if torch_dtype is not None:
            dtype_orig = cls._set_default_torch_dtype(torch_dtype)

1321
1322
1323
        config = copy.deepcopy(config)  # We do not want to modify the config inplace in _from_config.
        config._attn_implementation = kwargs.pop("attn_implementation", None)
        config = cls._autoset_attn_implementation(
1324
1325
1326
1327
            config,
            use_flash_attention_2=use_flash_attention_2,
            check_device_map=False,
            torch_dtype=torch_dtype,
1328
        )
1329

1330
1331
1332
1333
1334
1335
        if is_deepspeed_zero3_enabled():
            import deepspeed

            logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
            # this immediately partitions the model across all gpus, to avoid the overhead in time
            # and memory copying it on CPU or each GPU first
1336
            with deepspeed.zero.Init(config_dict_or_path=deepspeed_config()):
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
                model = cls(config, **kwargs)
        else:
            model = cls(config, **kwargs)

        # restore default dtype if it was modified
        if dtype_orig is not None:
            torch.set_default_dtype(dtype_orig)

        return model

1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
    @classmethod
    def _autoset_attn_implementation(
        cls,
        config,
        use_flash_attention_2: bool = False,
        torch_dtype: Optional[torch.dtype] = None,
        device_map: Optional[Union[str, Dict[str, int]]] = None,
        check_device_map: bool = True,
    ):
        """
        Automatically checks and dispatches to a default attention implementation. In order of priority:
            1. An implementation specified in `config._attn_implementation` (due for example to the argument attn_implementation="sdpa" in from_pretrained).
            2. DEPRECATED: if use_flash_attention_2 is set to `True` and `flash_attn` is available, flash attention. (`LlamaFlashAttention` for example)
            3. SDPA implementation, if available and supported by the model type. (`LlamaSdpaAttention` for example)
            4. The default model's implementation otherwise (`LlamaAttention` for example) .
        """
        # Here we use config._attn_implementation_internal to check whether the attention implementation was explicitely set by the user.
        # The property `PretrainedConfig._attn_implementation` is never `None`, for backward compatibility (always fall back on "eager").
        # The `hasattr` here is used as some Transformers tests for some reason do not call PretrainedConfig __init__ (e.g. test_no_super_init_config_and_model)
1366
        requested_attn_implementation = None
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
        if hasattr(config, "_attn_implementation_internal") and config._attn_implementation_internal is not None:
            if config._attn_implementation != "flash_attention_2" and use_flash_attention_2:
                raise ValueError(
                    f'Both attn_implementation="{config._attn_implementation}" and `use_flash_attention_2=True` were used when loading the model, which are not compatible.'
                    ' We recommend to just use `attn_implementation="flash_attention_2"` when loading the model.'
                )

            if config._attn_implementation not in ["eager", "sdpa", "flash_attention_2"]:
                message = f'Specified `attn_implementation="{config._attn_implementation}"` is not supported. The only possible arguments are `attn_implementation="eager"` (manual attention implementation)'
                if cls._supports_flash_attn_2:
                    message += ', `"attn_implementation=flash_attention_2"` (implementation using flash attention 2)'
                if cls._supports_sdpa:
                    message += ', `"attn_implementation=sdpa"` (implementation using torch.nn.functional.scaled_dot_product_attention)'
                raise ValueError(message + ".")

            # If a config is passed with a preset attn_implementation, we skip the automatic dispatch and use the user-provided config, with hard checks that the requested attention implementation is available.
1383
            requested_attn_implementation = config._attn_implementation_internal
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395

        if use_flash_attention_2:
            logger.warning_once(
                'The model was loaded with use_flash_attention_2=True, which is deprecated and may be removed in a future release. Please use `attn_implementation="flash_attention_2"` instead.'
            )
            config._attn_implementation = "flash_attention_2"

        if config._attn_implementation == "flash_attention_2":
            cls._check_and_enable_flash_attn_2(
                config,
                torch_dtype=torch_dtype,
                device_map=device_map,
1396
                hard_check_only=False,
1397
1398
                check_device_map=check_device_map,
            )
1399
        elif requested_attn_implementation in [None, "sdpa"]:
1400
            # use_flash_attention_2 takes priority over SDPA, hence SDPA treated in this elif.
1401
            config = cls._check_and_enable_sdpa(
1402
1403
                config,
                hard_check_only=False if requested_attn_implementation is None else True,
1404
1405
            )
        else:
1406
1407
1408
1409
            config._attn_implementation = "eager"

        return config

1410
1411
1412
1413
1414
1415
1416
    @classmethod
    def _set_default_torch_dtype(cls, dtype: torch.dtype) -> torch.dtype:
        """
        Change the default dtype and return the previous one. This is needed when wanting to instantiate the model
        under specific dtype.

        Args:
1417
            dtype (`torch.dtype`):
1418
1419
1420
                a floating dtype to set to.

        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
1421
1422
            `torch.dtype`: the original `dtype` that can be used to restore `torch.set_default_dtype(dtype)` if it was
            modified. If it wasn't, returns `None`.
1423

1424
1425
        Note `set_default_dtype` currently only works with floating-point types and asserts if for example,
        `torch.int64` is passed. So if a non-float `dtype` is passed this functions will throw an exception.
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
        """
        if not dtype.is_floating_point:
            raise ValueError(
                f"Can't instantiate {cls.__name__} model under dtype={dtype} since it is not a floating point dtype"
            )

        logger.info(f"Instantiating {cls.__name__} model under default dtype {dtype}.")
        dtype_orig = torch.get_default_dtype()
        torch.set_default_dtype(dtype)
        return dtype_orig

1437
    @property
1438
1439
    def base_model(self) -> nn.Module:
        """
1440
        `torch.nn.Module`: The main body of the model.
1441
        """
1442
        return getattr(self, self.base_model_prefix, self)
thomwolf's avatar
thomwolf committed
1443

1444
1445
    @classmethod
    def can_generate(cls) -> bool:
1446
1447
1448
1449
1450
1451
        """
        Returns whether this model can generate sequences with `.generate()`.

        Returns:
            `bool`: Whether this model can generate sequences with `.generate()`.
        """
1452
1453
1454
        # Detects whether `prepare_inputs_for_generation` has been overwritten, which is a requirement for generation.
        # Alternativelly, the model can also have a custom `generate` function.
        if "GenerationMixin" in str(cls.prepare_inputs_for_generation) and "GenerationMixin" in str(cls.generate):
1455
1456
1457
            return False
        return True

1458
1459
    @classmethod
    def _check_and_enable_flash_attn_2(
1460
1461
1462
1463
1464
1465
        cls,
        config,
        torch_dtype: Optional[torch.dtype] = None,
        device_map: Optional[Union[str, Dict[str, int]]] = None,
        check_device_map: bool = True,
        hard_check_only: bool = False,
1466
1467
    ) -> PretrainedConfig:
        """
1468
        Checks the availability of Flash Attention 2 and compatibility with the current model.
1469

1470
        If all checks pass and `hard_check_only` is False, the method will set the config attribute `attn_implementation` to "flash_attention_2" so that the model can initialize the correct attention module.
1471
1472
1473
        """
        if not cls._supports_flash_attn_2:
            raise ValueError(
1474
1475
1476
                f"{cls.__name__} does not support Flash Attention 2.0 yet. Please request to add support where"
                f" the model is hosted, on its model hub page: https://huggingface.co/{config._name_or_path}/discussions/new"
                " or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new"
1477
1478
            )

1479
        if not is_flash_attn_2_available():
1480
1481
1482
            preface = "FlashAttention2 has been toggled on, but it cannot be used due to the following error:"
            install_message = "Please refer to the documentation of https://huggingface.co/docs/transformers/perf_infer_gpu_one#flashattention-2 to install Flash Attention 2."

1483
1484
1485
1486
1487
            if importlib.util.find_spec("flash_attn") is None:
                raise ImportError(f"{preface} the package flash_attn seems to be not installed. {install_message}")

            flash_attention_version = version.parse(importlib.metadata.version("flash_attn"))
            if torch.version.cuda:
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
                if flash_attention_version < version.parse("2.1.0"):
                    raise ImportError(
                        f"{preface} you need flash_attn package version to be greater or equal than 2.1.0. Detected version {flash_attention_version}. {install_message}"
                    )
                else:
                    raise ImportError(f"{preface} Flash Attention 2 is not available. {install_message}")
            elif torch.version.hip:
                if flash_attention_version < version.parse("2.0.4"):
                    raise ImportError(
                        f"{preface} you need flash_attn package version to be greater or equal than 2.0.4. Make sure to have that version installed - detected version {flash_attention_version}. {install_message}"
                    )
                else:
                    raise ImportError(f"{preface} Flash Attention 2 is not available. {install_message}")
1501
1502
1503
1504
1505
1506
1507
1508
1509

        _is_bettertransformer = getattr(cls, "use_bettertransformer", False)

        if _is_bettertransformer:
            raise ValueError(
                "Flash Attention 2 and BetterTransformer API are not compatible. Please make sure to disable BetterTransformers by doing model.reverse_bettertransformer()"
            )

        if torch_dtype is None:
1510
            logger.warning_once(
1511
1512
1513
                "You are attempting to use Flash Attention 2.0 without specifying a torch dtype. This might lead to unexpected behaviour"
            )
        elif torch_dtype is not None and torch_dtype not in [torch.float16, torch.bfloat16]:
1514
1515
1516
1517
            logger.warning_once(
                "Flash Attention 2.0 only supports torch.float16 and torch.bfloat16 dtypes, but"
                f" the current dype in {cls.__name__} is {torch_dtype}. You should run training or inference using Automatic Mixed-Precision via the `with torch.autocast(device_type='torch_device'):` decorator,"
                ' or load the model with the `torch_dtype` argument. Example: `model = AutoModel.from_pretrained("openai/whisper-tiny", attn_implementation="flash_attention_2", torch_dtype=torch.float16)`'
1518
1519
            )

1520
1521
1522
        # The check `torch.empty(0).device.type != "cuda"` is needed as the model may be initialized after `torch.set_default_device` has been called,
        # or the model may be initialized under the context manager `with torch.device("cuda"):`.
        if check_device_map and device_map is None and torch.empty(0).device.type != "cuda":
1523
            if torch.cuda.is_available():
1524
                logger.warning_once(
1525
                    "You are attempting to use Flash Attention 2.0 with a model not initialized on GPU. Make sure to move the model to GPU"
1526
1527
1528
1529
                    " after initializing it on CPU with `model.to('cuda')`."
                )
            else:
                raise ValueError(
1530
                    "You are attempting to use Flash Attention 2.0 with a model not initialized on GPU and with no GPU available. "
1531
1532
1533
1534
                    "This is not supported yet. Please make sure to have access to a GPU and either initialise the model on a GPU by passing a device_map "
                    "or initialising the model on CPU and then moving it to GPU."
                )
        elif (
1535
1536
            check_device_map
            and device_map is not None
1537
1538
1539
1540
1541
1542
1543
            and isinstance(device_map, dict)
            and ("cpu" in device_map.values() or "disk" in device_map.values())
        ):
            raise ValueError(
                "You are attempting to use Flash Attention 2.0 with a model dispatched on CPU or disk. This is not supported. Please make sure to "
                "initialise the model on a GPU by passing a device_map that contains only GPU devices as keys."
            )
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
        if not hard_check_only:
            config._attn_implementation = "flash_attention_2"
        return config

    @classmethod
    def _check_and_enable_sdpa(cls, config, hard_check_only: bool = False) -> PretrainedConfig:
        """
        Checks the availability of SDPA for a given model.

        If all checks pass and `hard_check_only` is False, the method will set the config attribute `_attn_implementation` to "flash_attention_2" so that the model can initialize the correct attention module.
        """
        if hard_check_only:
            if not cls._supports_sdpa:
                raise ValueError(
1558
1559
1560
                    f"{cls.__name__} does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet."
                    " Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe"
                    ' this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation="eager"` meanwhile. Example: `model = AutoModel.from_pretrained("openai/whisper-tiny", attn_implementation="eager")`'
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
                )
            if not is_torch_sdpa_available():
                raise ImportError(
                    "PyTorch SDPA requirements in Transformers are not met. Please install torch>=2.1.1."
                )

        if not is_torch_sdpa_available() or not cls._supports_sdpa:
            return config

        _is_bettertransformer = getattr(cls, "use_bettertransformer", False)
        if _is_bettertransformer:
            return config

        if not hard_check_only:
            config._attn_implementation = "sdpa"
1576
1577
        return config

1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
    def enable_input_require_grads(self):
        """
        Enables the gradients for the input embeddings. This is useful for fine-tuning adapter weights while keeping
        the model weights fixed.
        """

        def make_inputs_require_grads(module, input, output):
            output.requires_grad_(True)

        self._require_grads_hook = self.get_input_embeddings().register_forward_hook(make_inputs_require_grads)

    def disable_input_require_grads(self):
        """
        Removes the `_require_grads_hook`.
        """
        self._require_grads_hook.remove()

1595
    def get_input_embeddings(self) -> nn.Module:
1596
1597
1598
1599
        """
        Returns the model's input embeddings.

        Returns:
1600
            `nn.Module`: A torch module mapping vocabulary to hidden states.
thomwolf's avatar
thomwolf committed
1601
        """
1602
        base_model = getattr(self, self.base_model_prefix, self)
thomwolf's avatar
thomwolf committed
1603
1604
1605
1606
        if base_model is not self:
            return base_model.get_input_embeddings()
        else:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
1607

1608
    def set_input_embeddings(self, value: nn.Module):
1609
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1610
        Set model's input embeddings.
1611
1612

        Args:
1613
            value (`nn.Module`): A module mapping vocabulary to hidden states.
thomwolf's avatar
thomwolf committed
1614
1615
1616
1617
1618
1619
        """
        base_model = getattr(self, self.base_model_prefix, self)
        if base_model is not self:
            base_model.set_input_embeddings(value)
        else:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
1620

1621
    def get_output_embeddings(self) -> nn.Module:
1622
1623
1624
1625
        """
        Returns the model's output embeddings.

        Returns:
1626
            `nn.Module`: A torch module mapping hidden states to vocabulary.
thomwolf's avatar
thomwolf committed
1627
        """
1628
        return None  # Overwrite for models with output embeddings
thomwolf's avatar
thomwolf committed
1629

1630
1631
    def _init_weights(self, module):
        """
1632
1633
1634
1635
        Initialize the weights. This method should be overridden by derived class and is
        the only initialization method that will be called when loading a checkpoint
        using `from_pretrained`. Any attempt to initialize outside of this function
        will be useless as the torch.nn.init function are all replaced with skip.
1636
        """
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
        pass

    def _initialize_weights(self, module):
        """
        Initialize the weights if they are not already initialized.
        """
        if getattr(module, "_is_hf_initialized", False):
            return
        self._init_weights(module)
        module._is_hf_initialized = True
1647

1648
    def tie_weights(self):
1649
1650
        """
        Tie the weights between the input embeddings and the output embeddings.
1651

Sylvain Gugger's avatar
Sylvain Gugger committed
1652
1653
        If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the
        weights instead.
thomwolf's avatar
thomwolf committed
1654
        """
1655
1656
1657
1658
        if getattr(self.config, "tie_word_embeddings", True):
            output_embeddings = self.get_output_embeddings()
            if output_embeddings is not None:
                self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings())
thomwolf's avatar
thomwolf committed
1659

1660
        if getattr(self.config, "is_encoder_decoder", False) and getattr(self.config, "tie_encoder_decoder", False):
Weizhen's avatar
Weizhen committed
1661
1662
            if hasattr(self, self.base_model_prefix):
                self = getattr(self, self.base_model_prefix)
1663
1664
            self._tie_encoder_decoder_weights(self.encoder, self.decoder, self.base_model_prefix)

Sylvain Gugger's avatar
Sylvain Gugger committed
1665
1666
1667
1668
        for module in self.modules():
            if hasattr(module, "_tie_weights"):
                module._tie_weights()

1669
1670
1671
    @staticmethod
    def _tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str):
        uninitialized_encoder_weights: List[str] = []
Weizhen's avatar
Weizhen committed
1672
1673
        if decoder.__class__ != encoder.__class__:
            logger.info(
Sylvain Gugger's avatar
Sylvain Gugger committed
1674
1675
                f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder"
                " weights are correctly initialized."
Weizhen's avatar
Weizhen committed
1676
            )
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686

        def tie_encoder_to_decoder_recursively(
            decoder_pointer: nn.Module,
            encoder_pointer: nn.Module,
            module_name: str,
            uninitialized_encoder_weights: List[str],
            depth=0,
        ):
            assert isinstance(decoder_pointer, nn.Module) and isinstance(
                encoder_pointer, nn.Module
1687
            ), f"{decoder_pointer} and {encoder_pointer} have to be of type nn.Module"
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
            if hasattr(decoder_pointer, "weight"):
                assert hasattr(encoder_pointer, "weight")
                encoder_pointer.weight = decoder_pointer.weight
                if hasattr(decoder_pointer, "bias"):
                    assert hasattr(encoder_pointer, "bias")
                    encoder_pointer.bias = decoder_pointer.bias
                return

            encoder_modules = encoder_pointer._modules
            decoder_modules = decoder_pointer._modules
            if len(decoder_modules) > 0:
                assert (
                    len(encoder_modules) > 0
                ), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"

1703
                all_encoder_weights = {module_name + "/" + sub_name for sub_name in encoder_modules.keys()}
1704
1705
1706
1707
1708
                encoder_layer_pos = 0
                for name, module in decoder_modules.items():
                    if name.isdigit():
                        encoder_name = str(int(name) + encoder_layer_pos)
                        decoder_name = name
Weizhen's avatar
Weizhen committed
1709
1710
1711
                        if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len(
                            encoder_modules
                        ) != len(decoder_modules):
1712
1713
                            # this can happen if the name corresponds to the position in a list module list of layers
                            # in this case the decoder has added a cross-attention that the encoder does not have
1714
                            # thus skip this step and subtract one layer pos from encoder
1715
1716
1717
1718
1719
1720
                            encoder_layer_pos -= 1
                            continue
                    elif name not in encoder_modules:
                        continue
                    elif depth > 500:
                        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1721
1722
                            "Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is"
                            " a circular dependency between two or more `nn.Modules` of your model."
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
                        )
                    else:
                        decoder_name = encoder_name = name
                    tie_encoder_to_decoder_recursively(
                        decoder_modules[decoder_name],
                        encoder_modules[encoder_name],
                        module_name + "/" + name,
                        uninitialized_encoder_weights,
                        depth=depth + 1,
                    )
                    all_encoder_weights.remove(module_name + "/" + encoder_name)

                uninitialized_encoder_weights += list(all_encoder_weights)

        # tie weights recursively
        tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights)
        if len(uninitialized_encoder_weights) > 0:
            logger.warning(
                f"The following encoder weights were not tied to the decoder {uninitialized_encoder_weights}"
            )

1744
    def _tie_or_clone_weights(self, output_embeddings, input_embeddings):
Lysandre's avatar
Lysandre committed
1745
        """Tie or clone module weights depending of whether we are using TorchScript or not"""
thomwolf's avatar
thomwolf committed
1746
        if self.config.torchscript:
1747
            output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone())
thomwolf's avatar
thomwolf committed
1748
        else:
1749
            output_embeddings.weight = input_embeddings.weight
thomwolf's avatar
thomwolf committed
1750

Sam Shleifer's avatar
Sam Shleifer committed
1751
        if getattr(output_embeddings, "bias", None) is not None:
1752
            output_embeddings.bias.data = nn.functional.pad(
1753
                output_embeddings.bias.data,
Lysandre's avatar
Lysandre committed
1754
1755
1756
1757
                (
                    0,
                    output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0],
                ),
1758
1759
                "constant",
                0,
1760
            )
1761
        if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"):
1762
            output_embeddings.out_features = input_embeddings.num_embeddings
1763

Marc Sun's avatar
Marc Sun committed
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
    def _get_no_split_modules(self, device_map: str):
        """
        Get the modules of the model that should not be spit when using device_map. We iterate through the modules to
        get the underlying `_no_split_modules`.

        Args:
            device_map (`str`):
                The device map value. Options are ["auto", "balanced", "balanced_low_0", "sequential"]

        Returns:
            `List[str]`: List of modules that should not be split
        """
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
        _no_split_modules = set()
        modules_to_check = [self]
        while len(modules_to_check) > 0:
            module = modules_to_check.pop(-1)
            # if the module does not appear in _no_split_modules, we also check the children
            if module.__class__.__name__ not in _no_split_modules:
                if isinstance(module, PreTrainedModel):
                    if module._no_split_modules is None:
                        raise ValueError(
                            f"{module.__class__.__name__} does not support `device_map='{device_map}'`. To implement support, the model "
                            "class needs to implement the `_no_split_modules` attribute."
                        )
                    else:
                        _no_split_modules = _no_split_modules | set(module._no_split_modules)
                modules_to_check += list(module.children())
Marc Sun's avatar
Marc Sun committed
1791
1792
        return list(_no_split_modules)

1793
1794
1795
    def resize_token_embeddings(
        self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None
    ) -> nn.Embedding:
1796
        """
1797
        Resizes input token embeddings matrix of the model if `new_num_tokens != config.vocab_size`.
1798

1799
        Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
thomwolf's avatar
thomwolf committed
1800

1801
        Arguments:
1802
            new_num_tokens (`int`, *optional*):
1803
                The new number of tokens in the embedding matrix. Increasing the size will add newly initialized
Sylvain Gugger's avatar
Sylvain Gugger committed
1804
1805
                vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
                returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything.
1806
            pad_to_multiple_of (`int`, *optional*):
Arthur's avatar
Arthur committed
1807
1808
                If set will pad the embedding matrix to a multiple of the provided value.If `new_num_tokens` is set to
                `None` will just pad the embedding to a multiple of `pad_to_multiple_of`.
1809
1810
1811
1812
1813

                This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
                `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more
                details about this, or help on choosing the correct value for resizing, refer to this guide:
                https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc
1814
1815

        Return:
1816
            `torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model.
thomwolf's avatar
thomwolf committed
1817
        """
1818
        model_embeds = self._resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
Arthur's avatar
Arthur committed
1819
        if new_num_tokens is None and pad_to_multiple_of is None:
thomwolf's avatar
thomwolf committed
1820
            return model_embeds
thomwolf's avatar
thomwolf committed
1821
1822

        # Update base model and current model config
Arthur's avatar
Arthur committed
1823
1824
        self.config.vocab_size = model_embeds.weight.shape[0]
        self.vocab_size = model_embeds.weight.shape[0]
thomwolf's avatar
thomwolf committed
1825
1826

        # Tie weights again if needed
1827
        self.tie_weights()
thomwolf's avatar
thomwolf committed
1828

thomwolf's avatar
thomwolf committed
1829
1830
        return model_embeds

1831
    def _resize_token_embeddings(self, new_num_tokens, pad_to_multiple_of=None):
thomwolf's avatar
thomwolf committed
1832
        old_embeddings = self.get_input_embeddings()
1833
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens, pad_to_multiple_of)
1834
1835
1836
        if hasattr(old_embeddings, "_hf_hook"):
            hook = old_embeddings._hf_hook
            add_hook_to_module(new_embeddings, hook)
1837
1838
        old_embeddings_requires_grad = old_embeddings.weight.requires_grad
        new_embeddings.requires_grad_(old_embeddings_requires_grad)
thomwolf's avatar
thomwolf committed
1839
        self.set_input_embeddings(new_embeddings)
1840

1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
        # Update new_num_tokens with the actual size of new_embeddings
        if pad_to_multiple_of is not None:
            if is_deepspeed_zero3_enabled():
                import deepspeed

                with deepspeed.zero.GatheredParameters(new_embeddings.weight, modifier_rank=None):
                    new_num_tokens = new_embeddings.weight.shape[0]
            else:
                new_num_tokens = new_embeddings.weight.shape[0]

1851
1852
1853
        # if word embeddings are not tied, make sure that lm head is resized as well
        if self.get_output_embeddings() is not None and not self.config.tie_word_embeddings:
            old_lm_head = self.get_output_embeddings()
1854
            new_lm_head = self._get_resized_lm_head(old_lm_head, new_num_tokens)
1855
1856
1857
            if hasattr(old_lm_head, "_hf_hook"):
                hook = old_lm_head._hf_hook
                add_hook_to_module(new_lm_head, hook)
1858
1859
            old_lm_head_requires_grad = old_lm_head.weight.requires_grad
            new_lm_head.requires_grad_(old_lm_head_requires_grad)
1860
1861
            self.set_output_embeddings(new_lm_head)

thomwolf's avatar
thomwolf committed
1862
        return self.get_input_embeddings()
1863

1864
    def _get_resized_embeddings(
1865
1866
1867
1868
        self,
        old_embeddings: nn.Embedding,
        new_num_tokens: Optional[int] = None,
        pad_to_multiple_of: Optional[int] = None,
1869
    ) -> nn.Embedding:
1870
1871
1872
        """
        Build a resized Embedding Module from a provided token Embedding Module. Increasing the size will add newly
        initialized vectors at the end. Reducing the size will remove vectors from the end
1873
1874

        Args:
1875
            old_embeddings (`torch.nn.Embedding`):
1876
                Old embeddings to be resized.
1877
            new_num_tokens (`int`, *optional*):
1878
                New number of tokens in the embedding matrix.
1879
1880

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
1881
                vectors from the end. If not provided or `None`, just returns a pointer to the input tokens
1882
                `torch.nn.Embedding` module of the model without doing anything.
1883
            pad_to_multiple_of (`int`, *optional*):
Arthur's avatar
Arthur committed
1884
1885
                If set will pad the embedding matrix to a multiple of the provided value. If `new_num_tokens` is set to
                `None` will just pad the embedding to a multiple of `pad_to_multiple_of`.
1886
1887
1888
1889
1890
1891

                This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
                `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more
                details about this, or help on choosing the correct value for resizing, refer to this guide:
                https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc

1892
1893

        Return:
1894
1895
            `torch.nn.Embedding`: Pointer to the resized Embedding Module or the old Embedding Module if
            `new_num_tokens` is `None`
1896
        """
1897
1898
1899
1900
1901
1902
1903
1904

        if pad_to_multiple_of is not None:
            if not isinstance(pad_to_multiple_of, int):
                raise ValueError(
                    f"Asking to pad the embedding matrix to a multiple of `{pad_to_multiple_of}`, which is not and integer. Please make sure to pass an integer"
                )
            if new_num_tokens is None:
                new_num_tokens = old_embeddings.weight.shape[0]
1905
            new_num_tokens = ((new_num_tokens + pad_to_multiple_of - 1) // pad_to_multiple_of) * pad_to_multiple_of
1906
        else:
1907
            logger.info(
1908
                "You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding"
1909
                f" dimension will be {new_num_tokens}. This might induce some performance reduction as *Tensor Cores* will not be available."
1910
                " For more details about this, or help on choosing the correct value for resizing, refer to this guide:"
1911
1912
1913
                " https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc"
            )

1914
1915
1916
        if new_num_tokens is None:
            return old_embeddings

1917
1918
1919
1920
1921
1922
1923
1924
        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_embeddings.weight, modifier_rank=None):
                old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
        else:
            old_num_tokens, old_embedding_dim = old_embeddings.weight.size()

1925
        if old_num_tokens == new_num_tokens and not is_deepspeed_zero3_enabled():
1926
1927
            return old_embeddings

1928
1929
        if not isinstance(old_embeddings, nn.Embedding):
            raise TypeError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1930
1931
1932
                f"Old embeddings are of type {type(old_embeddings)}, which is not an instance of {nn.Embedding}. You"
                " should either use a different resize function or make sure that `old_embeddings` are an instance of"
                f" {nn.Embedding}."
1933
1934
            )

1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
        # Build new embeddings

        # When using DeepSpeed ZeRO-3, we shouldn't create new embeddings with DeepSpeed init
        # because the shape of the new embedding layer is used across various modeling files
        # as well as to update config vocab size. Shape will be 0 when using DeepSpeed init leading
        # to errors when training.
        new_embeddings = nn.Embedding(
            new_num_tokens,
            old_embedding_dim,
            device=old_embeddings.weight.device,
            dtype=old_embeddings.weight.dtype,
        )

        # initialize all new embeddings (in particular added tokens)
        self._init_weights(new_embeddings)

        # Copy token embeddings from the previous weights

1953
1954
        # numbers of tokens to copy
        n = min(old_num_tokens, new_num_tokens)
1955

1956
1957
1958
        if is_deepspeed_zero3_enabled():
            import deepspeed

1959
1960
1961
            params = [old_embeddings.weight, new_embeddings.weight]
            with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
                new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :]
1962
1963
        else:
            new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :]
1964
1965
1966

        return new_embeddings

1967
    def _get_resized_lm_head(
1968
1969
        self, old_lm_head: nn.Linear, new_num_tokens: Optional[int] = None, transposed: Optional[bool] = False
    ) -> nn.Linear:
1970
1971
1972
1973
1974
        """
        Build a resized Linear Module from a provided old Linear Module. Increasing the size will add newly initialized
        vectors at the end. Reducing the size will remove vectors from the end

        Args:
1975
            old_lm_head (`torch.nn.Linear`):
1976
                Old lm head liner layer to be resized.
1977
            new_num_tokens (`int`, *optional*):
1978
1979
1980
                New number of tokens in the linear matrix.

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
1981
                vectors from the end. If not provided or `None`, just returns a pointer to the input tokens
1982
1983
1984
                `torch.nn.Linear` module of the model without doing anything. transposed (`bool`, *optional*, defaults
                to `False`): Whether `old_lm_head` is transposed or not. If True `old_lm_head.size()` is `lm_head_dim,
                vocab_size` else `vocab_size, lm_head_dim`.
1985
1986

        Return:
Sylvain Gugger's avatar
Sylvain Gugger committed
1987
1988
            `torch.nn.Linear`: Pointer to the resized Linear Module or the old Linear Module if `new_num_tokens` is
            `None`
1989
1990
1991
1992
        """
        if new_num_tokens is None:
            return old_lm_head

1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_lm_head.weight, modifier_rank=None):
                old_num_tokens, old_lm_head_dim = (
                    old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
                )
        else:
            old_num_tokens, old_lm_head_dim = (
                old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
            )
2004

2005
        if old_num_tokens == new_num_tokens and not is_deepspeed_zero3_enabled():
2006
2007
2008
2009
            return old_lm_head

        if not isinstance(old_lm_head, nn.Linear):
            raise TypeError(
Sylvain Gugger's avatar
Sylvain Gugger committed
2010
2011
2012
                f"Old language model head is of type {type(old_lm_head)}, which is not an instance of {nn.Linear}. You"
                " should either use a different resize function or make sure that `old_lm_head` are an instance of"
                f" {nn.Linear}."
2013
2014
2015
2016
2017
2018
            )

        # Build new lm head
        new_lm_head_shape = (old_lm_head_dim, new_num_tokens) if not transposed else (new_num_tokens, old_lm_head_dim)
        has_new_lm_head_bias = old_lm_head.bias is not None

2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
        # When using DeepSpeed ZeRO-3, we shouldn't create new embeddings with DeepSpeed init
        # because the shape of the new embedding layer is used across various modeling files
        # as well as to update config vocab size. Shape will be 0 when using DeepSpeed init leading
        # to errors when training.
        new_lm_head = nn.Linear(
            *new_lm_head_shape,
            bias=has_new_lm_head_bias,
            device=old_lm_head.weight.device,
            dtype=old_lm_head.weight.dtype,
        )

        # initialize new lm head (in particular added tokens)
        self._init_weights(new_lm_head)

2033
2034
        num_tokens_to_copy = min(old_num_tokens, new_num_tokens)

2035
2036
2037
        if is_deepspeed_zero3_enabled():
            import deepspeed

2038
2039
            params = [old_lm_head.weight, old_lm_head.bias, new_lm_head.weight, new_lm_head.bias]
            with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
2040
2041
2042
                self._copy_lm_head_original_to_resized(
                    new_lm_head, old_lm_head, num_tokens_to_copy, transposed, has_new_lm_head_bias
                )
2043
        else:
2044
2045
            self._copy_lm_head_original_to_resized(
                new_lm_head, old_lm_head, num_tokens_to_copy, transposed, has_new_lm_head_bias
2046
            )
2047
2048
2049

        return new_lm_head

2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
    def _copy_lm_head_original_to_resized(
        self, new_lm_head, old_lm_head, num_tokens_to_copy, transposed, has_new_lm_head_bias
    ):
        # Copy old lm head weights to new lm head
        if not transposed:
            new_lm_head.weight.data[:num_tokens_to_copy, :] = old_lm_head.weight.data[:num_tokens_to_copy, :]
        else:
            new_lm_head.weight.data[:, :num_tokens_to_copy] = old_lm_head.weight.data[:, :num_tokens_to_copy]

        # Copy bias weights to new lm head
        if has_new_lm_head_bias:
            new_lm_head.bias.data[:num_tokens_to_copy] = old_lm_head.bias.data[:num_tokens_to_copy]

2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
    def resize_position_embeddings(self, new_num_position_embeddings: int):
        raise NotImplementedError(
            f"`resize_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should "
            f"overwrite this method in the class {self.__class__} in `modeling_{self.__class__.__module__}.py`"
        )

    def get_position_embeddings(self) -> Union[nn.Embedding, Tuple[nn.Embedding]]:
        raise NotImplementedError(
            f"`get_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should "
            f"overwrite this method in the class {self.__class__} in `modeling_{self.__class__.__module__}.py`"
        )

2075
    def init_weights(self):
2076
        """
2077
2078
        If needed prunes and maybe initializes weights. If using a custom `PreTrainedModel`, you need to implement any
        initialization logic in `_init_weights`.
2079
        """
2080
2081
2082
2083
        # Prune heads if needed
        if self.config.pruned_heads:
            self.prune_heads(self.config.pruned_heads)

2084
2085
        if _init_weights:
            # Initialize weights
2086
            self.apply(self._initialize_weights)
2087
2088
2089
2090

            # Tie weights should be skipped when not initializing all weights
            # since from_pretrained(...) calls tie weights anyways
            self.tie_weights()
2091

2092
2093
2094
    def prune_heads(self, heads_to_prune: Dict[int, List[int]]):
        """
        Prunes heads of the base model.
2095

2096
        Arguments:
2097
            heads_to_prune (`Dict[int, List[int]]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2098
2099
2100
                Dictionary with keys being selected layer indices (`int`) and associated values being the list of heads
                to prune in said layer (list of `int`). For instance {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on
                layer 1 and heads 2 and 3 on layer 2.
thomwolf's avatar
thomwolf committed
2101
        """
2102
        # save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads
2103
        for layer, heads in heads_to_prune.items():
2104
2105
2106
            union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads)
            self.config.pruned_heads[layer] = list(union_heads)  # Unfortunately we have to store it as list for JSON

2107
        self.base_model._prune_heads(heads_to_prune)
thomwolf's avatar
thomwolf committed
2108

2109
    def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None):
2110
2111
2112
2113
2114
        """
        Activates gradient checkpointing for the current model.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
2115
2116
2117
2118
2119
2120
2121

        We pass the `__call__` method of the modules instead of `forward` because `__call__` attaches all the hooks of
        the module. https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2

        Args:
            gradient_checkpointing_kwargs (dict, *optional*):
                Additional keyword arguments passed along to the `torch.utils.checkpoint.checkpoint` function.
2122
2123
2124
        """
        if not self.supports_gradient_checkpointing:
            raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
2125
2126
2127
2128

        if gradient_checkpointing_kwargs is None:
            gradient_checkpointing_kwargs = {}

2129
        gradient_checkpointing_func = functools.partial(checkpoint, **gradient_checkpointing_kwargs)
2130

2131
        # For old GC format (transformers < 4.35.0) for models that live on the Hub
Stas Bekman's avatar
Stas Bekman committed
2132
        # we will fall back to the overwritten `_set_gradient_checkpointing` method
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
        _is_using_old_format = "value" in inspect.signature(self._set_gradient_checkpointing).parameters

        if not _is_using_old_format:
            self._set_gradient_checkpointing(enable=True, gradient_checkpointing_func=gradient_checkpointing_func)
        else:
            self.apply(partial(self._set_gradient_checkpointing, value=True))
            logger.warn(
                "You are using an old version of the checkpointing format that is deprecated (We will also silently ignore `gradient_checkpointing_kwargs` in case you passed it)."
                "Please update to the new format on your modeling file. To use the new format, you need to completely remove the definition of the method `_set_gradient_checkpointing` in your model."
            )
2143

2144
2145
2146
2147
2148
2149
2150
        if getattr(self, "_hf_peft_config_loaded", False):
            # When using PEFT + gradient checkpointing + Trainer we need to make sure the input has requires_grad=True
            # we do it also on PEFT: https://github.com/huggingface/peft/blob/85013987aa82aa1af3da1236b6902556ce3e483e/src/peft/peft_model.py#L334
            # When training with PEFT, only LoRA layers will have requires grad set to True, but the output of frozen layers need to propagate
            # the gradients to make sure the gradient flows.
            self.enable_input_require_grads()

2151
    def _set_gradient_checkpointing(self, enable: bool = True, gradient_checkpointing_func: Callable = checkpoint):
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
        is_gradient_checkpointing_set = False

        # Apply it on the top-level module in case the top-level modules supports it
        # for example, LongT5Stack inherits from `PreTrainedModel`.
        if hasattr(self, "gradient_checkpointing"):
            self._gradient_checkpointing_func = gradient_checkpointing_func
            self.gradient_checkpointing = enable
            is_gradient_checkpointing_set = True

        for module in self.modules():
            if hasattr(module, "gradient_checkpointing"):
                module._gradient_checkpointing_func = gradient_checkpointing_func
                module.gradient_checkpointing = enable
                is_gradient_checkpointing_set = True

        if not is_gradient_checkpointing_set:
            raise ValueError(
                f"{self.__class__.__name__} is not compatible with gradient checkpointing. Make sure all the architecture support it by setting a boolean attribute"
                " `gradient_checkpointing` to modules of the model that uses checkpointing."
            )

2173
    def gradient_checkpointing_disable(self):
2174
2175
2176
2177
2178
2179
2180
        """
        Deactivates gradient checkpointing for the current model.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        if self.supports_gradient_checkpointing:
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
            # For old GC format (transformers < 4.35.0) for models that live on the Hub
            # we will fall back to the overwritten `_set_gradient_checkpointing` methid
            _is_using_old_format = "value" in inspect.signature(self._set_gradient_checkpointing).parameters
            if not _is_using_old_format:
                self._set_gradient_checkpointing(enable=False)
            else:
                logger.warn(
                    "You are using an old version of the checkpointing format that is deprecated (We will also silently ignore `gradient_checkpointing_kwargs` in case you passed it)."
                    "Please update to the new format on your modeling file. To use the new format, you need to completely remove the definition of the method `_set_gradient_checkpointing` in your model."
                )
                self.apply(partial(self._set_gradient_checkpointing, value=False))
2192

2193
2194
2195
        if getattr(self, "_hf_peft_config_loaded", False):
            self.disable_input_require_grads()

2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
    @property
    def is_gradient_checkpointing(self) -> bool:
        """
        Whether gradient checkpointing is activated for this model or not.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules())

2206
2207
2208
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
2209
        is_main_process: bool = True,
2210
2211
        state_dict: Optional[dict] = None,
        save_function: Callable = torch.save,
Sylvain Gugger's avatar
Sylvain Gugger committed
2212
        push_to_hub: bool = False,
2213
        max_shard_size: Union[int, str] = "5GB",
2214
        safe_serialization: bool = True,
2215
        variant: Optional[str] = None,
2216
        token: Optional[Union[str, bool]] = None,
2217
        save_peft_format: bool = True,
Sylvain Gugger's avatar
Sylvain Gugger committed
2218
        **kwargs,
2219
    ):
2220
2221
        """
        Save a model and its configuration file to a directory, so that it can be re-loaded using the
2222
        [`~PreTrainedModel.from_pretrained`] class method.
2223

2224
        Arguments:
2225
            save_directory (`str` or `os.PathLike`):
2226
                Directory to which to save. Will be created if it doesn't exist.
2227
2228
2229
2230
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful when in distributed training like
                TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on
                the main process to avoid race conditions.
2231
            state_dict (nested dictionary of `torch.Tensor`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2232
2233
2234
                The state dictionary of the model to save. Will default to `self.state_dict()`, but can be used to only
                save parts of the model or if special precautions need to be taken when recovering the state dictionary
                of a model (like when using model parallelism).
2235
            save_function (`Callable`):
2236
                The function to use to save the state dictionary. Useful on distributed training like TPUs when one
2237
2238
                need to replace `torch.save` by another method.
            push_to_hub (`bool`, *optional*, defaults to `False`):
2239
2240
2241
                Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
2242
            max_shard_size (`int` or `str`, *optional*, defaults to `"5GB"`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2243
2244
                The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size
                lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`).
2245
2246
                We default it to 5GB in order for models to be able to run easily on free-tier google colab instances
                without CPU OOM issues.
Sylvain Gugger's avatar
Sylvain Gugger committed
2247
2248
2249
2250
2251
2252
2253
2254

                <Tip warning={true}>

                If a single weight of the model is bigger than `max_shard_size`, it will be in its own checkpoint shard
                which will be bigger than `max_shard_size`.

                </Tip>

2255
            safe_serialization (`bool`, *optional*, defaults to `True`):
2256
                Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
2257
2258
            variant (`str`, *optional*):
                If specified, weights are saved in the format pytorch_model.<variant>.bin.
2259
2260
2261
            token (`str` or `bool`, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
                the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
2262
2263
2264
2265
            save_peft_format (`bool`, *optional*, defaults to `True`):
                For backward compatibility with PEFT library, in case adapter weights are attached to the model, all
                keys of the state dict of adapters needs to be pre-pended with `base_model.model`. Advanced users can
                disable this behaviours by setting `save_peft_format` to `False`.
2266
            kwargs (`Dict[str, Any]`, *optional*):
2267
                Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
2268
        """
2269
        use_auth_token = kwargs.pop("use_auth_token", None)
2270
        ignore_metadata_errors = kwargs.pop("ignore_metadata_errors", False)
2271
2272
2273

        if use_auth_token is not None:
            warnings.warn(
2274
2275
                "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
                FutureWarning,
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
            )
            if token is not None:
                raise ValueError(
                    "`token` and `use_auth_token` are both specified. Please set only the argument `token`."
                )
            token = use_auth_token

        if token is not None:
            kwargs["token"] = token

Younes Belkada's avatar
Younes Belkada committed
2286
2287
        _hf_peft_config_loaded = getattr(self, "_hf_peft_config_loaded", False)

2288
        # Checks if the model has been loaded in 8-bit
Younes Belkada's avatar
Younes Belkada committed
2289
2290
2291
2292
2293
        if (
            getattr(self, "is_loaded_in_8bit", False)
            and not getattr(self, "is_8bit_serializable", False)
            and not _hf_peft_config_loaded
        ):
2294
2295
2296
            raise NotImplementedError(
                "You are calling `save_pretrained` to a 8-bit converted model, but your `bitsandbytes` version doesn't support it. "
                "If you want to save 8-bit models, make sure to have `bitsandbytes>0.37.2` installed."
2297
2298
            )

2299
2300
2301
2302
2303
        if (
            getattr(self, "is_loaded_in_4bit", False)
            and not getattr(self, "is_4bit_serializable", False)
            and not _hf_peft_config_loaded
        ):
2304
            raise NotImplementedError(
2305
2306
                "You are calling `save_pretrained` to a 4-bit converted model, but your `bitsandbytes` version doesn't support it. "
                "If you want to save 4-bit models, make sure to have `bitsandbytes>=0.41.3` installed."
2307
2308
            )

2309
2310
2311
        if getattr(self, "_awq_is_fused", False):
            raise ValueError("You cannot save an AWQ model that uses fused modules!")

2312
2313
2314
2315
2316
        if "save_config" in kwargs:
            warnings.warn(
                "`save_config` is deprecated and will be removed in v5 of Transformers. Use `is_main_process` instead."
            )
            is_main_process = kwargs.pop("save_config")
2317
2318
        if safe_serialization and not is_safetensors_available():
            raise ImportError("`safe_serialization` requires the `safetensors library: `pip install safetensors`.")
2319

2320
        if os.path.isfile(save_directory):
2321
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
2322
            return
2323

2324
2325
        os.makedirs(save_directory, exist_ok=True)

2326
2327
        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
2328
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
2329
            repo_id = self._create_repo(repo_id, **kwargs)
2330
            files_timestamps = self._get_files_timestamps(save_directory)
2331

Julien Chaumond's avatar
Julien Chaumond committed
2332
        # Only save the model itself if we are using distributed training
2333
        model_to_save = unwrap_model(self)
2334

2335
2336
2337
2338
2339
        # save the string version of dtype to the config, e.g. convert torch.float32 => "float32"
        # we currently don't use this setting automatically, but may start to use with v5
        dtype = get_parameter_dtype(model_to_save)
        model_to_save.config.torch_dtype = str(dtype).split(".")[1]

Julien Chaumond's avatar
Julien Chaumond committed
2340
2341
2342
        # Attach architecture to the config
        model_to_save.config.architectures = [model_to_save.__class__.__name__]

2343
2344
2345
2346
2347
        # If we have a custom model, we copy the file defining it in the folder and set the attributes so it can be
        # loaded from the Hub.
        if self._auto_class is not None:
            custom_object_save(self, save_directory, config=self.config)

2348
        # Save the config
2349
        if is_main_process:
2350
2351
            if not _hf_peft_config_loaded:
                model_to_save.config.save_pretrained(save_directory)
2352
            if self.can_generate():
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
                # generation config built from the model config + the model config holds generation kwargs -> generate
                # may revert to legacy behavior if the two don't match
                if (
                    model_to_save.generation_config._from_model_config
                    and model_to_save.config._has_non_default_generation_parameters()
                ):
                    new_generation_config = GenerationConfig.from_model_config(model_to_save.config)
                    if new_generation_config != model_to_save.generation_config:
                        logger.warning(
                            "Your generation config was originally created from the model config, but the model "
                            "config has changed since then. Unless you pass the `generation_config` argument to this "
                            "model's `generate` calls, they will revert to the legacy behavior where the base "
                            "`generate` parameterization is loaded from the model config instead. "
                            "To avoid this behavior and this warning, we recommend you to overwrite the generation "
                            "config model attribute before calling the model's `save_pretrained`, preferably also "
                            "removing any generation kwargs from the model config. This warning will be raised to an "
                            "exception in v4.41."
                        )
2371
                model_to_save.generation_config.save_pretrained(save_directory)
2372

2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
            if _hf_peft_config_loaded:
                logger.info(
                    "Detected adapters on the model, saving the model in the PEFT format, only adapter weights will be saved."
                )
                state_dict = model_to_save.get_adapter_state_dict()

                if save_peft_format:
                    logger.info(
                        "To match the expected format of the PEFT library, all keys of the state dict of adapters will be pre-pended with `base_model.model`."
                    )
                    peft_state_dict = {}
                    for key, value in state_dict.items():
                        peft_state_dict[f"base_model.model.{key}"] = value
                    state_dict = peft_state_dict

2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
                active_adapter = self.active_adapters()

                if len(active_adapter) > 1:
                    raise ValueError(
                        "Multiple active adapters detected, saving multiple active adapters is not supported yet. You can save adapters separately one by one "
                        "by iteratively calling `model.set_adapter(adapter_name)` then `model.save_pretrained(...)`"
                    )
                active_adapter = active_adapter[0]

                current_peft_config = self.peft_config[active_adapter]
2398
2399
                current_peft_config.save_pretrained(save_directory)

2400
2401
2402
        # Save the model
        if state_dict is None:
            state_dict = model_to_save.state_dict()
2403

2404
2405
2406
2407
2408
        # Translate state_dict from smp to hf if saving with smp >= 1.10
        if IS_SAGEMAKER_MP_POST_1_10:
            for smp_to_hf, _ in smp.state.module_manager.translate_functions:
                state_dict = smp_to_hf(state_dict)

2409
        # Handle the case where some state_dict keys shouldn't be saved
2410
        if self._keys_to_ignore_on_save is not None:
2411
            for ignore_key in self._keys_to_ignore_on_save:
2412
2413
                if ignore_key in state_dict.keys():
                    del state_dict[ignore_key]
2414
2415
2416
2417
2418
        if safe_serialization:
            # Safetensors does not allow tensor aliasing.
            # We're going to remove aliases before saving
            ptrs = collections.defaultdict(list)
            for name, tensor in state_dict.items():
2419
2420
2421
2422
2423
2424
2425
                # Sometimes in the state_dict we have non-tensor objects.
                # e.g. in bitsandbytes we have some `str` objects in the state_dict
                if isinstance(tensor, torch.Tensor):
                    ptrs[id_tensor_storage(tensor)].append(name)
                else:
                    # In the non-tensor case, fall back to the pointer of the object itself
                    ptrs[id(tensor)].append(name)
2426
2427
2428
2429
2430
2431
2432

            # These are all the pointers of shared tensors.
            shared_ptrs = {ptr: names for ptr, names in ptrs.items() if len(names) > 1}
            warn_names = set()
            for names in shared_ptrs.values():
                # Removing the keys which are declared as known duplicates on
                # load. This allows to make sure the name which is kept is consistent.
Sylvain Gugger's avatar
Sylvain Gugger committed
2433
                if self._tied_weights_keys is not None:
2434
2435
                    found = 0
                    for name in sorted(names):
Sylvain Gugger's avatar
Sylvain Gugger committed
2436
                        matches_pattern = any(re.search(pat, name) for pat in self._tied_weights_keys)
2437
                        if matches_pattern and name in state_dict:
2438
2439
2440
                            found += 1
                            if found < len(names):
                                del state_dict[name]
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457

                # When not all duplicates have been cleaned, still remove those keys, but put a clear warning.
                # If the link between tensors was done at runtime then `from_pretrained` will not get
                # the key back leading to random tensor. A proper warning will be shown
                # during reload (if applicable), but since the file is not necessarily compatible with
                # the config, better show a proper warning.
                found = 0
                for name in names:
                    if name in state_dict:
                        found += 1
                        if found > 1:
                            del state_dict[name]
                            warn_names.add(name)
            if len(warn_names) > 0:
                logger.warning_once(
                    f"Removed shared tensor {warn_names} while saving. This should be OK, but check by verifying that you don't receive any warning while reloading",
                )
2458

Sylvain Gugger's avatar
Sylvain Gugger committed
2459
        # Shard the model if it is too big.
2460
2461
2462
2463
2464
        if not _hf_peft_config_loaded:
            weights_name = SAFE_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME
            weights_name = _add_variant(weights_name, variant)
        else:
            weights_name = ADAPTER_SAFE_WEIGHTS_NAME if safe_serialization else ADAPTER_WEIGHTS_NAME
2465

2466
        shards, index = shard_checkpoint(state_dict, max_shard_size=max_shard_size, weights_name=weights_name)
Sylvain Gugger's avatar
Sylvain Gugger committed
2467
2468
2469
2470

        # Clean the folder from a previous save
        for filename in os.listdir(save_directory):
            full_filename = os.path.join(save_directory, filename)
2471
2472
            # If we have a shard file that is not going to be replaced, we delete it, but only from the main process
            # in distributed settings to avoid race conditions.
2473
            weights_no_suffix = weights_name.replace(".bin", "").replace(".safetensors", "")
2474
2475
2476

            # make sure that file to be deleted matches format of sharded file, e.g. pytorch_model-00001-of-00005
            filename_no_suffix = filename.replace(".bin", "").replace(".safetensors", "")
2477
            reg = re.compile(r"(.*?)-\d{5}-of-\d{5}")
2478

2479
            if (
2480
                filename.startswith(weights_no_suffix)
2481
2482
2483
                and os.path.isfile(full_filename)
                and filename not in shards.keys()
                and is_main_process
2484
                and reg.fullmatch(filename_no_suffix) is not None
2485
            ):
Sylvain Gugger's avatar
Sylvain Gugger committed
2486
                os.remove(full_filename)
2487

Sylvain Gugger's avatar
Sylvain Gugger committed
2488
2489
        # Save the model
        for shard_file, shard in shards.items():
2490
2491
2492
2493
2494
2495
            if safe_serialization:
                # At some point we will need to deal better with save_function (used for TPU and other distributed
                # joyfulness), but for now this enough.
                safe_save_file(shard, os.path.join(save_directory, shard_file), metadata={"format": "pt"})
            else:
                save_function(shard, os.path.join(save_directory, shard_file))
Sylvain Gugger's avatar
Sylvain Gugger committed
2496
2497

        if index is None:
2498
            path_to_weights = os.path.join(save_directory, weights_name)
2499
            logger.info(f"Model weights saved in {path_to_weights}")
Sylvain Gugger's avatar
Sylvain Gugger committed
2500
        else:
2501
            save_index_file = SAFE_WEIGHTS_INDEX_NAME if safe_serialization else WEIGHTS_INDEX_NAME
2502
            save_index_file = os.path.join(save_directory, _add_variant(save_index_file, variant))
Sylvain Gugger's avatar
Sylvain Gugger committed
2503
2504
2505
2506
2507
2508
2509
2510
2511
            # Save the index as well
            with open(save_index_file, "w", encoding="utf-8") as f:
                content = json.dumps(index, indent=2, sort_keys=True) + "\n"
                f.write(content)
            logger.info(
                f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be "
                f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the "
                f"index located at {save_index_file}."
            )
2512

Sylvain Gugger's avatar
Sylvain Gugger committed
2513
        if push_to_hub:
2514
2515
2516
2517
2518
2519
2520
2521
            # Eventually create an empty model card
            model_card = create_and_tag_model_card(
                repo_id, self.model_tags, token=token, ignore_metadata_errors=ignore_metadata_errors
            )

            # Update model card if needed:
            model_card.save(os.path.join(save_directory, "README.md"))

2522
            self._upload_modified_files(
2523
2524
2525
2526
                save_directory,
                repo_id,
                files_timestamps,
                commit_message=commit_message,
2527
                token=token,
2528
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
2529

2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
    @wraps(PushToHubMixin.push_to_hub)
    def push_to_hub(self, *args, **kwargs):
        tags = self.model_tags if self.model_tags is not None else []

        tags_kwargs = kwargs.get("tags", [])
        if isinstance(tags_kwargs, str):
            tags_kwargs = [tags_kwargs]

        for tag in tags_kwargs:
            if tag not in tags:
                tags.append(tag)

        if tags:
            kwargs["tags"] = tags
        return super().push_to_hub(*args, **kwargs)

2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
    def get_memory_footprint(self, return_buffers=True):
        r"""
        Get the memory footprint of a model. This will return the memory footprint of the current model in bytes.
        Useful to benchmark the memory footprint of the current model and design some tests. Solution inspired from the
        PyTorch discussions: https://discuss.pytorch.org/t/gpu-memory-that-model-uses/56822/2

        Arguments:
            return_buffers (`bool`, *optional*, defaults to `True`):
                Whether to return the size of the buffer tensors in the computation of the memory footprint. Buffers
                are tensors that do not require gradients and not registered as parameters. E.g. mean and std in batch
                norm layers. Please see: https://discuss.pytorch.org/t/what-pytorch-means-by-buffers/120266/2
        """
        mem = sum([param.nelement() * param.element_size() for param in self.parameters()])
        if return_buffers:
            mem_bufs = sum([buf.nelement() * buf.element_size() for buf in self.buffers()])
            mem = mem + mem_bufs
        return mem

2564
    @wraps(torch.nn.Module.cuda)
2565
2566
    def cuda(self, *args, **kwargs):
        # Checks if the model has been loaded in 8-bit
Marc Sun's avatar
Marc Sun committed
2567
        if getattr(self, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES:
2568
2569
2570
2571
2572
2573
2574
            raise ValueError(
                "Calling `cuda()` is not supported for `4-bit` or `8-bit` quantized models. Please use the model as it is, since the"
                " model has already been set to the correct devices and casted to the correct `dtype`."
            )
        else:
            return super().cuda(*args, **kwargs)

2575
    @wraps(torch.nn.Module.to)
2576
2577
    def to(self, *args, **kwargs):
        # Checks if the model has been loaded in 8-bit
Marc Sun's avatar
Marc Sun committed
2578
        if getattr(self, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES:
2579
            raise ValueError(
Marc Sun's avatar
Marc Sun committed
2580
                "`.to` is not supported for `4-bit` or `8-bit` bitsandbytes models. Please use the model as it is, since the"
2581
2582
                " model has already been set to the correct devices and casted to the correct `dtype`."
            )
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
        elif getattr(self, "quantization_method", None) == QuantizationMethod.GPTQ:
            # For GPTQ models, we prevent users from casting the model to another dytpe to restrict unwanted behaviours.
            # the correct API should be to load the model with the desired dtype directly through `from_pretrained`.
            dtype_present_in_args = False

            if "dtype" not in kwargs:
                for arg in args:
                    if isinstance(arg, torch.dtype):
                        dtype_present_in_args = True
                        break
            else:
                dtype_present_in_args = True

            if dtype_present_in_args:
                raise ValueError(
                    "You cannot cast a GPTQ model in a new `dtype`. Make sure to load the model using `from_pretrained` using the desired"
                    " `dtype` by passing the correct `torch_dtype` argument."
                )
        return super().to(*args, **kwargs)
2602
2603

    def half(self, *args):
Marc Sun's avatar
Marc Sun committed
2604
        # Checks if the model is quantized
2605
        if getattr(self, "is_quantized", False):
2606
            raise ValueError(
Marc Sun's avatar
Marc Sun committed
2607
                "`.half()` is not supported for quantized model. Please use the model as it is, since the"
2608
2609
2610
2611
2612
2613
                " model has already been casted to the correct `dtype`."
            )
        else:
            return super().half(*args)

    def float(self, *args):
Marc Sun's avatar
Marc Sun committed
2614
        # Checks if the model is quantized
2615
        if getattr(self, "is_quantized", False):
2616
            raise ValueError(
Marc Sun's avatar
Marc Sun committed
2617
                "`.float()` is not supported for quantized model. Please use the model as it is, since the"
2618
2619
2620
2621
2622
                " model has already been casted to the correct `dtype`."
            )
        else:
            return super().float(*args)

2623
    @classmethod
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
    def from_pretrained(
        cls,
        pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
        *model_args,
        config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
        cache_dir: Optional[Union[str, os.PathLike]] = None,
        ignore_mismatched_sizes: bool = False,
        force_download: bool = False,
        local_files_only: bool = False,
        token: Optional[Union[str, bool]] = None,
        revision: str = "main",
        use_safetensors: bool = None,
        **kwargs,
    ):
2638
2639
        r"""
        Instantiate a pretrained pytorch model from a pre-trained model configuration.
2640

Sylvain Gugger's avatar
Sylvain Gugger committed
2641
2642
        The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
        the model, you should first set it back in training mode with `model.train()`.
2643

2644
        The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
2645
2646
        pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
        task.
2647

2648
        The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
2649
        weights are discarded.
2650

2651
        Parameters:
2652
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
2653
2654
                Can be either:

2655
                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
Sylvain Gugger's avatar
Sylvain Gugger committed
2656
2657
                      Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a
                      user or organization name, like `dbmdz/bert-base-german-cased`.
2658
2659
2660
                    - A path to a *directory* containing model weights saved using
                      [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
                    - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
Sylvain Gugger's avatar
Sylvain Gugger committed
2661
2662
2663
                      this case, `from_tf` should be set to `True` and a configuration object should be provided as
                      `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
                      PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
2664
                    - A path or url to a model folder containing a *flax checkpoint file* in *.msgpack* format (e.g,
Sylvain Gugger's avatar
Sylvain Gugger committed
2665
2666
                      `./flax_model/` containing `flax_model.msgpack`). In this case, `from_flax` should be set to
                      `True`.
2667
2668
2669
2670
2671
                    - `None` if you are both providing the configuration and state dictionary (resp. with keyword
                      arguments `config` and `state_dict`).
            model_args (sequence of positional arguments, *optional*):
                All remaining positional arguments will be passed to the underlying model's `__init__` method.
            config (`Union[PretrainedConfig, str, os.PathLike]`, *optional*):
2672
2673
                Can be either:

2674
2675
                    - an instance of a class derived from [`PretrainedConfig`],
                    - a string or path valid as input to [`~PretrainedConfig.from_pretrained`].
2676

2677
                Configuration for the model to use instead of an automatically loaded configuration. Configuration can
2678
2679
                be automatically loaded when:

2680
                    - The model is a model provided by the library (loaded with the *model id* string of a pretrained
2681
                      model).
Sylvain Gugger's avatar
Sylvain Gugger committed
2682
2683
                    - The model was saved using [`~PreTrainedModel.save_pretrained`] and is reloaded by supplying the
                      save directory.
2684
2685
2686
                    - The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a
                      configuration JSON file named *config.json* is found in the directory.
            state_dict (`Dict[str, torch.Tensor]`, *optional*):
2687
2688
2689
                A state dictionary to use instead of a state dictionary loaded from saved weights file.

                This option can be used if you want to create a model from a pretrained configuration but load your own
Sylvain Gugger's avatar
Sylvain Gugger committed
2690
                weights. In this case though, you should check if using [`~PreTrainedModel.save_pretrained`] and
2691
2692
                [`~PreTrainedModel.from_pretrained`] is not a simpler option.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
2693
2694
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
2695
            from_tf (`bool`, *optional*, defaults to `False`):
2696
                Load the model weights from a TensorFlow checkpoint save file (see docstring of
2697
2698
                `pretrained_model_name_or_path` argument).
            from_flax (`bool`, *optional*, defaults to `False`):
2699
                Load the model weights from a Flax checkpoint save file (see docstring of
2700
2701
                `pretrained_model_name_or_path` argument).
            ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`):
2702
2703
2704
                Whether or not to raise an error if some of the weights from the checkpoint do not have the same size
                as the weights of the model (if for instance, you are instantiating a model with 10 labels from a
                checkpoint with 3 labels).
2705
            force_download (`bool`, *optional*, defaults to `False`):
2706
2707
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
2708
            resume_download (`bool`, *optional*, defaults to `False`):
2709
2710
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
2711
            proxies (`Dict[str, str]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2712
2713
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
2714
            output_loading_info(`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2715
                Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
2716
            local_files_only(`bool`, *optional*, defaults to `False`):
Stas Bekman's avatar
Stas Bekman committed
2717
                Whether or not to only look at local files (i.e., do not try to download the model).
2718
            token (`str` or `bool`, *optional*):
2719
2720
                The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
                the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
2721
            revision (`str`, *optional*, defaults to `"main"`):
Julien Chaumond's avatar
Julien Chaumond committed
2722
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
2723
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
Julien Chaumond's avatar
Julien Chaumond committed
2724
                identifier allowed by git.
2725
2726
2727
2728
2729
2730
2731

                <Tip>

                To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>".

                </Tip>

2732
            mirror (`str`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2733
2734
2735
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information.
2736
            _fast_init(`bool`, *optional*, defaults to `True`):
2737
2738
                Whether or not to disable fast initialization.

2739
2740
                <Tip warning={true}>

Sylvain Gugger's avatar
Sylvain Gugger committed
2741
2742
2743
                One should only disable *_fast_init* to ensure backwards compatibility with `transformers.__version__ <
                4.6.0` for seeded model initialization. This argument will be removed at the next major version. See
                [pull request 11471](https://github.com/huggingface/transformers/pull/11471) for more information.
2744

2745
                </Tip>
2746

2747
2748
2749
            > Parameters for big model inference

            low_cpu_mem_usage(`bool`, *optional*):
2750
2751
2752
                Tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                This is an experimental feature and a subject to change at any moment.
            torch_dtype (`str` or `torch.dtype`, *optional*):
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
                Override the default `torch.dtype` and load the model under a specific `dtype`. The different options
                are:

                1. `torch.float16` or `torch.bfloat16` or `torch.float`: load in a specified
                  `dtype`, ignoring the model's `config.torch_dtype` if one exists. If not specified
                  - the model will get loaded in `torch.float` (fp32).

                2. `"auto"` - A `torch_dtype` entry in the `config.json` file of the model will be
                  attempted to be used. If this entry isn't found then next check the `dtype` of the first weight in
                  the checkpoint that's of a floating point type and use that as `dtype`. This will load the model
                  using the `dtype` it was saved in at the end of the training. It can't be used as an indicator of how
                  the model was trained. Since it could be trained in one of half precision dtypes, but saved in fp32.

                <Tip>

                For some models the `dtype` they were trained in is unknown - you may try to check the model's paper or
                reach out to the authors and ask them to add this information to the model's card and to insert the
                `torch_dtype` entry in `config.json` on the hub.

                </Tip>

2774
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]` or `int` or `torch.device`, *optional*):
2775
2776
                A map that specifies where each submodule should go. It doesn't need to be refined to each
                parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the
2777
2778
2779
                same device. If we only pass the device (*e.g.*, `"cpu"`, `"cuda:1"`, `"mps"`, or a GPU ordinal rank
                like `1`) on which the model will be allocated, the device map will map the entire model to this
                device. Passing `device_map = 0` means put the whole model on GPU 0.
2780

2781
2782
                To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For
                more information about each option see [designing a device
Patrick von Platen's avatar
Patrick von Platen committed
2783
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
2784
2785
2786
            max_memory (`Dict`, *optional*):
                A dictionary device identifier to maximum memory. Will default to the maximum memory available for each
                GPU and the available CPU RAM if unset.
2787
2788
            offload_folder (`str` or `os.PathLike`, *optional*):
                If the `device_map` contains any value `"disk"`, the folder where we will offload weights.
2789
            offload_state_dict (`bool`, *optional*):
2790
                If `True`, will temporarily offload the CPU state dict to the hard drive to avoid getting out of CPU
2791
2792
                RAM if the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to
                `True` when there is some disk offload.
2793
2794
            load_in_8bit (`bool`, *optional*, defaults to `False`):
                If `True`, will convert the loaded model into mixed-8bit quantized model. To use this feature please
2795
2796
2797
2798
                install `bitsandbytes` (`pip install -U bitsandbytes`).
            load_in_4bit (`bool`, *optional*, defaults to `False`):
                If `True`, will convert the loaded model into 4bit precision quantized model. To use this feature
                install the latest version of `bitsandbytes` (`pip install -U bitsandbytes`).
Marc Sun's avatar
Marc Sun committed
2799
2800
2801
            quantization_config (`Union[QuantizationConfigMixin,Dict]`, *optional*):
                A dictionary of configuration parameters or a QuantizationConfigMixin object for quantization (e.g
                bitsandbytes, gptq)
2802
2803
2804
            subfolder (`str`, *optional*, defaults to `""`):
                In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
                specify the folder name here.
2805
2806
2807
            variant (`str`, *optional*):
                If specified load weights from `variant` filename, *e.g.* pytorch_model.<variant>.bin. `variant` is
                ignored when using `from_tf` or `from_flax`.
2808
2809
2810
            use_safetensors (`bool`, *optional*, defaults to `None`):
                Whether or not to use `safetensors` checkpoints. Defaults to `None`. If not specified and `safetensors`
                is not installed, it will be set to `False`.
2811

2812
            kwargs (remaining dictionary of keyword arguments, *optional*):
2813
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
2814
                `output_attentions=True`). Behaves differently depending on whether a `config` is provided or
2815
2816
                automatically loaded:

2817
2818
                    - If a configuration is provided with `config`, `**kwargs` will be directly passed to the
                      underlying model's `__init__` method (we assume all relevant updates to the configuration have
2819
                      already been done)
2820
                    - If a configuration is not provided, `kwargs` will be first passed to the configuration class
Sylvain Gugger's avatar
Sylvain Gugger committed
2821
2822
2823
2824
                      initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that
                      corresponds to a configuration attribute will be used to override said attribute with the
                      supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute
                      will be passed to the underlying model's `__init__` function.
2825
2826
2827

        <Tip>

Sylvain Gugger's avatar
Sylvain Gugger committed
2828
2829
        Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to
        use this method in a firewalled environment.
2830
2831
2832
2833
2834
2835
2836

        </Tip>

        Examples:

        ```python
        >>> from transformers import BertConfig, BertModel
Sylvain Gugger's avatar
Sylvain Gugger committed
2837

2838
        >>> # Download model and configuration from huggingface.co and cache.
Sylvain Gugger's avatar
Sylvain Gugger committed
2839
        >>> model = BertModel.from_pretrained("bert-base-uncased")
2840
        >>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable).
Sylvain Gugger's avatar
Sylvain Gugger committed
2841
        >>> model = BertModel.from_pretrained("./test/saved_model/")
2842
        >>> # Update configuration during loading.
Sylvain Gugger's avatar
Sylvain Gugger committed
2843
        >>> model = BertModel.from_pretrained("bert-base-uncased", output_attentions=True)
2844
2845
        >>> assert model.config.output_attentions == True
        >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable).
Sylvain Gugger's avatar
Sylvain Gugger committed
2846
2847
        >>> config = BertConfig.from_json_file("./tf_model/my_tf_model_config.json")
        >>> model = BertModel.from_pretrained("./tf_model/my_tf_checkpoint.ckpt.index", from_tf=True, config=config)
2848
        >>> # Loading from a Flax checkpoint file instead of a PyTorch model (slower)
Sylvain Gugger's avatar
Sylvain Gugger committed
2849
        >>> model = BertModel.from_pretrained("bert-base-uncased", from_flax=True)
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
        ```

        * `low_cpu_mem_usage` algorithm:

        This is an experimental function that loads the model using ~1x model size CPU memory

        Here is how it works:

        1. save which state_dict keys we have
        2. drop state_dict before the model is created, since the latter takes 1x model size CPU memory
        3. after the model has been instantiated switch to the meta device all params/buffers that
        are going to be replaced from the loaded state_dict
        4. load state_dict 2nd time
        5. replace the params/buffers from the state_dict

        Currently, it can't handle deepspeed ZeRO stage 3 and ignores loading errors

        """
2868
2869
        state_dict = kwargs.pop("state_dict", None)
        from_tf = kwargs.pop("from_tf", False)
2870
        from_flax = kwargs.pop("from_flax", False)
2871
2872
2873
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        output_loading_info = kwargs.pop("output_loading_info", False)
2874
        use_auth_token = kwargs.pop("use_auth_token", None)
2875
        trust_remote_code = kwargs.pop("trust_remote_code", None)
Sylvain Gugger's avatar
Sylvain Gugger committed
2876
        _ = kwargs.pop("mirror", None)
2877
2878
        from_pipeline = kwargs.pop("_from_pipeline", None)
        from_auto_class = kwargs.pop("_from_auto", False)
2879
        _fast_init = kwargs.pop("_fast_init", True)
2880
        torch_dtype = kwargs.pop("torch_dtype", None)
2881
2882
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", None)
        device_map = kwargs.pop("device_map", None)
2883
        max_memory = kwargs.pop("max_memory", None)
2884
        offload_folder = kwargs.pop("offload_folder", None)
2885
2886
        offload_state_dict = kwargs.pop("offload_state_dict", False)
        load_in_8bit = kwargs.pop("load_in_8bit", False)
2887
        load_in_4bit = kwargs.pop("load_in_4bit", False)
2888
        quantization_config = kwargs.pop("quantization_config", None)
2889
        subfolder = kwargs.pop("subfolder", "")
2890
        commit_hash = kwargs.pop("_commit_hash", None)
2891
        variant = kwargs.pop("variant", None)
2892
        adapter_kwargs = kwargs.pop("adapter_kwargs", {})
2893
        adapter_name = kwargs.pop("adapter_name", "default")
2894
        use_flash_attention_2 = kwargs.pop("use_flash_attention_2", False)
2895

2896
2897
2898
        if is_fsdp_enabled():
            low_cpu_mem_usage = True

2899
2900
        if use_auth_token is not None:
            warnings.warn(
2901
2902
                "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
                FutureWarning,
2903
2904
2905
2906
2907
2908
2909
            )
            if token is not None:
                raise ValueError(
                    "`token` and `use_auth_token` are both specified. Please set only the argument `token`."
                )
            token = use_auth_token

2910
        if token is not None and adapter_kwargs is not None and "token" not in adapter_kwargs:
2911
2912
            adapter_kwargs["token"] = token

2913
2914
        if use_safetensors is None and not is_safetensors_available():
            use_safetensors = False
2915

2916
        if is_bitsandbytes_available():
2917
            is_4bit_serializable = version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse("0.41.3")
2918
            is_8bit_serializable = version.parse(importlib.metadata.version("bitsandbytes")) > version.parse("0.37.2")
2919
        else:
2920
            is_4bit_serializable = False
2921
2922
            is_8bit_serializable = False

2923
2924
2925
2926
2927
        if trust_remote_code is True:
            logger.warning(
                "The argument `trust_remote_code` is to be used with Auto classes. It has no effect here and is"
                " ignored."
            )
2928

2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
        if commit_hash is None:
            if not isinstance(config, PretrainedConfig):
                # We make a call to the config file first (which may be absent) to get the commit hash as soon as possible
                resolved_config_file = cached_file(
                    pretrained_model_name_or_path,
                    CONFIG_NAME,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    token=token,
                    revision=revision,
                    subfolder=subfolder,
                    _raise_exceptions_for_missing_entries=False,
                    _raise_exceptions_for_connection_errors=False,
                )
                commit_hash = extract_commit_hash(resolved_config_file, commit_hash)
            else:
                commit_hash = getattr(config, "_commit_hash", None)

2950
        if is_peft_available():
2951
2952
            _adapter_model_path = adapter_kwargs.pop("_adapter_model_path", None)

2953
2954
2955
2956
2957
2958
2959
2960
2961
            if _adapter_model_path is None:
                _adapter_model_path = find_adapter_config_file(
                    pretrained_model_name_or_path,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    _commit_hash=commit_hash,
2962
                    **adapter_kwargs,
2963
2964
                )
            if _adapter_model_path is not None and os.path.isfile(_adapter_model_path):
2965
                with open(_adapter_model_path, "r", encoding="utf-8") as f:
2966
                    _adapter_model_path = pretrained_model_name_or_path
2967
                    pretrained_model_name_or_path = json.load(f)["base_model_name_or_path"]
2968
2969
        else:
            _adapter_model_path = None
2970

2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
        # change device_map into a map if we passed an int, a str or a torch.device
        if isinstance(device_map, torch.device):
            device_map = {"": device_map}
        elif isinstance(device_map, str) and device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
            try:
                device_map = {"": torch.device(device_map)}
            except RuntimeError:
                raise ValueError(
                    "When passing device_map as a string, the value needs to be a device name (e.g. cpu, cuda:0) or "
                    f"'auto', 'balanced', 'balanced_low_0', 'sequential' but found {device_map}."
                )
        elif isinstance(device_map, int):
            if device_map < 0:
                raise ValueError(
                    "You can't pass device_map as a negative int. If you want to put the model on the cpu, pass device_map = 'cpu' "
                )
            else:
                device_map = {"": device_map}

2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
        if device_map is not None:
            if low_cpu_mem_usage is None:
                low_cpu_mem_usage = True
            elif not low_cpu_mem_usage:
                raise ValueError("Passing along a `device_map` requires `low_cpu_mem_usage=True`")

        if low_cpu_mem_usage:
            if is_deepspeed_zero3_enabled():
                raise ValueError(
                    "DeepSpeed Zero-3 is not compatible with `low_cpu_mem_usage=True` or with passing a `device_map`."
                )
            elif not is_accelerate_available():
                raise ImportError(
                    "Using `low_cpu_mem_usage=True` or a `device_map` requires Accelerate: `pip install accelerate`"
                )
3005

Marc Sun's avatar
Marc Sun committed
3006
        quantization_method_from_args = None
3007

Marc Sun's avatar
Marc Sun committed
3008
3009
3010
3011
3012
3013
3014
        if quantization_config is not None:
            quantization_method_from_args = getattr(
                quantization_config, "quant_method", QuantizationMethod.BITS_AND_BYTES
            )

        if quantization_config is None and (load_in_8bit or load_in_4bit):
            quantization_method_from_args = QuantizationMethod.BITS_AND_BYTES
3015
            quantization_config, kwargs = BitsAndBytesConfig.from_dict(
3016
3017
3018
                config_dict={"load_in_8bit": load_in_8bit, "load_in_4bit": load_in_4bit},
                return_unused_kwargs=True,
                **kwargs,
3019
            )
Marc Sun's avatar
Marc Sun committed
3020
        elif quantization_method_from_args == QuantizationMethod.BITS_AND_BYTES:
3021
            load_in_8bit = quantization_config.load_in_8bit
3022
            load_in_4bit = quantization_config.load_in_4bit
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033

            quantization_config_kwargs = {
                k: v for k, v in kwargs.items() if k in inspect.signature(BitsAndBytesConfig).parameters
            }

            if len(quantization_config_kwargs) > 0:
                raise ValueError(
                    "You can't pass `load_in_8bit` or any other `BitsAndBytesConfig` argument as a kwarg when passing "
                    "`quantization_config` argument at the same time."
                )

3034
        if load_in_8bit or load_in_4bit:
3035
3036
            if not torch.cuda.is_available():
                raise RuntimeError("No GPU found. A GPU is needed for quantization.")
3037
3038
3039
3040
            if not (is_accelerate_available() and is_bitsandbytes_available()):
                raise ImportError(
                    "Using `load_in_8bit=True` requires Accelerate: `pip install accelerate` and the latest version of"
                    " bitsandbytes `pip install -i https://test.pypi.org/simple/ bitsandbytes` or"
3041
                    " `pip install bitsandbytes`."
3042
                )
3043
3044

            if torch_dtype is None:
3045
                # We force the `dtype` to be float16, this is a requirement from `bitsandbytes`
3046
                logger.info(
3047
                    f"Overriding torch_dtype={torch_dtype} with `torch_dtype=torch.float16` due to "
3048
                    "requirements of `bitsandbytes` to enable model loading in 8-bit or 4-bit. "
3049
3050
                    "Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass"
                    " torch_dtype=torch.float16 to remove this warning."
3051
                )
3052
                torch_dtype = torch.float16
3053

3054
            if device_map is None:
3055
                device_map = {"": torch.cuda.current_device()}
3056
                logger.info(
3057
3058
                    "The device_map was not initialized. "
                    "Setting device_map to {'':torch.cuda.current_device()}. "
3059
                    "If you want to use the model for inference, please set device_map ='auto' "
3060
                )
3061
3062
3063
                if low_cpu_mem_usage is None:
                    low_cpu_mem_usage = True

3064
3065
            if from_tf or from_flax:
                raise ValueError(
3066
                    "Converting into 4-bit or 8-bit weights from tf/flax weights is currently not supported, please make"
3067
3068
3069
                    " sure the weights are in PyTorch format."
                )

3070
3071
3072
        user_agent = {"file_type": "model", "framework": "pytorch", "from_auto_class": from_auto_class}
        if from_pipeline is not None:
            user_agent["using_pipeline"] = from_pipeline
thomwolf's avatar
thomwolf committed
3073

3074
3075
3076
3077
        if is_offline_mode() and not local_files_only:
            logger.info("Offline mode: forcing local_files_only=True")
            local_files_only = True

3078
3079
3080
        # Load config if we don't provide a configuration
        if not isinstance(config, PretrainedConfig):
            config_path = config if config is not None else pretrained_model_name_or_path
3081
            config, model_kwargs = cls.config_class.from_pretrained(
3082
3083
3084
                config_path,
                cache_dir=cache_dir,
                return_unused_kwargs=True,
3085
                force_download=force_download,
3086
                resume_download=resume_download,
3087
                proxies=proxies,
3088
                local_files_only=local_files_only,
3089
                token=token,
Julien Chaumond's avatar
Julien Chaumond committed
3090
                revision=revision,
3091
                subfolder=subfolder,
3092
3093
                _from_auto=from_auto_class,
                _from_pipeline=from_pipeline,
3094
                **kwargs,
3095
3096
            )
        else:
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
            # In case one passes a config to `from_pretrained` + "attn_implementation"
            # override the `_attn_implementation` attribute to `attn_implementation` of the kwargs
            # Please see: https://github.com/huggingface/transformers/issues/28038

            # Overwrite `config._attn_implementation` by the one from the kwargs --> in auto-factory
            # we pop attn_implementation from the kwargs but this handles the case where users
            # passes manually the config to `from_pretrained`.
            config = copy.deepcopy(config)

            kwarg_attn_imp = kwargs.pop("attn_implementation", None)
            if kwarg_attn_imp is not None and config._attn_implementation != kwarg_attn_imp:
                config._attn_implementation = kwarg_attn_imp
3109
            model_kwargs = kwargs
3110

Marc Sun's avatar
Marc Sun committed
3111
3112
3113
3114
3115
3116
        quantizer = None
        quantization_method_from_config = None
        if hasattr(config, "quantization_config"):
            quantization_method_from_config = config.quantization_config.get(
                "quant_method", QuantizationMethod.BITS_AND_BYTES
            )
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127

        if (
            quantization_method_from_args is not None
            and quantization_method_from_args == QuantizationMethod.AWQ
            and quantization_method_from_config is None
        ):
            raise ValueError(
                "You cannot quantize with AWQ a non-quantized model using transformers, please refer to the quantization documentation"
                " to read more about how to quantize models with AWQ algorithm https://huggingface.co/docs/transformers/main_classes/quantization"
            )

3128
3129
3130
3131
3132
3133
        if quantization_method_from_config is not None and quantization_method_from_args is not None:
            if quantization_method_from_config != quantization_method_from_args:
                raise ValueError(
                    f"The model is already quantized with {quantization_method_from_config}. "
                    f"You can't quantize it again with {quantization_method_from_args}"
                )
3134
3135
3136
3137
3138

        if (
            quantization_method_from_config in (QuantizationMethod.GPTQ, QuantizationMethod.AWQ)
            and quantization_method_from_args is not None
        ):
Marc Sun's avatar
Marc Sun committed
3139
3140
3141
3142
3143
            loading_attr_dict = quantization_config.get_loading_attributes()
            for attr, val in loading_attr_dict.items():
                config.quantization_config[attr] = val
            quantization_method_from_args = None
            logger.warning(
3144
3145
3146
                f"You passed `quantization_config` to `from_pretrained` but the model you're loading already has a "
                f"`quantization_config` attribute and has already quantized weights. However, loading attributes"
                f" (e.g. {list(loading_attr_dict.keys())}) will be overwritten with the one you passed to `from_pretrained`. The rest will be ignored."
Marc Sun's avatar
Marc Sun committed
3147
3148
3149
3150
3151
            )
        if (
            quantization_method_from_args == QuantizationMethod.GPTQ
            or quantization_method_from_config == QuantizationMethod.GPTQ
        ):
3152
3153
            gptq_supports_cpu = version.parse(importlib.metadata.version("auto-gptq")) > version.parse("0.4.2")
            if not gptq_supports_cpu and not torch.cuda.is_available():
Marc Sun's avatar
Marc Sun committed
3154
3155
3156
                raise RuntimeError("GPU is required to quantize or run quantize model.")
            elif not (is_optimum_available() and is_auto_gptq_available()):
                raise ImportError(
3157
3158
3159
3160
3161
                    "Loading a GPTQ quantized model requires optimum (`pip install optimum`) and auto-gptq library (`pip install auto-gptq`)"
                )
            elif version.parse(importlib.metadata.version("auto_gptq")) < version.parse("0.4.2"):
                raise ImportError(
                    "You need a version of auto_gptq >= 0.4.2 to use GPTQ: `pip install --upgrade auto-gptq`"
Marc Sun's avatar
Marc Sun committed
3162
3163
3164
3165
3166
3167
3168
                )
            else:
                # Need to protect the import
                from optimum.gptq import GPTQQuantizer
            if quantization_method_from_config == QuantizationMethod.GPTQ:
                quantization_config = GPTQConfig.from_dict(config.quantization_config)
                config.quantization_config = quantization_config
3169
3170
3171
3172
            if torch_dtype is None:
                torch_dtype = torch.float16
            else:
                logger.info("We suggest you to set `torch_dtype=torch.float16` for better efficiency with GPTQ.")
Marc Sun's avatar
Marc Sun committed
3173
            quantizer = GPTQQuantizer.from_dict(quantization_config.to_dict_optimum())
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
        elif quantization_method_from_config == QuantizationMethod.AWQ:
            if not torch.cuda.is_available():
                raise RuntimeError("GPU is required to run AWQ quantized model.")

            if not is_auto_awq_available():
                raise ImportError("Loading an AWQ quantized model requires auto-awq library (`pip install autoawq`)")

            if not is_accelerate_available():
                raise ImportError("Loading an AWQ quantized model requires accelerate (`pip install accelerate`)")

            if device_map is None:
                logger.warning(
                    "You have loaded an AWQ model on CPU and have a CUDA device available, make sure to set "
                    "your model on a GPU device in order to run your model."
                )
            elif device_map is not None:
                if isinstance(device_map, dict) and ("cpu" in device_map.values() or "disk" in device_map.values()):
                    raise ValueError(
                        "You are attempting to load an AWQ model with a device_map that contains a CPU or disk device."
                        " This is not supported. Please remove the CPU or disk device from the device_map."
                    )

            if torch_dtype is None:
                torch_dtype = torch.float16
            else:
                logger.info("We suggest you to set `torch_dtype=torch.float16` for better efficiency with AWQ.")

            # Force-set to `True` for more mem efficiency
            if low_cpu_mem_usage is None:
                low_cpu_mem_usage = True
Marc Sun's avatar
Marc Sun committed
3204

3205
3206
        if quantization_method_from_args == QuantizationMethod.BITS_AND_BYTES and (
            (is_8bit_serializable and load_in_8bit) or (is_4bit_serializable and load_in_4bit)
Marc Sun's avatar
Marc Sun committed
3207
3208
        ):
            if quantization_method_from_config == QuantizationMethod.BITS_AND_BYTES:
3209
3210
3211
3212
3213
3214
                logger.warning(
                    "You passed `quantization_config` to `from_pretrained` but the model you're loading already has a"
                    " `quantization_config` attribute. The `quantization_config` attribute will be overwritten with the"
                    " one you passed to `from_pretrained`."
                )
            config.quantization_config = quantization_config
Marc Sun's avatar
Marc Sun committed
3215
        elif (
3216
3217
            (is_8bit_serializable or is_4bit_serializable)
            and not (load_in_8bit or load_in_4bit)
Marc Sun's avatar
Marc Sun committed
3218
3219
            and quantization_method_from_config == QuantizationMethod.BITS_AND_BYTES
        ):
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
            quantization_config = config.quantization_config
            if isinstance(quantization_config, dict):
                quantization_config = BitsAndBytesConfig.from_dict(quantization_config, return_unused_kwargs=False)
            elif isinstance(quantization_config, BitsAndBytesConfig):
                pass
            else:
                raise ValueError(
                    f"Invalid type for `quantization_config`: {type(quantization_config)}. Should be a `dict` or a"
                    " `BitsAndBytesConfig` instance."
                )

            load_in_8bit = quantization_config.load_in_8bit
3232
            load_in_4bit = quantization_config.load_in_4bit
3233

3234
            if load_in_8bit or load_in_4bit:
3235
3236
                if torch_dtype is None:
                    torch_dtype = torch.float16
3237
                if device_map is None:
3238
3239
3240
3241
3242
                    if torch.cuda.is_available():
                        device_map = {"": torch.cuda.current_device()}
                    else:
                        raise RuntimeError("No GPU found. A GPU is needed for quantization.")
                    logger.info(
3243
3244
                        "The device_map was not initialized. "
                        "Setting device_map to {'':torch.cuda.current_device()}. "
3245
3246
3247
3248
                        "If you want to use the model for inference, please set device_map ='auto' "
                    )
                    if low_cpu_mem_usage is None:
                        low_cpu_mem_usage = True
3249

Marc Sun's avatar
Marc Sun committed
3250
3251
        elif (
            not is_8bit_serializable
3252
            and not (load_in_8bit or load_in_4bit)
Marc Sun's avatar
Marc Sun committed
3253
3254
            and quantization_method_from_config == QuantizationMethod.BITS_AND_BYTES
        ):
3255
3256
            logger.warning(
                "Detected the presence of a `quantization_config` attribute in the model's configuration but you don't have the correct"
3257
                " `bitsandbytes` version to support 4 and 8 bit serialization. Please install the latest version of `bitsandbytes` with "
3258
3259
3260
                " `pip install --upgrade bitsandbytes`."
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
3261
3262
3263
3264
        # This variable will flag if we're loading a sharded checkpoint. In this case the archive file is just the
        # index of the files.
        is_sharded = False
        sharded_metadata = None
thomwolf's avatar
thomwolf committed
3265
        # Load model
Yih-Dar's avatar
Yih-Dar committed
3266
3267
        loading_info = None

3268
3269
3270
3271
        # Keep in fp32 modules
        keep_in_fp32_modules = None
        use_keep_in_fp32_modules = False

thomwolf's avatar
thomwolf committed
3272
        if pretrained_model_name_or_path is not None:
3273
            pretrained_model_name_or_path = str(pretrained_model_name_or_path)
3274
3275
            is_local = os.path.isdir(pretrained_model_name_or_path)
            if is_local:
3276
3277
3278
                if from_tf and os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index")
                ):
3279
                    # Load from a TF 1.0 checkpoint in priority if from_tf
3280
3281
3282
3283
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index")
                elif from_tf and os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME)
                ):
3284
                    # Load from a TF 2.0 checkpoint in priority if from_tf
3285
3286
3287
3288
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME)
                elif from_flax and os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)
                ):
3289
                    # Load from a Flax checkpoint in priority if from_flax
3290
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)
3291
                elif use_safetensors is not False and os.path.isfile(
3292
                    os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_NAME, variant))
3293
3294
                ):
                    # Load from a safetensors checkpoint
3295
3296
3297
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_NAME, variant)
                    )
3298
                elif use_safetensors is not False and os.path.isfile(
3299
3300
3301
                    os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)
                    )
3302
3303
                ):
                    # Load from a sharded safetensors checkpoint
3304
3305
3306
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)
                    )
3307
                    is_sharded = True
3308
3309
3310
                elif os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_NAME, variant))
                ):
thomwolf's avatar
thomwolf committed
3311
                    # Load from a PyTorch checkpoint
3312
3313
3314
3315
3316
3317
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_NAME, variant)
                    )
                elif os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_INDEX_NAME, variant))
                ):
Sylvain Gugger's avatar
Sylvain Gugger committed
3318
                    # Load from a sharded PyTorch checkpoint
3319
3320
3321
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_INDEX_NAME, variant)
                    )
Sylvain Gugger's avatar
Sylvain Gugger committed
3322
                    is_sharded = True
3323
3324
                # At this stage we don't have a weight file so we will raise an error.
                elif os.path.isfile(
3325
3326
                    os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index")
                ) or os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME)):
3327
                    raise EnvironmentError(
3328
3329
3330
                        f"Error no file named {_add_variant(WEIGHTS_NAME, variant)} found in directory"
                        f" {pretrained_model_name_or_path} but there is a file for TensorFlow weights. Use"
                        " `from_tf=True` to load this model from those weights."
3331
                    )
3332
                elif os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)):
3333
                    raise EnvironmentError(
3334
3335
3336
                        f"Error no file named {_add_variant(WEIGHTS_NAME, variant)} found in directory"
                        f" {pretrained_model_name_or_path} but there is a file for Flax weights. Use `from_flax=True`"
                        " to load this model from those weights."
3337
                    )
3338
3339
3340
3341
3342
                elif use_safetensors:
                    raise EnvironmentError(
                        f"Error no file named {_add_variant(SAFE_WEIGHTS_NAME, variant)} found in directory"
                        f" {pretrained_model_name_or_path}."
                    )
thomwolf's avatar
thomwolf committed
3343
                else:
3344
                    raise EnvironmentError(
3345
3346
3347
                        f"Error no file named {_add_variant(WEIGHTS_NAME, variant)}, {TF2_WEIGHTS_NAME},"
                        f" {TF_WEIGHTS_NAME + '.index'} or {FLAX_WEIGHTS_NAME} found in directory"
                        f" {pretrained_model_name_or_path}."
3348
                    )
3349
            elif os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path)):
3350
                archive_file = pretrained_model_name_or_path
3351
                is_local = True
3352
            elif os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path + ".index")):
3353
3354
3355
3356
3357
                if not from_tf:
                    raise ValueError(
                        f"We found a TensorFlow checkpoint at {pretrained_model_name_or_path + '.index'}, please set "
                        "from_tf to True to load from this checkpoint."
                    )
3358
                archive_file = os.path.join(subfolder, pretrained_model_name_or_path + ".index")
3359
                is_local = True
3360
            elif is_remote_url(pretrained_model_name_or_path):
3361
                filename = pretrained_model_name_or_path
3362
                resolved_archive_file = download_url(pretrained_model_name_or_path)
3363
            else:
3364
3365
3366
3367
3368
                # set correct filename
                if from_tf:
                    filename = TF2_WEIGHTS_NAME
                elif from_flax:
                    filename = FLAX_WEIGHTS_NAME
3369
                elif use_safetensors is not False:
3370
                    filename = _add_variant(SAFE_WEIGHTS_NAME, variant)
3371
                else:
3372
                    filename = _add_variant(WEIGHTS_NAME, variant)
3373

3374
3375
                try:
                    # Load from URL or cache if already cached
3376
3377
3378
3379
3380
3381
                    cached_file_kwargs = {
                        "cache_dir": cache_dir,
                        "force_download": force_download,
                        "proxies": proxies,
                        "resume_download": resume_download,
                        "local_files_only": local_files_only,
3382
                        "token": token,
3383
3384
3385
3386
3387
3388
                        "user_agent": user_agent,
                        "revision": revision,
                        "subfolder": subfolder,
                        "_raise_exceptions_for_missing_entries": False,
                        "_commit_hash": commit_hash,
                    }
3389
                    resolved_archive_file = cached_file(pretrained_model_name_or_path, filename, **cached_file_kwargs)
3390

3391
                    # Since we set _raise_exceptions_for_missing_entries=False, we don't get an exception but a None
3392
                    # result when internet is up, the repo and revision exist, but the file does not.
3393
                    if resolved_archive_file is None and filename == _add_variant(SAFE_WEIGHTS_NAME, variant):
3394
3395
                        # Maybe the checkpoint is sharded, we try to grab the index name in this case.
                        resolved_archive_file = cached_file(
3396
3397
3398
                            pretrained_model_name_or_path,
                            _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant),
                            **cached_file_kwargs,
3399
3400
3401
                        )
                        if resolved_archive_file is not None:
                            is_sharded = True
3402
                        elif use_safetensors:
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
                            if revision == "main":
                                resolved_archive_file, revision, is_sharded = auto_conversion(
                                    pretrained_model_name_or_path, **cached_file_kwargs
                                )
                            cached_file_kwargs["revision"] = revision
                            if resolved_archive_file is None:
                                raise EnvironmentError(
                                    f"{pretrained_model_name_or_path} does not appear to have a file named"
                                    f" {_add_variant(SAFE_WEIGHTS_NAME, variant)} or {_add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)} "
                                    "and thus cannot be loaded with `safetensors`. Please make sure that the model has "
                                    "been saved with `safe_serialization=True` or do not set `use_safetensors=True`."
                                )
3415
3416
                        else:
                            # This repo has no safetensors file of any kind, we switch to PyTorch.
3417
                            filename = _add_variant(WEIGHTS_NAME, variant)
3418
                            resolved_archive_file = cached_file(
3419
                                pretrained_model_name_or_path, filename, **cached_file_kwargs
3420
                            )
3421
                    if resolved_archive_file is None and filename == _add_variant(WEIGHTS_NAME, variant):
Sylvain Gugger's avatar
Sylvain Gugger committed
3422
                        # Maybe the checkpoint is sharded, we try to grab the index name in this case.
3423
                        resolved_archive_file = cached_file(
3424
3425
3426
                            pretrained_model_name_or_path,
                            _add_variant(WEIGHTS_INDEX_NAME, variant),
                            **cached_file_kwargs,
3427
                        )
3428
3429
3430
                        if resolved_archive_file is not None:
                            is_sharded = True
                    if resolved_archive_file is None:
Sylvain Gugger's avatar
Sylvain Gugger committed
3431
3432
3433
3434
3435
                        # Otherwise, maybe there is a TF or Flax model file.  We try those to give a helpful error
                        # message.
                        has_file_kwargs = {
                            "revision": revision,
                            "proxies": proxies,
3436
                            "token": token,
Sylvain Gugger's avatar
Sylvain Gugger committed
3437
3438
3439
                        }
                        if has_file(pretrained_model_name_or_path, TF2_WEIGHTS_NAME, **has_file_kwargs):
                            raise EnvironmentError(
Sylvain Gugger's avatar
Sylvain Gugger committed
3440
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
3441
3442
                                f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file for TensorFlow weights."
                                " Use `from_tf=True` to load this model from those weights."
Sylvain Gugger's avatar
Sylvain Gugger committed
3443
3444
3445
                            )
                        elif has_file(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME, **has_file_kwargs):
                            raise EnvironmentError(
Sylvain Gugger's avatar
Sylvain Gugger committed
3446
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
                                f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file for Flax weights. Use"
                                " `from_flax=True` to load this model from those weights."
                            )
                        elif variant is not None and has_file(
                            pretrained_model_name_or_path, WEIGHTS_NAME, **has_file_kwargs
                        ):
                            raise EnvironmentError(
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
                                f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file without the variant"
                                f" {variant}. Use `variant=None` to load this model from those weights."
Sylvain Gugger's avatar
Sylvain Gugger committed
3457
3458
3459
                            )
                        else:
                            raise EnvironmentError(
3460
3461
3462
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
                                f" {_add_variant(WEIGHTS_NAME, variant)}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or"
                                f" {FLAX_WEIGHTS_NAME}."
Sylvain Gugger's avatar
Sylvain Gugger committed
3463
                            )
3464
3465
3466
3467
                except EnvironmentError:
                    # Raise any environment error raise by `cached_file`. It will have a helpful error message adapted
                    # to the original exception.
                    raise
3468
                except Exception as e:
3469
                    # For any other exception, we throw a generic error.
3470
                    raise EnvironmentError(
3471
3472
3473
                        f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it"
                        " from 'https://huggingface.co/models', make sure you don't have a local directory with the"
                        f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a"
3474
3475
                        f" directory containing a file named {_add_variant(WEIGHTS_NAME, variant)},"
                        f" {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or {FLAX_WEIGHTS_NAME}."
3476
                    ) from e
3477

3478
            if is_local:
3479
                logger.info(f"loading weights file {archive_file}")
3480
                resolved_archive_file = archive_file
3481
            else:
3482
                logger.info(f"loading weights file {filename} from cache at {resolved_archive_file}")
3483
        else:
thomwolf's avatar
thomwolf committed
3484
            resolved_archive_file = None
3485

Sylvain Gugger's avatar
Sylvain Gugger committed
3486
3487
        # We'll need to download and cache each checkpoint shard if the checkpoint is sharded.
        if is_sharded:
3488
            # rsolved_archive_file becomes a list of files that point to the different checkpoint shards in this case.
Sylvain Gugger's avatar
Sylvain Gugger committed
3489
3490
3491
3492
3493
3494
3495
3496
            resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(
                pretrained_model_name_or_path,
                resolved_archive_file,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                resume_download=resume_download,
                local_files_only=local_files_only,
3497
                token=token,
Sylvain Gugger's avatar
Sylvain Gugger committed
3498
3499
                user_agent=user_agent,
                revision=revision,
3500
                subfolder=subfolder,
3501
                _commit_hash=commit_hash,
Sylvain Gugger's avatar
Sylvain Gugger committed
3502
3503
            )

3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
        if (
            is_safetensors_available()
            and isinstance(resolved_archive_file, str)
            and resolved_archive_file.endswith(".safetensors")
        ):
            with safe_open(resolved_archive_file, framework="pt") as f:
                metadata = f.metadata()

            if metadata.get("format") == "pt":
                pass
            elif metadata.get("format") == "tf":
                from_tf = True
                logger.info("A TensorFlow safetensors file is being loaded in a PyTorch model.")
            elif metadata.get("format") == "flax":
                from_flax = True
                logger.info("A Flax safetensors file is being loaded in a PyTorch model.")
            else:
                raise ValueError(
                    f"Incompatible safetensors file. File metadata is not ['pt', 'tf', 'flax'] but {metadata.get('format')}"
                )

        from_pt = not (from_tf | from_flax)

3527
3528
        # load pt weights early so that we know which dtype to init the model under
        if from_pt:
3529
            if not is_sharded and state_dict is None:
Sylvain Gugger's avatar
Sylvain Gugger committed
3530
3531
                # Time to load the checkpoint
                state_dict = load_state_dict(resolved_archive_file)
3532

3533
3534
3535
            # set dtype to instantiate the model under:
            # 1. If torch_dtype is not None, we use that dtype
            # 2. If torch_dtype is "auto", we auto-detect dtype from the loaded state_dict, by checking its first
3536
            #    weights entry that is of a floating type - we assume all floating dtype weights are of the same dtype
3537
3538
            # we also may have config.torch_dtype available, but we won't rely on it till v5
            dtype_orig = None
3539

3540
3541
3542
            if torch_dtype is not None:
                if isinstance(torch_dtype, str):
                    if torch_dtype == "auto":
3543
3544
3545
                        if hasattr(config, "torch_dtype") and config.torch_dtype is not None:
                            torch_dtype = config.torch_dtype
                            logger.info(f"Will use torch_dtype={torch_dtype} as defined in model's config object")
Sylvain Gugger's avatar
Sylvain Gugger committed
3546
                        else:
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
                            if is_sharded and "dtype" in sharded_metadata:
                                torch_dtype = sharded_metadata["dtype"]
                            elif not is_sharded:
                                torch_dtype = get_state_dict_dtype(state_dict)
                            else:
                                one_state_dict = load_state_dict(resolved_archive_file[0])
                                torch_dtype = get_state_dict_dtype(one_state_dict)
                                del one_state_dict  # free CPU memory
                            logger.info(
                                "Since the `torch_dtype` attribute can't be found in model's config object, "
                                "will use torch_dtype={torch_dtype} as derived from model's weights"
                            )
3559
3560
                    else:
                        raise ValueError(
3561
                            f'`torch_dtype` can be either `torch.dtype` or `"auto"`, but received {torch_dtype}'
3562
3563
3564
                        )
                dtype_orig = cls._set_default_torch_dtype(torch_dtype)

3565
            # Check if `_keep_in_fp32_modules` is not None
3566
3567
            use_keep_in_fp32_modules = (cls._keep_in_fp32_modules is not None) and (
                torch_dtype == torch.float16 or load_in_4bit or load_in_8bit
3568
3569
            )

3570
3571
3572
            if is_sharded:
                loaded_state_dict_keys = sharded_metadata["all_checkpoint_keys"]
            else:
3573
                loaded_state_dict_keys = list(state_dict.keys())
3574
3575
3576
3577
            if low_cpu_mem_usage or (use_keep_in_fp32_modules and is_accelerate_available()):
                # In case some weights need to be kept in float32 and accelerate is not installed,
                # we later on want to take the path where state_dict is not None, that is the one
                # that do not require accelerate.
3578
                state_dict = None
3579

3580
3581
        config.name_or_path = pretrained_model_name_or_path

3582
        # Instantiate model.
3583
3584
        init_contexts = [no_init_weights(_enable=_fast_init)]

3585
3586
3587
3588
        if is_deepspeed_zero3_enabled():
            import deepspeed

            logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
3589
            init_contexts = [deepspeed.zero.Init(config_dict_or_path=deepspeed_config())] + init_contexts
3590
        elif load_in_8bit or load_in_4bit or low_cpu_mem_usage:
3591
3592
            init_contexts.append(init_empty_weights())

3593
3594
3595
3596
        config = copy.deepcopy(config)  # We do not want to modify the config inplace in from_pretrained.
        config = cls._autoset_attn_implementation(
            config, use_flash_attention_2=use_flash_attention_2, torch_dtype=torch_dtype, device_map=device_map
        )
3597

3598
        with ContextManagers(init_contexts):
3599
            # Let's make sure we don't run the init function of buffer modules
3600
3601
            model = cls(config, *model_args, **model_kwargs)

3602
3603
3604
        # make sure we use the model's config since the __init__ call might have copied it
        config = model.config

3605
3606
        # Check first if we are `from_pt`
        if use_keep_in_fp32_modules:
3607
            if is_accelerate_available() and not is_deepspeed_zero3_enabled():
3608
                low_cpu_mem_usage = True
3609
3610
3611
3612
            keep_in_fp32_modules = model._keep_in_fp32_modules
        else:
            keep_in_fp32_modules = []

3613
        if load_in_8bit or load_in_4bit:
3614
            from .integrations import get_keys_to_not_convert, replace_with_bnb_linear
3615

3616
            llm_int8_skip_modules = quantization_config.llm_int8_skip_modules
3617
            load_in_8bit_fp32_cpu_offload = quantization_config.llm_int8_enable_fp32_cpu_offload
3618
3619
3620
3621
            if load_in_8bit:
                logger.info("Detected 8-bit loading: activating 8-bit loading for this model")
            else:
                logger.info("Detected 4-bit loading: activating 4-bit loading for this model")
3622

3623
            # We keep some modules such as the lm_head in their original dtype for numerical stability reasons
3624
            if llm_int8_skip_modules is None:
3625
3626
                modules_to_not_convert = get_keys_to_not_convert(model)
            else:
3627
                modules_to_not_convert = llm_int8_skip_modules
3628
3629
3630
3631
3632
3633

            if not isinstance(modules_to_not_convert, list):
                modules_to_not_convert = [modules_to_not_convert]

            modules_to_not_convert.extend(keep_in_fp32_modules)

3634
3635
3636
3637
3638
3639
3640
            # Extend the modules to not convert to keys that are supposed to be offloaded to `cpu` or `disk`
            if isinstance(device_map, dict) and len(device_map.keys()) > 1:
                keys_on_cpu = [key for key, value in device_map.items() if value in ["disk", "cpu"]]

                if len(keys_on_cpu) > 0 and not load_in_8bit_fp32_cpu_offload:
                    raise ValueError(
                        "If you want to offload some keys to `cpu` or `disk`, you need to set "
Younes Belkada's avatar
Younes Belkada committed
3641
                        "`llm_int8_enable_fp32_cpu_offload=True`. Note that these modules will not be "
3642
3643
3644
3645
3646
                        " converted to 8-bit but kept in 32-bit."
                    )

                modules_to_not_convert.extend(keys_on_cpu)

3647
            supports_4bit = version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse("0.39.0")
3648
3649
3650
3651
3652
3653
3654
3655
3656

            if load_in_4bit and not supports_4bit:
                raise ValueError(
                    "You have a version of `bitsandbytes` that is not compatible with 4bit inference and training"
                    " make sure you have the latest version of `bitsandbytes` installed"
                )

            model = replace_with_bnb_linear(
                model, modules_to_not_convert=modules_to_not_convert, quantization_config=quantization_config
3657
            )
3658
            # training in 8-bit is only available in 0.37.0+
3659
            model._is_quantized_training_enabled = version.parse(
3660
                importlib.metadata.version("bitsandbytes")
3661
            ) >= version.parse("0.37.0")
3662

3663
            config.quantization_config = quantization_config
3664
            model.is_8bit_serializable = is_8bit_serializable
3665
            model.is_4bit_serializable = is_4bit_serializable
3666

3667
3668
        if load_in_8bit and torch_dtype is None:
            logger.warning(
3669
                "You are loading your model in 8bit but you did not specify a `torch_dtype` attribute. "
3670
3671
                "All non-linear modules will be loaded in full precision."
                " If you want to load the other modules in other precision, please specify a `torch_dtype` attribute."
3672
            )
Marc Sun's avatar
Marc Sun committed
3673
3674
3675
        if quantization_method_from_config == QuantizationMethod.GPTQ:
            model = quantizer.convert_model(model)
            model._is_quantized_training_enabled = True
3676
        elif quantization_method_from_config == QuantizationMethod.AWQ:
3677
            from .integrations import fuse_awq_modules, get_keys_to_not_convert, replace_with_awq_linear
3678
3679
3680
3681
3682

            modules_to_not_convert = get_keys_to_not_convert(model)

            if quantization_config is None:
                quantization_config = AwqConfig.from_dict(config.quantization_config)
3683
3684
3685
3686
            # In case a user passes a `AwqConfig` with `do_fuse=True` for models that have
            # a `modules_to_not_convert` attribute we need to manually set that attribute into the
            # passed `quantization_config`
            elif (
3687
                getattr(quantization_config, "modules_to_not_convert", None) is None
3688
3689
3690
                and "modules_to_not_convert" in config.quantization_config
            ):
                quantization_config.modules_to_not_convert = config.quantization_config["modules_to_not_convert"]
3691

3692
3693
3694
            if quantization_config.modules_to_not_convert is not None:
                modules_to_not_convert.extend(quantization_config.modules_to_not_convert)

3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
            model, has_been_replaced = replace_with_awq_linear(
                model, quantization_config=quantization_config, modules_to_not_convert=modules_to_not_convert
            )
            model._is_quantized_training_enabled = False

            if not has_been_replaced:
                logger.warning(
                    "You are loading an AWQ model but no linear modules were found in your model."
                    " Please double check your model architecture, or submit an issue on github if you think this is"
                    " a bug."
                )
Marc Sun's avatar
Marc Sun committed
3706
3707
3708
3709
3710
3711
3712

        if quantization_method_from_config is not None:
            model.quantization_method = quantization_method_from_config
        elif quantization_method_from_args is not None:
            model.quantization_method = quantization_method_from_args
        if hasattr(model, "quantization_method"):
            model.is_quantized = True
3713

3714
3715
3716
3717
3718
3719
            # We store the original dtype for quantized models as we cannot easily retrieve it
            # once the weights have been quantized
            # Note that once you have loaded a quantized model, you can't change its dtype so this will
            # remain a single source of truth
            config._pre_quantization_dtype = torch_dtype

3720
        if isinstance(device_map, str):
3721
            special_dtypes = {}
3722
            if load_in_8bit or load_in_4bit:
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
                special_dtypes.update(
                    {
                        name: torch_dtype
                        for name, _ in model.named_parameters()
                        if any(m in name for m in modules_to_not_convert)
                    }
                )

            special_dtypes.update(
                {
                    name: torch.float32
                    for name, _ in model.named_parameters()
                    if any(m in name for m in keep_in_fp32_modules)
                }
            )

3739
3740
3741
            target_dtype = torch_dtype

            if load_in_4bit:
3742
                if version.parse(importlib.metadata.version("accelerate")) > version.parse("0.19.0"):
3743
3744
3745
3746
3747
3748
                    from accelerate.utils import CustomDtype

                    target_dtype = CustomDtype.INT4
                else:
                    raise ValueError(
                        "You are using `device_map='auto'` on a 4bit loaded version of the model. To automatically compute"
3749
3750
                        " the appropriate device map, you should upgrade your `accelerate` library, "
                        "`pip install --upgrade accelerate` or install it from source to support fp4 auto device map "
3751
3752
3753
3754
3755
                        "calculation. You may encounter unexpected behavior, or pass your own device map"
                    )
            elif load_in_8bit:
                target_dtype = torch.int8

Marc Sun's avatar
Marc Sun committed
3756
            no_split_modules = model._get_no_split_modules(device_map)
3757
3758
3759
3760
3761
            if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
                raise ValueError(
                    "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or "
                    "'sequential'."
                )
3762

3763
            device_map_kwargs = {"no_split_module_classes": no_split_modules}
3764
            if "special_dtypes" in inspect.signature(infer_auto_device_map).parameters:
3765
                device_map_kwargs["special_dtypes"] = special_dtypes
3766
            elif len(special_dtypes) > 0:
3767
                logger.warning(
3768
3769
3770
                    "This model has some weights that should be kept in higher precision, you need to upgrade "
                    "`accelerate` to properly deal with them (`pip install --upgrade accelerate`)."
                )
3771
            if device_map != "sequential":
3772
3773
                max_memory = get_balanced_memory(
                    model,
3774
                    dtype=target_dtype,
3775
                    low_zero=(device_map == "balanced_low_0"),
3776
                    max_memory=max_memory,
3777
                    **device_map_kwargs,
3778
                )
Marc Sun's avatar
Marc Sun committed
3779
3780
3781
3782
3783
            else:
                max_memory = get_max_memory(max_memory)
            if getattr(model, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES:
                # need more space for buffers that are created during quantization
                max_memory = {key: val * 0.90 for key, val in max_memory.items()}
3784
            device_map_kwargs["max_memory"] = max_memory
Marc Sun's avatar
Marc Sun committed
3785

3786
3787
            # Make sure tied weights are tied before creating the device map.
            model.tie_weights()
3788
            device_map = infer_auto_device_map(model, dtype=target_dtype, **device_map_kwargs)
3789

3790
            if load_in_8bit or load_in_4bit:
3791
                # The LM head / tied weights or any last module can stay on disk / CPU
3792
                device_map_without_lm_head = {
3793
                    key: device_map[key] for key in device_map.keys() if key not in modules_to_not_convert
3794
3795
                }
                if "cpu" in device_map_without_lm_head.values() or "disk" in device_map_without_lm_head.values():
3796
3797
3798
                    raise ValueError(
                        """
                        Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit
3799
3800
3801
3802
3803
                        the quantized model. If you want to dispatch the model on the CPU or the disk while keeping
                        these modules in 32-bit, you need to set `load_in_8bit_fp32_cpu_offload=True` and pass a custom
                        `device_map` to `from_pretrained`. Check
                        https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu
                        for more details.
3804
3805
                        """
                    )
3806
3807
                del device_map_without_lm_head

3808
3809
3810
3811
        elif device_map is not None:
            model.tie_weights()
            tied_params = find_tied_parameters(model)
            # check if we don't have tied param in different devices
3812
            check_tied_parameters_on_same_device(tied_params, device_map)
3813

3814
        if from_tf:
3815
            if resolved_archive_file.endswith(".index"):
3816
3817
3818
3819
3820
                # Load from a TensorFlow 1.X checkpoint - provided by original authors
                model = cls.load_tf_weights(model, config, resolved_archive_file[:-6])  # Remove the '.index'
            else:
                # Load from our TensorFlow 2.0 checkpoints
                try:
3821
                    from .modeling_tf_pytorch_utils import load_tf2_checkpoint_in_pytorch_model
3822

Yih-Dar's avatar
Yih-Dar committed
3823
3824
3825
                    model, loading_info = load_tf2_checkpoint_in_pytorch_model(
                        model, resolved_archive_file, allow_missing_keys=True, output_loading_info=True
                    )
3826
                except ImportError:
3827
                    logger.error(
Sylvain Gugger's avatar
Sylvain Gugger committed
3828
3829
3830
                        "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed."
                        " Please see https://pytorch.org/ and https://www.tensorflow.org/install/ for installation"
                        " instructions."
3831
                    )
3832
                    raise
3833
3834
3835
3836
3837
3838
3839
        elif from_flax:
            try:
                from .modeling_flax_pytorch_utils import load_flax_checkpoint_in_pytorch_model

                model = load_flax_checkpoint_in_pytorch_model(model, resolved_archive_file)
            except ImportError:
                logger.error(
Sylvain Gugger's avatar
Sylvain Gugger committed
3840
3841
3842
                    "Loading a Flax model in PyTorch, requires both PyTorch and Flax to be installed. Please see"
                    " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for"
                    " installation instructions."
3843
3844
                )
                raise
3845
        elif from_pt:
3846
3847
3848
            # restore default dtype
            if dtype_orig is not None:
                torch.set_default_dtype(dtype_orig)
Sylvain Gugger's avatar
Sylvain Gugger committed
3849
3850
3851
3852
3853
3854
3855
3856
            (
                model,
                missing_keys,
                unexpected_keys,
                mismatched_keys,
                offload_index,
                error_msgs,
            ) = cls._load_pretrained_model(
3857
3858
3859
3860
3861
3862
3863
3864
3865
                model,
                state_dict,
                loaded_state_dict_keys,  # XXX: rename?
                resolved_archive_file,
                pretrained_model_name_or_path,
                ignore_mismatched_sizes=ignore_mismatched_sizes,
                sharded_metadata=sharded_metadata,
                _fast_init=_fast_init,
                low_cpu_mem_usage=low_cpu_mem_usage,
3866
3867
3868
3869
                device_map=device_map,
                offload_folder=offload_folder,
                offload_state_dict=offload_state_dict,
                dtype=torch_dtype,
Marc Sun's avatar
Marc Sun committed
3870
                is_quantized=(getattr(model, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES),
3871
                keep_in_fp32_modules=keep_in_fp32_modules,
3872
            )
3873

3874
        model.is_loaded_in_4bit = load_in_4bit
Younes Belkada's avatar
Younes Belkada committed
3875
        model.is_loaded_in_8bit = load_in_8bit
3876

3877
3878
        # make sure token embedding weights are still tied if needed
        model.tie_weights()
3879

3880
        # Set model in evaluation mode to deactivate DropOut modules by default
3881
3882
        model.eval()

3883
        # If it is a model with generation capabilities, attempt to load the generation config
3884
        if model.can_generate() and pretrained_model_name_or_path is not None:
3885
3886
3887
3888
3889
3890
3891
3892
            try:
                model.generation_config = GenerationConfig.from_pretrained(
                    pretrained_model_name_or_path,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
3893
                    token=token,
3894
3895
3896
3897
3898
3899
                    revision=revision,
                    subfolder=subfolder,
                    _from_auto=from_auto_class,
                    _from_pipeline=from_pipeline,
                    **kwargs,
                )
3900
            except OSError:
3901
3902
3903
3904
3905
                logger.info(
                    "Generation config file not found, using a generation config created from the model config."
                )
                pass

3906
3907
3908
3909
3910
3911
3912
3913
        if (
            quantization_config is not None
            and quantization_config.quant_method == QuantizationMethod.AWQ
            and quantization_config.do_fuse
        ):
            model = fuse_awq_modules(model, config.quantization_config)
            model._awq_is_fused = True

3914
3915
        # Dispatch model with hooks on all devices if necessary
        if device_map is not None:
3916
3917
3918
3919
3920
            device_map_kwargs = {
                "device_map": device_map,
                "offload_dir": offload_folder,
                "offload_index": offload_index,
            }
3921
            if "skip_keys" in inspect.signature(dispatch_model).parameters:
3922
3923
                device_map_kwargs["skip_keys"] = model._skip_keys_device_placement
            dispatch_model(model, **device_map_kwargs)
3924

Marc Sun's avatar
Marc Sun committed
3925
3926
3927
3928
3929
3930
        if quantization_method_from_args == QuantizationMethod.GPTQ:
            if quantization_config.tokenizer is None:
                quantization_config.tokenizer = pretrained_model_name_or_path
            if cls.main_input_name != "input_ids":
                raise RuntimeError("We can only quantize pure text model.")
            quantizer.quantize_model(model, quantization_config.tokenizer)
Marc Sun's avatar
Marc Sun committed
3931
            config.quantization_config = GPTQConfig.from_dict_optimum(quantizer.to_dict())
Marc Sun's avatar
Marc Sun committed
3932
3933
3934
3935
            model._is_quantized_training_enabled = True
        if quantization_method_from_config == QuantizationMethod.GPTQ:
            model = quantizer.post_init_model(model)

3936
        if _adapter_model_path is not None:
3937
            model.load_adapter(
3938
                _adapter_model_path,
3939
3940
                adapter_name=adapter_name,
                token=token,
3941
                adapter_kwargs=adapter_kwargs,
3942
3943
            )

thomwolf's avatar
thomwolf committed
3944
        if output_loading_info:
Yih-Dar's avatar
Yih-Dar committed
3945
3946
3947
3948
3949
3950
3951
            if loading_info is None:
                loading_info = {
                    "missing_keys": missing_keys,
                    "unexpected_keys": unexpected_keys,
                    "mismatched_keys": mismatched_keys,
                    "error_msgs": error_msgs,
                }
thomwolf's avatar
thomwolf committed
3952
3953
            return model, loading_info

3954
3955
        return model

3956
    @classmethod
Sylvain Gugger's avatar
Sylvain Gugger committed
3957
3958
3959
3960
    def _load_pretrained_model(
        cls,
        model,
        state_dict,
3961
        loaded_keys,
Sylvain Gugger's avatar
Sylvain Gugger committed
3962
3963
3964
3965
3966
        resolved_archive_file,
        pretrained_model_name_or_path,
        ignore_mismatched_sizes=False,
        sharded_metadata=None,
        _fast_init=True,
3967
        low_cpu_mem_usage=False,
3968
3969
        device_map=None,
        offload_folder=None,
3970
        offload_state_dict=None,
3971
        dtype=None,
3972
        is_quantized=False,
3973
        keep_in_fp32_modules=None,
3974
    ):
Sylvain Gugger's avatar
Sylvain Gugger committed
3975
        is_safetensors = False
3976
        if is_quantized:
3977
            from .integrations import set_module_quantized_tensor_to_device
3978

Sylvain Gugger's avatar
Sylvain Gugger committed
3979
        if device_map is not None and "disk" in device_map.values():
Sylvain Gugger's avatar
Sylvain Gugger committed
3980
3981
3982
3983
3984
            archive_file = (
                resolved_archive_file[0] if isinstance(resolved_archive_file, (list, tuple)) else resolved_archive_file
            )
            is_safetensors = archive_file.endswith(".safetensors")
            if offload_folder is None and not is_safetensors:
Sylvain Gugger's avatar
Sylvain Gugger committed
3985
3986
                raise ValueError(
                    "The current `device_map` had weights offloaded to the disk. Please provide an `offload_folder`"
Sylvain Gugger's avatar
Sylvain Gugger committed
3987
3988
                    " for them. Alternatively, make sure you have `safetensors` installed if the model you are using"
                    " offers the weights in this format."
Sylvain Gugger's avatar
Sylvain Gugger committed
3989
                )
Sylvain Gugger's avatar
Sylvain Gugger committed
3990
3991
            if offload_folder is not None:
                os.makedirs(offload_folder, exist_ok=True)
3992
3993
3994
            if offload_state_dict is None:
                offload_state_dict = True

3995
        is_sharded_safetensors = is_safetensors and sharded_metadata is not None
Patrick von Platen's avatar
Patrick von Platen committed
3996
3997
3998
3999

        # tie the model weights before retrieving the state_dict
        model.tie_weights()

4000
        # Retrieve missing & unexpected_keys
4001
4002
        model_state_dict = model.state_dict()
        expected_keys = list(model_state_dict.keys())
4003
4004
        prefix = model.base_model_prefix

Sylvain Gugger's avatar
Sylvain Gugger committed
4005
4006
4007
4008
4009
4010
4011
        def _fix_key(key):
            if "beta" in key:
                return key.replace("beta", "bias")
            if "gamma" in key:
                return key.replace("gamma", "weight")
            return key

4012
        original_loaded_keys = loaded_keys
Sylvain Gugger's avatar
Sylvain Gugger committed
4013
4014
        loaded_keys = [_fix_key(key) for key in loaded_keys]

4015
4016
4017
4018
4019
4020
        if len(prefix) > 0:
            has_prefix_module = any(s.startswith(prefix) for s in loaded_keys)
            expects_prefix_module = any(s.startswith(prefix) for s in expected_keys)
        else:
            has_prefix_module = False
            expects_prefix_module = False
Patrick von Platen's avatar
Patrick von Platen committed
4021
4022
4023

        # key re-naming operations are never done on the keys
        # that are loaded, but always on the keys of the newly initialized model
4024
4025
        remove_prefix_from_model = not has_prefix_module and expects_prefix_module
        add_prefix_to_model = has_prefix_module and not expects_prefix_module
4026

4027
        if remove_prefix_from_model:
4028
4029
4030
            _prefix = f"{prefix}."
            expected_keys_not_prefixed = [s for s in expected_keys if not s.startswith(_prefix)]
            expected_keys = [s[len(_prefix) :] if s.startswith(_prefix) else s for s in expected_keys]
4031
        elif add_prefix_to_model:
4032
4033
            expected_keys = [".".join([prefix, s]) for s in expected_keys]

4034
        missing_keys = sorted(set(expected_keys) - set(loaded_keys))
Sylvain Gugger's avatar
Sylvain Gugger committed
4035
4036
4037
4038
4039
4040
4041
4042
        unexpected_keys = set(loaded_keys) - set(expected_keys)
        # Remove nonpersistent buffers from unexpected keys: they are not in the state dict but will be in the model
        # buffers
        model_buffers = {n for n, _ in model.named_buffers()}
        if remove_prefix_from_model:
            model_buffers = {key[len(_prefix) :] if key.startswith(_prefix) else key for key in model_buffers}
        elif add_prefix_to_model:
            model_buffers = {".".join([prefix, key]) for key in model_buffers}
4043
        unexpected_keys = sorted(unexpected_keys - model_buffers)
4044

4045
        model.tie_weights()
4046
        if device_map is None and not is_fsdp_enabled() and not is_deepspeed_zero3_enabled():
4047
4048
4049
4050
            ptrs = collections.defaultdict(list)
            for name, tensor in model.state_dict().items():
                id_tensor = id_tensor_storage(tensor)
                ptrs[id_tensor].append(name)
Sylvain Gugger's avatar
Sylvain Gugger committed
4051

4052
4053
4054
4055
4056
            # These are all the pointers of shared tensors.
            tied_params = [names for _, names in ptrs.items() if len(names) > 1]
        else:
            # id function doesn't work for meta tensor so we need this function
            tied_params = find_tied_parameters(model)
Sylvain Gugger's avatar
Sylvain Gugger committed
4057
4058

        for group in tied_params:
Sylvain Gugger's avatar
Sylvain Gugger committed
4059
4060
4061
4062
            if remove_prefix_from_model:
                group = [key[len(_prefix) :] if key.startswith(_prefix) else key for key in group]
            elif add_prefix_to_model:
                group = [".".join([prefix, key]) for key in group]
Sylvain Gugger's avatar
Sylvain Gugger committed
4063
4064
4065
            missing_in_group = [k for k in missing_keys if k in group]
            if len(missing_in_group) > 0 and len(missing_in_group) < len(group):
                missing_keys = [k for k in missing_keys if k not in missing_in_group]
4066

4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
        # Some models may have keys that are not in the state by design, removing them before needlessly warning
        # the user.
        if cls._keys_to_ignore_on_load_missing is not None:
            for pat in cls._keys_to_ignore_on_load_missing:
                missing_keys = [k for k in missing_keys if re.search(pat, k) is None]

        if cls._keys_to_ignore_on_load_unexpected is not None:
            for pat in cls._keys_to_ignore_on_load_unexpected:
                unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

4077
4078
4079
4080
        # retrieve weights on meta device and put them back on CPU.
        # This is not ideal in terms of memory, but if we don't do that not, we can't initialize them in the next step
        if low_cpu_mem_usage:
            for key in missing_keys:
Susnato Dhar's avatar
Susnato Dhar committed
4081
4082
                if key in list(model_state_dict.keys()):
                    key = key
4083
4084
                elif f"{prefix}.{key}" in list(model_state_dict.keys()):
                    key = f"{prefix}.{key}"
Susnato Dhar's avatar
Susnato Dhar committed
4085
                elif key.startswith(prefix) and ".".join(key.split(".")[1:]) in list(model_state_dict.keys()):
4086
4087
                    key = ".".join(key.split(".")[1:])
                param = model_state_dict[key]
4088
4089
4090
4091
4092
4093

                # upcast in fp32 if any
                target_dtype = dtype
                if (
                    keep_in_fp32_modules is not None
                    and dtype == torch.float16
4094
4095
4096
                    and any(
                        module_to_keep_in_fp32 in key.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules
                    )
4097
4098
4099
                ):
                    target_dtype = torch.float32

4100
                if param.device == torch.device("meta"):
4101
                    if not (is_quantized):
4102
                        set_module_tensor_to_device(model, key, "cpu", torch.empty(*param.size(), dtype=target_dtype))
4103
                    else:
4104
                        set_module_quantized_tensor_to_device(
4105
4106
                            model, key, "cpu", torch.empty(*param.size(), dtype=target_dtype)
                        )
4107
4108

        # retrieve unintialized modules and initialize before maybe overriding that with the pretrained weights.
4109
        if _fast_init:
4110
4111
4112
4113
4114
4115
4116
            if not ignore_mismatched_sizes:
                if remove_prefix_from_model:
                    _loaded_keys = [f"{prefix}.{k}" for k in loaded_keys]
                elif add_prefix_to_model:
                    _loaded_keys = [k[len(prefix) + 1 :] for k in loaded_keys]
                else:
                    _loaded_keys = loaded_keys
4117
4118
4119
                not_initialized_submodules = set_initialized_submodules(model, _loaded_keys)
            else:
                not_initialized_submodules = dict(model.named_modules())
4120
            # This will only initialize submodules that are not marked as initialized by the line above.
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
            if is_deepspeed_zero3_enabled():
                import deepspeed

                not_initialized_parameters = list(
                    set(
                        itertools.chain.from_iterable(
                            submodule.parameters(recurse=False) for submodule in not_initialized_submodules.values()
                        )
                    )
                )
                with deepspeed.zero.GatheredParameters(not_initialized_parameters, modifier_rank=0):
                    model.apply(model._initialize_weights)
            else:
                model.apply(model._initialize_weights)
4135

4136
4137
4138
        # Set some modules to fp32 if any
        if keep_in_fp32_modules is not None:
            for name, param in model.named_parameters():
4139
                if any(module_to_keep_in_fp32 in name.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules):
4140
4141
                    # param = param.to(torch.float32) does not work here as only in the local scope.
                    param.data = param.data.to(torch.float32)
4142

4143
4144
4145
        # Make sure we are able to load base models as well as derived models (with heads)
        start_prefix = ""
        model_to_load = model
4146
        if len(cls.base_model_prefix) > 0 and not hasattr(model, cls.base_model_prefix) and has_prefix_module:
4147
            start_prefix = cls.base_model_prefix + "."
4148
        if len(cls.base_model_prefix) > 0 and hasattr(model, cls.base_model_prefix) and not has_prefix_module:
4149
            model_to_load = getattr(model, cls.base_model_prefix)
Sylvain Gugger's avatar
Sylvain Gugger committed
4150
4151
            base_model_expected_keys = list(model_to_load.state_dict().keys())
            if any(key in expected_keys_not_prefixed and key not in base_model_expected_keys for key in loaded_keys):
4152
                raise ValueError(
4153
                    "The state dictionary of the model you are trying to load is corrupted. Are you sure it was "
4154
4155
                    "properly saved?"
                )
4156
4157
            if device_map is not None:
                device_map = {k.replace(f"{cls.base_model_prefix}.", ""): v for k, v in device_map.items()}
4158

4159
4160
4161
4162
4163
4164
4165
4166
        def _find_mismatched_keys(
            state_dict,
            model_state_dict,
            loaded_keys,
            add_prefix_to_model,
            remove_prefix_from_model,
            ignore_mismatched_sizes,
        ):
Sylvain Gugger's avatar
Sylvain Gugger committed
4167
4168
4169
            mismatched_keys = []
            if ignore_mismatched_sizes:
                for checkpoint_key in loaded_keys:
4170
4171
4172
                    # If the checkpoint is sharded, we may not have the key here.
                    if checkpoint_key not in state_dict:
                        continue
Sylvain Gugger's avatar
Sylvain Gugger committed
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
                    model_key = checkpoint_key
                    if remove_prefix_from_model:
                        # The model key starts with `prefix` but `checkpoint_key` doesn't so we add it.
                        model_key = f"{prefix}.{checkpoint_key}"
                    elif add_prefix_to_model:
                        # The model key doesn't start with `prefix` but `checkpoint_key` does so we remove it.
                        model_key = ".".join(checkpoint_key.split(".")[1:])

                    if (
                        model_key in model_state_dict
                        and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
                    ):
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
                        if (
                            state_dict[checkpoint_key].shape[-1] == 1
                            and state_dict[checkpoint_key].numel() * 2 == model_state_dict[model_key].numel()
                        ):
                            # This skips size mismatches for 4-bit weights. Two 4-bit values share an 8-bit container, causing size differences.
                            # Without matching with module type or paramter type it seems like a practical way to detect valid 4bit weights.
                            pass
                        else:
                            mismatched_keys.append(
                                (checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
                            )
                            del state_dict[checkpoint_key]
4197
4198
            return mismatched_keys

4199
4200
4201
4202
        if resolved_archive_file is not None:
            folder = os.path.sep.join(resolved_archive_file[0].split(os.path.sep)[:-1])
        else:
            folder = None
Sylvain Gugger's avatar
Sylvain Gugger committed
4203
        if device_map is not None and is_safetensors:
4204
            param_device_map = expand_device_map(device_map, original_loaded_keys, start_prefix)
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
            str_dtype = str(dtype).replace("torch.", "") if dtype is not None else "float32"
            if sharded_metadata is None:
                archive_file = (
                    resolved_archive_file[0]
                    if isinstance(resolved_archive_file, (list, tuple))
                    else resolved_archive_file
                )
                weight_map = {p: archive_file for p in original_loaded_keys}
            else:
                weight_map = {p: os.path.join(folder, f) for p, f in sharded_metadata["weight_map"].items()}
Sylvain Gugger's avatar
Sylvain Gugger committed
4215
            offload_index = {
4216
                p[len(start_prefix) :]: {"safetensors_file": f, "weight_name": p, "dtype": str_dtype}
4217
                for p, f in weight_map.items()
4218
                if p.startswith(start_prefix) and param_device_map[p[len(start_prefix) :]] == "disk"
Sylvain Gugger's avatar
Sylvain Gugger committed
4219
4220
            }

4221
4222
4223
4224
4225
        if state_dict is not None:
            # Whole checkpoint
            mismatched_keys = _find_mismatched_keys(
                state_dict,
                model_state_dict,
4226
                original_loaded_keys,
4227
4228
4229
4230
                add_prefix_to_model,
                remove_prefix_from_model,
                ignore_mismatched_sizes,
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
4231
            error_msgs = _load_state_dict_into_model(model_to_load, state_dict, start_prefix)
Sylvain Gugger's avatar
Sylvain Gugger committed
4232
            offload_index = None
Sylvain Gugger's avatar
Sylvain Gugger committed
4233
        else:
4234
4235
            # Sharded checkpoint or whole but low_cpu_mem_usage==True

Sylvain Gugger's avatar
Sylvain Gugger committed
4236
4237
4238
4239
4240
            # This should always be a list but, just to be sure.
            if not isinstance(resolved_archive_file, list):
                resolved_archive_file = [resolved_archive_file]

            error_msgs = []
4241
            mismatched_keys = []
Sylvain Gugger's avatar
Sylvain Gugger committed
4242
4243
            if not is_safetensors:
                offload_index = {} if device_map is not None and "disk" in device_map.values() else None
4244
4245
4246
4247
4248
4249
4250
            if offload_state_dict:
                state_dict_folder = tempfile.mkdtemp()
                state_dict_index = {}
            else:
                state_dict_folder = None
                state_dict_index = None

4251
            if is_sharded_safetensors:
4252
4253
4254
                disk_only_shard_files = get_disk_only_shard_files(
                    device_map, sharded_metadata=sharded_metadata, start_prefix=start_prefix
                )
Sylvain Gugger's avatar
Sylvain Gugger committed
4255
4256
4257
4258
                disk_only_shard_files = [os.path.join(folder, f) for f in disk_only_shard_files]
            else:
                disk_only_shard_files = []

4259
4260
            if len(resolved_archive_file) > 1:
                resolved_archive_file = logging.tqdm(resolved_archive_file, desc="Loading checkpoint shards")
Sylvain Gugger's avatar
Sylvain Gugger committed
4261
            for shard_file in resolved_archive_file:
Sylvain Gugger's avatar
Sylvain Gugger committed
4262
4263
4264
                # Skip the load for shards that only contain disk-offloaded weights when using safetensors for the offload.
                if shard_file in disk_only_shard_files:
                    continue
Sylvain Gugger's avatar
Sylvain Gugger committed
4265
                state_dict = load_state_dict(shard_file)
4266

Sylvain Gugger's avatar
Sylvain Gugger committed
4267
4268
                # Mistmatched keys contains tuples key/shape1/shape2 of weights in the checkpoint that have a shape not
                # matching the weights in the model.
4269
4270
4271
                mismatched_keys += _find_mismatched_keys(
                    state_dict,
                    model_state_dict,
4272
                    original_loaded_keys,
4273
4274
4275
4276
                    add_prefix_to_model,
                    remove_prefix_from_model,
                    ignore_mismatched_sizes,
                )
4277
                if low_cpu_mem_usage:
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
                    if is_fsdp_enabled() and not is_local_dist_rank_0():
                        for key, param in model_to_load.state_dict().items():
                            if param.device == torch.device("meta"):
                                if not (is_quantized):
                                    set_module_tensor_to_device(
                                        model_to_load, key, "cpu", torch.empty(*param.size(), dtype=dtype)
                                    )
                                else:
                                    set_module_quantized_tensor_to_device(
                                        model_to_load, key, "cpu", torch.empty(*param.size(), dtype=dtype)
                                    )
                    else:
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
                        new_error_msgs, offload_index, state_dict_index = _load_state_dict_into_meta_model(
                            model_to_load,
                            state_dict,
                            loaded_keys,
                            start_prefix,
                            expected_keys,
                            device_map=device_map,
                            offload_folder=offload_folder,
                            offload_index=offload_index,
                            state_dict_folder=state_dict_folder,
                            state_dict_index=state_dict_index,
                            dtype=dtype,
                            is_quantized=is_quantized,
                            is_safetensors=is_safetensors,
                            keep_in_fp32_modules=keep_in_fp32_modules,
4305
                            unexpected_keys=unexpected_keys,
4306
4307
                        )
                        error_msgs += new_error_msgs
4308
4309
                else:
                    error_msgs += _load_state_dict_into_model(model_to_load, state_dict, start_prefix)
4310

4311
4312
4313
4314
                # force memory release
                del state_dict
                gc.collect()

4315
            if offload_index is not None and len(offload_index) > 0:
Sylvain Gugger's avatar
Sylvain Gugger committed
4316
4317
4318
                if model != model_to_load:
                    # We need to add the prefix of the base model
                    prefix = cls.base_model_prefix
Sylvain Gugger's avatar
Sylvain Gugger committed
4319
4320
4321
4322
4323
4324
                    if not is_safetensors:
                        for weight_name in offload_index:
                            shutil.move(
                                os.path.join(offload_folder, f"{weight_name}.dat"),
                                os.path.join(offload_folder, f"{prefix}.{weight_name}.dat"),
                            )
Sylvain Gugger's avatar
Sylvain Gugger committed
4325
                    offload_index = {f"{prefix}.{key}": value for key, value in offload_index.items()}
Sylvain Gugger's avatar
Sylvain Gugger committed
4326
4327
4328
                if not is_safetensors:
                    save_offload_index(offload_index, offload_folder)
                    offload_index = None
4329
4330
4331

            if offload_state_dict:
                # Load back temporarily offloaded state dict
4332
                load_offloaded_weights(model_to_load, state_dict_index, state_dict_folder)
4333
4334
                shutil.rmtree(state_dict_folder)

4335
4336
        if len(error_msgs) > 0:
            error_msg = "\n\t".join(error_msgs)
4337
4338
4339
4340
            if "size mismatch" in error_msg:
                error_msg += (
                    "\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
                )
4341
4342
            raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")

4343
        if len(unexpected_keys) > 0:
Sylvain Gugger's avatar
Sylvain Gugger committed
4344
            archs = [] if model.config.architectures is None else model.config.architectures
4345
            warner = logger.warning if model.__class__.__name__ in archs else logger.info
Sylvain Gugger's avatar
Sylvain Gugger committed
4346
            warner(
Sylvain Gugger's avatar
Sylvain Gugger committed
4347
4348
4349
4350
4351
4352
4353
                f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
                f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
                f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task or"
                " with another architecture (e.g. initializing a BertForSequenceClassification model from a"
                " BertForPreTraining model).\n- This IS NOT expected if you are initializing"
                f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly identical"
                " (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
4354
4355
4356
4357
4358
            )
        else:
            logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
        if len(missing_keys) > 0:
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
4359
4360
4361
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
                " TRAIN this model on a down-stream task to be able to use it for predictions and inference."
4362
            )
4363
        elif len(mismatched_keys) == 0:
4364
            logger.info(
Sylvain Gugger's avatar
Sylvain Gugger committed
4365
4366
4367
4368
                f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the checkpoint"
                f" was trained on, you can already use {model.__class__.__name__} for predictions without further"
                " training."
4369
            )
4370
4371
4372
4373
4374
4375
4376
4377
        if len(mismatched_keys) > 0:
            mismatched_warning = "\n".join(
                [
                    f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
                    for key, shape1, shape2 in mismatched_keys
                ]
            )
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
4378
4379
4380
4381
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
                f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be able"
                " to use it for predictions and inference."
4382
            )
4383

Sylvain Gugger's avatar
Sylvain Gugger committed
4384
        return model, missing_keys, unexpected_keys, mismatched_keys, offload_index, error_msgs
4385
4386

    def retrieve_modules_from_names(self, names, add_prefix=False, remove_prefix=False):
4387
        module_keys = {".".join(key.split(".")[:-1]) for key in names}
4388

Patrick von Platen's avatar
Patrick von Platen committed
4389
4390
        # torch.nn.ParameterList is a special case where two parameter keywords
        # are appended to the module name, *e.g.* bert.special_embeddings.0
4391
        module_keys = module_keys.union(
4392
            {".".join(key.split(".")[:-2]) for key in names if len(key) > 0 and key[-1].isdigit()}
4393
        )
Patrick von Platen's avatar
Patrick von Platen committed
4394

4395
4396
4397
4398
        retrieved_modules = []
        # retrieve all modules that has at least one missing weight name
        for name, module in self.named_modules():
            if remove_prefix:
4399
4400
                _prefix = f"{self.base_model_prefix}."
                name = name[len(_prefix) :] if name.startswith(_prefix) else name
4401
            elif add_prefix:
Patrick von Platen's avatar
Patrick von Platen committed
4402
                name = ".".join([self.base_model_prefix, name]) if len(name) > 0 else self.base_model_prefix
4403
4404
4405
4406
4407
4408

            if name in module_keys:
                retrieved_modules.append(module)

        return retrieved_modules

4409
    @staticmethod
4410
    def _load_pretrained_model_low_mem(model, loaded_state_dict_keys, resolved_archive_file, start_prefix=""):
4411
4412
4413
        """
        This is an experimental function that loads the model using ~1.x model size CPU memory

4414
        Before you call it do:
4415

4416
        1. save which state_dict keys are available
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
        2. drop state_dict before model is created, since the latter takes 1x model size memory

        Here then we continue:

        3. switch to the meta device all params/buffers that are going to be replaced from the loaded state_dict
        4. load state_dict 2nd time
        5. replace the params/buffers from the state_dict

        Currently, it doesn't handle missing_keys, unexpected_keys, mismatched_keys. It can't handle deepspeed.
        """

4428
4429
4430
4431
        _move_model_to_meta(model, loaded_state_dict_keys, start_prefix)
        state_dict = load_state_dict(resolved_archive_file)
        error_msgs = _load_state_dict_into_meta_model(model, state_dict, loaded_state_dict_keys, start_prefix)
        return error_msgs
4432

4433
4434
4435
4436
4437
4438
    @classmethod
    def register_for_auto_class(cls, auto_class="AutoModel"):
        """
        Register this class with a given auto class. This should only be used for custom models as the ones in the
        library are already mapped with an auto class.

4439
4440
4441
4442
4443
4444
        <Tip warning={true}>

        This API is experimental and may have some slight breaking changes in the next releases.

        </Tip>

4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
        Args:
            auto_class (`str` or `type`, *optional*, defaults to `"AutoModel"`):
                The auto class to register this new model with.
        """
        if not isinstance(auto_class, str):
            auto_class = auto_class.__name__

        import transformers.models.auto as auto_module

        if not hasattr(auto_module, auto_class):
            raise ValueError(f"{auto_class} is not a valid auto class.")

        cls._auto_class = auto_class

4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
    def to_bettertransformer(self) -> "PreTrainedModel":
        """
        Converts the model to use [PyTorch's native attention
        implementation](https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html), integrated to
        Transformers through [Optimum library](https://huggingface.co/docs/optimum/bettertransformer/overview). Only a
        subset of all Transformers models are supported.

        PyTorch's attention fastpath allows to speed up inference through kernel fusions and the use of [nested
        tensors](https://pytorch.org/docs/stable/nested.html). Detailed benchmarks can be found in [this blog
        post](https://medium.com/pytorch/bettertransformer-out-of-the-box-performance-for-huggingface-transformers-3fbe27d50ab2).

        Returns:
            [`PreTrainedModel`]: The model converted to BetterTransformer.
        """
        if not is_optimum_available():
            raise ImportError("The package `optimum` is required to use Better Transformer.")

        from optimum.version import __version__ as optimum_version

        if version.parse(optimum_version) < version.parse("1.7.0"):
            raise ImportError(
                f"Please install optimum>=1.7.0 to use Better Transformer. The version {optimum_version} was found."
            )

        from optimum.bettertransformer import BetterTransformer

        return BetterTransformer.transform(self)

    def reverse_bettertransformer(self):
        """
        Reverts the transformation from [`~PreTrainedModel.to_bettertransformer`] so that the original modeling is
        used, for example in order to save the model.

        Returns:
            [`PreTrainedModel`]: The model converted back to the original modeling.
        """
        if not is_optimum_available():
            raise ImportError("The package `optimum` is required to use Better Transformer.")

        from optimum.version import __version__ as optimum_version

        if version.parse(optimum_version) < version.parse("1.7.0"):
            raise ImportError(
                f"Please install optimum>=1.7.0 to use Better Transformer. The version {optimum_version} was found."
            )

        from optimum.bettertransformer import BetterTransformer

        return BetterTransformer.reverse(self)

4509
4510
4511
4512
    def warn_if_padding_and_no_attention_mask(self, input_ids, attention_mask):
        """
        Shows a one-time warning if the input_ids appear to contain padding and no attention mask was given.
        """
4513
4514

        # Skip the check during tracing.
4515
        if is_torch_fx_proxy(input_ids) or torch.jit.is_tracing() or is_torchdynamo_compiling():
4516
4517
            return

4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
        if (attention_mask is not None) or (self.config.pad_token_id is None):
            return

        # Check only the first and last input IDs to reduce overhead.
        if self.config.pad_token_id in input_ids[:, [-1, 0]]:
            warn_string = (
                "We strongly recommend passing in an `attention_mask` since your input_ids may be padded. See "
                "https://huggingface.co/docs/transformers/troubleshooting"
                "#incorrect-output-when-padding-tokens-arent-masked."
            )

            # If the pad token is equal to either BOS, EOS, or SEP, we do not know whether the user should use an
            # attention_mask or not. In this case, we should still show a warning because this is a rare case.
            if (
                (self.config.bos_token_id is not None and self.config.bos_token_id == self.config.pad_token_id)
                or (self.config.eos_token_id is not None and self.config.eos_token_id == self.config.pad_token_id)
                or (self.config.sep_token_id is not None and self.config.sep_token_id == self.config.pad_token_id)
            ):
                warn_string += (
                    f"\nYou may ignore this warning if your `pad_token_id` ({self.config.pad_token_id}) is identical "
                    f"to the `bos_token_id` ({self.config.bos_token_id}), `eos_token_id` ({self.config.eos_token_id}), "
                    f"or the `sep_token_id` ({self.config.sep_token_id}), and your input is not padded."
                )

            logger.warning_once(warn_string)

thomwolf's avatar
thomwolf committed
4544

4545
PreTrainedModel.push_to_hub = copy_func(PreTrainedModel.push_to_hub)
4546
4547
4548
4549
if PreTrainedModel.push_to_hub.__doc__ is not None:
    PreTrainedModel.push_to_hub.__doc__ = PreTrainedModel.push_to_hub.__doc__.format(
        object="model", object_class="AutoModel", object_files="model file"
    )
4550
4551


thomwolf's avatar
thomwolf committed
4552
class PoolerStartLogits(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
4553
4554
    """
    Compute SQuAD start logits from sequence hidden states.
4555

Sylvain Gugger's avatar
Sylvain Gugger committed
4556
    Args:
4557
4558
        config ([`PretrainedConfig`]):
            The config used by the model, will be used to grab the `hidden_size` of the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
4559
4560
4561
    """

    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
4562
        super().__init__()
thomwolf's avatar
thomwolf committed
4563
4564
        self.dense = nn.Linear(config.hidden_size, 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
4565
4566
4567
4568
4569
    def forward(
        self, hidden_states: torch.FloatTensor, p_mask: Optional[torch.FloatTensor] = None
    ) -> torch.FloatTensor:
        """
        Args:
4570
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
4571
                The final hidden states of the model.
4572
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4573
4574
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
Sylvain Gugger's avatar
Sylvain Gugger committed
4575
4576

        Returns:
4577
            `torch.FloatTensor`: The start logits for SQuAD.
thomwolf's avatar
thomwolf committed
4578
        """
thomwolf's avatar
thomwolf committed
4579
4580
4581
        x = self.dense(hidden_states).squeeze(-1)

        if p_mask is not None:
Lysandre Debut's avatar
Lysandre Debut committed
4582
            if get_parameter_dtype(self) == torch.float16:
4583
4584
4585
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask
thomwolf's avatar
thomwolf committed
4586
4587
4588
4589
4590
4591

        return x


class PoolerEndLogits(nn.Module):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
4592
    Compute SQuAD end logits from sequence hidden states.
4593

Sylvain Gugger's avatar
Sylvain Gugger committed
4594
    Args:
4595
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
4596
4597
            The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps`
            to use.
Sylvain Gugger's avatar
Sylvain Gugger committed
4598
4599
4600
    """

    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
4601
        super().__init__()
thomwolf's avatar
thomwolf committed
4602
4603
4604
4605
4606
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dense_1 = nn.Linear(config.hidden_size, 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
4607
4608
4609
4610
4611
4612
4613
4614
4615
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        start_states: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        p_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
        """
        Args:
4616
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
4617
                The final hidden states of the model.
4618
            start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4619
                The hidden states of the first tokens for the labeled span.
4620
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4621
                The position of the first token for the labeled span.
4622
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4623
4624
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
Sylvain Gugger's avatar
Sylvain Gugger committed
4625

4626
        <Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
4627

Stas Bekman's avatar
Stas Bekman committed
4628
4629
        One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides
        `start_states`.
4630
4631

        </Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
4632
4633

        Returns:
4634
            `torch.FloatTensor`: The end logits for SQuAD.
thomwolf's avatar
thomwolf committed
4635
        """
4636
4637
4638
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
thomwolf's avatar
thomwolf committed
4639
        if start_positions is not None:
4640
            slen, hsz = hidden_states.shape[-2:]
4641
4642
4643
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions)  # shape (bsz, 1, hsz)
            start_states = start_states.expand(-1, slen, -1)  # shape (bsz, slen, hsz)
thomwolf's avatar
thomwolf committed
4644
4645
4646
4647
4648
4649
4650

        x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1))
        x = self.activation(x)
        x = self.LayerNorm(x)
        x = self.dense_1(x).squeeze(-1)

        if p_mask is not None:
Lysandre Debut's avatar
Lysandre Debut committed
4651
            if get_parameter_dtype(self) == torch.float16:
4652
4653
4654
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask
thomwolf's avatar
thomwolf committed
4655
4656
4657
4658
4659

        return x


class PoolerAnswerClass(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
4660
4661
4662
4663
    """
    Compute SQuAD 2.0 answer class from classification and start tokens hidden states.

    Args:
4664
4665
        config ([`PretrainedConfig`]):
            The config used by the model, will be used to grab the `hidden_size` of the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
4666
    """
4667

thomwolf's avatar
thomwolf committed
4668
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
4669
        super().__init__()
thomwolf's avatar
thomwolf committed
4670
4671
4672
4673
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False)

Sylvain Gugger's avatar
Sylvain Gugger committed
4674
4675
4676
4677
4678
4679
4680
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        start_states: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        cls_index: Optional[torch.LongTensor] = None,
    ) -> torch.FloatTensor:
4681
4682
        """
        Args:
4683
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
4684
                The final hidden states of the model.
4685
            start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4686
                The hidden states of the first tokens for the labeled span.
4687
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4688
                The position of the first token for the labeled span.
4689
4690
4691
4692
            cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
                Position of the CLS token for each sentence in the batch. If `None`, takes the last token.

        <Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
4693

Stas Bekman's avatar
Stas Bekman committed
4694
4695
        One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides
        `start_states`.
Sylvain Gugger's avatar
Sylvain Gugger committed
4696

4697
        </Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
4698
4699

        Returns:
4700
            `torch.FloatTensor`: The SQuAD 2.0 answer class.
thomwolf's avatar
thomwolf committed
4701
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
4702
        # No dependency on end_feature so that we can obtain one single `cls_logits` for each sample.
4703
        hsz = hidden_states.shape[-1]
4704
4705
4706
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
thomwolf's avatar
thomwolf committed
4707
        if start_positions is not None:
4708
4709
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions).squeeze(-2)  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
4710
4711

        if cls_index is not None:
4712
4713
            cls_index = cls_index[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
4714
        else:
4715
            cls_token_state = hidden_states[:, -1, :]  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
4716
4717
4718
4719
4720
4721
4722
4723

        x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1))
        x = self.activation(x)
        x = self.dense_1(x).squeeze(-1)

        return x


4724
4725
4726
@dataclass
class SquadHeadOutput(ModelOutput):
    """
4727
    Base class for outputs of question answering models using a [`~modeling_utils.SQuADHead`].
4728
4729

    Args:
4730
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned if both `start_positions` and `end_positions` are provided):
Sylvain Gugger's avatar
Sylvain Gugger committed
4731
4732
            Classification loss as the sum of start token, end token (and is_impossible if provided) classification
            losses.
4733
        start_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
4734
            Log probabilities for the top config.start_n_top start token possibilities (beam-search).
4735
        start_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
4736
            Indices for the top config.start_n_top start token possibilities (beam-search).
4737
4738
        end_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Log probabilities for the top `config.start_n_top * config.end_n_top` end token possibilities
Sylvain Gugger's avatar
Sylvain Gugger committed
4739
            (beam-search).
4740
4741
4742
4743
        end_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Indices for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search).
        cls_logits (`torch.FloatTensor` of shape `(batch_size,)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Log probabilities for the `is_impossible` label of the answers.
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754

    """

    loss: Optional[torch.FloatTensor] = None
    start_top_log_probs: Optional[torch.FloatTensor] = None
    start_top_index: Optional[torch.LongTensor] = None
    end_top_log_probs: Optional[torch.FloatTensor] = None
    end_top_index: Optional[torch.LongTensor] = None
    cls_logits: Optional[torch.FloatTensor] = None


thomwolf's avatar
thomwolf committed
4755
class SQuADHead(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
4756
4757
    r"""
    A SQuAD head inspired by XLNet.
4758

Sylvain Gugger's avatar
Sylvain Gugger committed
4759
    Args:
4760
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
4761
4762
            The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps`
            to use.
thomwolf's avatar
thomwolf committed
4763
    """
4764

thomwolf's avatar
thomwolf committed
4765
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
4766
        super().__init__()
thomwolf's avatar
thomwolf committed
4767
4768
4769
4770
4771
4772
4773
        self.start_n_top = config.start_n_top
        self.end_n_top = config.end_n_top

        self.start_logits = PoolerStartLogits(config)
        self.end_logits = PoolerEndLogits(config)
        self.answer_class = PoolerAnswerClass(config)

Sylvain Gugger's avatar
Sylvain Gugger committed
4774
    @replace_return_docstrings(output_type=SquadHeadOutput, config_class=PretrainedConfig)
4775
    def forward(
4776
        self,
Sylvain Gugger's avatar
Sylvain Gugger committed
4777
4778
4779
4780
4781
4782
        hidden_states: torch.FloatTensor,
        start_positions: Optional[torch.LongTensor] = None,
        end_positions: Optional[torch.LongTensor] = None,
        cls_index: Optional[torch.LongTensor] = None,
        is_impossible: Optional[torch.LongTensor] = None,
        p_mask: Optional[torch.FloatTensor] = None,
4783
        return_dict: bool = False,
Sylvain Gugger's avatar
Sylvain Gugger committed
4784
4785
    ) -> Union[SquadHeadOutput, Tuple[torch.FloatTensor]]:
        """
Lysandre's avatar
Lysandre committed
4786
        Args:
4787
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Lysandre's avatar
Lysandre committed
4788
                Final hidden states of the model on the sequence tokens.
4789
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
4790
                Positions of the first token for the labeled span.
4791
            end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
4792
                Positions of the last token for the labeled span.
4793
4794
4795
            cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
                Position of the CLS token for each sentence in the batch. If `None`, takes the last token.
            is_impossible (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
4796
                Whether the question has a possible answer in the paragraph or not.
4797
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4798
4799
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
4800
            return_dict (`bool`, *optional*, defaults to `False`):
4801
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Sylvain Gugger's avatar
Sylvain Gugger committed
4802

Lysandre's avatar
Lysandre committed
4803
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
4804
        """
thomwolf's avatar
thomwolf committed
4805
        start_logits = self.start_logits(hidden_states, p_mask=p_mask)
thomwolf's avatar
thomwolf committed
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828

        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, let's remove the dimension added by batch splitting
            for x in (start_positions, end_positions, cls_index, is_impossible):
                if x is not None and x.dim() > 1:
                    x.squeeze_(-1)

            # during training, compute the end logits based on the ground truth of the start position
            end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)

            loss_fct = CrossEntropyLoss()
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

            if cls_index is not None and is_impossible is not None:
                # Predict answerability from the representation of CLS and START
                cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
                loss_fct_cls = nn.BCEWithLogitsLoss()
                cls_loss = loss_fct_cls(cls_logits, is_impossible)

                # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss
                total_loss += cls_loss * 0.5
4829

4830
            return SquadHeadOutput(loss=total_loss) if return_dict else (total_loss,)
thomwolf's avatar
thomwolf committed
4831
4832
4833
4834

        else:
            # during inference, compute the end logits based on beam search
            bsz, slen, hsz = hidden_states.size()
4835
            start_log_probs = nn.functional.softmax(start_logits, dim=-1)  # shape (bsz, slen)
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846

            start_top_log_probs, start_top_index = torch.topk(
                start_log_probs, self.start_n_top, dim=-1
            )  # shape (bsz, start_n_top)
            start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz)  # shape (bsz, start_n_top, hsz)
            start_states = torch.gather(hidden_states, -2, start_top_index_exp)  # shape (bsz, start_n_top, hsz)
            start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1)  # shape (bsz, slen, start_n_top, hsz)

            hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(
                start_states
            )  # shape (bsz, slen, start_n_top, hsz)
thomwolf's avatar
thomwolf committed
4847
4848
            p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
            end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
4849
            end_log_probs = nn.functional.softmax(end_logits, dim=1)  # shape (bsz, slen, start_n_top)
thomwolf's avatar
thomwolf committed
4850

4851
4852
4853
            end_top_log_probs, end_top_index = torch.topk(
                end_log_probs, self.end_n_top, dim=1
            )  # shape (bsz, end_n_top, start_n_top)
thomwolf's avatar
thomwolf committed
4854
4855
4856
4857
4858
4859
            end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
            end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)

            start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs)
            cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index)

4860
            if not return_dict:
4861
4862
4863
4864
4865
4866
4867
4868
4869
                return (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits)
            else:
                return SquadHeadOutput(
                    start_top_log_probs=start_top_log_probs,
                    start_top_index=start_top_index,
                    end_top_log_probs=end_top_log_probs,
                    end_top_index=end_top_index,
                    cls_logits=cls_logits,
                )
thomwolf's avatar
thomwolf committed
4870
4871
4872


class SequenceSummary(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
4873
4874
4875
4876
    r"""
    Compute a single vector summary of a sequence hidden states.

    Args:
4877
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
4878
4879
            The config used by the model. Relevant arguments in the config class of the model are (refer to the actual
            config class of your model for the default values it uses):
Sylvain Gugger's avatar
Sylvain Gugger committed
4880

4881
            - **summary_type** (`str`) -- The method to use to make this summary. Accepted values are:
Sylvain Gugger's avatar
Sylvain Gugger committed
4882

4883
4884
4885
4886
4887
                - `"last"` -- Take the last token hidden state (like XLNet)
                - `"first"` -- Take the first token hidden state (like Bert)
                - `"mean"` -- Take the mean of all tokens hidden states
                - `"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2)
                - `"attn"` -- Not implemented now, use multi-head attention
Sylvain Gugger's avatar
Sylvain Gugger committed
4888

4889
            - **summary_use_proj** (`bool`) -- Add a projection after the vector extraction.
Sylvain Gugger's avatar
Sylvain Gugger committed
4890
4891
4892
4893
4894
4895
            - **summary_proj_to_labels** (`bool`) -- If `True`, the projection outputs to `config.num_labels` classes
              (otherwise to `config.hidden_size`).
            - **summary_activation** (`Optional[str]`) -- Set to `"tanh"` to add a tanh activation to the output,
              another string or `None` will add no activation.
            - **summary_first_dropout** (`float`) -- Optional dropout probability before the projection and activation.
            - **summary_last_dropout** (`float`)-- Optional dropout probability after the projection and activation.
thomwolf's avatar
thomwolf committed
4896
    """
4897

4898
    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
4899
        super().__init__()
thomwolf's avatar
thomwolf committed
4900

4901
        self.summary_type = getattr(config, "summary_type", "last")
4902
        if self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
4903
4904
4905
4906
4907
            # We should use a standard multi-head attention module with absolute positional embedding for that.
            # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
            # We can probably just use the multi-head attention module of PyTorch >=1.1.0
            raise NotImplementedError

thomwolf's avatar
thomwolf committed
4908
        self.summary = Identity()
4909
4910
        if hasattr(config, "summary_use_proj") and config.summary_use_proj:
            if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0:
4911
                num_classes = config.num_labels
thomwolf's avatar
thomwolf committed
4912
4913
4914
4915
            else:
                num_classes = config.hidden_size
            self.summary = nn.Linear(config.hidden_size, num_classes)

4916
        activation_string = getattr(config, "summary_activation", None)
Lysandre's avatar
Lysandre committed
4917
        self.activation: Callable = get_activation(activation_string) if activation_string else Identity()
thomwolf's avatar
thomwolf committed
4918

thomwolf's avatar
thomwolf committed
4919
        self.first_dropout = Identity()
4920
        if hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0:
4921
4922
            self.first_dropout = nn.Dropout(config.summary_first_dropout)

thomwolf's avatar
thomwolf committed
4923
        self.last_dropout = Identity()
4924
        if hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0:
4925
            self.last_dropout = nn.Dropout(config.summary_last_dropout)
thomwolf's avatar
thomwolf committed
4926

Sylvain Gugger's avatar
Sylvain Gugger committed
4927
4928
4929
4930
4931
4932
4933
    def forward(
        self, hidden_states: torch.FloatTensor, cls_index: Optional[torch.LongTensor] = None
    ) -> torch.FloatTensor:
        """
        Compute a single vector summary of a sequence hidden states.

        Args:
4934
            hidden_states (`torch.FloatTensor` of shape `[batch_size, seq_len, hidden_size]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
4935
                The hidden states of the last layer.
4936
            cls_index (`torch.LongTensor` of shape `[batch_size]` or `[batch_size, ...]` where ... are optional leading dimensions of `hidden_states`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4937
                Used if `summary_type == "cls_index"` and takes the last token of the sequence as classification token.
Sylvain Gugger's avatar
Sylvain Gugger committed
4938
4939

        Returns:
4940
            `torch.FloatTensor`: The summary of the sequence hidden states.
thomwolf's avatar
thomwolf committed
4941
        """
4942
        if self.summary_type == "last":
thomwolf's avatar
thomwolf committed
4943
            output = hidden_states[:, -1]
4944
        elif self.summary_type == "first":
thomwolf's avatar
thomwolf committed
4945
            output = hidden_states[:, 0]
4946
        elif self.summary_type == "mean":
thomwolf's avatar
thomwolf committed
4947
            output = hidden_states.mean(dim=1)
4948
        elif self.summary_type == "cls_index":
thomwolf's avatar
thomwolf committed
4949
            if cls_index is None:
Lysandre's avatar
Lysandre committed
4950
4951
4952
4953
4954
                cls_index = torch.full_like(
                    hidden_states[..., :1, :],
                    hidden_states.shape[-2] - 1,
                    dtype=torch.long,
                )
thomwolf's avatar
thomwolf committed
4955
            else:
thomwolf's avatar
thomwolf committed
4956
                cls_index = cls_index.unsqueeze(-1).unsqueeze(-1)
4957
                cls_index = cls_index.expand((-1,) * (cls_index.dim() - 1) + (hidden_states.size(-1),))
thomwolf's avatar
thomwolf committed
4958
            # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
4959
4960
            output = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, XX, hidden_size)
        elif self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
4961
4962
            raise NotImplementedError

4963
        output = self.first_dropout(output)
thomwolf's avatar
thomwolf committed
4964
4965
        output = self.summary(output)
        output = self.activation(output)
4966
        output = self.last_dropout(output)
thomwolf's avatar
thomwolf committed
4967
4968
4969
4970

        return output


4971
def unwrap_model(model: nn.Module) -> nn.Module:
4972
4973
4974
4975
    """
    Recursively unwraps a model from potential containers (as used in distributed training).

    Args:
4976
        model (`torch.nn.Module`): The model to unwrap.
4977
4978
4979
4980
4981
4982
    """
    # since there could be multiple levels of wrapping, unwrap recursively
    if hasattr(model, "module"):
        return unwrap_model(model.module)
    else:
        return model
Sylvain Gugger's avatar
Sylvain Gugger committed
4983
4984


4985
def expand_device_map(device_map, param_names, start_prefix):
Sylvain Gugger's avatar
Sylvain Gugger committed
4986
4987
4988
4989
    """
    Expand a device map to return the correspondance parameter name to device.
    """
    new_device_map = {}
4990
    param_names = [p[len(start_prefix) :] for p in param_names if p.startswith(start_prefix)]
Sylvain Gugger's avatar
Sylvain Gugger committed
4991
    for module, device in device_map.items():
4992
4993
4994
        new_device_map.update(
            {p: device for p in param_names if p == module or p.startswith(f"{module}.") or module == ""}
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
4995
4996
4997
    return new_device_map


4998
def get_disk_only_shard_files(device_map, sharded_metadata, start_prefix):
Sylvain Gugger's avatar
Sylvain Gugger committed
4999
5000
5001
    """
    Returns the list of shard files containing only weights offloaded to disk.
    """
5002
5003
5004
5005

    weight_map = {
        p[len(start_prefix) :]: v for p, v in sharded_metadata["weight_map"].items() if p.startswith(start_prefix)
    }
Sylvain Gugger's avatar
Sylvain Gugger committed
5006
    files_content = collections.defaultdict(list)
5007
    for weight_name, filename in weight_map.items():
Sylvain Gugger's avatar
Sylvain Gugger committed
5008
5009
5010
5011
5012
        while len(weight_name) > 0 and weight_name not in device_map:
            weight_name = ".".join(weight_name.split(".")[:-1])
        files_content[filename].append(device_map[weight_name])

    return [fname for fname, devices in files_content.items() if set(devices) == {"disk"}]