modeling_utils.py 210 KB
Newer Older
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
16
import collections
17
import gc
18
import importlib.metadata
Yih-Dar's avatar
Yih-Dar committed
19
import inspect
Sylvain Gugger's avatar
Sylvain Gugger committed
20
import json
21
import os
22
import re
Sylvain Gugger's avatar
Sylvain Gugger committed
23
24
import shutil
import tempfile
25
import warnings
26
from contextlib import contextmanager
27
from dataclasses import dataclass
28
from functools import partial, wraps
29
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
30
31

import torch
32
from packaging import version
Sylvain Gugger's avatar
Sylvain Gugger committed
33
from torch import Tensor, nn
34
from torch.nn import CrossEntropyLoss, Identity
35

36
from .activations import get_activation
37
from .configuration_utils import PretrainedConfig
38
from .dynamic_module_utils import custom_object_save
39
from .generation import GenerationConfig, GenerationMixin
40
from .integrations import PeftAdapterMixin, deepspeed_config, is_deepspeed_zero3_enabled
41
42
43
44
from .pytorch_utils import (  # noqa: F401
    Conv1D,
    apply_chunking_to_forward,
    find_pruneable_heads_and_indices,
Thomas Wang's avatar
Thomas Wang committed
45
    id_tensor_storage,
46
47
48
49
    prune_conv1d_layer,
    prune_layer,
    prune_linear_layer,
)
50
from .utils import (
51
52
    ADAPTER_SAFE_WEIGHTS_NAME,
    ADAPTER_WEIGHTS_NAME,
53
    CONFIG_NAME,
Aymeric Augustin's avatar
Aymeric Augustin committed
54
    DUMMY_INPUTS,
55
    FLAX_WEIGHTS_NAME,
56
57
    SAFE_WEIGHTS_INDEX_NAME,
    SAFE_WEIGHTS_NAME,
58
59
    TF2_WEIGHTS_NAME,
    TF_WEIGHTS_NAME,
Sylvain Gugger's avatar
Sylvain Gugger committed
60
    WEIGHTS_INDEX_NAME,
61
    WEIGHTS_NAME,
62
    ContextManagers,
63
    ModelOutput,
Sylvain Gugger's avatar
Sylvain Gugger committed
64
    PushToHubMixin,
65
    cached_file,
66
    copy_func,
67
    download_url,
68
    extract_commit_hash,
69
    has_file,
70
    is_accelerate_available,
Marc Sun's avatar
Marc Sun committed
71
    is_auto_gptq_available,
72
    is_bitsandbytes_available,
73
    is_flash_attn_2_available,
74
    is_offline_mode,
75
    is_optimum_available,
76
    is_peft_available,
77
    is_remote_url,
78
    is_safetensors_available,
79
    is_torch_tpu_available,
80
    logging,
Sylvain Gugger's avatar
Sylvain Gugger committed
81
    replace_return_docstrings,
82
    strtobool,
83
)
84
from .utils.hub import convert_file_size_to_int, get_checkpoint_shard_files
85
86
87
88
89
90
from .utils.import_utils import (
    ENV_VARS_TRUE_VALUES,
    is_sagemaker_mp_enabled,
    is_torch_fx_proxy,
    is_torchdynamo_compiling,
)
Marc Sun's avatar
Marc Sun committed
91
from .utils.quantization_config import BitsAndBytesConfig, GPTQConfig, QuantizationMethod
92
from .utils.versions import require_version_core
93

Aymeric Augustin's avatar
Aymeric Augustin committed
94

95
96
97
XLA_USE_BF16 = os.environ.get("XLA_USE_BF16", "0").upper()
XLA_DOWNCAST_BF16 = os.environ.get("XLA_DOWNCAST_BF16", "0").upper()

98
99
if is_accelerate_available():
    from accelerate import dispatch_model, infer_auto_device_map, init_empty_weights
100
    from accelerate.hooks import add_hook_to_module
101
    from accelerate.utils import (
102
        check_tied_parameters_on_same_device,
103
        find_tied_parameters,
104
        get_balanced_memory,
Marc Sun's avatar
Marc Sun committed
105
        get_max_memory,
106
107
108
109
110
111
        load_offloaded_weights,
        offload_weight,
        save_offload_index,
        set_module_tensor_to_device,
    )

112
113
114
115
if is_safetensors_available():
    from safetensors import safe_open
    from safetensors.torch import load_file as safe_load_file
    from safetensors.torch import save_file as safe_save_file
116

Lysandre Debut's avatar
Lysandre Debut committed
117
logger = logging.get_logger(__name__)
118

119
120
121
122

_init_weights = True


123
def is_fsdp_enabled():
124
125
126
127
    return (
        torch.distributed.is_available()
        and torch.distributed.is_initialized()
        and strtobool(os.environ.get("ACCELERATE_USE_FSDP", "False")) == 1
128
        and strtobool(os.environ.get("FSDP_CPU_RAM_EFFICIENT_LOADING", "False")) == 1
129
    )
130
131
132


def is_fsdp_enabled_and_dist_rank_0():
133
    return is_fsdp_enabled() and int(os.environ.get("LOCAL_RANK", -1)) == 0
134
135


136
137
138
139
140
141
142
143
if is_sagemaker_mp_enabled():
    import smdistributed.modelparallel.torch as smp
    from smdistributed.modelparallel import __version__ as SMP_VERSION

    IS_SAGEMAKER_MP_POST_1_10 = version.parse(SMP_VERSION) >= version.parse("1.10")
else:
    IS_SAGEMAKER_MP_POST_1_10 = False

144
145
146
if is_peft_available():
    from .utils import find_adapter_config_file

147

148
149
150
151
152
153
154
155
@contextmanager
def no_init_weights(_enable=True):
    """
    Context manager to globally disable weight initialization to speed up loading large models.

    TODO(Patrick): Delete safety argument `_enable=True` at next major version. .
    """
    global _init_weights
156
    old_init_weights = _init_weights
157
158
159
160
161
    if _enable:
        _init_weights = False
    try:
        yield
    finally:
162
        _init_weights = old_init_weights
163
164


Lysandre Debut's avatar
Lysandre Debut committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
def get_parameter_device(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    try:
        return next(parameter.parameters()).device
    except StopIteration:
        # For nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].device


180
181
182
183
def get_first_parameter_dtype(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    """
    Returns the first parameter dtype (can be non-floating) or asserts if none were found.
    """
Lysandre Debut's avatar
Lysandre Debut committed
184
185
186
    try:
        return next(parameter.parameters()).dtype
    except StopIteration:
Sylvain Gugger's avatar
Sylvain Gugger committed
187
        # For nn.DataParallel compatibility in PyTorch > 1.5
Lysandre Debut's avatar
Lysandre Debut committed
188
189
190
191
192
193
194
195
196
197

        def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].dtype


198
199
def get_parameter_dtype(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
200
    Returns the first found floating dtype in parameters if there is one, otherwise returns the last dtype it found.
201
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
202
203
204
205
    last_dtype = None
    for t in parameter.parameters():
        last_dtype = t.dtype
        if t.is_floating_point():
206
207
208
            # Adding fix for https://github.com/pytorch/xla/issues/4152
            # Fixes issue where the model code passes a value that is out of range for XLA_USE_BF16=1
            # and XLA_DOWNCAST_BF16=1 so the conversion would cast it to -inf
209
210
211
212
213
            # NOTE: `is_torch_tpu_available()` is checked last as it induces a graph break in torch dynamo
            if XLA_USE_BF16 in ENV_VARS_TRUE_VALUES and is_torch_tpu_available():
                return torch.bfloat16
            if XLA_DOWNCAST_BF16 in ENV_VARS_TRUE_VALUES and is_torch_tpu_available():
                if t.dtype == torch.float:
214
                    return torch.bfloat16
215
216
                if t.dtype == torch.double:
                    return torch.float32
Sylvain Gugger's avatar
Sylvain Gugger committed
217
            return t.dtype
218

Sylvain Gugger's avatar
Sylvain Gugger committed
219
220
221
    if last_dtype is not None:
        # if no floating dtype was found return whatever the first dtype is
        return last_dtype
222

223
224
225
226
227
228
229
230
231
232
233
234
235
    # For nn.DataParallel compatibility in PyTorch > 1.5
    def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
        tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
        return tuples

    gen = parameter._named_members(get_members_fn=find_tensor_attributes)
    last_tuple = None
    for tuple in gen:
        last_tuple = tuple
        if tuple[1].is_floating_point():
            return tuple[1].dtype

    if last_tuple is not None:
236
237
        # fallback to the last dtype
        return last_tuple[1].dtype
238

239
240
241
242
243
244
245
    # fallback to buffer dtype
    for t in parameter.buffers():
        last_dtype = t.dtype
        if t.is_floating_point():
            return t.dtype
    return last_dtype

246
247
248
249
250
251
252
253
254
255
256
257
258
259

def get_state_dict_float_dtype(state_dict):
    """
    Returns the first found floating dtype in `state_dict` or asserts if none were found.
    """
    for t in state_dict.values():
        if t.is_floating_point():
            return t.dtype

    raise ValueError("couldn't find any floating point dtypes in state_dict")


def get_state_dict_dtype(state_dict):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
260
    Returns the first found floating dtype in `state_dict` if there is one, otherwise returns the first dtype.
261
262
263
264
265
266
267
    """
    for t in state_dict.values():
        if t.is_floating_point():
            return t.dtype

    # if no floating dtype was found return whatever the first dtype is
    else:
Sylvain Gugger's avatar
Sylvain Gugger committed
268
        return next(state_dict.values()).dtype
269
270


Sylvain Gugger's avatar
Sylvain Gugger committed
271
272
273
274
275
276
277
278
279
280
281
282
283
def dtype_byte_size(dtype):
    """
    Returns the size (in bytes) occupied by one parameter of type `dtype`.

    Example:

    ```py
    >>> dtype_byte_size(torch.float32)
    4
    ```
    """
    if dtype == torch.bool:
        return 1 / 8
284
    bit_search = re.search(r"[^\d](\d+)$", str(dtype))
Sylvain Gugger's avatar
Sylvain Gugger committed
285
286
287
288
289
290
    if bit_search is None:
        raise ValueError(f"`dtype` is not a valid dtype: {dtype}.")
    bit_size = int(bit_search.groups()[0])
    return bit_size // 8


291
292
293
def shard_checkpoint(
    state_dict: Dict[str, torch.Tensor], max_shard_size: Union[int, str] = "10GB", weights_name: str = WEIGHTS_NAME
):
Sylvain Gugger's avatar
Sylvain Gugger committed
294
295
296
297
298
299
300
301
302
303
304
    """
    Splits a model state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a
    given size.

    The sub-checkpoints are determined by iterating through the `state_dict` in the order of its keys, so there is no
    optimization made to make each sub-checkpoint as close as possible to the maximum size passed. For example, if the
    limit is 10GB and we have weights of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as [6GB], [6+2GB],
    [6+2+2GB] and not [6+2+2GB], [6+2GB], [6GB].

    <Tip warning={true}>

Alan Ji's avatar
Alan Ji committed
305
    If one of the model's weight is bigger than `max_shard_size`, it will end up in its own sub-checkpoint which will
Sylvain Gugger's avatar
Sylvain Gugger committed
306
307
308
309
310
311
312
313
314
    have a size greater than `max_shard_size`.

    </Tip>

    Args:
        state_dict (`Dict[str, torch.Tensor]`): The state dictionary of a model to save.
        max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
            The maximum size of each sub-checkpoint. If expressed as a string, needs to be digits followed by a unit
            (like `"5MB"`).
315
316
        weights_name (`str`, *optional*, defaults to `"pytorch_model.bin"`):
            The name of the model save file.
Sylvain Gugger's avatar
Sylvain Gugger committed
317
318
319
    """
    max_shard_size = convert_file_size_to_int(max_shard_size)

Thomas Wang's avatar
Thomas Wang committed
320
321
    sharded_state_dicts = [{}]
    last_block_size = 0
Sylvain Gugger's avatar
Sylvain Gugger committed
322
    total_size = 0
Thomas Wang's avatar
Thomas Wang committed
323
    storage_id_to_block = {}
Sylvain Gugger's avatar
Sylvain Gugger committed
324
325

    for key, weight in state_dict.items():
326
327
328
329
330
331
        # when bnb serialization is used the weights in the state dict can be strings
        # check: https://github.com/huggingface/transformers/pull/24416 for more details
        if isinstance(weight, str):
            continue
        else:
            storage_id = id_tensor_storage(weight)
Thomas Wang's avatar
Thomas Wang committed
332
333
334
335
336
337
338

        # If a `weight` shares the same underlying storage as another tensor, we put `weight` in the same `block`
        if storage_id in storage_id_to_block:
            block_id = storage_id_to_block[storage_id]
            sharded_state_dicts[block_id][key] = weight
            continue

Sylvain Gugger's avatar
Sylvain Gugger committed
339
340
        weight_size = weight.numel() * dtype_byte_size(weight.dtype)

Sylvain Gugger's avatar
Sylvain Gugger committed
341
342
343
        # If this weight is going to tip up over the maximal size, we split, but only if we have put at least one
        # weight in the current shard.
        if last_block_size + weight_size > max_shard_size and len(sharded_state_dicts[-1]) > 0:
Thomas Wang's avatar
Thomas Wang committed
344
345
            sharded_state_dicts.append({})
            last_block_size = 0
Sylvain Gugger's avatar
Sylvain Gugger committed
346

Thomas Wang's avatar
Thomas Wang committed
347
348
        sharded_state_dicts[-1][key] = weight
        last_block_size += weight_size
Sylvain Gugger's avatar
Sylvain Gugger committed
349
        total_size += weight_size
Thomas Wang's avatar
Thomas Wang committed
350
        storage_id_to_block[storage_id] = len(sharded_state_dicts) - 1
Sylvain Gugger's avatar
Sylvain Gugger committed
351
352
353

    # If we only have one shard, we return it
    if len(sharded_state_dicts) == 1:
354
        return {weights_name: sharded_state_dicts[0]}, None
Sylvain Gugger's avatar
Sylvain Gugger committed
355
356
357
358
359

    # Otherwise, let's build the index
    weight_map = {}
    shards = {}
    for idx, shard in enumerate(sharded_state_dicts):
360
361
362
363
        shard_file = weights_name.replace(".bin", f"-{idx+1:05d}-of-{len(sharded_state_dicts):05d}.bin")
        shard_file = shard_file.replace(
            ".safetensors", f"-{idx + 1:05d}-of-{len(sharded_state_dicts):05d}.safetensors"
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
364
365
366
367
368
369
370
371
372
373
        shards[shard_file] = shard
        for key in shard.keys():
            weight_map[key] = shard_file

    # Add the metadata
    metadata = {"total_size": total_size}
    index = {"metadata": metadata, "weight_map": weight_map}
    return shards, index


374
def load_sharded_checkpoint(model, folder, strict=True, prefer_safe=True):
375
376
377
378
379
380
381
382
383
384
385
386
387
    """
    This is the same as
    [`torch.nn.Module.load_state_dict`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html?highlight=load_state_dict#torch.nn.Module.load_state_dict)
    but for a sharded checkpoint.

    This load is performed efficiently: each checkpoint shard is loaded one by one in RAM and deleted after being
    loaded in the model.

    Args:
        model (`torch.nn.Module`): The model in which to load the checkpoint.
        folder (`str` or `os.PathLike`): A path to a folder containing the sharded checkpoint.
        strict (`bool`, *optional`, defaults to `True`):
            Whether to strictly enforce that the keys in the model state dict match the keys in the sharded checkpoint.
388
389
390
        prefer_safe (`bool`, *optional*, defaults to `False`)
            If both safetensors and PyTorch save files are present in checkpoint and `prefer_safe` is True, the
            safetensors files will be loaded. Otherwise, PyTorch files are always loaded when possible.
391
392
393
394
395
396
397
398

    Returns:
        `NamedTuple`: A named tuple with `missing_keys` and `unexpected_keys` fields
            - `missing_keys` is a list of str containing the missing keys
            - `unexpected_keys` is a list of str containing the unexpected keys
    """
    # Load the index
    index_file = os.path.join(folder, WEIGHTS_INDEX_NAME)
399
    safe_index_file = os.path.join(folder, SAFE_WEIGHTS_INDEX_NAME)
400

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
    index_present = os.path.isfile(index_file)
    safe_index_present = os.path.isfile(safe_index_file)

    if not index_present and not (safe_index_present and is_safetensors_available()):
        filenames = (
            (WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_INDEX_NAME) if is_safetensors_available() else (WEIGHTS_INDEX_NAME,)
        )
        raise ValueError(f"Can't find a checkpoint index ({' or '.join(filenames)}) in {folder}.")

    load_safe = False
    if safe_index_present:
        if prefer_safe:
            if is_safetensors_available():
                load_safe = True  # load safe due to preference
            else:
                logger.warning(
                    f"Cannot load sharded checkpoint at {folder} safely since safetensors is not installed!"
                )
        elif not index_present:
            load_safe = True  # load safe since we have no other choice

    load_index = safe_index_file if load_safe else index_file

    with open(load_index, "r", encoding="utf-8") as f:
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
        index = json.load(f)

    shard_files = list(set(index["weight_map"].values()))

    # If strict=True, error before loading any of the state dicts.
    loaded_keys = index["weight_map"].keys()
    model_keys = model.state_dict().keys()
    missing_keys = [key for key in model_keys if key not in loaded_keys]
    unexpected_keys = [key for key in loaded_keys if key not in model_keys]
    if strict and (len(missing_keys) > 0 or len(unexpected_keys) > 0):
        error_message = f"Error(s) in loading state_dict for {model.__class__.__name__}"
        if len(missing_keys) > 0:
            str_missing_keys = ",".join([f'"{k}"' for k in missing_keys])
            error_message += f"\nMissing key(s): {str_missing_keys}."
        if len(unexpected_keys) > 0:
            str_unexpected_keys = ",".join([f'"{k}"' for k in unexpected_keys])
            error_message += f"\nMissing key(s): {str_unexpected_keys}."
        raise RuntimeError(error_message)

444
445
    loader = safe_load_file if load_safe else partial(torch.load, map_location="cpu")

446
    for shard_file in shard_files:
447
        state_dict = loader(os.path.join(folder, shard_file))
448
449
        model.load_state_dict(state_dict, strict=False)

450
        # Make sure memory is freed before we load the next state dict.
451
452
453
454
455
456
457
        del state_dict
        gc.collect()

    # Return the same thing as PyTorch load_state_dict function.
    return torch.nn.modules.module._IncompatibleKeys(missing_keys, unexpected_keys)


Sylvain Gugger's avatar
Sylvain Gugger committed
458
459
460
461
def load_state_dict(checkpoint_file: Union[str, os.PathLike]):
    """
    Reads a PyTorch checkpoint file, returning properly formatted errors if they arise.
    """
462
463
464
465
466
467
468
469
470
471
472
473
474
475
    if checkpoint_file.endswith(".safetensors") and is_safetensors_available():
        # Check format of the archive
        with safe_open(checkpoint_file, framework="pt") as f:
            metadata = f.metadata()
        if metadata.get("format") not in ["pt", "tf", "flax"]:
            raise OSError(
                f"The safetensors archive passed at {checkpoint_file} does not contain the valid metadata. Make sure "
                "you save your model with the `save_pretrained` method."
            )
        elif metadata["format"] != "pt":
            raise NotImplementedError(
                f"Conversion from a {metadata['format']} safetensors archive to PyTorch is not implemented yet."
            )
        return safe_load_file(checkpoint_file)
Sylvain Gugger's avatar
Sylvain Gugger committed
476
    try:
477
        if (
478
            (is_deepspeed_zero3_enabled() or is_fsdp_enabled())
479
480
481
            and torch.distributed.is_initialized()
            and torch.distributed.get_rank() > 0
        ):
482
483
484
485
            map_location = "meta"
        else:
            map_location = "cpu"
        return torch.load(checkpoint_file, map_location=map_location)
Sylvain Gugger's avatar
Sylvain Gugger committed
486
487
488
    except Exception as e:
        try:
            with open(checkpoint_file) as f:
489
                if f.read(7) == "version":
Sylvain Gugger's avatar
Sylvain Gugger committed
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
                    raise OSError(
                        "You seem to have cloned a repository without having git-lfs installed. Please install "
                        "git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
                        "you cloned."
                    )
                else:
                    raise ValueError(
                        f"Unable to locate the file {checkpoint_file} which is necessary to load this pretrained "
                        "model. Make sure you have saved the model properly."
                    ) from e
        except (UnicodeDecodeError, ValueError):
            raise OSError(
                f"Unable to load weights from pytorch checkpoint file for '{checkpoint_file}' "
                f"at '{checkpoint_file}'. "
                "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True."
            )


508
509
510
511
512
513
514
515
516
517
518
def set_initialized_submodules(model, state_dict_keys):
    """
    Sets the `_is_hf_initialized` flag in all submodules of a given model when all its weights are in the loaded state
    dict.
    """
    for module_name, module in model.named_modules():
        loaded_keys = [k.replace(f"{module_name}.", "") for k in state_dict_keys if k.startswith(f"{module_name}.")]
        if len(set(module.state_dict().keys()) - set(loaded_keys)) == 0:
            module._is_hf_initialized = True


Sylvain Gugger's avatar
Sylvain Gugger committed
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
def _load_state_dict_into_model(model_to_load, state_dict, start_prefix):
    # Convert old format to new format if needed from a PyTorch state_dict
    old_keys = []
    new_keys = []
    for key in state_dict.keys():
        new_key = None
        if "gamma" in key:
            new_key = key.replace("gamma", "weight")
        if "beta" in key:
            new_key = key.replace("beta", "bias")
        if new_key:
            old_keys.append(key)
            new_keys.append(new_key)
    for old_key, new_key in zip(old_keys, new_keys):
        state_dict[new_key] = state_dict.pop(old_key)

    # copy state_dict so _load_from_state_dict can modify it
    metadata = getattr(state_dict, "_metadata", None)
    state_dict = state_dict.copy()
    if metadata is not None:
        state_dict._metadata = metadata

    error_msgs = []

    # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
    # so we need to apply the function recursively.
545
    def load(module: nn.Module, state_dict, prefix=""):
Sylvain Gugger's avatar
Sylvain Gugger committed
546
547
        local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
        args = (state_dict, prefix, local_metadata, True, [], [], error_msgs)
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
        # Parameters of module and children will start with prefix. We can exit early if there are none in this
        # state_dict
        if len([key for key in state_dict if key.startswith(prefix)]) > 0:
            if is_deepspeed_zero3_enabled():
                import deepspeed

                # In sharded models, each shard has only part of the full state_dict, so only gather
                # parameters that are in the current state_dict.
                named_parameters = dict(module.named_parameters(prefix=prefix[:-1], recurse=False))
                params_to_gather = [named_parameters[k] for k in state_dict.keys() if k in named_parameters]
                if len(params_to_gather) > 0:
                    # because zero3 puts placeholders in model params, this context
                    # manager gathers (unpartitions) the params of the current layer, then loads from
                    # the state dict and then re-partitions them again
                    with deepspeed.zero.GatheredParameters(params_to_gather, modifier_rank=0):
                        if torch.distributed.get_rank() == 0:
                            module._load_from_state_dict(*args)
            else:
                module._load_from_state_dict(*args)
Sylvain Gugger's avatar
Sylvain Gugger committed
567
568
569

        for name, child in module._modules.items():
            if child is not None:
570
                load(child, state_dict, prefix + name + ".")
Sylvain Gugger's avatar
Sylvain Gugger committed
571

572
573
574
575
    load(model_to_load, state_dict, prefix=start_prefix)
    # Delete `state_dict` so it could be collected by GC earlier. Note that `state_dict` is a copy of the argument, so
    # it's safe to delete it.
    del state_dict
Sylvain Gugger's avatar
Sylvain Gugger committed
576
577
578
579

    return error_msgs


580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
def find_submodule_and_param_name(model, long_key, start_prefix):
    """
    A helper util to find the last sub-module and the param/buffer name. If `start_prefix` is supplied it'll be removed
    from the start of the key
    """

    if len(start_prefix) > 0 and long_key.startswith(start_prefix):
        long_key = ".".join(long_key.split(".")[1:])

    split_key = long_key.split(".")
    submodule = model
    while len(split_key) > 1:
        if hasattr(submodule, split_key[0]):
            submodule = getattr(submodule, split_key[0])
            del split_key[0]
        else:
            submodule = None
            break
    if submodule == model:
        submodule = None
    return submodule, split_key[0]


def _move_model_to_meta(model, loaded_state_dict_keys, start_prefix):
    """
    Moves `loaded_state_dict_keys` in model to meta device which frees up the memory taken by those params.

    `start_prefix` is used for models which insert their name into model keys, e.g. `bert` in
    `bert.pooler.dense.weight`

    """

    # dematerialize param storage for keys that are going to be replaced by state_dict, by
    # putting those on the meta device
    for k in loaded_state_dict_keys:
        submodule, param_name = find_submodule_and_param_name(model, k, start_prefix)
        if submodule is not None:
            # selectively switch to the meta device only those params/buffers that will
            # be next replaced from state_dict. This a complex way to do p.to_("meta")
            # since we have no in-place to_ for tensors.
            new_val = getattr(submodule, param_name)
            if isinstance(new_val, torch.nn.Parameter):
                # isinstance returns False for Params on meta device, so switch after the check
                new_val = torch.nn.Parameter(new_val.to("meta"))
            else:
                new_val = new_val.to("meta")
            setattr(submodule, param_name, new_val)


629
630
631
632
633
634
635
636
637
638
639
640
def _load_state_dict_into_meta_model(
    model,
    state_dict,
    loaded_state_dict_keys,  # left for now but could be removed, see below
    start_prefix,
    expected_keys,
    device_map=None,
    offload_folder=None,
    offload_index=None,
    state_dict_folder=None,
    state_dict_index=None,
    dtype=None,
641
    is_quantized=False,
Sylvain Gugger's avatar
Sylvain Gugger committed
642
    is_safetensors=False,
643
    keep_in_fp32_modules=None,
644
):
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
    """
    This is somewhat similar to `_load_state_dict_into_model`, but deals with a model that has some or all of its
    params on a `meta` device. It replaces the model params with the data from the `state_dict`, while moving the
    params back to the normal device, but only for `loaded_state_dict_keys`.

    `start_prefix` is used for models which insert their name into model keys, e.g. `bert` in
    `bert.pooler.dense.weight`

    """

    # XXX: remaining features to implement to be fully compatible with _load_state_dict_into_model
    # - deepspeed zero 3 support
    # - need to copy metadata if any - see _load_state_dict_into_model
    # - handling error_msgs - mimicking the error handling in module._load_from_state_dict()
    # - Is there a situation where some keys aren't in `loaded_state_dict_keys` and in which case
    #   they won't get loaded.

662
    if is_quantized:
663
        from .integrations import set_module_quantized_tensor_to_device
664

665
666
    error_msgs = []

667
668
669
670
671
672
673
674
675
676
677
678
679
    old_keys = []
    new_keys = []
    for key in state_dict.keys():
        new_key = None
        if "gamma" in key:
            new_key = key.replace("gamma", "weight")
        if "beta" in key:
            new_key = key.replace("beta", "bias")
        if new_key:
            old_keys.append(key)
            new_keys.append(new_key)
    for old_key, new_key in zip(old_keys, new_keys):
        state_dict[new_key] = state_dict.pop(old_key)
680

681
682
683
684
685
686
687
688
689
    for param_name, param in state_dict.items():
        # First part of the test is always true as load_state_dict_keys always contains state_dict keys.
        if param_name not in loaded_state_dict_keys or param_name not in expected_keys:
            continue

        if param_name.startswith(start_prefix):
            param_name = param_name[len(start_prefix) :]

        module_name = param_name
690
        set_module_kwargs = {}
691

692
        # We convert floating dtypes to the `dtype` passed. We want to keep the buffers/params
693
694
        # in int/uint/bool and not cast them.
        if dtype is not None and torch.is_floating_point(param):
695
696
            if (
                keep_in_fp32_modules is not None
697
698
699
                and any(
                    module_to_keep_in_fp32 in param_name.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules
                )
700
701
702
                and dtype == torch.float16
            ):
                param = param.to(torch.float32)
703
704
705
706
707

                # For backward compatibility with older versions of `accelerate`
                # TODO: @sgugger replace this check with version check at the next `accelerate` release
                if "dtype" in list(inspect.signature(set_module_tensor_to_device).parameters):
                    set_module_kwargs["dtype"] = torch.float32
708
709
            else:
                param = param.to(dtype)
710
711
712
713
714
715
716
717
718
719
720
721

        # For compatibility with PyTorch load_state_dict which converts state dict dtype to existing dtype in model
        if dtype is None:
            old_param = model
            splits = param_name.split(".")
            for split in splits:
                old_param = getattr(old_param, split)
                if old_param is None:
                    break

            if old_param is not None:
                param = param.to(old_param.dtype)
722

723
724
        set_module_kwargs["value"] = param

725
726
727
728
729
730
731
732
733
734
735
        if device_map is None:
            param_device = "cpu"
        else:
            # find next higher level module that is defined in device_map:
            # bert.lm_head.weight -> bert.lm_head -> bert -> ''
            while len(module_name) > 0 and module_name not in device_map:
                module_name = ".".join(module_name.split(".")[:-1])
            if module_name == "" and "" not in device_map:
                # TODO: group all errors and raise at the end.
                raise ValueError(f"{param_name} doesn't have any device set.")
            param_device = device_map[module_name]
736

737
        if param_device == "disk":
Sylvain Gugger's avatar
Sylvain Gugger committed
738
739
            if not is_safetensors:
                offload_index = offload_weight(param, param_name, offload_folder, offload_index)
740
741
        elif param_device == "cpu" and state_dict_index is not None:
            state_dict_index = offload_weight(param, param_name, state_dict_folder, state_dict_index)
742
        elif not is_quantized:
743
744
            # For backward compatibility with older versions of `accelerate`
            set_module_tensor_to_device(model, param_name, param_device, **set_module_kwargs)
745
        else:
746
747
748
749
750
751
            if param.dtype == torch.int8 and param_name.replace("weight", "SCB") in state_dict.keys():
                fp16_statistics = state_dict[param_name.replace("weight", "SCB")]
            else:
                fp16_statistics = None

            if "SCB" not in param_name:
752
                set_module_quantized_tensor_to_device(
753
754
                    model, param_name, param_device, value=param, fp16_statistics=fp16_statistics
                )
755
756

    return error_msgs, offload_index, state_dict_index
757
758


759
760
761
762
763
764
765
766
767
def _add_variant(weights_name: str, variant: Optional[str] = None) -> str:
    if variant is not None:
        splits = weights_name.split(".")
        splits = splits[:-1] + [variant] + splits[-1:]
        weights_name = ".".join(splits)

    return weights_name


768
class ModuleUtilsMixin:
Julien Chaumond's avatar
Julien Chaumond committed
769
    """
770
    A few utilities for `torch.nn.Modules`, to be used as a mixin.
Julien Chaumond's avatar
Julien Chaumond committed
771
772
    """

773
774
775
776
    @staticmethod
    def _hook_rss_memory_pre_forward(module, *args, **kwargs):
        try:
            import psutil
Sylvain Gugger's avatar
Sylvain Gugger committed
777
        except ImportError:
778
779
780
781
782
783
784
785
786
787
788
            raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")

        process = psutil.Process(os.getpid())
        mem = process.memory_info()
        module.mem_rss_pre_forward = mem.rss
        return None

    @staticmethod
    def _hook_rss_memory_post_forward(module, *args, **kwargs):
        try:
            import psutil
Sylvain Gugger's avatar
Sylvain Gugger committed
789
        except ImportError:
790
791
792
793
794
795
796
797
798
799
            raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")

        process = psutil.Process(os.getpid())
        mem = process.memory_info()
        module.mem_rss_post_forward = mem.rss
        mem_rss_diff = module.mem_rss_post_forward - module.mem_rss_pre_forward
        module.mem_rss_diff = mem_rss_diff + (module.mem_rss_diff if hasattr(module, "mem_rss_diff") else 0)
        return None

    def add_memory_hooks(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
800
801
802
        """
        Add a memory hook before and after each sub-module forward pass to record increase in memory consumption.

Sylvain Gugger's avatar
Sylvain Gugger committed
803
804
        Increase in memory consumption is stored in a `mem_rss_diff` attribute for each module and can be reset to zero
        with `model.reset_memory_hooks_state()`.
805
806
807
808
809
810
811
        """
        for module in self.modules():
            module.register_forward_pre_hook(self._hook_rss_memory_pre_forward)
            module.register_forward_hook(self._hook_rss_memory_post_forward)
        self.reset_memory_hooks_state()

    def reset_memory_hooks_state(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
812
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
813
        Reset the `mem_rss_diff` attribute of each module (see [`~modeling_utils.ModuleUtilsMixin.add_memory_hooks`]).
Sylvain Gugger's avatar
Sylvain Gugger committed
814
        """
815
816
817
818
819
        for module in self.modules():
            module.mem_rss_diff = 0
            module.mem_rss_post_forward = 0
            module.mem_rss_pre_forward = 0

820
    @property
Sylvain Gugger's avatar
Sylvain Gugger committed
821
    def device(self) -> torch.device:
822
        """
823
        `torch.device`: The device on which the module is (assuming that all the module parameters are on the same
824
        device).
825
        """
Lysandre Debut's avatar
Lysandre Debut committed
826
        return get_parameter_device(self)
827

828
    @property
829
    def dtype(self) -> torch.dtype:
830
        """
831
        `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
832
        """
Lysandre Debut's avatar
Lysandre Debut committed
833
        return get_parameter_dtype(self)
834
835

    def invert_attention_mask(self, encoder_attention_mask: Tensor) -> Tensor:
Sylvain Gugger's avatar
Sylvain Gugger committed
836
837
838
839
        """
        Invert an attention mask (e.g., switches 0. and 1.).

        Args:
840
            encoder_attention_mask (`torch.Tensor`): An attention mask.
Sylvain Gugger's avatar
Sylvain Gugger committed
841
842

        Returns:
843
            `torch.Tensor`: The inverted attention mask.
Sylvain Gugger's avatar
Sylvain Gugger committed
844
        """
845
846
847
848
849
850
851
852
853
854
        if encoder_attention_mask.dim() == 3:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
        if encoder_attention_mask.dim() == 2:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
        # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
        # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
        # /transformer/transformer_layers.py#L270
        # encoder_extended_attention_mask = (encoder_extended_attention_mask ==
        # encoder_extended_attention_mask.transpose(-1, -2))
        encoder_extended_attention_mask = encoder_extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
Yih-Dar's avatar
Yih-Dar committed
855
        encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * torch.finfo(self.dtype).min
856

857
858
        return encoder_extended_attention_mask

859
    @staticmethod
860
861
862
863
864
865
866
    def create_extended_attention_mask_for_decoder(input_shape, attention_mask, device=None):
        if device is not None:
            warnings.warn(
                "The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
            )
        else:
            device = attention_mask.device
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
        batch_size, seq_length = input_shape
        seq_ids = torch.arange(seq_length, device=device)
        causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
        # in case past_key_values are used we need to add a prefix ones mask to the causal mask
        # causal and attention masks must have same type with pytorch version < 1.3
        causal_mask = causal_mask.to(attention_mask.dtype)

        if causal_mask.shape[1] < attention_mask.shape[1]:
            prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
            causal_mask = torch.cat(
                [
                    torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype),
                    causal_mask,
                ],
                axis=-1,
            )

        extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
        return extended_attention_mask

887
    def get_extended_attention_mask(
888
        self, attention_mask: Tensor, input_shape: Tuple[int], device: torch.device = None, dtype: torch.float = None
889
    ) -> Tensor:
Sylvain Gugger's avatar
Sylvain Gugger committed
890
891
        """
        Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
892
893

        Arguments:
894
            attention_mask (`torch.Tensor`):
Sylvain Gugger's avatar
Sylvain Gugger committed
895
                Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
896
            input_shape (`Tuple[int]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
897
                The shape of the input to the model.
898
899

        Returns:
900
            `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
901
        """
Yih-Dar's avatar
Yih-Dar committed
902
903
904
        if dtype is None:
            dtype = self.dtype

905
906
907
908
909
910
        if not (attention_mask.dim() == 2 and self.config.is_decoder):
            # show warning only if it won't be shown in `create_extended_attention_mask_for_decoder`
            if device is not None:
                warnings.warn(
                    "The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
                )
911
912
913
914
915
916
917
918
919
        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        if attention_mask.dim() == 3:
            extended_attention_mask = attention_mask[:, None, :, :]
        elif attention_mask.dim() == 2:
            # Provided a padding mask of dimensions [batch_size, seq_length]
            # - if the model is a decoder, apply a causal mask in addition to the padding mask
            # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
            if self.config.is_decoder:
920
                extended_attention_mask = ModuleUtilsMixin.create_extended_attention_mask_for_decoder(
921
922
                    input_shape, attention_mask, device
                )
923
924
925
926
            else:
                extended_attention_mask = attention_mask[:, None, None, :]
        else:
            raise ValueError(
927
                f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})"
928
929
930
931
            )

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
932
        # positions we want to attend and the dtype's smallest value for masked positions.
933
934
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
Yih-Dar's avatar
Yih-Dar committed
935
936
        extended_attention_mask = extended_attention_mask.to(dtype=dtype)  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(dtype).min
937
938
        return extended_attention_mask

Sylvain Gugger's avatar
Sylvain Gugger committed
939
940
941
    def get_head_mask(
        self, head_mask: Optional[Tensor], num_hidden_layers: int, is_attention_chunked: bool = False
    ) -> Tensor:
942
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
943
944
945
        Prepare the head mask if needed.

        Args:
946
            head_mask (`torch.Tensor` with shape `[num_heads]` or `[num_hidden_layers x num_heads]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
947
                The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard).
948
            num_hidden_layers (`int`):
Sylvain Gugger's avatar
Sylvain Gugger committed
949
                The number of hidden layers in the model.
950
            is_attention_chunked (`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
951
952
                Whether or not the attentions scores are computed by chunks or not.

953
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
954
955
            `torch.Tensor` with shape `[num_hidden_layers x batch x num_heads x seq_length x seq_length]` or list with
            `[None]` for each layer.
956
957
958
        """
        if head_mask is not None:
            head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
959
960
            if is_attention_chunked is True:
                head_mask = head_mask.unsqueeze(-1)
961
962
963
964
965
966
967
968
969
970
971
972
973
        else:
            head_mask = [None] * num_hidden_layers

        return head_mask

    def _convert_head_mask_to_5d(self, head_mask, num_hidden_layers):
        """-> [num_hidden_layers x batch x num_heads x seq_length x seq_length]"""
        if head_mask.dim() == 1:
            head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
            head_mask = head_mask.expand(num_hidden_layers, -1, -1, -1, -1)
        elif head_mask.dim() == 2:
            head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
        assert head_mask.dim() == 5, f"head_mask.dim != 5, instead {head_mask.dim()}"
974
        head_mask = head_mask.to(dtype=self.dtype)  # switch to float if need + fp16 compatibility
975
976
        return head_mask

977
978
979
980
981
    def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int:
        """
        Get number of (optionally, trainable or non-embeddings) parameters in the module.

        Args:
982
            only_trainable (`bool`, *optional*, defaults to `False`):
983
984
                Whether or not to return only the number of trainable parameters

985
            exclude_embeddings (`bool`, *optional*, defaults to `False`):
986
987
988
                Whether or not to return only the number of non-embeddings parameters

        Returns:
989
            `int`: The number of parameters.
990
991
        """

992
993
994
995
        if exclude_embeddings:
            embedding_param_names = [
                f"{name}.weight" for name, module_type in self.named_modules() if isinstance(module_type, nn.Embedding)
            ]
996
            total_parameters = [
997
998
999
                parameter for name, parameter in self.named_parameters() if name not in embedding_param_names
            ]
        else:
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
            total_parameters = list(self.parameters())

        total_numel = []
        is_loaded_in_4bit = getattr(self, "is_loaded_in_4bit", False)
        if is_loaded_in_4bit:
            if is_bitsandbytes_available():
                import bitsandbytes as bnb
            else:
                raise ValueError(
                    "bitsandbytes is not installed but it seems that the model has been loaded in 4bit precision, something went wrong"
                    " make sure to install bitsandbytes with `pip install bitsandbytes`."
                )

        for param in total_parameters:
            if param.requires_grad or not only_trainable:
                # For 4bit models, we need to multiply the number of parameters by 2 as half of the parameters are
                # used for the 4bit quantization (uint8 tensors are stored)
                if is_loaded_in_4bit and isinstance(param, bnb.nn.Params4bit):
                    total_numel.append(param.numel() * 2)
                else:
                    total_numel.append(param.numel())

        return sum(total_numel)
1023
1024
1025
1026
1027
1028

    def estimate_tokens(self, input_dict: Dict[str, Union[torch.Tensor, Any]]) -> int:
        """
        Helper function to estimate the total number of tokens from the model inputs.

        Args:
1029
            inputs (`dict`): The model inputs.
1030
1031

        Returns:
1032
            `int`: The total number of tokens.
1033
        """
1034
1035
        if not hasattr(self, "warnings_issued"):
            self.warnings_issued = {}
1036
1037
        if self.main_input_name in input_dict:
            return input_dict[self.main_input_name].numel()
1038
        elif "estimate_tokens" not in self.warnings_issued:
1039
            logger.warning(
1040
1041
                "Could not estimate the number of tokens of the input, floating-point operations will not be computed"
            )
1042
1043
            self.warnings_issued["estimate_tokens"] = True
        return 0
1044
1045
1046
1047
1048
1049
1050

    def floating_point_ops(
        self, input_dict: Dict[str, Union[torch.Tensor, Any]], exclude_embeddings: bool = True
    ) -> int:
        """
        Get number of (optionally, non-embeddings) floating-point operations for the forward and backward passes of a
        batch with this transformer model. Default approximation neglects the quadratic dependency on the number of
Sylvain Gugger's avatar
Sylvain Gugger committed
1051
1052
        tokens (valid if `12 * d_model << sequence_length`) as laid out in [this
        paper](https://arxiv.org/pdf/2001.08361.pdf) section 2.1. Should be overridden for transformers with parameter
Sylvain Gugger's avatar
Sylvain Gugger committed
1053
        re-use e.g. Albert or Universal Transformers, or if doing long-range modeling with very high sequence lengths.
1054
1055

        Args:
1056
            batch_size (`int`):
1057
1058
                The batch size for the forward pass.

1059
            sequence_length (`int`):
1060
1061
                The number of tokens in each line of the batch.

1062
            exclude_embeddings (`bool`, *optional*, defaults to `True`):
1063
1064
1065
                Whether or not to count embedding and softmax operations.

        Returns:
1066
            `int`: The number of floating-point operations.
1067
1068
1069
1070
        """

        return 6 * self.estimate_tokens(input_dict) * self.num_parameters(exclude_embeddings=exclude_embeddings)

Julien Chaumond's avatar
Julien Chaumond committed
1071

1072
class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMixin, PeftAdapterMixin):
1073
1074
    r"""
    Base class for all models.
1075

Sylvain Gugger's avatar
Sylvain Gugger committed
1076
1077
    [`PreTrainedModel`] takes care of storing the configuration of the models and handles methods for loading,
    downloading and saving models as well as a few methods common to all models to:
1078

1079
1080
        - resize the input embeddings,
        - prune heads in the self-attention heads.
1081

1082
    Class attributes (overridden by derived classes):
Sylvain Gugger's avatar
Sylvain Gugger committed
1083

Sylvain Gugger's avatar
Sylvain Gugger committed
1084
1085
1086
1087
        - **config_class** ([`PretrainedConfig`]) -- A subclass of [`PretrainedConfig`] to use as configuration class
          for this model architecture.
        - **load_tf_weights** (`Callable`) -- A python *method* for loading a TensorFlow checkpoint in a PyTorch model,
          taking as arguments:
1088

Sylvain Gugger's avatar
Sylvain Gugger committed
1089
1090
            - **model** ([`PreTrainedModel`]) -- An instance of the model on which to load the TensorFlow checkpoint.
            - **config** ([`PreTrainedConfig`]) -- An instance of the configuration associated to the model.
1091
            - **path** (`str`) -- A path to the TensorFlow checkpoint.
1092

Sylvain Gugger's avatar
Sylvain Gugger committed
1093
1094
        - **base_model_prefix** (`str`) -- A string indicating the attribute associated to the base model in derived
          classes of the same architecture adding modules on top of the base model.
1095
        - **is_parallelizable** (`bool`) -- A flag indicating whether this model supports model parallelization.
Sylvain Gugger's avatar
Sylvain Gugger committed
1096
1097
        - **main_input_name** (`str`) -- The name of the principal input to the model (often `input_ids` for NLP
          models, `pixel_values` for vision models and `input_values` for speech models).
1098
    """
1099
    config_class = None
1100
    base_model_prefix = ""
1101
    main_input_name = "input_ids"
1102
    _auto_class = None
1103
    _no_split_modules = None
1104
    _skip_keys_device_placement = None
1105
    _keep_in_fp32_modules = None
1106

1107
1108
    # a list of `re` patterns of `state_dict` keys that should be removed from the list of missing
    # keys we find (keys inside the model but not in the checkpoint) and avoid unnecessary warnings.
1109
    _keys_to_ignore_on_load_missing = None
1110
1111
1112
    # a list of `re` patterns of `state_dict` keys that should be removed from the list of
    # unexpected keys we find (keys inside the checkpoint but not the model) and avoid unnecessary
    # warnings.
1113
    _keys_to_ignore_on_load_unexpected = None
1114
1115
    # a list of `state_dict` keys to ignore when saving the model (useful for keys that aren't
    # trained, but which are either deterministic or tied variables)
1116
    _keys_to_ignore_on_save = None
Sylvain Gugger's avatar
Sylvain Gugger committed
1117
1118
    # a list of `state_dict` keys that are potentially tied to another key in the state_dict.
    _tied_weights_keys = None
1119

1120
    is_parallelizable = False
1121
    supports_gradient_checkpointing = False
1122

1123
1124
1125
    # Flash Attention 2 support
    _supports_flash_attn_2 = False

1126
    @property
1127
    def dummy_inputs(self) -> Dict[str, torch.Tensor]:
1128
        """
1129
        `Dict[str, torch.Tensor]`: Dummy inputs to do a forward pass in the network.
1130
        """
1131
        return {"input_ids": torch.tensor(DUMMY_INPUTS)}
1132

1133
1134
1135
1136
1137
1138
1139
    @property
    def framework(self) -> str:
        """
        :str: Identifies that this is a PyTorch model.
        """
        return "pt"

1140
    def __init__(self, config: PretrainedConfig, *inputs, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
1141
        super().__init__()
1142
1143
        if not isinstance(config, PretrainedConfig):
            raise ValueError(
1144
1145
1146
                f"Parameter config in `{self.__class__.__name__}(config)` should be an instance of class "
                "`PretrainedConfig`. To create a model from a pretrained model use "
                f"`model = {self.__class__.__name__}.from_pretrained(PRETRAINED_MODEL_NAME)`"
1147
            )
1148
        # Save config and origin of the pretrained weights if given in model
1149
        self.config = config
1150
        self.name_or_path = config.name_or_path
1151
        self.warnings_issued = {}
1152
        self.generation_config = GenerationConfig.from_model_config(config) if self.can_generate() else None
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166

    def post_init(self):
        """
        A method executed at the end of each Transformer model initialization, to execute code that needs the model's
        modules properly initialized (such as weight initialization).
        """
        self.init_weights()
        self._backward_compatibility_gradient_checkpointing()

    def _backward_compatibility_gradient_checkpointing(self):
        if self.supports_gradient_checkpointing and getattr(self.config, "gradient_checkpointing", False):
            self.gradient_checkpointing_enable()
            # Remove the attribute now that is has been consumed, so it's no saved in the config.
            delattr(self.config, "gradient_checkpointing")
1167

1168
1169
1170
1171
1172
1173
    @classmethod
    def _from_config(cls, config, **kwargs):
        """
        All context managers that the model should be initialized under go here.

        Args:
1174
1175
            torch_dtype (`torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model under this dtype.
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
        """
        torch_dtype = kwargs.pop("torch_dtype", None)

        # override default dtype if needed
        dtype_orig = None
        if torch_dtype is not None:
            dtype_orig = cls._set_default_torch_dtype(torch_dtype)

        if is_deepspeed_zero3_enabled():
            import deepspeed

            logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
            # this immediately partitions the model across all gpus, to avoid the overhead in time
            # and memory copying it on CPU or each GPU first
1190
            with deepspeed.zero.Init(config_dict_or_path=deepspeed_config()):
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
                model = cls(config, **kwargs)
        else:
            model = cls(config, **kwargs)

        # restore default dtype if it was modified
        if dtype_orig is not None:
            torch.set_default_dtype(dtype_orig)

        return model

    @classmethod
    def _set_default_torch_dtype(cls, dtype: torch.dtype) -> torch.dtype:
        """
        Change the default dtype and return the previous one. This is needed when wanting to instantiate the model
        under specific dtype.

        Args:
1208
            dtype (`torch.dtype`):
1209
1210
1211
                a floating dtype to set to.

        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
1212
1213
            `torch.dtype`: the original `dtype` that can be used to restore `torch.set_default_dtype(dtype)` if it was
            modified. If it wasn't, returns `None`.
1214

1215
1216
        Note `set_default_dtype` currently only works with floating-point types and asserts if for example,
        `torch.int64` is passed. So if a non-float `dtype` is passed this functions will throw an exception.
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
        """
        if not dtype.is_floating_point:
            raise ValueError(
                f"Can't instantiate {cls.__name__} model under dtype={dtype} since it is not a floating point dtype"
            )

        logger.info(f"Instantiating {cls.__name__} model under default dtype {dtype}.")
        dtype_orig = torch.get_default_dtype()
        torch.set_default_dtype(dtype)
        return dtype_orig

1228
    @property
1229
1230
    def base_model(self) -> nn.Module:
        """
1231
        `torch.nn.Module`: The main body of the model.
1232
        """
1233
        return getattr(self, self.base_model_prefix, self)
thomwolf's avatar
thomwolf committed
1234

1235
1236
    @classmethod
    def can_generate(cls) -> bool:
1237
1238
1239
1240
1241
1242
        """
        Returns whether this model can generate sequences with `.generate()`.

        Returns:
            `bool`: Whether this model can generate sequences with `.generate()`.
        """
1243
1244
1245
        # Detects whether `prepare_inputs_for_generation` has been overwritten, which is a requirement for generation.
        # Alternativelly, the model can also have a custom `generate` function.
        if "GenerationMixin" in str(cls.prepare_inputs_for_generation) and "GenerationMixin" in str(cls.generate):
1246
1247
1248
            return False
        return True

1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
    @classmethod
    def _check_and_enable_flash_attn_2(
        cls, config, torch_dtype: Optional[torch.dtype] = None, device_map: Optional[Union[str, Dict[str, int]]] = None
    ) -> PretrainedConfig:
        """
        If you don't know about Flash Attention, check out the official repository of flash attention:
        https://github.com/Dao-AILab/flash-attention

        For using Flash Attention 1.0 you can do it directly via the `BetterTransformer` API, have a look at this
        specific section of the documentation to learn more about it:
        https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#decoder-models

        The method checks if the current setup is compatible with Flash Attention as it requires the model to be in
        half precision and not ran on CPU.

        If all checks pass, the method will create an attribute in the config `_flash_attn_2_enabled` so that the model
        can initialize the correct attention module
        """
        if not cls._supports_flash_attn_2:
            raise ValueError(
                "The current architecture does not support Flash Attention 2.0. Please open an issue on GitHub to "
                "request support for this architecture: https://github.com/huggingface/transformers/issues/new"
            )

1273
        if not is_flash_attn_2_available():
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
            raise ImportError(
                "Flash Attention 2.0 is not available. Please refer to the documentation of https://github.com/Dao-AILab/flash-attention for"
                " installing it."
            )
        else:
            flash_attention_version = version.parse(importlib.metadata.version("flash_attn"))
            is_flash_greater_than_2 = flash_attention_version > version.parse("2.0.0")
            if not is_flash_greater_than_2:
                raise ValueError(
                    f"You need flash_attn package version to be greater than 2.0. Make sure to have that version installed - detected version {flash_attention_version}"
                )

        _is_bettertransformer = getattr(cls, "use_bettertransformer", False)

        if _is_bettertransformer:
            raise ValueError(
                "Flash Attention 2 and BetterTransformer API are not compatible. Please make sure to disable BetterTransformers by doing model.reverse_bettertransformer()"
            )

        if torch_dtype is None:
            logger.warning(
                "You are attempting to use Flash Attention 2.0 without specifying a torch dtype. This might lead to unexpected behaviour"
            )
        elif torch_dtype is not None and torch_dtype not in [torch.float16, torch.bfloat16]:
            raise ValueError(
                f"Flash Attention 2.0 only supports torch.float16 and torch.bfloat16 dtypes. You passed {torch_dtype}, this might lead to"
                " unexpected behaviour."
            )

        if device_map is None:
            if torch.cuda.is_available():
                logger.warning(
                    "You are attempting to use Flash Attention 2.0 with a model initialized on CPU. Make sure to move the model to GPU"
                    " after initializing it on CPU with `model.to('cuda')`."
                )
            else:
                raise ValueError(
                    "You are attempting to use Flash Attention 2.0 with a model initialized on CPU and with no GPU available. "
                    "This is not supported yet. Please make sure to have access to a GPU and either initialise the model on a GPU by passing a device_map "
                    "or initialising the model on CPU and then moving it to GPU."
                )
        elif (
            device_map is not None
            and isinstance(device_map, dict)
            and ("cpu" in device_map.values() or "disk" in device_map.values())
        ):
            raise ValueError(
                "You are attempting to use Flash Attention 2.0 with a model dispatched on CPU or disk. This is not supported. Please make sure to "
                "initialise the model on a GPU by passing a device_map that contains only GPU devices as keys."
            )
        config._flash_attn_2_enabled = True
        return config

1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
    def enable_input_require_grads(self):
        """
        Enables the gradients for the input embeddings. This is useful for fine-tuning adapter weights while keeping
        the model weights fixed.
        """

        def make_inputs_require_grads(module, input, output):
            output.requires_grad_(True)

        self._require_grads_hook = self.get_input_embeddings().register_forward_hook(make_inputs_require_grads)

    def disable_input_require_grads(self):
        """
        Removes the `_require_grads_hook`.
        """
        self._require_grads_hook.remove()

1344
    def get_input_embeddings(self) -> nn.Module:
1345
1346
1347
1348
        """
        Returns the model's input embeddings.

        Returns:
1349
            `nn.Module`: A torch module mapping vocabulary to hidden states.
thomwolf's avatar
thomwolf committed
1350
        """
1351
        base_model = getattr(self, self.base_model_prefix, self)
thomwolf's avatar
thomwolf committed
1352
1353
1354
1355
        if base_model is not self:
            return base_model.get_input_embeddings()
        else:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
1356

1357
    def set_input_embeddings(self, value: nn.Module):
1358
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1359
        Set model's input embeddings.
1360
1361

        Args:
1362
            value (`nn.Module`): A module mapping vocabulary to hidden states.
thomwolf's avatar
thomwolf committed
1363
1364
1365
1366
1367
1368
        """
        base_model = getattr(self, self.base_model_prefix, self)
        if base_model is not self:
            base_model.set_input_embeddings(value)
        else:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
1369

1370
    def get_output_embeddings(self) -> nn.Module:
1371
1372
1373
1374
        """
        Returns the model's output embeddings.

        Returns:
1375
            `nn.Module`: A torch module mapping hidden states to vocabulary.
thomwolf's avatar
thomwolf committed
1376
        """
1377
        return None  # Overwrite for models with output embeddings
thomwolf's avatar
thomwolf committed
1378

1379
1380
1381
1382
    def _init_weights(self, module):
        """
        Initialize the weights. This method should be overridden by derived class.
        """
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
        pass

    def _initialize_weights(self, module):
        """
        Initialize the weights if they are not already initialized.
        """
        if getattr(module, "_is_hf_initialized", False):
            return
        self._init_weights(module)
        module._is_hf_initialized = True
1393

1394
    def tie_weights(self):
1395
1396
        """
        Tie the weights between the input embeddings and the output embeddings.
1397

Sylvain Gugger's avatar
Sylvain Gugger committed
1398
1399
        If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the
        weights instead.
thomwolf's avatar
thomwolf committed
1400
        """
1401
1402
1403
1404
        if getattr(self.config, "tie_word_embeddings", True):
            output_embeddings = self.get_output_embeddings()
            if output_embeddings is not None:
                self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings())
thomwolf's avatar
thomwolf committed
1405

1406
        if getattr(self.config, "is_encoder_decoder", False) and getattr(self.config, "tie_encoder_decoder", False):
Weizhen's avatar
Weizhen committed
1407
1408
            if hasattr(self, self.base_model_prefix):
                self = getattr(self, self.base_model_prefix)
1409
1410
            self._tie_encoder_decoder_weights(self.encoder, self.decoder, self.base_model_prefix)

Sylvain Gugger's avatar
Sylvain Gugger committed
1411
1412
1413
1414
        for module in self.modules():
            if hasattr(module, "_tie_weights"):
                module._tie_weights()

1415
1416
1417
    @staticmethod
    def _tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str):
        uninitialized_encoder_weights: List[str] = []
Weizhen's avatar
Weizhen committed
1418
1419
        if decoder.__class__ != encoder.__class__:
            logger.info(
Sylvain Gugger's avatar
Sylvain Gugger committed
1420
1421
                f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder"
                " weights are correctly initialized."
Weizhen's avatar
Weizhen committed
1422
            )
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432

        def tie_encoder_to_decoder_recursively(
            decoder_pointer: nn.Module,
            encoder_pointer: nn.Module,
            module_name: str,
            uninitialized_encoder_weights: List[str],
            depth=0,
        ):
            assert isinstance(decoder_pointer, nn.Module) and isinstance(
                encoder_pointer, nn.Module
1433
            ), f"{decoder_pointer} and {encoder_pointer} have to be of type nn.Module"
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
            if hasattr(decoder_pointer, "weight"):
                assert hasattr(encoder_pointer, "weight")
                encoder_pointer.weight = decoder_pointer.weight
                if hasattr(decoder_pointer, "bias"):
                    assert hasattr(encoder_pointer, "bias")
                    encoder_pointer.bias = decoder_pointer.bias
                return

            encoder_modules = encoder_pointer._modules
            decoder_modules = decoder_pointer._modules
            if len(decoder_modules) > 0:
                assert (
                    len(encoder_modules) > 0
                ), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"

1449
                all_encoder_weights = {module_name + "/" + sub_name for sub_name in encoder_modules.keys()}
1450
1451
1452
1453
1454
                encoder_layer_pos = 0
                for name, module in decoder_modules.items():
                    if name.isdigit():
                        encoder_name = str(int(name) + encoder_layer_pos)
                        decoder_name = name
Weizhen's avatar
Weizhen committed
1455
1456
1457
                        if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len(
                            encoder_modules
                        ) != len(decoder_modules):
1458
1459
                            # this can happen if the name corresponds to the position in a list module list of layers
                            # in this case the decoder has added a cross-attention that the encoder does not have
1460
                            # thus skip this step and subtract one layer pos from encoder
1461
1462
1463
1464
1465
1466
                            encoder_layer_pos -= 1
                            continue
                    elif name not in encoder_modules:
                        continue
                    elif depth > 500:
                        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1467
1468
                            "Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is"
                            " a circular dependency between two or more `nn.Modules` of your model."
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
                        )
                    else:
                        decoder_name = encoder_name = name
                    tie_encoder_to_decoder_recursively(
                        decoder_modules[decoder_name],
                        encoder_modules[encoder_name],
                        module_name + "/" + name,
                        uninitialized_encoder_weights,
                        depth=depth + 1,
                    )
                    all_encoder_weights.remove(module_name + "/" + encoder_name)

                uninitialized_encoder_weights += list(all_encoder_weights)

        # tie weights recursively
        tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights)
        if len(uninitialized_encoder_weights) > 0:
            logger.warning(
                f"The following encoder weights were not tied to the decoder {uninitialized_encoder_weights}"
            )

1490
    def _tie_or_clone_weights(self, output_embeddings, input_embeddings):
Lysandre's avatar
Lysandre committed
1491
        """Tie or clone module weights depending of whether we are using TorchScript or not"""
thomwolf's avatar
thomwolf committed
1492
        if self.config.torchscript:
1493
            output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone())
thomwolf's avatar
thomwolf committed
1494
        else:
1495
            output_embeddings.weight = input_embeddings.weight
thomwolf's avatar
thomwolf committed
1496

Sam Shleifer's avatar
Sam Shleifer committed
1497
        if getattr(output_embeddings, "bias", None) is not None:
1498
            output_embeddings.bias.data = nn.functional.pad(
1499
                output_embeddings.bias.data,
Lysandre's avatar
Lysandre committed
1500
1501
1502
1503
                (
                    0,
                    output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0],
                ),
1504
1505
                "constant",
                0,
1506
            )
1507
        if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"):
1508
            output_embeddings.out_features = input_embeddings.num_embeddings
1509

1510
1511
1512
    def resize_token_embeddings(
        self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None
    ) -> nn.Embedding:
1513
        """
1514
        Resizes input token embeddings matrix of the model if `new_num_tokens != config.vocab_size`.
1515

1516
        Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
thomwolf's avatar
thomwolf committed
1517

1518
        Arguments:
1519
            new_num_tokens (`int`, *optional*):
1520
                The number of new tokens in the embedding matrix. Increasing the size will add newly initialized
Sylvain Gugger's avatar
Sylvain Gugger committed
1521
1522
                vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
                returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything.
1523
            pad_to_multiple_of (`int`, *optional*):
Arthur's avatar
Arthur committed
1524
1525
                If set will pad the embedding matrix to a multiple of the provided value.If `new_num_tokens` is set to
                `None` will just pad the embedding to a multiple of `pad_to_multiple_of`.
1526
1527
1528
1529
1530

                This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
                `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more
                details about this, or help on choosing the correct value for resizing, refer to this guide:
                https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc
1531
1532

        Return:
1533
            `torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model.
thomwolf's avatar
thomwolf committed
1534
        """
1535
        model_embeds = self._resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
Arthur's avatar
Arthur committed
1536
        if new_num_tokens is None and pad_to_multiple_of is None:
thomwolf's avatar
thomwolf committed
1537
            return model_embeds
thomwolf's avatar
thomwolf committed
1538
1539

        # Update base model and current model config
Arthur's avatar
Arthur committed
1540
1541
        self.config.vocab_size = model_embeds.weight.shape[0]
        self.vocab_size = model_embeds.weight.shape[0]
thomwolf's avatar
thomwolf committed
1542
1543

        # Tie weights again if needed
1544
        self.tie_weights()
thomwolf's avatar
thomwolf committed
1545

thomwolf's avatar
thomwolf committed
1546
1547
        return model_embeds

1548
    def _resize_token_embeddings(self, new_num_tokens, pad_to_multiple_of=None):
thomwolf's avatar
thomwolf committed
1549
        old_embeddings = self.get_input_embeddings()
1550
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens, pad_to_multiple_of)
1551
1552
1553
        if hasattr(old_embeddings, "_hf_hook"):
            hook = old_embeddings._hf_hook
            add_hook_to_module(new_embeddings, hook)
thomwolf's avatar
thomwolf committed
1554
        self.set_input_embeddings(new_embeddings)
1555

1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
        # Update new_num_tokens with the actual size of new_embeddings
        if pad_to_multiple_of is not None:
            if is_deepspeed_zero3_enabled():
                import deepspeed

                with deepspeed.zero.GatheredParameters(new_embeddings.weight, modifier_rank=None):
                    new_num_tokens = new_embeddings.weight.shape[0]
            else:
                new_num_tokens = new_embeddings.weight.shape[0]

1566
1567
1568
        # if word embeddings are not tied, make sure that lm head is resized as well
        if self.get_output_embeddings() is not None and not self.config.tie_word_embeddings:
            old_lm_head = self.get_output_embeddings()
1569
            new_lm_head = self._get_resized_lm_head(old_lm_head, new_num_tokens)
1570
1571
1572
            if hasattr(old_lm_head, "_hf_hook"):
                hook = old_lm_head._hf_hook
                add_hook_to_module(new_lm_head, hook)
1573
1574
            self.set_output_embeddings(new_lm_head)

thomwolf's avatar
thomwolf committed
1575
        return self.get_input_embeddings()
1576

1577
    def _get_resized_embeddings(
1578
1579
1580
1581
        self,
        old_embeddings: nn.Embedding,
        new_num_tokens: Optional[int] = None,
        pad_to_multiple_of: Optional[int] = None,
1582
    ) -> nn.Embedding:
1583
1584
1585
        """
        Build a resized Embedding Module from a provided token Embedding Module. Increasing the size will add newly
        initialized vectors at the end. Reducing the size will remove vectors from the end
1586
1587

        Args:
1588
            old_embeddings (`torch.nn.Embedding`):
1589
                Old embeddings to be resized.
1590
            new_num_tokens (`int`, *optional*):
1591
                New number of tokens in the embedding matrix.
1592
1593

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
1594
                vectors from the end. If not provided or `None`, just returns a pointer to the input tokens
1595
                `torch.nn.Embedding` module of the model without doing anything.
1596
            pad_to_multiple_of (`int`, *optional*):
Arthur's avatar
Arthur committed
1597
1598
                If set will pad the embedding matrix to a multiple of the provided value. If `new_num_tokens` is set to
                `None` will just pad the embedding to a multiple of `pad_to_multiple_of`.
1599
1600
1601
1602
1603
1604

                This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
                `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more
                details about this, or help on choosing the correct value for resizing, refer to this guide:
                https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc

1605
1606

        Return:
1607
1608
            `torch.nn.Embedding`: Pointer to the resized Embedding Module or the old Embedding Module if
            `new_num_tokens` is `None`
1609
        """
1610
1611
1612
1613
1614
1615
1616
1617

        if pad_to_multiple_of is not None:
            if not isinstance(pad_to_multiple_of, int):
                raise ValueError(
                    f"Asking to pad the embedding matrix to a multiple of `{pad_to_multiple_of}`, which is not and integer. Please make sure to pass an integer"
                )
            if new_num_tokens is None:
                new_num_tokens = old_embeddings.weight.shape[0]
1618
            new_num_tokens = ((new_num_tokens + pad_to_multiple_of - 1) // pad_to_multiple_of) * pad_to_multiple_of
1619
        else:
1620
            logger.info(
1621
                "You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding"
1622
                f" dimension will be {new_num_tokens}. This might induce some performance reduction as *Tensor Cores* will not be available."
1623
                " For more details about this, or help on choosing the correct value for resizing, refer to this guide:"
1624
1625
1626
                " https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc"
            )

1627
1628
1629
        if new_num_tokens is None:
            return old_embeddings

1630
1631
1632
1633
1634
1635
1636
1637
        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_embeddings.weight, modifier_rank=None):
                old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
        else:
            old_num_tokens, old_embedding_dim = old_embeddings.weight.size()

1638
        if old_num_tokens == new_num_tokens and not is_deepspeed_zero3_enabled():
1639
1640
            return old_embeddings

1641
1642
        if not isinstance(old_embeddings, nn.Embedding):
            raise TypeError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1643
1644
1645
                f"Old embeddings are of type {type(old_embeddings)}, which is not an instance of {nn.Embedding}. You"
                " should either use a different resize function or make sure that `old_embeddings` are an instance of"
                f" {nn.Embedding}."
1646
1647
            )

1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
        # Build new embeddings

        # When using DeepSpeed ZeRO-3, we shouldn't create new embeddings with DeepSpeed init
        # because the shape of the new embedding layer is used across various modeling files
        # as well as to update config vocab size. Shape will be 0 when using DeepSpeed init leading
        # to errors when training.
        new_embeddings = nn.Embedding(
            new_num_tokens,
            old_embedding_dim,
            device=old_embeddings.weight.device,
            dtype=old_embeddings.weight.dtype,
        )

        # initialize all new embeddings (in particular added tokens)
        self._init_weights(new_embeddings)

        # Copy token embeddings from the previous weights

1666
1667
        # numbers of tokens to copy
        n = min(old_num_tokens, new_num_tokens)
1668

1669
1670
1671
        if is_deepspeed_zero3_enabled():
            import deepspeed

1672
1673
1674
            params = [old_embeddings.weight, new_embeddings.weight]
            with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
                new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :]
1675
1676
        else:
            new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :]
1677
1678
1679

        return new_embeddings

1680
    def _get_resized_lm_head(
1681
1682
        self, old_lm_head: nn.Linear, new_num_tokens: Optional[int] = None, transposed: Optional[bool] = False
    ) -> nn.Linear:
1683
1684
1685
1686
1687
        """
        Build a resized Linear Module from a provided old Linear Module. Increasing the size will add newly initialized
        vectors at the end. Reducing the size will remove vectors from the end

        Args:
1688
            old_lm_head (`torch.nn.Linear`):
1689
                Old lm head liner layer to be resized.
1690
            new_num_tokens (`int`, *optional*):
1691
1692
1693
                New number of tokens in the linear matrix.

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
1694
                vectors from the end. If not provided or `None`, just returns a pointer to the input tokens
1695
1696
1697
                `torch.nn.Linear` module of the model without doing anything. transposed (`bool`, *optional*, defaults
                to `False`): Whether `old_lm_head` is transposed or not. If True `old_lm_head.size()` is `lm_head_dim,
                vocab_size` else `vocab_size, lm_head_dim`.
1698
1699

        Return:
Sylvain Gugger's avatar
Sylvain Gugger committed
1700
1701
            `torch.nn.Linear`: Pointer to the resized Linear Module or the old Linear Module if `new_num_tokens` is
            `None`
1702
1703
1704
1705
        """
        if new_num_tokens is None:
            return old_lm_head

1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_lm_head.weight, modifier_rank=None):
                old_num_tokens, old_lm_head_dim = (
                    old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
                )
        else:
            old_num_tokens, old_lm_head_dim = (
                old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
            )
1717

1718
        if old_num_tokens == new_num_tokens and not is_deepspeed_zero3_enabled():
1719
1720
1721
1722
            return old_lm_head

        if not isinstance(old_lm_head, nn.Linear):
            raise TypeError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1723
1724
1725
                f"Old language model head is of type {type(old_lm_head)}, which is not an instance of {nn.Linear}. You"
                " should either use a different resize function or make sure that `old_lm_head` are an instance of"
                f" {nn.Linear}."
1726
1727
1728
1729
1730
1731
            )

        # Build new lm head
        new_lm_head_shape = (old_lm_head_dim, new_num_tokens) if not transposed else (new_num_tokens, old_lm_head_dim)
        has_new_lm_head_bias = old_lm_head.bias is not None

1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
        # When using DeepSpeed ZeRO-3, we shouldn't create new embeddings with DeepSpeed init
        # because the shape of the new embedding layer is used across various modeling files
        # as well as to update config vocab size. Shape will be 0 when using DeepSpeed init leading
        # to errors when training.
        new_lm_head = nn.Linear(
            *new_lm_head_shape,
            bias=has_new_lm_head_bias,
            device=old_lm_head.weight.device,
            dtype=old_lm_head.weight.dtype,
        )

        # initialize new lm head (in particular added tokens)
        self._init_weights(new_lm_head)

1746
1747
        num_tokens_to_copy = min(old_num_tokens, new_num_tokens)

1748
1749
1750
        if is_deepspeed_zero3_enabled():
            import deepspeed

1751
1752
            params = [old_lm_head.weight, old_lm_head.bias, new_lm_head.weight, new_lm_head.bias]
            with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
1753
1754
1755
                self._copy_lm_head_original_to_resized(
                    new_lm_head, old_lm_head, num_tokens_to_copy, transposed, has_new_lm_head_bias
                )
1756
        else:
1757
1758
            self._copy_lm_head_original_to_resized(
                new_lm_head, old_lm_head, num_tokens_to_copy, transposed, has_new_lm_head_bias
1759
            )
1760
1761
1762

        return new_lm_head

1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
    def _copy_lm_head_original_to_resized(
        self, new_lm_head, old_lm_head, num_tokens_to_copy, transposed, has_new_lm_head_bias
    ):
        # Copy old lm head weights to new lm head
        if not transposed:
            new_lm_head.weight.data[:num_tokens_to_copy, :] = old_lm_head.weight.data[:num_tokens_to_copy, :]
        else:
            new_lm_head.weight.data[:, :num_tokens_to_copy] = old_lm_head.weight.data[:, :num_tokens_to_copy]

        # Copy bias weights to new lm head
        if has_new_lm_head_bias:
            new_lm_head.bias.data[:num_tokens_to_copy] = old_lm_head.bias.data[:num_tokens_to_copy]

1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
    def resize_position_embeddings(self, new_num_position_embeddings: int):
        raise NotImplementedError(
            f"`resize_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should "
            f"overwrite this method in the class {self.__class__} in `modeling_{self.__class__.__module__}.py`"
        )

    def get_position_embeddings(self) -> Union[nn.Embedding, Tuple[nn.Embedding]]:
        raise NotImplementedError(
            f"`get_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should "
            f"overwrite this method in the class {self.__class__} in `modeling_{self.__class__.__module__}.py`"
        )

1788
    def init_weights(self):
1789
        """
1790
1791
        If needed prunes and maybe initializes weights. If using a custom `PreTrainedModel`, you need to implement any
        initialization logic in `_init_weights`.
1792
        """
1793
1794
1795
1796
        # Prune heads if needed
        if self.config.pruned_heads:
            self.prune_heads(self.config.pruned_heads)

1797
1798
        if _init_weights:
            # Initialize weights
1799
            self.apply(self._initialize_weights)
1800
1801
1802
1803

            # Tie weights should be skipped when not initializing all weights
            # since from_pretrained(...) calls tie weights anyways
            self.tie_weights()
1804

1805
1806
1807
    def prune_heads(self, heads_to_prune: Dict[int, List[int]]):
        """
        Prunes heads of the base model.
1808

1809
        Arguments:
1810
            heads_to_prune (`Dict[int, List[int]]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1811
1812
1813
                Dictionary with keys being selected layer indices (`int`) and associated values being the list of heads
                to prune in said layer (list of `int`). For instance {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on
                layer 1 and heads 2 and 3 on layer 2.
thomwolf's avatar
thomwolf committed
1814
        """
1815
        # save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads
1816
        for layer, heads in heads_to_prune.items():
1817
1818
1819
            union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads)
            self.config.pruned_heads[layer] = list(union_heads)  # Unfortunately we have to store it as list for JSON

1820
        self.base_model._prune_heads(heads_to_prune)
thomwolf's avatar
thomwolf committed
1821

1822
    def gradient_checkpointing_enable(self):
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
        """
        Activates gradient checkpointing for the current model.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        if not self.supports_gradient_checkpointing:
            raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
        self.apply(partial(self._set_gradient_checkpointing, value=True))

1833
1834
1835
1836
1837
1838
1839
        if getattr(self, "_hf_peft_config_loaded", False):
            # When using PEFT + gradient checkpointing + Trainer we need to make sure the input has requires_grad=True
            # we do it also on PEFT: https://github.com/huggingface/peft/blob/85013987aa82aa1af3da1236b6902556ce3e483e/src/peft/peft_model.py#L334
            # When training with PEFT, only LoRA layers will have requires grad set to True, but the output of frozen layers need to propagate
            # the gradients to make sure the gradient flows.
            self.enable_input_require_grads()

1840
    def gradient_checkpointing_disable(self):
1841
1842
1843
1844
1845
1846
1847
1848
1849
        """
        Deactivates gradient checkpointing for the current model.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        if self.supports_gradient_checkpointing:
            self.apply(partial(self._set_gradient_checkpointing, value=False))

1850
1851
1852
        if getattr(self, "_hf_peft_config_loaded", False):
            self.disable_input_require_grads()

1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
    @property
    def is_gradient_checkpointing(self) -> bool:
        """
        Whether gradient checkpointing is activated for this model or not.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules())

1863
1864
1865
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
1866
        is_main_process: bool = True,
1867
1868
        state_dict: Optional[dict] = None,
        save_function: Callable = torch.save,
Sylvain Gugger's avatar
Sylvain Gugger committed
1869
        push_to_hub: bool = False,
Sylvain Gugger's avatar
Sylvain Gugger committed
1870
        max_shard_size: Union[int, str] = "10GB",
1871
        safe_serialization: bool = False,
1872
        variant: Optional[str] = None,
1873
        token: Optional[Union[str, bool]] = None,
1874
        save_peft_format: bool = True,
Sylvain Gugger's avatar
Sylvain Gugger committed
1875
        **kwargs,
1876
    ):
1877
1878
        """
        Save a model and its configuration file to a directory, so that it can be re-loaded using the
1879
        [`~PreTrainedModel.from_pretrained`] class method.
1880

1881
        Arguments:
1882
            save_directory (`str` or `os.PathLike`):
1883
                Directory to which to save. Will be created if it doesn't exist.
1884
1885
1886
1887
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful when in distributed training like
                TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on
                the main process to avoid race conditions.
1888
            state_dict (nested dictionary of `torch.Tensor`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1889
1890
1891
                The state dictionary of the model to save. Will default to `self.state_dict()`, but can be used to only
                save parts of the model or if special precautions need to be taken when recovering the state dictionary
                of a model (like when using model parallelism).
1892
            save_function (`Callable`):
1893
                The function to use to save the state dictionary. Useful on distributed training like TPUs when one
1894
1895
                need to replace `torch.save` by another method.
            push_to_hub (`bool`, *optional*, defaults to `False`):
1896
1897
1898
                Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
Sylvain Gugger's avatar
Sylvain Gugger committed
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
            max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
                The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size
                lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`).

                <Tip warning={true}>

                If a single weight of the model is bigger than `max_shard_size`, it will be in its own checkpoint shard
                which will be bigger than `max_shard_size`.

                </Tip>

1910
1911
            safe_serialization (`bool`, *optional*, defaults to `False`):
                Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
1912
1913
            variant (`str`, *optional*):
                If specified, weights are saved in the format pytorch_model.<variant>.bin.
1914
1915
1916
            token (`str` or `bool`, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
                the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
1917
1918
1919
1920
            save_peft_format (`bool`, *optional*, defaults to `True`):
                For backward compatibility with PEFT library, in case adapter weights are attached to the model, all
                keys of the state dict of adapters needs to be pre-pended with `base_model.model`. Advanced users can
                disable this behaviours by setting `save_peft_format` to `False`.
1921
            kwargs (`Dict[str, Any]`, *optional*):
1922
                Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
1923
        """
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
        use_auth_token = kwargs.pop("use_auth_token", None)

        if use_auth_token is not None:
            warnings.warn(
                "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
            )
            if token is not None:
                raise ValueError(
                    "`token` and `use_auth_token` are both specified. Please set only the argument `token`."
                )
            token = use_auth_token

        if token is not None:
            kwargs["token"] = token

Younes Belkada's avatar
Younes Belkada committed
1939
1940
        _hf_peft_config_loaded = getattr(self, "_hf_peft_config_loaded", False)

1941
        # Checks if the model has been loaded in 8-bit
Younes Belkada's avatar
Younes Belkada committed
1942
1943
1944
1945
1946
1947
        if (
            getattr(self, "is_loaded_in_8bit", False)
            and not getattr(self, "is_8bit_serializable", False)
            and not _hf_peft_config_loaded
        ):
            raise ValueError(
1948
                "You are calling `save_pretrained` to a 8-bit converted model you may likely encounter unexepected"
Younes Belkada's avatar
Younes Belkada committed
1949
                " behaviors. If you want to save 8-bit models, make sure to have `bitsandbytes>0.37.2` installed."
1950
1951
            )

Younes Belkada's avatar
Younes Belkada committed
1952
1953
        # If the model has adapters attached, you can save the adapters
        if getattr(self, "is_loaded_in_4bit", False) and not _hf_peft_config_loaded:
1954
1955
1956
1957
            raise NotImplementedError(
                "You are calling `save_pretrained` on a 4-bit converted model. This is currently not supported"
            )

1958
1959
1960
1961
1962
        if "save_config" in kwargs:
            warnings.warn(
                "`save_config` is deprecated and will be removed in v5 of Transformers. Use `is_main_process` instead."
            )
            is_main_process = kwargs.pop("save_config")
1963
1964
        if safe_serialization and not is_safetensors_available():
            raise ImportError("`safe_serialization` requires the `safetensors library: `pip install safetensors`.")
1965

1966
        if os.path.isfile(save_directory):
1967
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
1968
            return
1969

1970
1971
        os.makedirs(save_directory, exist_ok=True)

1972
1973
        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
1974
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
1975
            repo_id = self._create_repo(repo_id, **kwargs)
1976
            files_timestamps = self._get_files_timestamps(save_directory)
1977

Julien Chaumond's avatar
Julien Chaumond committed
1978
        # Only save the model itself if we are using distributed training
1979
        model_to_save = unwrap_model(self)
1980

1981
1982
1983
1984
1985
        # save the string version of dtype to the config, e.g. convert torch.float32 => "float32"
        # we currently don't use this setting automatically, but may start to use with v5
        dtype = get_parameter_dtype(model_to_save)
        model_to_save.config.torch_dtype = str(dtype).split(".")[1]

Julien Chaumond's avatar
Julien Chaumond committed
1986
1987
1988
        # Attach architecture to the config
        model_to_save.config.architectures = [model_to_save.__class__.__name__]

1989
1990
1991
1992
1993
        # If we have a custom model, we copy the file defining it in the folder and set the attributes so it can be
        # loaded from the Hub.
        if self._auto_class is not None:
            custom_object_save(self, save_directory, config=self.config)

1994
        # Save the config
1995
        if is_main_process:
1996
1997
            if not _hf_peft_config_loaded:
                model_to_save.config.save_pretrained(save_directory)
1998
1999
            if self.can_generate():
                model_to_save.generation_config.save_pretrained(save_directory)
2000

2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
            if _hf_peft_config_loaded:
                logger.info(
                    "Detected adapters on the model, saving the model in the PEFT format, only adapter weights will be saved."
                )
                state_dict = model_to_save.get_adapter_state_dict()

                if save_peft_format:
                    logger.info(
                        "To match the expected format of the PEFT library, all keys of the state dict of adapters will be pre-pended with `base_model.model`."
                    )
                    peft_state_dict = {}
                    for key, value in state_dict.items():
                        peft_state_dict[f"base_model.model.{key}"] = value
                    state_dict = peft_state_dict

2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
                active_adapter = self.active_adapters()

                if len(active_adapter) > 1:
                    raise ValueError(
                        "Multiple active adapters detected, saving multiple active adapters is not supported yet. You can save adapters separately one by one "
                        "by iteratively calling `model.set_adapter(adapter_name)` then `model.save_pretrained(...)`"
                    )
                active_adapter = active_adapter[0]

                current_peft_config = self.peft_config[active_adapter]
2026
2027
                current_peft_config.save_pretrained(save_directory)

2028
2029
2030
        # Save the model
        if state_dict is None:
            state_dict = model_to_save.state_dict()
2031

2032
2033
2034
2035
2036
        # Translate state_dict from smp to hf if saving with smp >= 1.10
        if IS_SAGEMAKER_MP_POST_1_10:
            for smp_to_hf, _ in smp.state.module_manager.translate_functions:
                state_dict = smp_to_hf(state_dict)

2037
        # Handle the case where some state_dict keys shouldn't be saved
2038
        if self._keys_to_ignore_on_save is not None:
2039
            for ignore_key in self._keys_to_ignore_on_save:
2040
2041
                if ignore_key in state_dict.keys():
                    del state_dict[ignore_key]
2042
2043
2044
2045
2046
        if safe_serialization:
            # Safetensors does not allow tensor aliasing.
            # We're going to remove aliases before saving
            ptrs = collections.defaultdict(list)
            for name, tensor in state_dict.items():
Sylvain Gugger's avatar
Sylvain Gugger committed
2047
                ptrs[id_tensor_storage(tensor)].append(name)
2048
2049
2050
2051
2052
2053
2054

            # These are all the pointers of shared tensors.
            shared_ptrs = {ptr: names for ptr, names in ptrs.items() if len(names) > 1}
            warn_names = set()
            for names in shared_ptrs.values():
                # Removing the keys which are declared as known duplicates on
                # load. This allows to make sure the name which is kept is consistent.
Sylvain Gugger's avatar
Sylvain Gugger committed
2055
                if self._tied_weights_keys is not None:
2056
2057
                    found = 0
                    for name in sorted(names):
Sylvain Gugger's avatar
Sylvain Gugger committed
2058
                        matches_pattern = any(re.search(pat, name) for pat in self._tied_weights_keys)
2059
                        if matches_pattern and name in state_dict:
2060
2061
2062
                            found += 1
                            if found < len(names):
                                del state_dict[name]
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079

                # When not all duplicates have been cleaned, still remove those keys, but put a clear warning.
                # If the link between tensors was done at runtime then `from_pretrained` will not get
                # the key back leading to random tensor. A proper warning will be shown
                # during reload (if applicable), but since the file is not necessarily compatible with
                # the config, better show a proper warning.
                found = 0
                for name in names:
                    if name in state_dict:
                        found += 1
                        if found > 1:
                            del state_dict[name]
                            warn_names.add(name)
            if len(warn_names) > 0:
                logger.warning_once(
                    f"Removed shared tensor {warn_names} while saving. This should be OK, but check by verifying that you don't receive any warning while reloading",
                )
2080

Sylvain Gugger's avatar
Sylvain Gugger committed
2081
        # Shard the model if it is too big.
2082
2083
2084
2085
2086
        if not _hf_peft_config_loaded:
            weights_name = SAFE_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME
            weights_name = _add_variant(weights_name, variant)
        else:
            weights_name = ADAPTER_SAFE_WEIGHTS_NAME if safe_serialization else ADAPTER_WEIGHTS_NAME
2087

2088
        shards, index = shard_checkpoint(state_dict, max_shard_size=max_shard_size, weights_name=weights_name)
Sylvain Gugger's avatar
Sylvain Gugger committed
2089
2090
2091
2092

        # Clean the folder from a previous save
        for filename in os.listdir(save_directory):
            full_filename = os.path.join(save_directory, filename)
2093
2094
            # If we have a shard file that is not going to be replaced, we delete it, but only from the main process
            # in distributed settings to avoid race conditions.
2095
            weights_no_suffix = weights_name.replace(".bin", "").replace(".safetensors", "")
2096
2097
2098

            # make sure that file to be deleted matches format of sharded file, e.g. pytorch_model-00001-of-00005
            filename_no_suffix = filename.replace(".bin", "").replace(".safetensors", "")
2099
            reg = re.compile(r"(.*?)-\d{5}-of-\d{5}")
2100

2101
            if (
2102
                filename.startswith(weights_no_suffix)
2103
2104
2105
                and os.path.isfile(full_filename)
                and filename not in shards.keys()
                and is_main_process
2106
                and reg.fullmatch(filename_no_suffix) is not None
2107
            ):
Sylvain Gugger's avatar
Sylvain Gugger committed
2108
                os.remove(full_filename)
2109

Sylvain Gugger's avatar
Sylvain Gugger committed
2110
2111
        # Save the model
        for shard_file, shard in shards.items():
2112
2113
2114
2115
2116
2117
            if safe_serialization:
                # At some point we will need to deal better with save_function (used for TPU and other distributed
                # joyfulness), but for now this enough.
                safe_save_file(shard, os.path.join(save_directory, shard_file), metadata={"format": "pt"})
            else:
                save_function(shard, os.path.join(save_directory, shard_file))
Sylvain Gugger's avatar
Sylvain Gugger committed
2118
2119

        if index is None:
2120
2121
            path_to_weights = os.path.join(save_directory, _add_variant(WEIGHTS_NAME, variant))
            logger.info(f"Model weights saved in {path_to_weights}")
Sylvain Gugger's avatar
Sylvain Gugger committed
2122
        else:
2123
            save_index_file = SAFE_WEIGHTS_INDEX_NAME if safe_serialization else WEIGHTS_INDEX_NAME
2124
            save_index_file = os.path.join(save_directory, _add_variant(save_index_file, variant))
Sylvain Gugger's avatar
Sylvain Gugger committed
2125
2126
2127
2128
2129
2130
2131
2132
2133
            # Save the index as well
            with open(save_index_file, "w", encoding="utf-8") as f:
                content = json.dumps(index, indent=2, sort_keys=True) + "\n"
                f.write(content)
            logger.info(
                f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be "
                f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the "
                f"index located at {save_index_file}."
            )
2134

Sylvain Gugger's avatar
Sylvain Gugger committed
2135
        if push_to_hub:
2136
            self._upload_modified_files(
2137
2138
2139
2140
                save_directory,
                repo_id,
                files_timestamps,
                commit_message=commit_message,
2141
                token=token,
2142
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
2143

2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
    def get_memory_footprint(self, return_buffers=True):
        r"""
        Get the memory footprint of a model. This will return the memory footprint of the current model in bytes.
        Useful to benchmark the memory footprint of the current model and design some tests. Solution inspired from the
        PyTorch discussions: https://discuss.pytorch.org/t/gpu-memory-that-model-uses/56822/2

        Arguments:
            return_buffers (`bool`, *optional*, defaults to `True`):
                Whether to return the size of the buffer tensors in the computation of the memory footprint. Buffers
                are tensors that do not require gradients and not registered as parameters. E.g. mean and std in batch
                norm layers. Please see: https://discuss.pytorch.org/t/what-pytorch-means-by-buffers/120266/2
        """
        mem = sum([param.nelement() * param.element_size() for param in self.parameters()])
        if return_buffers:
            mem_bufs = sum([buf.nelement() * buf.element_size() for buf in self.buffers()])
            mem = mem + mem_bufs
        return mem

2162
    @wraps(torch.nn.Module.cuda)
2163
2164
    def cuda(self, *args, **kwargs):
        # Checks if the model has been loaded in 8-bit
Marc Sun's avatar
Marc Sun committed
2165
        if getattr(self, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES:
2166
2167
2168
2169
2170
2171
2172
            raise ValueError(
                "Calling `cuda()` is not supported for `4-bit` or `8-bit` quantized models. Please use the model as it is, since the"
                " model has already been set to the correct devices and casted to the correct `dtype`."
            )
        else:
            return super().cuda(*args, **kwargs)

2173
    @wraps(torch.nn.Module.to)
2174
2175
    def to(self, *args, **kwargs):
        # Checks if the model has been loaded in 8-bit
Marc Sun's avatar
Marc Sun committed
2176
        if getattr(self, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES:
2177
            raise ValueError(
Marc Sun's avatar
Marc Sun committed
2178
                "`.to` is not supported for `4-bit` or `8-bit` bitsandbytes models. Please use the model as it is, since the"
2179
2180
2181
2182
2183
2184
                " model has already been set to the correct devices and casted to the correct `dtype`."
            )
        else:
            return super().to(*args, **kwargs)

    def half(self, *args):
Marc Sun's avatar
Marc Sun committed
2185
        # Checks if the model is quantized
2186
        if getattr(self, "is_quantized", False):
2187
            raise ValueError(
Marc Sun's avatar
Marc Sun committed
2188
                "`.half()` is not supported for quantized model. Please use the model as it is, since the"
2189
2190
2191
2192
2193
2194
                " model has already been casted to the correct `dtype`."
            )
        else:
            return super().half(*args)

    def float(self, *args):
Marc Sun's avatar
Marc Sun committed
2195
        # Checks if the model is quantized
2196
        if getattr(self, "is_quantized", False):
2197
            raise ValueError(
Marc Sun's avatar
Marc Sun committed
2198
                "`.float()` is not supported for quantized model. Please use the model as it is, since the"
2199
2200
2201
2202
2203
                " model has already been casted to the correct `dtype`."
            )
        else:
            return super().float(*args)

2204
    @classmethod
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
    def from_pretrained(
        cls,
        pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
        *model_args,
        config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
        cache_dir: Optional[Union[str, os.PathLike]] = None,
        ignore_mismatched_sizes: bool = False,
        force_download: bool = False,
        local_files_only: bool = False,
        token: Optional[Union[str, bool]] = None,
        revision: str = "main",
        use_safetensors: bool = None,
        **kwargs,
    ):
2219
2220
        r"""
        Instantiate a pretrained pytorch model from a pre-trained model configuration.
2221

Sylvain Gugger's avatar
Sylvain Gugger committed
2222
2223
        The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
        the model, you should first set it back in training mode with `model.train()`.
2224

2225
        The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
2226
2227
        pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
        task.
2228

2229
        The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
2230
        weights are discarded.
2231

2232
        Parameters:
2233
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
2234
2235
                Can be either:

2236
                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
Sylvain Gugger's avatar
Sylvain Gugger committed
2237
2238
                      Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a
                      user or organization name, like `dbmdz/bert-base-german-cased`.
2239
2240
2241
                    - A path to a *directory* containing model weights saved using
                      [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
                    - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
Sylvain Gugger's avatar
Sylvain Gugger committed
2242
2243
2244
                      this case, `from_tf` should be set to `True` and a configuration object should be provided as
                      `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
                      PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
2245
                    - A path or url to a model folder containing a *flax checkpoint file* in *.msgpack* format (e.g,
Sylvain Gugger's avatar
Sylvain Gugger committed
2246
2247
                      `./flax_model/` containing `flax_model.msgpack`). In this case, `from_flax` should be set to
                      `True`.
2248
2249
2250
2251
2252
                    - `None` if you are both providing the configuration and state dictionary (resp. with keyword
                      arguments `config` and `state_dict`).
            model_args (sequence of positional arguments, *optional*):
                All remaining positional arguments will be passed to the underlying model's `__init__` method.
            config (`Union[PretrainedConfig, str, os.PathLike]`, *optional*):
2253
2254
                Can be either:

2255
2256
                    - an instance of a class derived from [`PretrainedConfig`],
                    - a string or path valid as input to [`~PretrainedConfig.from_pretrained`].
2257

2258
                Configuration for the model to use instead of an automatically loaded configuration. Configuration can
2259
2260
                be automatically loaded when:

2261
                    - The model is a model provided by the library (loaded with the *model id* string of a pretrained
2262
                      model).
Sylvain Gugger's avatar
Sylvain Gugger committed
2263
2264
                    - The model was saved using [`~PreTrainedModel.save_pretrained`] and is reloaded by supplying the
                      save directory.
2265
2266
2267
                    - The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a
                      configuration JSON file named *config.json* is found in the directory.
            state_dict (`Dict[str, torch.Tensor]`, *optional*):
2268
2269
2270
                A state dictionary to use instead of a state dictionary loaded from saved weights file.

                This option can be used if you want to create a model from a pretrained configuration but load your own
Sylvain Gugger's avatar
Sylvain Gugger committed
2271
                weights. In this case though, you should check if using [`~PreTrainedModel.save_pretrained`] and
2272
2273
                [`~PreTrainedModel.from_pretrained`] is not a simpler option.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
2274
2275
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
2276
            from_tf (`bool`, *optional*, defaults to `False`):
2277
                Load the model weights from a TensorFlow checkpoint save file (see docstring of
2278
2279
                `pretrained_model_name_or_path` argument).
            from_flax (`bool`, *optional*, defaults to `False`):
2280
                Load the model weights from a Flax checkpoint save file (see docstring of
2281
2282
                `pretrained_model_name_or_path` argument).
            ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`):
2283
2284
2285
                Whether or not to raise an error if some of the weights from the checkpoint do not have the same size
                as the weights of the model (if for instance, you are instantiating a model with 10 labels from a
                checkpoint with 3 labels).
2286
            force_download (`bool`, *optional*, defaults to `False`):
2287
2288
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
2289
            resume_download (`bool`, *optional*, defaults to `False`):
2290
2291
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
2292
            proxies (`Dict[str, str]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2293
2294
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
2295
            output_loading_info(`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2296
                Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
2297
            local_files_only(`bool`, *optional*, defaults to `False`):
Stas Bekman's avatar
Stas Bekman committed
2298
                Whether or not to only look at local files (i.e., do not try to download the model).
2299
            token (`str` or `bool`, *optional*):
2300
2301
                The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
                the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
2302
            revision (`str`, *optional*, defaults to `"main"`):
Julien Chaumond's avatar
Julien Chaumond committed
2303
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
2304
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
Julien Chaumond's avatar
Julien Chaumond committed
2305
                identifier allowed by git.
2306
2307
2308
2309
2310
2311
2312

                <Tip>

                To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>".

                </Tip>

2313
            mirror (`str`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2314
2315
2316
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information.
2317
            _fast_init(`bool`, *optional*, defaults to `True`):
2318
2319
                Whether or not to disable fast initialization.

2320
2321
                <Tip warning={true}>

Sylvain Gugger's avatar
Sylvain Gugger committed
2322
2323
2324
                One should only disable *_fast_init* to ensure backwards compatibility with `transformers.__version__ <
                4.6.0` for seeded model initialization. This argument will be removed at the next major version. See
                [pull request 11471](https://github.com/huggingface/transformers/pull/11471) for more information.
2325

2326
                </Tip>
2327

2328
2329
2330
            > Parameters for big model inference

            low_cpu_mem_usage(`bool`, *optional*):
2331
2332
2333
                Tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                This is an experimental feature and a subject to change at any moment.
            torch_dtype (`str` or `torch.dtype`, *optional*):
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
                Override the default `torch.dtype` and load the model under a specific `dtype`. The different options
                are:

                1. `torch.float16` or `torch.bfloat16` or `torch.float`: load in a specified
                  `dtype`, ignoring the model's `config.torch_dtype` if one exists. If not specified
                  - the model will get loaded in `torch.float` (fp32).

                2. `"auto"` - A `torch_dtype` entry in the `config.json` file of the model will be
                  attempted to be used. If this entry isn't found then next check the `dtype` of the first weight in
                  the checkpoint that's of a floating point type and use that as `dtype`. This will load the model
                  using the `dtype` it was saved in at the end of the training. It can't be used as an indicator of how
                  the model was trained. Since it could be trained in one of half precision dtypes, but saved in fp32.

                <Tip>

                For some models the `dtype` they were trained in is unknown - you may try to check the model's paper or
                reach out to the authors and ask them to add this information to the model's card and to insert the
                `torch_dtype` entry in `config.json` on the hub.

                </Tip>

2355
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]` or `int` or `torch.device`, *optional*):
2356
2357
                A map that specifies where each submodule should go. It doesn't need to be refined to each
                parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the
2358
2359
2360
                same device. If we only pass the device (*e.g.*, `"cpu"`, `"cuda:1"`, `"mps"`, or a GPU ordinal rank
                like `1`) on which the model will be allocated, the device map will map the entire model to this
                device. Passing `device_map = 0` means put the whole model on GPU 0.
2361

2362
2363
                To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For
                more information about each option see [designing a device
Patrick von Platen's avatar
Patrick von Platen committed
2364
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
2365
2366
2367
            max_memory (`Dict`, *optional*):
                A dictionary device identifier to maximum memory. Will default to the maximum memory available for each
                GPU and the available CPU RAM if unset.
2368
2369
            offload_folder (`str` or `os.PathLike`, *optional*):
                If the `device_map` contains any value `"disk"`, the folder where we will offload weights.
2370
            offload_state_dict (`bool`, *optional*):
2371
                If `True`, will temporarily offload the CPU state dict to the hard drive to avoid getting out of CPU
2372
2373
                RAM if the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to
                `True` when there is some disk offload.
2374
2375
            load_in_8bit (`bool`, *optional*, defaults to `False`):
                If `True`, will convert the loaded model into mixed-8bit quantized model. To use this feature please
2376
2377
2378
2379
                install `bitsandbytes` (`pip install -U bitsandbytes`).
            load_in_4bit (`bool`, *optional*, defaults to `False`):
                If `True`, will convert the loaded model into 4bit precision quantized model. To use this feature
                install the latest version of `bitsandbytes` (`pip install -U bitsandbytes`).
Marc Sun's avatar
Marc Sun committed
2380
2381
2382
            quantization_config (`Union[QuantizationConfigMixin,Dict]`, *optional*):
                A dictionary of configuration parameters or a QuantizationConfigMixin object for quantization (e.g
                bitsandbytes, gptq)
2383
2384
2385
            subfolder (`str`, *optional*, defaults to `""`):
                In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
                specify the folder name here.
2386
2387
2388
            variant (`str`, *optional*):
                If specified load weights from `variant` filename, *e.g.* pytorch_model.<variant>.bin. `variant` is
                ignored when using `from_tf` or `from_flax`.
2389
2390
2391
            use_safetensors (`bool`, *optional*, defaults to `None`):
                Whether or not to use `safetensors` checkpoints. Defaults to `None`. If not specified and `safetensors`
                is not installed, it will be set to `False`.
2392

2393
            kwargs (remaining dictionary of keyword arguments, *optional*):
2394
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
2395
                `output_attentions=True`). Behaves differently depending on whether a `config` is provided or
2396
2397
                automatically loaded:

2398
2399
                    - If a configuration is provided with `config`, `**kwargs` will be directly passed to the
                      underlying model's `__init__` method (we assume all relevant updates to the configuration have
2400
                      already been done)
2401
                    - If a configuration is not provided, `kwargs` will be first passed to the configuration class
Sylvain Gugger's avatar
Sylvain Gugger committed
2402
2403
2404
2405
                      initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that
                      corresponds to a configuration attribute will be used to override said attribute with the
                      supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute
                      will be passed to the underlying model's `__init__` function.
2406
2407
2408

        <Tip>

Sylvain Gugger's avatar
Sylvain Gugger committed
2409
2410
        Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to
        use this method in a firewalled environment.
2411
2412
2413
2414
2415
2416
2417

        </Tip>

        Examples:

        ```python
        >>> from transformers import BertConfig, BertModel
Sylvain Gugger's avatar
Sylvain Gugger committed
2418

2419
        >>> # Download model and configuration from huggingface.co and cache.
Sylvain Gugger's avatar
Sylvain Gugger committed
2420
        >>> model = BertModel.from_pretrained("bert-base-uncased")
2421
        >>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable).
Sylvain Gugger's avatar
Sylvain Gugger committed
2422
        >>> model = BertModel.from_pretrained("./test/saved_model/")
2423
        >>> # Update configuration during loading.
Sylvain Gugger's avatar
Sylvain Gugger committed
2424
        >>> model = BertModel.from_pretrained("bert-base-uncased", output_attentions=True)
2425
2426
        >>> assert model.config.output_attentions == True
        >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable).
Sylvain Gugger's avatar
Sylvain Gugger committed
2427
2428
        >>> config = BertConfig.from_json_file("./tf_model/my_tf_model_config.json")
        >>> model = BertModel.from_pretrained("./tf_model/my_tf_checkpoint.ckpt.index", from_tf=True, config=config)
2429
        >>> # Loading from a Flax checkpoint file instead of a PyTorch model (slower)
Sylvain Gugger's avatar
Sylvain Gugger committed
2430
        >>> model = BertModel.from_pretrained("bert-base-uncased", from_flax=True)
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
        ```

        * `low_cpu_mem_usage` algorithm:

        This is an experimental function that loads the model using ~1x model size CPU memory

        Here is how it works:

        1. save which state_dict keys we have
        2. drop state_dict before the model is created, since the latter takes 1x model size CPU memory
        3. after the model has been instantiated switch to the meta device all params/buffers that
        are going to be replaced from the loaded state_dict
        4. load state_dict 2nd time
        5. replace the params/buffers from the state_dict

        Currently, it can't handle deepspeed ZeRO stage 3 and ignores loading errors

        """
2449
2450
        state_dict = kwargs.pop("state_dict", None)
        from_tf = kwargs.pop("from_tf", False)
2451
        from_flax = kwargs.pop("from_flax", False)
2452
2453
2454
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        output_loading_info = kwargs.pop("output_loading_info", False)
2455
        use_auth_token = kwargs.pop("use_auth_token", None)
2456
        trust_remote_code = kwargs.pop("trust_remote_code", None)
Sylvain Gugger's avatar
Sylvain Gugger committed
2457
        _ = kwargs.pop("mirror", None)
2458
2459
        from_pipeline = kwargs.pop("_from_pipeline", None)
        from_auto_class = kwargs.pop("_from_auto", False)
2460
        _fast_init = kwargs.pop("_fast_init", True)
2461
        torch_dtype = kwargs.pop("torch_dtype", None)
2462
2463
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", None)
        device_map = kwargs.pop("device_map", None)
2464
        max_memory = kwargs.pop("max_memory", None)
2465
        offload_folder = kwargs.pop("offload_folder", None)
2466
2467
        offload_state_dict = kwargs.pop("offload_state_dict", False)
        load_in_8bit = kwargs.pop("load_in_8bit", False)
2468
        load_in_4bit = kwargs.pop("load_in_4bit", False)
2469
        quantization_config = kwargs.pop("quantization_config", None)
2470
        subfolder = kwargs.pop("subfolder", "")
2471
        commit_hash = kwargs.pop("_commit_hash", None)
2472
        variant = kwargs.pop("variant", None)
2473
        adapter_kwargs = kwargs.pop("adapter_kwargs", {})
2474
        adapter_name = kwargs.pop("adapter_name", "default")
2475
        use_flash_attention_2 = kwargs.pop("use_flash_attention_2", False)
2476

2477
2478
2479
        if is_fsdp_enabled():
            low_cpu_mem_usage = True

2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
        if use_auth_token is not None:
            warnings.warn(
                "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
            )
            if token is not None:
                raise ValueError(
                    "`token` and `use_auth_token` are both specified. Please set only the argument `token`."
                )
            token = use_auth_token

2490
        if token is not None and adapter_kwargs is not None and "token" not in adapter_kwargs:
2491
2492
            adapter_kwargs["token"] = token

2493
2494
        if use_safetensors is None and not is_safetensors_available():
            use_safetensors = False
2495

2496
        if is_bitsandbytes_available():
2497
            is_8bit_serializable = version.parse(importlib.metadata.version("bitsandbytes")) > version.parse("0.37.2")
2498
2499
2500
        else:
            is_8bit_serializable = False

2501
2502
2503
2504
2505
        if trust_remote_code is True:
            logger.warning(
                "The argument `trust_remote_code` is to be used with Auto classes. It has no effect here and is"
                " ignored."
            )
2506

2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
        if commit_hash is None:
            if not isinstance(config, PretrainedConfig):
                # We make a call to the config file first (which may be absent) to get the commit hash as soon as possible
                resolved_config_file = cached_file(
                    pretrained_model_name_or_path,
                    CONFIG_NAME,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    token=token,
                    revision=revision,
                    subfolder=subfolder,
                    _raise_exceptions_for_missing_entries=False,
                    _raise_exceptions_for_connection_errors=False,
                )
                commit_hash = extract_commit_hash(resolved_config_file, commit_hash)
            else:
                commit_hash = getattr(config, "_commit_hash", None)

2528
        if is_peft_available():
2529
2530
            _adapter_model_path = adapter_kwargs.pop("_adapter_model_path", None)

2531
2532
2533
2534
2535
2536
2537
2538
2539
            if _adapter_model_path is None:
                _adapter_model_path = find_adapter_config_file(
                    pretrained_model_name_or_path,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    _commit_hash=commit_hash,
2540
                    **adapter_kwargs,
2541
2542
                )
            if _adapter_model_path is not None and os.path.isfile(_adapter_model_path):
2543
                with open(_adapter_model_path, "r", encoding="utf-8") as f:
2544
                    _adapter_model_path = pretrained_model_name_or_path
2545
                    pretrained_model_name_or_path = json.load(f)["base_model_name_or_path"]
2546
2547
        else:
            _adapter_model_path = None
2548

2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
        # change device_map into a map if we passed an int, a str or a torch.device
        if isinstance(device_map, torch.device):
            device_map = {"": device_map}
        elif isinstance(device_map, str) and device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
            try:
                device_map = {"": torch.device(device_map)}
            except RuntimeError:
                raise ValueError(
                    "When passing device_map as a string, the value needs to be a device name (e.g. cpu, cuda:0) or "
                    f"'auto', 'balanced', 'balanced_low_0', 'sequential' but found {device_map}."
                )
        elif isinstance(device_map, int):
            if device_map < 0:
                raise ValueError(
                    "You can't pass device_map as a negative int. If you want to put the model on the cpu, pass device_map = 'cpu' "
                )
            else:
                device_map = {"": device_map}

2568
2569
2570
2571
2572
2573
2574
        if device_map is not None:
            if low_cpu_mem_usage is None:
                low_cpu_mem_usage = True
            elif not low_cpu_mem_usage:
                raise ValueError("Passing along a `device_map` requires `low_cpu_mem_usage=True`")

        if low_cpu_mem_usage:
2575
            if device_map is not None:
2576
2577
                # The max memory utils require PyTorch >= 1.10 to have torch.cuda.mem_get_info.
                require_version_core("torch>=1.10")
2578
2579
2580
2581
2582
2583
2584
2585
2586

            if is_deepspeed_zero3_enabled():
                raise ValueError(
                    "DeepSpeed Zero-3 is not compatible with `low_cpu_mem_usage=True` or with passing a `device_map`."
                )
            elif not is_accelerate_available():
                raise ImportError(
                    "Using `low_cpu_mem_usage=True` or a `device_map` requires Accelerate: `pip install accelerate`"
                )
2587

Marc Sun's avatar
Marc Sun committed
2588
2589
2590
2591
2592
2593
2594
2595
        quantization_method_from_args = None
        if quantization_config is not None:
            quantization_method_from_args = getattr(
                quantization_config, "quant_method", QuantizationMethod.BITS_AND_BYTES
            )

        if quantization_config is None and (load_in_8bit or load_in_4bit):
            quantization_method_from_args = QuantizationMethod.BITS_AND_BYTES
2596
            quantization_config, kwargs = BitsAndBytesConfig.from_dict(
2597
2598
2599
                config_dict={"load_in_8bit": load_in_8bit, "load_in_4bit": load_in_4bit},
                return_unused_kwargs=True,
                **kwargs,
2600
            )
Marc Sun's avatar
Marc Sun committed
2601
        elif quantization_method_from_args == QuantizationMethod.BITS_AND_BYTES:
2602
            load_in_8bit = quantization_config.load_in_8bit
2603
            load_in_4bit = quantization_config.load_in_4bit
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614

            quantization_config_kwargs = {
                k: v for k, v in kwargs.items() if k in inspect.signature(BitsAndBytesConfig).parameters
            }

            if len(quantization_config_kwargs) > 0:
                raise ValueError(
                    "You can't pass `load_in_8bit` or any other `BitsAndBytesConfig` argument as a kwarg when passing "
                    "`quantization_config` argument at the same time."
                )

2615
        if load_in_8bit or load_in_4bit:
2616
2617
2618
2619
2620
2621
            if not (is_accelerate_available() and is_bitsandbytes_available()):
                raise ImportError(
                    "Using `load_in_8bit=True` requires Accelerate: `pip install accelerate` and the latest version of"
                    " bitsandbytes `pip install -i https://test.pypi.org/simple/ bitsandbytes` or"
                    " pip install bitsandbytes` "
                )
2622
2623

            if torch_dtype is None:
2624
                # We force the `dtype` to be float16, this is a requirement from `bitsandbytes`
2625
                logger.info(
2626
                    f"Overriding torch_dtype={torch_dtype} with `torch_dtype=torch.float16` due to "
2627
                    "requirements of `bitsandbytes` to enable model loading in 8-bit or 4-bit. "
2628
2629
                    "Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass"
                    " torch_dtype=torch.float16 to remove this warning."
2630
                )
2631
                torch_dtype = torch.float16
2632

2633
            if device_map is None:
2634
2635
2636
2637
2638
                if torch.cuda.is_available():
                    device_map = {"": torch.cuda.current_device()}
                else:
                    raise RuntimeError("No GPU found. A GPU is needed for quantization.")
                logger.info(
2639
2640
                    "The device_map was not initialized. "
                    "Setting device_map to {'':torch.cuda.current_device()}. "
2641
                    "If you want to use the model for inference, please set device_map ='auto' "
2642
                )
2643
2644
2645
                if low_cpu_mem_usage is None:
                    low_cpu_mem_usage = True

2646
2647
            if from_tf or from_flax:
                raise ValueError(
2648
                    "Converting into 4-bit or 8-bit weights from tf/flax weights is currently not supported, please make"
2649
2650
2651
                    " sure the weights are in PyTorch format."
                )

2652
        from_pt = not (from_tf | from_flax)
2653
2654
2655
2656

        user_agent = {"file_type": "model", "framework": "pytorch", "from_auto_class": from_auto_class}
        if from_pipeline is not None:
            user_agent["using_pipeline"] = from_pipeline
thomwolf's avatar
thomwolf committed
2657

2658
2659
2660
2661
        if is_offline_mode() and not local_files_only:
            logger.info("Offline mode: forcing local_files_only=True")
            local_files_only = True

2662
2663
2664
        # Load config if we don't provide a configuration
        if not isinstance(config, PretrainedConfig):
            config_path = config if config is not None else pretrained_model_name_or_path
2665
            config, model_kwargs = cls.config_class.from_pretrained(
2666
2667
2668
                config_path,
                cache_dir=cache_dir,
                return_unused_kwargs=True,
2669
                force_download=force_download,
2670
                resume_download=resume_download,
2671
                proxies=proxies,
2672
                local_files_only=local_files_only,
2673
                token=token,
Julien Chaumond's avatar
Julien Chaumond committed
2674
                revision=revision,
2675
                subfolder=subfolder,
2676
2677
                _from_auto=from_auto_class,
                _from_pipeline=from_pipeline,
2678
                **kwargs,
2679
2680
2681
            )
        else:
            model_kwargs = kwargs
2682

Marc Sun's avatar
Marc Sun committed
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
        quantizer = None
        quantization_method_from_config = None
        if hasattr(config, "quantization_config"):
            quantization_method_from_config = config.quantization_config.get(
                "quant_method", QuantizationMethod.BITS_AND_BYTES
            )

        if quantization_method_from_config == QuantizationMethod.GPTQ and quantization_method_from_args is not None:
            loading_attr_dict = quantization_config.get_loading_attributes()
            for attr, val in loading_attr_dict.items():
                config.quantization_config[attr] = val
            quantization_method_from_args = None
            logger.warning(
                "You passed `quantization_config` to `from_pretrained` but the model you're loading already has a "
                "`quantization_config` attribute and has already quantized weights. However, loading attributes"
2698
                " (e.g. disable_exllama, use_cuda_fp16, max_input_length) will be overwritten with the one you passed to `from_pretrained`. The rest will be ignored."
Marc Sun's avatar
Marc Sun committed
2699
2700
2701
2702
2703
2704
2705
2706
2707
            )
        if (
            quantization_method_from_args == QuantizationMethod.GPTQ
            or quantization_method_from_config == QuantizationMethod.GPTQ
        ):
            if not torch.cuda.is_available():
                raise RuntimeError("GPU is required to quantize or run quantize model.")
            elif not (is_optimum_available() and is_auto_gptq_available()):
                raise ImportError(
2708
2709
2710
2711
2712
                    "Loading a GPTQ quantized model requires optimum (`pip install optimum`) and auto-gptq library (`pip install auto-gptq`)"
                )
            elif version.parse(importlib.metadata.version("auto_gptq")) < version.parse("0.4.2"):
                raise ImportError(
                    "You need a version of auto_gptq >= 0.4.2 to use GPTQ: `pip install --upgrade auto-gptq`"
Marc Sun's avatar
Marc Sun committed
2713
2714
2715
2716
2717
2718
2719
                )
            else:
                # Need to protect the import
                from optimum.gptq import GPTQQuantizer
            if quantization_method_from_config == QuantizationMethod.GPTQ:
                quantization_config = GPTQConfig.from_dict(config.quantization_config)
                config.quantization_config = quantization_config
2720
2721
2722
2723
2724
            if torch_dtype is None:
                torch_dtype = torch.float16
            else:
                logger.info("We suggest you to set `torch_dtype=torch.float16` for better efficiency with GPTQ.")

Marc Sun's avatar
Marc Sun committed
2725
2726
2727
2728
2729
2730
2731
2732
            quantizer = GPTQQuantizer.from_dict(quantization_config.to_dict())

        if (
            is_8bit_serializable
            and quantization_method_from_args == QuantizationMethod.BITS_AND_BYTES
            and load_in_8bit
        ):
            if quantization_method_from_config == QuantizationMethod.BITS_AND_BYTES:
2733
2734
2735
2736
2737
2738
                logger.warning(
                    "You passed `quantization_config` to `from_pretrained` but the model you're loading already has a"
                    " `quantization_config` attribute. The `quantization_config` attribute will be overwritten with the"
                    " one you passed to `from_pretrained`."
                )
            config.quantization_config = quantization_config
Marc Sun's avatar
Marc Sun committed
2739
2740
2741
2742
2743
        elif (
            is_8bit_serializable
            and not load_in_8bit
            and quantization_method_from_config == QuantizationMethod.BITS_AND_BYTES
        ):
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
            quantization_config = config.quantization_config
            if isinstance(quantization_config, dict):
                quantization_config = BitsAndBytesConfig.from_dict(quantization_config, return_unused_kwargs=False)
            elif isinstance(quantization_config, BitsAndBytesConfig):
                pass
            else:
                raise ValueError(
                    f"Invalid type for `quantization_config`: {type(quantization_config)}. Should be a `dict` or a"
                    " `BitsAndBytesConfig` instance."
                )

            load_in_8bit = quantization_config.load_in_8bit

            if load_in_8bit:
2758
2759
                if torch_dtype is None:
                    torch_dtype = torch.float16
2760
                if device_map is None:
2761
2762
2763
2764
2765
                    if torch.cuda.is_available():
                        device_map = {"": torch.cuda.current_device()}
                    else:
                        raise RuntimeError("No GPU found. A GPU is needed for quantization.")
                    logger.info(
2766
2767
                        "The device_map was not initialized. "
                        "Setting device_map to {'':torch.cuda.current_device()}. "
2768
2769
2770
2771
                        "If you want to use the model for inference, please set device_map ='auto' "
                    )
                    if low_cpu_mem_usage is None:
                        low_cpu_mem_usage = True
2772

Marc Sun's avatar
Marc Sun committed
2773
2774
2775
2776
2777
        elif (
            not is_8bit_serializable
            and not load_in_8bit
            and quantization_method_from_config == QuantizationMethod.BITS_AND_BYTES
        ):
2778
2779
2780
2781
2782
2783
            logger.warning(
                "Detected the presence of a `quantization_config` attribute in the model's configuration but you don't have the correct"
                " `bitsandbytes` version to support int8 serialization. Please install the latest version of `bitsandbytes` with "
                " `pip install --upgrade bitsandbytes`."
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
2784
2785
2786
2787
        # This variable will flag if we're loading a sharded checkpoint. In this case the archive file is just the
        # index of the files.
        is_sharded = False
        sharded_metadata = None
thomwolf's avatar
thomwolf committed
2788
        # Load model
Yih-Dar's avatar
Yih-Dar committed
2789
2790
        loading_info = None

2791
2792
2793
2794
        # Keep in fp32 modules
        keep_in_fp32_modules = None
        use_keep_in_fp32_modules = False

thomwolf's avatar
thomwolf committed
2795
        if pretrained_model_name_or_path is not None:
2796
            pretrained_model_name_or_path = str(pretrained_model_name_or_path)
2797
2798
            is_local = os.path.isdir(pretrained_model_name_or_path)
            if is_local:
2799
2800
2801
                if from_tf and os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index")
                ):
2802
                    # Load from a TF 1.0 checkpoint in priority if from_tf
2803
2804
2805
2806
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index")
                elif from_tf and os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME)
                ):
2807
                    # Load from a TF 2.0 checkpoint in priority if from_tf
2808
2809
2810
2811
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME)
                elif from_flax and os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)
                ):
2812
                    # Load from a Flax checkpoint in priority if from_flax
2813
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)
2814
                elif use_safetensors is not False and os.path.isfile(
2815
                    os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_NAME, variant))
2816
2817
                ):
                    # Load from a safetensors checkpoint
2818
2819
2820
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_NAME, variant)
                    )
2821
                elif use_safetensors is not False and os.path.isfile(
2822
2823
2824
                    os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)
                    )
2825
2826
                ):
                    # Load from a sharded safetensors checkpoint
2827
2828
2829
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)
                    )
2830
                    is_sharded = True
2831
2832
2833
                elif os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_NAME, variant))
                ):
thomwolf's avatar
thomwolf committed
2834
                    # Load from a PyTorch checkpoint
2835
2836
2837
2838
2839
2840
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_NAME, variant)
                    )
                elif os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_INDEX_NAME, variant))
                ):
Sylvain Gugger's avatar
Sylvain Gugger committed
2841
                    # Load from a sharded PyTorch checkpoint
2842
2843
2844
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_INDEX_NAME, variant)
                    )
Sylvain Gugger's avatar
Sylvain Gugger committed
2845
                    is_sharded = True
2846
2847
                # At this stage we don't have a weight file so we will raise an error.
                elif os.path.isfile(
2848
2849
                    os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index")
                ) or os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME)):
2850
                    raise EnvironmentError(
2851
2852
2853
                        f"Error no file named {_add_variant(WEIGHTS_NAME, variant)} found in directory"
                        f" {pretrained_model_name_or_path} but there is a file for TensorFlow weights. Use"
                        " `from_tf=True` to load this model from those weights."
2854
                    )
2855
                elif os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)):
2856
                    raise EnvironmentError(
2857
2858
2859
                        f"Error no file named {_add_variant(WEIGHTS_NAME, variant)} found in directory"
                        f" {pretrained_model_name_or_path} but there is a file for Flax weights. Use `from_flax=True`"
                        " to load this model from those weights."
2860
                    )
2861
2862
2863
2864
2865
                elif use_safetensors:
                    raise EnvironmentError(
                        f"Error no file named {_add_variant(SAFE_WEIGHTS_NAME, variant)} found in directory"
                        f" {pretrained_model_name_or_path}."
                    )
thomwolf's avatar
thomwolf committed
2866
                else:
2867
                    raise EnvironmentError(
2868
2869
2870
                        f"Error no file named {_add_variant(WEIGHTS_NAME, variant)}, {TF2_WEIGHTS_NAME},"
                        f" {TF_WEIGHTS_NAME + '.index'} or {FLAX_WEIGHTS_NAME} found in directory"
                        f" {pretrained_model_name_or_path}."
2871
                    )
2872
            elif os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path)):
2873
                archive_file = pretrained_model_name_or_path
2874
                is_local = True
2875
            elif os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path + ".index")):
2876
2877
2878
2879
2880
                if not from_tf:
                    raise ValueError(
                        f"We found a TensorFlow checkpoint at {pretrained_model_name_or_path + '.index'}, please set "
                        "from_tf to True to load from this checkpoint."
                    )
2881
                archive_file = os.path.join(subfolder, pretrained_model_name_or_path + ".index")
2882
                is_local = True
2883
            elif is_remote_url(pretrained_model_name_or_path):
2884
                filename = pretrained_model_name_or_path
2885
                resolved_archive_file = download_url(pretrained_model_name_or_path)
2886
            else:
2887
2888
2889
2890
2891
                # set correct filename
                if from_tf:
                    filename = TF2_WEIGHTS_NAME
                elif from_flax:
                    filename = FLAX_WEIGHTS_NAME
2892
                elif use_safetensors is not False:
2893
                    filename = _add_variant(SAFE_WEIGHTS_NAME, variant)
2894
                else:
2895
                    filename = _add_variant(WEIGHTS_NAME, variant)
2896

2897
2898
                try:
                    # Load from URL or cache if already cached
2899
2900
2901
2902
2903
2904
                    cached_file_kwargs = {
                        "cache_dir": cache_dir,
                        "force_download": force_download,
                        "proxies": proxies,
                        "resume_download": resume_download,
                        "local_files_only": local_files_only,
2905
                        "token": token,
2906
2907
2908
2909
2910
2911
                        "user_agent": user_agent,
                        "revision": revision,
                        "subfolder": subfolder,
                        "_raise_exceptions_for_missing_entries": False,
                        "_commit_hash": commit_hash,
                    }
2912
                    resolved_archive_file = cached_file(pretrained_model_name_or_path, filename, **cached_file_kwargs)
2913

2914
                    # Since we set _raise_exceptions_for_missing_entries=False, we don't get an exception but a None
2915
                    # result when internet is up, the repo and revision exist, but the file does not.
2916
                    if resolved_archive_file is None and filename == _add_variant(SAFE_WEIGHTS_NAME, variant):
2917
2918
                        # Maybe the checkpoint is sharded, we try to grab the index name in this case.
                        resolved_archive_file = cached_file(
2919
2920
2921
                            pretrained_model_name_or_path,
                            _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant),
                            **cached_file_kwargs,
2922
2923
2924
                        )
                        if resolved_archive_file is not None:
                            is_sharded = True
2925
2926
2927
2928
                        elif use_safetensors:
                            raise EnvironmentError(
                                f" {_add_variant(SAFE_WEIGHTS_NAME, variant)} or {_add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)} and thus cannot be loaded with `safetensors`. Please make sure that the model has been saved with `safe_serialization=True` or do not set `use_safetensors=True`."
                            )
2929
2930
                        else:
                            # This repo has no safetensors file of any kind, we switch to PyTorch.
2931
                            filename = _add_variant(WEIGHTS_NAME, variant)
2932
                            resolved_archive_file = cached_file(
2933
                                pretrained_model_name_or_path, filename, **cached_file_kwargs
2934
                            )
2935
                    if resolved_archive_file is None and filename == _add_variant(WEIGHTS_NAME, variant):
Sylvain Gugger's avatar
Sylvain Gugger committed
2936
                        # Maybe the checkpoint is sharded, we try to grab the index name in this case.
2937
                        resolved_archive_file = cached_file(
2938
2939
2940
                            pretrained_model_name_or_path,
                            _add_variant(WEIGHTS_INDEX_NAME, variant),
                            **cached_file_kwargs,
2941
                        )
2942
2943
2944
                        if resolved_archive_file is not None:
                            is_sharded = True
                    if resolved_archive_file is None:
Sylvain Gugger's avatar
Sylvain Gugger committed
2945
2946
2947
2948
2949
                        # Otherwise, maybe there is a TF or Flax model file.  We try those to give a helpful error
                        # message.
                        has_file_kwargs = {
                            "revision": revision,
                            "proxies": proxies,
2950
                            "token": token,
Sylvain Gugger's avatar
Sylvain Gugger committed
2951
2952
2953
                        }
                        if has_file(pretrained_model_name_or_path, TF2_WEIGHTS_NAME, **has_file_kwargs):
                            raise EnvironmentError(
Sylvain Gugger's avatar
Sylvain Gugger committed
2954
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
2955
2956
                                f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file for TensorFlow weights."
                                " Use `from_tf=True` to load this model from those weights."
Sylvain Gugger's avatar
Sylvain Gugger committed
2957
2958
2959
                            )
                        elif has_file(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME, **has_file_kwargs):
                            raise EnvironmentError(
Sylvain Gugger's avatar
Sylvain Gugger committed
2960
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
                                f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file for Flax weights. Use"
                                " `from_flax=True` to load this model from those weights."
                            )
                        elif variant is not None and has_file(
                            pretrained_model_name_or_path, WEIGHTS_NAME, **has_file_kwargs
                        ):
                            raise EnvironmentError(
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
                                f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file without the variant"
                                f" {variant}. Use `variant=None` to load this model from those weights."
Sylvain Gugger's avatar
Sylvain Gugger committed
2971
2972
2973
                            )
                        else:
                            raise EnvironmentError(
2974
2975
2976
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
                                f" {_add_variant(WEIGHTS_NAME, variant)}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or"
                                f" {FLAX_WEIGHTS_NAME}."
Sylvain Gugger's avatar
Sylvain Gugger committed
2977
                            )
2978
2979
2980
2981
2982
2983
                except EnvironmentError:
                    # Raise any environment error raise by `cached_file`. It will have a helpful error message adapted
                    # to the original exception.
                    raise
                except Exception:
                    # For any other exception, we throw a generic error.
2984
                    raise EnvironmentError(
2985
2986
2987
                        f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it"
                        " from 'https://huggingface.co/models', make sure you don't have a local directory with the"
                        f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a"
2988
2989
                        f" directory containing a file named {_add_variant(WEIGHTS_NAME, variant)},"
                        f" {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or {FLAX_WEIGHTS_NAME}."
2990
                    )
2991

2992
            if is_local:
2993
                logger.info(f"loading weights file {archive_file}")
2994
                resolved_archive_file = archive_file
2995
            else:
2996
                logger.info(f"loading weights file {filename} from cache at {resolved_archive_file}")
2997
        else:
thomwolf's avatar
thomwolf committed
2998
            resolved_archive_file = None
2999

Sylvain Gugger's avatar
Sylvain Gugger committed
3000
3001
        # We'll need to download and cache each checkpoint shard if the checkpoint is sharded.
        if is_sharded:
3002
            # rsolved_archive_file becomes a list of files that point to the different checkpoint shards in this case.
Sylvain Gugger's avatar
Sylvain Gugger committed
3003
3004
3005
3006
3007
3008
3009
3010
            resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(
                pretrained_model_name_or_path,
                resolved_archive_file,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                resume_download=resume_download,
                local_files_only=local_files_only,
3011
                token=token,
Sylvain Gugger's avatar
Sylvain Gugger committed
3012
3013
                user_agent=user_agent,
                revision=revision,
3014
                subfolder=subfolder,
3015
                _commit_hash=commit_hash,
Sylvain Gugger's avatar
Sylvain Gugger committed
3016
3017
            )

3018
3019
        # load pt weights early so that we know which dtype to init the model under
        if from_pt:
3020
            if not is_sharded and state_dict is None:
Sylvain Gugger's avatar
Sylvain Gugger committed
3021
3022
                # Time to load the checkpoint
                state_dict = load_state_dict(resolved_archive_file)
3023

3024
3025
3026
            # set dtype to instantiate the model under:
            # 1. If torch_dtype is not None, we use that dtype
            # 2. If torch_dtype is "auto", we auto-detect dtype from the loaded state_dict, by checking its first
3027
            #    weights entry that is of a floating type - we assume all floating dtype weights are of the same dtype
3028
3029
            # we also may have config.torch_dtype available, but we won't rely on it till v5
            dtype_orig = None
3030

3031
3032
3033
            if torch_dtype is not None:
                if isinstance(torch_dtype, str):
                    if torch_dtype == "auto":
3034
3035
3036
                        if hasattr(config, "torch_dtype") and config.torch_dtype is not None:
                            torch_dtype = config.torch_dtype
                            logger.info(f"Will use torch_dtype={torch_dtype} as defined in model's config object")
Sylvain Gugger's avatar
Sylvain Gugger committed
3037
                        else:
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
                            if is_sharded and "dtype" in sharded_metadata:
                                torch_dtype = sharded_metadata["dtype"]
                            elif not is_sharded:
                                torch_dtype = get_state_dict_dtype(state_dict)
                            else:
                                one_state_dict = load_state_dict(resolved_archive_file[0])
                                torch_dtype = get_state_dict_dtype(one_state_dict)
                                del one_state_dict  # free CPU memory
                            logger.info(
                                "Since the `torch_dtype` attribute can't be found in model's config object, "
                                "will use torch_dtype={torch_dtype} as derived from model's weights"
                            )
3050
3051
                    else:
                        raise ValueError(
3052
                            f'`torch_dtype` can be either `torch.dtype` or `"auto"`, but received {torch_dtype}'
3053
3054
3055
                        )
                dtype_orig = cls._set_default_torch_dtype(torch_dtype)

3056
            # Check if `_keep_in_fp32_modules` is not None
3057
3058
            use_keep_in_fp32_modules = (cls._keep_in_fp32_modules is not None) and (
                torch_dtype == torch.float16 or load_in_4bit or load_in_8bit
3059
3060
            )

3061
3062
3063
            if is_sharded:
                loaded_state_dict_keys = sharded_metadata["all_checkpoint_keys"]
            else:
3064
                loaded_state_dict_keys = list(state_dict.keys())
3065
3066
3067
3068
            if low_cpu_mem_usage or (use_keep_in_fp32_modules and is_accelerate_available()):
                # In case some weights need to be kept in float32 and accelerate is not installed,
                # we later on want to take the path where state_dict is not None, that is the one
                # that do not require accelerate.
3069
                state_dict = None
3070

3071
3072
        config.name_or_path = pretrained_model_name_or_path

3073
        # Instantiate model.
3074
3075
        init_contexts = [no_init_weights(_enable=_fast_init)]

3076
3077
3078
3079
        if is_deepspeed_zero3_enabled():
            import deepspeed

            logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
3080
            init_contexts = [deepspeed.zero.Init(config_dict_or_path=deepspeed_config())] + init_contexts
3081
        elif load_in_8bit or load_in_4bit or low_cpu_mem_usage:
3082
3083
            init_contexts.append(init_empty_weights())

3084
3085
3086
        if use_flash_attention_2:
            config = cls._check_and_enable_flash_attn_2(config, torch_dtype=torch_dtype, device_map=device_map)

3087
3088
3089
        with ContextManagers(init_contexts):
            model = cls(config, *model_args, **model_kwargs)

3090
3091
        # Check first if we are `from_pt`
        if use_keep_in_fp32_modules:
3092
3093
            if is_accelerate_available():
                low_cpu_mem_usage = True
3094
3095
3096
3097
            keep_in_fp32_modules = model._keep_in_fp32_modules
        else:
            keep_in_fp32_modules = []

3098
        if load_in_8bit or load_in_4bit:
3099
            from .integrations import get_keys_to_not_convert, replace_with_bnb_linear
3100

3101
            llm_int8_skip_modules = quantization_config.llm_int8_skip_modules
3102
            load_in_8bit_fp32_cpu_offload = quantization_config.llm_int8_enable_fp32_cpu_offload
3103
3104
3105
3106
            if load_in_8bit:
                logger.info("Detected 8-bit loading: activating 8-bit loading for this model")
            else:
                logger.info("Detected 4-bit loading: activating 4-bit loading for this model")
3107

3108
            # We keep some modules such as the lm_head in their original dtype for numerical stability reasons
3109
            if llm_int8_skip_modules is None:
3110
3111
                modules_to_not_convert = get_keys_to_not_convert(model)
            else:
3112
                modules_to_not_convert = llm_int8_skip_modules
3113
3114
3115
3116
3117
3118

            if not isinstance(modules_to_not_convert, list):
                modules_to_not_convert = [modules_to_not_convert]

            modules_to_not_convert.extend(keep_in_fp32_modules)

3119
3120
3121
3122
3123
3124
3125
            # Extend the modules to not convert to keys that are supposed to be offloaded to `cpu` or `disk`
            if isinstance(device_map, dict) and len(device_map.keys()) > 1:
                keys_on_cpu = [key for key, value in device_map.items() if value in ["disk", "cpu"]]

                if len(keys_on_cpu) > 0 and not load_in_8bit_fp32_cpu_offload:
                    raise ValueError(
                        "If you want to offload some keys to `cpu` or `disk`, you need to set "
Younes Belkada's avatar
Younes Belkada committed
3126
                        "`llm_int8_enable_fp32_cpu_offload=True`. Note that these modules will not be "
3127
3128
3129
3130
3131
                        " converted to 8-bit but kept in 32-bit."
                    )

                modules_to_not_convert.extend(keys_on_cpu)

3132
            supports_4bit = version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse("0.39.0")
3133
3134
3135
3136
3137
3138
3139
3140
3141

            if load_in_4bit and not supports_4bit:
                raise ValueError(
                    "You have a version of `bitsandbytes` that is not compatible with 4bit inference and training"
                    " make sure you have the latest version of `bitsandbytes` installed"
                )

            model = replace_with_bnb_linear(
                model, modules_to_not_convert=modules_to_not_convert, quantization_config=quantization_config
3142
            )
3143
            # training in 8-bit is only available in 0.37.0+
3144
            model._is_quantized_training_enabled = version.parse(
3145
                importlib.metadata.version("bitsandbytes")
3146
            ) >= version.parse("0.37.0")
3147

3148
3149
3150
            model.config.quantization_config = quantization_config
            model.is_8bit_serializable = is_8bit_serializable

3151
3152
        if load_in_8bit and torch_dtype is None:
            logger.warning(
3153
                "You are loading your model in 8bit but you did not specify a `torch_dtype` attribute. "
3154
3155
                "All non-linear modules will be loaded in full precision."
                " If you want to load the other modules in other precision, please specify a `torch_dtype` attribute."
3156
            )
Marc Sun's avatar
Marc Sun committed
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
        if quantization_method_from_config == QuantizationMethod.GPTQ:
            model = quantizer.convert_model(model)
            model._is_quantized_training_enabled = True

        if quantization_method_from_config is not None:
            model.quantization_method = quantization_method_from_config
        elif quantization_method_from_args is not None:
            model.quantization_method = quantization_method_from_args
        if hasattr(model, "quantization_method"):
            model.is_quantized = True
3167

3168
        if isinstance(device_map, str):
3169
            special_dtypes = {}
3170
            if load_in_8bit or load_in_4bit:
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
                special_dtypes.update(
                    {
                        name: torch_dtype
                        for name, _ in model.named_parameters()
                        if any(m in name for m in modules_to_not_convert)
                    }
                )

            special_dtypes.update(
                {
                    name: torch.float32
                    for name, _ in model.named_parameters()
                    if any(m in name for m in keep_in_fp32_modules)
                }
            )

3187
3188
3189
            target_dtype = torch_dtype

            if load_in_4bit:
3190
                if version.parse(importlib.metadata.version("accelerate")) > version.parse("0.19.0"):
3191
3192
3193
3194
3195
3196
                    from accelerate.utils import CustomDtype

                    target_dtype = CustomDtype.INT4
                else:
                    raise ValueError(
                        "You are using `device_map='auto'` on a 4bit loaded version of the model. To automatically compute"
3197
3198
                        " the appropriate device map, you should upgrade your `accelerate` library, "
                        "`pip install --upgrade accelerate` or install it from source to support fp4 auto device map "
3199
3200
3201
3202
3203
                        "calculation. You may encounter unexpected behavior, or pass your own device map"
                    )
            elif load_in_8bit:
                target_dtype = torch.int8

3204
            if model._no_split_modules is None:
3205
                raise ValueError(
3206
                    f"{model.__class__.__name__} does not support `device_map='{device_map}'`. To implement support, the model "
3207
3208
                    "class needs to implement the `_no_split_modules` attribute."
                )
3209
            no_split_modules = model._no_split_modules
3210
3211
3212
3213
3214
            if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
                raise ValueError(
                    "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or "
                    "'sequential'."
                )
3215

3216
            device_map_kwargs = {"no_split_module_classes": no_split_modules}
3217
            if "special_dtypes" in inspect.signature(infer_auto_device_map).parameters:
3218
                device_map_kwargs["special_dtypes"] = special_dtypes
3219
            elif len(special_dtypes) > 0:
3220
                logger.warning(
3221
3222
3223
                    "This model has some weights that should be kept in higher precision, you need to upgrade "
                    "`accelerate` to properly deal with them (`pip install --upgrade accelerate`)."
                )
3224
            if device_map != "sequential":
3225
3226
                max_memory = get_balanced_memory(
                    model,
3227
                    dtype=target_dtype,
3228
                    low_zero=(device_map == "balanced_low_0"),
3229
                    max_memory=max_memory,
3230
                    **device_map_kwargs,
3231
                )
Marc Sun's avatar
Marc Sun committed
3232
3233
3234
3235
3236
            else:
                max_memory = get_max_memory(max_memory)
            if getattr(model, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES:
                # need more space for buffers that are created during quantization
                max_memory = {key: val * 0.90 for key, val in max_memory.items()}
3237
            device_map_kwargs["max_memory"] = max_memory
Marc Sun's avatar
Marc Sun committed
3238

3239
3240
            # Make sure tied weights are tied before creating the device map.
            model.tie_weights()
3241
            device_map = infer_auto_device_map(model, dtype=target_dtype, **device_map_kwargs)
3242

3243
            if load_in_8bit or load_in_4bit:
3244
                # The LM head / tied weights or any last module can stay on disk / CPU
3245
                device_map_without_lm_head = {
3246
                    key: device_map[key] for key in device_map.keys() if key not in modules_to_not_convert
3247
3248
                }
                if "cpu" in device_map_without_lm_head.values() or "disk" in device_map_without_lm_head.values():
3249
3250
3251
                    raise ValueError(
                        """
                        Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit
3252
3253
3254
3255
3256
                        the quantized model. If you want to dispatch the model on the CPU or the disk while keeping
                        these modules in 32-bit, you need to set `load_in_8bit_fp32_cpu_offload=True` and pass a custom
                        `device_map` to `from_pretrained`. Check
                        https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu
                        for more details.
3257
3258
                        """
                    )
3259
3260
                del device_map_without_lm_head

3261
3262
3263
3264
        elif device_map is not None:
            model.tie_weights()
            tied_params = find_tied_parameters(model)
            # check if we don't have tied param in different devices
3265
            check_tied_parameters_on_same_device(tied_params, device_map)
3266

3267
        if from_tf:
3268
            if resolved_archive_file.endswith(".index"):
3269
3270
3271
3272
3273
                # Load from a TensorFlow 1.X checkpoint - provided by original authors
                model = cls.load_tf_weights(model, config, resolved_archive_file[:-6])  # Remove the '.index'
            else:
                # Load from our TensorFlow 2.0 checkpoints
                try:
3274
                    from .modeling_tf_pytorch_utils import load_tf2_checkpoint_in_pytorch_model
3275

Yih-Dar's avatar
Yih-Dar committed
3276
3277
3278
                    model, loading_info = load_tf2_checkpoint_in_pytorch_model(
                        model, resolved_archive_file, allow_missing_keys=True, output_loading_info=True
                    )
3279
                except ImportError:
3280
                    logger.error(
Sylvain Gugger's avatar
Sylvain Gugger committed
3281
3282
3283
                        "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed."
                        " Please see https://pytorch.org/ and https://www.tensorflow.org/install/ for installation"
                        " instructions."
3284
                    )
3285
                    raise
3286
3287
3288
3289
3290
3291
3292
        elif from_flax:
            try:
                from .modeling_flax_pytorch_utils import load_flax_checkpoint_in_pytorch_model

                model = load_flax_checkpoint_in_pytorch_model(model, resolved_archive_file)
            except ImportError:
                logger.error(
Sylvain Gugger's avatar
Sylvain Gugger committed
3293
3294
3295
                    "Loading a Flax model in PyTorch, requires both PyTorch and Flax to be installed. Please see"
                    " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for"
                    " installation instructions."
3296
3297
                )
                raise
3298
        elif from_pt:
3299
3300
3301
3302
            # restore default dtype
            if dtype_orig is not None:
                torch.set_default_dtype(dtype_orig)

Sylvain Gugger's avatar
Sylvain Gugger committed
3303
3304
3305
3306
3307
3308
3309
3310
            (
                model,
                missing_keys,
                unexpected_keys,
                mismatched_keys,
                offload_index,
                error_msgs,
            ) = cls._load_pretrained_model(
3311
3312
3313
3314
3315
3316
3317
3318
3319
                model,
                state_dict,
                loaded_state_dict_keys,  # XXX: rename?
                resolved_archive_file,
                pretrained_model_name_or_path,
                ignore_mismatched_sizes=ignore_mismatched_sizes,
                sharded_metadata=sharded_metadata,
                _fast_init=_fast_init,
                low_cpu_mem_usage=low_cpu_mem_usage,
3320
3321
3322
3323
                device_map=device_map,
                offload_folder=offload_folder,
                offload_state_dict=offload_state_dict,
                dtype=torch_dtype,
Marc Sun's avatar
Marc Sun committed
3324
                is_quantized=(getattr(model, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES),
3325
                keep_in_fp32_modules=keep_in_fp32_modules,
3326
            )
3327

3328
        model.is_loaded_in_4bit = load_in_4bit
Younes Belkada's avatar
Younes Belkada committed
3329
        model.is_loaded_in_8bit = load_in_8bit
3330

3331
3332
        # make sure token embedding weights are still tied if needed
        model.tie_weights()
3333

3334
        # Set model in evaluation mode to deactivate DropOut modules by default
3335
3336
        model.eval()

3337
        # If it is a model with generation capabilities, attempt to load the generation config
3338
        if model.can_generate() and pretrained_model_name_or_path is not None:
3339
3340
3341
3342
3343
3344
3345
3346
            try:
                model.generation_config = GenerationConfig.from_pretrained(
                    pretrained_model_name_or_path,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
3347
                    token=token,
3348
3349
3350
3351
3352
3353
                    revision=revision,
                    subfolder=subfolder,
                    _from_auto=from_auto_class,
                    _from_pipeline=from_pipeline,
                    **kwargs,
                )
3354
            except OSError:
3355
3356
3357
3358
3359
                logger.info(
                    "Generation config file not found, using a generation config created from the model config."
                )
                pass

3360
3361
        # Dispatch model with hooks on all devices if necessary
        if device_map is not None:
3362
3363
3364
3365
3366
            device_map_kwargs = {
                "device_map": device_map,
                "offload_dir": offload_folder,
                "offload_index": offload_index,
            }
3367
            if "skip_keys" in inspect.signature(dispatch_model).parameters:
3368
3369
                device_map_kwargs["skip_keys"] = model._skip_keys_device_placement
            dispatch_model(model, **device_map_kwargs)
3370

Marc Sun's avatar
Marc Sun committed
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
        if quantization_method_from_args == QuantizationMethod.GPTQ:
            if quantization_config.tokenizer is None:
                quantization_config.tokenizer = pretrained_model_name_or_path
            if cls.main_input_name != "input_ids":
                raise RuntimeError("We can only quantize pure text model.")
            quantizer.quantize_model(model, quantization_config.tokenizer)
            model.config.quantization_config = GPTQConfig.from_dict(quantizer.to_dict())
            model._is_quantized_training_enabled = True
        if quantization_method_from_config == QuantizationMethod.GPTQ:
            model = quantizer.post_init_model(model)

3382
        if _adapter_model_path is not None:
3383
            model.load_adapter(
3384
                _adapter_model_path,
3385
3386
                adapter_name=adapter_name,
                token=token,
3387
                adapter_kwargs=adapter_kwargs,
3388
3389
            )

thomwolf's avatar
thomwolf committed
3390
        if output_loading_info:
Yih-Dar's avatar
Yih-Dar committed
3391
3392
3393
3394
3395
3396
3397
            if loading_info is None:
                loading_info = {
                    "missing_keys": missing_keys,
                    "unexpected_keys": unexpected_keys,
                    "mismatched_keys": mismatched_keys,
                    "error_msgs": error_msgs,
                }
thomwolf's avatar
thomwolf committed
3398
3399
            return model, loading_info

3400
3401
        return model

3402
    @classmethod
Sylvain Gugger's avatar
Sylvain Gugger committed
3403
3404
3405
3406
    def _load_pretrained_model(
        cls,
        model,
        state_dict,
3407
        loaded_keys,
Sylvain Gugger's avatar
Sylvain Gugger committed
3408
3409
3410
3411
3412
        resolved_archive_file,
        pretrained_model_name_or_path,
        ignore_mismatched_sizes=False,
        sharded_metadata=None,
        _fast_init=True,
3413
        low_cpu_mem_usage=False,
3414
3415
        device_map=None,
        offload_folder=None,
3416
        offload_state_dict=None,
3417
        dtype=None,
3418
        is_quantized=False,
3419
        keep_in_fp32_modules=None,
3420
    ):
Sylvain Gugger's avatar
Sylvain Gugger committed
3421
        is_safetensors = False
3422
        if is_quantized:
3423
            from .integrations import set_module_quantized_tensor_to_device
3424

Sylvain Gugger's avatar
Sylvain Gugger committed
3425
        if device_map is not None and "disk" in device_map.values():
Sylvain Gugger's avatar
Sylvain Gugger committed
3426
3427
3428
3429
3430
            archive_file = (
                resolved_archive_file[0] if isinstance(resolved_archive_file, (list, tuple)) else resolved_archive_file
            )
            is_safetensors = archive_file.endswith(".safetensors")
            if offload_folder is None and not is_safetensors:
Sylvain Gugger's avatar
Sylvain Gugger committed
3431
3432
                raise ValueError(
                    "The current `device_map` had weights offloaded to the disk. Please provide an `offload_folder`"
Sylvain Gugger's avatar
Sylvain Gugger committed
3433
3434
                    " for them. Alternatively, make sure you have `safetensors` installed if the model you are using"
                    " offers the weights in this format."
Sylvain Gugger's avatar
Sylvain Gugger committed
3435
                )
Sylvain Gugger's avatar
Sylvain Gugger committed
3436
3437
            if offload_folder is not None:
                os.makedirs(offload_folder, exist_ok=True)
3438
3439
3440
            if offload_state_dict is None:
                offload_state_dict = True

3441
        is_sharded_safetensors = is_safetensors and sharded_metadata is not None
Patrick von Platen's avatar
Patrick von Platen committed
3442
3443
3444
3445

        # tie the model weights before retrieving the state_dict
        model.tie_weights()

3446
        # Retrieve missing & unexpected_keys
3447
3448
        model_state_dict = model.state_dict()
        expected_keys = list(model_state_dict.keys())
3449
3450
        prefix = model.base_model_prefix

Sylvain Gugger's avatar
Sylvain Gugger committed
3451
3452
3453
3454
3455
3456
3457
        def _fix_key(key):
            if "beta" in key:
                return key.replace("beta", "bias")
            if "gamma" in key:
                return key.replace("gamma", "weight")
            return key

3458
        original_loaded_keys = loaded_keys
Sylvain Gugger's avatar
Sylvain Gugger committed
3459
3460
        loaded_keys = [_fix_key(key) for key in loaded_keys]

3461
3462
3463
3464
3465
3466
        if len(prefix) > 0:
            has_prefix_module = any(s.startswith(prefix) for s in loaded_keys)
            expects_prefix_module = any(s.startswith(prefix) for s in expected_keys)
        else:
            has_prefix_module = False
            expects_prefix_module = False
Patrick von Platen's avatar
Patrick von Platen committed
3467
3468
3469

        # key re-naming operations are never done on the keys
        # that are loaded, but always on the keys of the newly initialized model
3470
3471
        remove_prefix_from_model = not has_prefix_module and expects_prefix_module
        add_prefix_to_model = has_prefix_module and not expects_prefix_module
3472

3473
        if remove_prefix_from_model:
3474
3475
3476
            _prefix = f"{prefix}."
            expected_keys_not_prefixed = [s for s in expected_keys if not s.startswith(_prefix)]
            expected_keys = [s[len(_prefix) :] if s.startswith(_prefix) else s for s in expected_keys]
3477
        elif add_prefix_to_model:
3478
3479
3480
            expected_keys = [".".join([prefix, s]) for s in expected_keys]

        missing_keys = list(set(expected_keys) - set(loaded_keys))
Sylvain Gugger's avatar
Sylvain Gugger committed
3481
3482
3483
3484
3485
3486
3487
3488
3489
        unexpected_keys = set(loaded_keys) - set(expected_keys)
        # Remove nonpersistent buffers from unexpected keys: they are not in the state dict but will be in the model
        # buffers
        model_buffers = {n for n, _ in model.named_buffers()}
        if remove_prefix_from_model:
            model_buffers = {key[len(_prefix) :] if key.startswith(_prefix) else key for key in model_buffers}
        elif add_prefix_to_model:
            model_buffers = {".".join([prefix, key]) for key in model_buffers}
        unexpected_keys = list(unexpected_keys - model_buffers)
3490

3491
3492
        model.tie_weights()
        if device_map is None and not is_fsdp_enabled():
3493
3494
3495
3496
            ptrs = collections.defaultdict(list)
            for name, tensor in model.state_dict().items():
                id_tensor = id_tensor_storage(tensor)
                ptrs[id_tensor].append(name)
Sylvain Gugger's avatar
Sylvain Gugger committed
3497

3498
3499
3500
3501
3502
            # These are all the pointers of shared tensors.
            tied_params = [names for _, names in ptrs.items() if len(names) > 1]
        else:
            # id function doesn't work for meta tensor so we need this function
            tied_params = find_tied_parameters(model)
Sylvain Gugger's avatar
Sylvain Gugger committed
3503
3504

        for group in tied_params:
Sylvain Gugger's avatar
Sylvain Gugger committed
3505
3506
3507
3508
            if remove_prefix_from_model:
                group = [key[len(_prefix) :] if key.startswith(_prefix) else key for key in group]
            elif add_prefix_to_model:
                group = [".".join([prefix, key]) for key in group]
Sylvain Gugger's avatar
Sylvain Gugger committed
3509
3510
3511
            missing_in_group = [k for k in missing_keys if k in group]
            if len(missing_in_group) > 0 and len(missing_in_group) < len(group):
                missing_keys = [k for k in missing_keys if k not in missing_in_group]
3512

3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
        # Some models may have keys that are not in the state by design, removing them before needlessly warning
        # the user.
        if cls._keys_to_ignore_on_load_missing is not None:
            for pat in cls._keys_to_ignore_on_load_missing:
                missing_keys = [k for k in missing_keys if re.search(pat, k) is None]

        if cls._keys_to_ignore_on_load_unexpected is not None:
            for pat in cls._keys_to_ignore_on_load_unexpected:
                unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

3523
3524
3525
3526
        # retrieve weights on meta device and put them back on CPU.
        # This is not ideal in terms of memory, but if we don't do that not, we can't initialize them in the next step
        if low_cpu_mem_usage:
            for key in missing_keys:
Susnato Dhar's avatar
Susnato Dhar committed
3527
3528
                if key in list(model_state_dict.keys()):
                    key = key
3529
3530
                elif f"{prefix}.{key}" in list(model_state_dict.keys()):
                    key = f"{prefix}.{key}"
Susnato Dhar's avatar
Susnato Dhar committed
3531
                elif key.startswith(prefix) and ".".join(key.split(".")[1:]) in list(model_state_dict.keys()):
3532
3533
                    key = ".".join(key.split(".")[1:])
                param = model_state_dict[key]
3534
3535
3536
3537
3538
3539

                # upcast in fp32 if any
                target_dtype = dtype
                if (
                    keep_in_fp32_modules is not None
                    and dtype == torch.float16
3540
3541
3542
                    and any(
                        module_to_keep_in_fp32 in key.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules
                    )
3543
3544
3545
                ):
                    target_dtype = torch.float32

3546
                if param.device == torch.device("meta"):
3547
                    if not (is_quantized):
3548
                        set_module_tensor_to_device(model, key, "cpu", torch.empty(*param.size(), dtype=target_dtype))
3549
                    else:
3550
                        set_module_quantized_tensor_to_device(
3551
3552
                            model, key, "cpu", torch.empty(*param.size(), dtype=target_dtype)
                        )
3553
3554

        # retrieve unintialized modules and initialize before maybe overriding that with the pretrained weights.
3555
        if _fast_init:
3556
3557
3558
3559
3560
3561
3562
3563
3564
            if remove_prefix_from_model:
                _loaded_keys = [f"{prefix}.{k}" for k in loaded_keys]
            elif add_prefix_to_model:
                _loaded_keys = [k[len(prefix) + 1 :] for k in loaded_keys]
            else:
                _loaded_keys = loaded_keys
            set_initialized_submodules(model, _loaded_keys)
            # This will only initialize submodules that are not marked as initialized by the line above.
            model.apply(model._initialize_weights)
3565

3566
3567
3568
        # Set some modules to fp32 if any
        if keep_in_fp32_modules is not None:
            for name, param in model.named_parameters():
3569
                if any(module_to_keep_in_fp32 in name.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules):
3570
3571
                    # param = param.to(torch.float32) does not work here as only in the local scope.
                    param.data = param.data.to(torch.float32)
3572

3573
3574
3575
        # Make sure we are able to load base models as well as derived models (with heads)
        start_prefix = ""
        model_to_load = model
3576
        if len(cls.base_model_prefix) > 0 and not hasattr(model, cls.base_model_prefix) and has_prefix_module:
3577
            start_prefix = cls.base_model_prefix + "."
3578
        if len(cls.base_model_prefix) > 0 and hasattr(model, cls.base_model_prefix) and not has_prefix_module:
3579
            model_to_load = getattr(model, cls.base_model_prefix)
Sylvain Gugger's avatar
Sylvain Gugger committed
3580
3581
            base_model_expected_keys = list(model_to_load.state_dict().keys())
            if any(key in expected_keys_not_prefixed and key not in base_model_expected_keys for key in loaded_keys):
3582
                raise ValueError(
3583
                    "The state dictionary of the model you are trying to load is corrupted. Are you sure it was "
3584
3585
                    "properly saved?"
                )
3586
3587
            if device_map is not None:
                device_map = {k.replace(f"{cls.base_model_prefix}.", ""): v for k, v in device_map.items()}
3588

3589
3590
3591
3592
3593
3594
3595
3596
        def _find_mismatched_keys(
            state_dict,
            model_state_dict,
            loaded_keys,
            add_prefix_to_model,
            remove_prefix_from_model,
            ignore_mismatched_sizes,
        ):
Sylvain Gugger's avatar
Sylvain Gugger committed
3597
3598
3599
            mismatched_keys = []
            if ignore_mismatched_sizes:
                for checkpoint_key in loaded_keys:
3600
3601
3602
                    # If the checkpoint is sharded, we may not have the key here.
                    if checkpoint_key not in state_dict:
                        continue
Sylvain Gugger's avatar
Sylvain Gugger committed
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
                    model_key = checkpoint_key
                    if remove_prefix_from_model:
                        # The model key starts with `prefix` but `checkpoint_key` doesn't so we add it.
                        model_key = f"{prefix}.{checkpoint_key}"
                    elif add_prefix_to_model:
                        # The model key doesn't start with `prefix` but `checkpoint_key` does so we remove it.
                        model_key = ".".join(checkpoint_key.split(".")[1:])

                    if (
                        model_key in model_state_dict
                        and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
                    ):
                        mismatched_keys.append(
                            (checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
                        )
                        del state_dict[checkpoint_key]
3619
3620
            return mismatched_keys

3621
3622
3623
3624
        if resolved_archive_file is not None:
            folder = os.path.sep.join(resolved_archive_file[0].split(os.path.sep)[:-1])
        else:
            folder = None
Sylvain Gugger's avatar
Sylvain Gugger committed
3625
        if device_map is not None and is_safetensors:
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
            param_device_map = expand_device_map(device_map, original_loaded_keys)

            str_dtype = str(dtype).replace("torch.", "") if dtype is not None else "float32"
            if sharded_metadata is None:
                archive_file = (
                    resolved_archive_file[0]
                    if isinstance(resolved_archive_file, (list, tuple))
                    else resolved_archive_file
                )
                weight_map = {p: archive_file for p in original_loaded_keys}
            else:
                weight_map = {p: os.path.join(folder, f) for p, f in sharded_metadata["weight_map"].items()}
Sylvain Gugger's avatar
Sylvain Gugger committed
3638
            offload_index = {
3639
3640
                p: {"safetensors_file": f, "weight_name": p, "dtype": str_dtype}
                for p, f in weight_map.items()
Sylvain Gugger's avatar
Sylvain Gugger committed
3641
3642
3643
                if param_device_map[p] == "disk"
            }

3644
3645
3646
3647
3648
        if state_dict is not None:
            # Whole checkpoint
            mismatched_keys = _find_mismatched_keys(
                state_dict,
                model_state_dict,
3649
                original_loaded_keys,
3650
3651
3652
3653
                add_prefix_to_model,
                remove_prefix_from_model,
                ignore_mismatched_sizes,
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
3654
            error_msgs = _load_state_dict_into_model(model_to_load, state_dict, start_prefix)
Sylvain Gugger's avatar
Sylvain Gugger committed
3655
            offload_index = None
Sylvain Gugger's avatar
Sylvain Gugger committed
3656
        else:
3657
3658
            # Sharded checkpoint or whole but low_cpu_mem_usage==True

Sylvain Gugger's avatar
Sylvain Gugger committed
3659
3660
3661
3662
3663
            # This should always be a list but, just to be sure.
            if not isinstance(resolved_archive_file, list):
                resolved_archive_file = [resolved_archive_file]

            error_msgs = []
3664
            mismatched_keys = []
Sylvain Gugger's avatar
Sylvain Gugger committed
3665
3666
            if not is_safetensors:
                offload_index = {} if device_map is not None and "disk" in device_map.values() else None
3667
3668
3669
3670
3671
3672
3673
            if offload_state_dict:
                state_dict_folder = tempfile.mkdtemp()
                state_dict_index = {}
            else:
                state_dict_folder = None
                state_dict_index = None

3674
            if is_sharded_safetensors:
Sylvain Gugger's avatar
Sylvain Gugger committed
3675
3676
3677
3678
3679
                disk_only_shard_files = get_disk_only_shard_files(device_map, sharded_metadata=sharded_metadata)
                disk_only_shard_files = [os.path.join(folder, f) for f in disk_only_shard_files]
            else:
                disk_only_shard_files = []

3680
3681
            if len(resolved_archive_file) > 1:
                resolved_archive_file = logging.tqdm(resolved_archive_file, desc="Loading checkpoint shards")
Sylvain Gugger's avatar
Sylvain Gugger committed
3682
            for shard_file in resolved_archive_file:
Sylvain Gugger's avatar
Sylvain Gugger committed
3683
3684
3685
                # Skip the load for shards that only contain disk-offloaded weights when using safetensors for the offload.
                if shard_file in disk_only_shard_files:
                    continue
Sylvain Gugger's avatar
Sylvain Gugger committed
3686
                state_dict = load_state_dict(shard_file)
3687

Sylvain Gugger's avatar
Sylvain Gugger committed
3688
3689
                # Mistmatched keys contains tuples key/shape1/shape2 of weights in the checkpoint that have a shape not
                # matching the weights in the model.
3690
3691
3692
                mismatched_keys += _find_mismatched_keys(
                    state_dict,
                    model_state_dict,
3693
                    original_loaded_keys,
3694
3695
3696
3697
                    add_prefix_to_model,
                    remove_prefix_from_model,
                    ignore_mismatched_sizes,
                )
3698
                if low_cpu_mem_usage:
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
                    if not is_fsdp_enabled() or is_fsdp_enabled_and_dist_rank_0():
                        new_error_msgs, offload_index, state_dict_index = _load_state_dict_into_meta_model(
                            model_to_load,
                            state_dict,
                            loaded_keys,
                            start_prefix,
                            expected_keys,
                            device_map=device_map,
                            offload_folder=offload_folder,
                            offload_index=offload_index,
                            state_dict_folder=state_dict_folder,
                            state_dict_index=state_dict_index,
                            dtype=dtype,
                            is_quantized=is_quantized,
                            is_safetensors=is_safetensors,
                            keep_in_fp32_modules=keep_in_fp32_modules,
                        )
                        error_msgs += new_error_msgs
                    else:
                        for key, param in model_to_load.state_dict().items():
                            if param.device == torch.device("meta"):
                                if not (is_quantized):
                                    set_module_tensor_to_device(
3722
                                        model_to_load, key, "cpu", torch.empty(*param.size(), dtype=dtype)
3723
3724
3725
                                    )
                                else:
                                    set_module_quantized_tensor_to_device(
3726
                                        model_to_load, key, "cpu", torch.empty(*param.size(), dtype=dtype)
3727
                                    )
3728
3729
                else:
                    error_msgs += _load_state_dict_into_model(model_to_load, state_dict, start_prefix)
3730

3731
3732
3733
3734
                # force memory release
                del state_dict
                gc.collect()

3735
            if offload_index is not None and len(offload_index) > 0:
Sylvain Gugger's avatar
Sylvain Gugger committed
3736
3737
3738
                if model != model_to_load:
                    # We need to add the prefix of the base model
                    prefix = cls.base_model_prefix
Sylvain Gugger's avatar
Sylvain Gugger committed
3739
3740
3741
3742
3743
3744
                    if not is_safetensors:
                        for weight_name in offload_index:
                            shutil.move(
                                os.path.join(offload_folder, f"{weight_name}.dat"),
                                os.path.join(offload_folder, f"{prefix}.{weight_name}.dat"),
                            )
Sylvain Gugger's avatar
Sylvain Gugger committed
3745
                    offload_index = {f"{prefix}.{key}": value for key, value in offload_index.items()}
Sylvain Gugger's avatar
Sylvain Gugger committed
3746
3747
3748
                if not is_safetensors:
                    save_offload_index(offload_index, offload_folder)
                    offload_index = None
3749
3750
3751

            if offload_state_dict:
                # Load back temporarily offloaded state dict
3752
                load_offloaded_weights(model_to_load, state_dict_index, state_dict_folder)
3753
3754
                shutil.rmtree(state_dict_folder)

3755
3756
        if len(error_msgs) > 0:
            error_msg = "\n\t".join(error_msgs)
3757
3758
3759
3760
            if "size mismatch" in error_msg:
                error_msg += (
                    "\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
                )
3761
3762
            raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")

3763
        if is_quantized:
3764
3765
3766
            unexpected_keys = [elem for elem in unexpected_keys if "SCB" not in elem]
            missing_keys = [elem for elem in missing_keys if "SCB" not in elem]

3767
        if len(unexpected_keys) > 0:
Sylvain Gugger's avatar
Sylvain Gugger committed
3768
            archs = [] if model.config.architectures is None else model.config.architectures
3769
            warner = logger.warning if model.__class__.__name__ in archs else logger.info
Sylvain Gugger's avatar
Sylvain Gugger committed
3770
            warner(
Sylvain Gugger's avatar
Sylvain Gugger committed
3771
3772
3773
3774
3775
3776
3777
                f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
                f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
                f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task or"
                " with another architecture (e.g. initializing a BertForSequenceClassification model from a"
                " BertForPreTraining model).\n- This IS NOT expected if you are initializing"
                f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly identical"
                " (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
3778
3779
3780
3781
3782
            )
        else:
            logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
        if len(missing_keys) > 0:
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
3783
3784
3785
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
                " TRAIN this model on a down-stream task to be able to use it for predictions and inference."
3786
            )
3787
        elif len(mismatched_keys) == 0:
3788
            logger.info(
Sylvain Gugger's avatar
Sylvain Gugger committed
3789
3790
3791
3792
                f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the checkpoint"
                f" was trained on, you can already use {model.__class__.__name__} for predictions without further"
                " training."
3793
            )
3794
3795
3796
3797
3798
3799
3800
3801
        if len(mismatched_keys) > 0:
            mismatched_warning = "\n".join(
                [
                    f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
                    for key, shape1, shape2 in mismatched_keys
                ]
            )
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
3802
3803
3804
3805
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
                f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be able"
                " to use it for predictions and inference."
3806
            )
3807

Sylvain Gugger's avatar
Sylvain Gugger committed
3808
        return model, missing_keys, unexpected_keys, mismatched_keys, offload_index, error_msgs
3809
3810

    def retrieve_modules_from_names(self, names, add_prefix=False, remove_prefix=False):
3811
        module_keys = {".".join(key.split(".")[:-1]) for key in names}
3812

Patrick von Platen's avatar
Patrick von Platen committed
3813
3814
        # torch.nn.ParameterList is a special case where two parameter keywords
        # are appended to the module name, *e.g.* bert.special_embeddings.0
3815
        module_keys = module_keys.union(
3816
            {".".join(key.split(".")[:-2]) for key in names if len(key) > 0 and key[-1].isdigit()}
3817
        )
Patrick von Platen's avatar
Patrick von Platen committed
3818

3819
3820
3821
3822
        retrieved_modules = []
        # retrieve all modules that has at least one missing weight name
        for name, module in self.named_modules():
            if remove_prefix:
3823
3824
                _prefix = f"{self.base_model_prefix}."
                name = name[len(_prefix) :] if name.startswith(_prefix) else name
3825
            elif add_prefix:
Patrick von Platen's avatar
Patrick von Platen committed
3826
                name = ".".join([self.base_model_prefix, name]) if len(name) > 0 else self.base_model_prefix
3827
3828
3829
3830
3831
3832

            if name in module_keys:
                retrieved_modules.append(module)

        return retrieved_modules

3833
    @staticmethod
3834
    def _load_pretrained_model_low_mem(model, loaded_state_dict_keys, resolved_archive_file, start_prefix=""):
3835
3836
3837
        """
        This is an experimental function that loads the model using ~1.x model size CPU memory

3838
        Before you call it do:
3839

3840
        1. save which state_dict keys are available
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
        2. drop state_dict before model is created, since the latter takes 1x model size memory

        Here then we continue:

        3. switch to the meta device all params/buffers that are going to be replaced from the loaded state_dict
        4. load state_dict 2nd time
        5. replace the params/buffers from the state_dict

        Currently, it doesn't handle missing_keys, unexpected_keys, mismatched_keys. It can't handle deepspeed.
        """

3852
3853
3854
3855
        _move_model_to_meta(model, loaded_state_dict_keys, start_prefix)
        state_dict = load_state_dict(resolved_archive_file)
        error_msgs = _load_state_dict_into_meta_model(model, state_dict, loaded_state_dict_keys, start_prefix)
        return error_msgs
3856

3857
3858
3859
3860
3861
3862
    @classmethod
    def register_for_auto_class(cls, auto_class="AutoModel"):
        """
        Register this class with a given auto class. This should only be used for custom models as the ones in the
        library are already mapped with an auto class.

3863
3864
3865
3866
3867
3868
        <Tip warning={true}>

        This API is experimental and may have some slight breaking changes in the next releases.

        </Tip>

3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
        Args:
            auto_class (`str` or `type`, *optional*, defaults to `"AutoModel"`):
                The auto class to register this new model with.
        """
        if not isinstance(auto_class, str):
            auto_class = auto_class.__name__

        import transformers.models.auto as auto_module

        if not hasattr(auto_module, auto_class):
            raise ValueError(f"{auto_class} is not a valid auto class.")

        cls._auto_class = auto_class

3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
    def to_bettertransformer(self) -> "PreTrainedModel":
        """
        Converts the model to use [PyTorch's native attention
        implementation](https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html), integrated to
        Transformers through [Optimum library](https://huggingface.co/docs/optimum/bettertransformer/overview). Only a
        subset of all Transformers models are supported.

        PyTorch's attention fastpath allows to speed up inference through kernel fusions and the use of [nested
        tensors](https://pytorch.org/docs/stable/nested.html). Detailed benchmarks can be found in [this blog
        post](https://medium.com/pytorch/bettertransformer-out-of-the-box-performance-for-huggingface-transformers-3fbe27d50ab2).

        Returns:
            [`PreTrainedModel`]: The model converted to BetterTransformer.
        """
        if not is_optimum_available():
            raise ImportError("The package `optimum` is required to use Better Transformer.")

        from optimum.version import __version__ as optimum_version

        if version.parse(optimum_version) < version.parse("1.7.0"):
            raise ImportError(
                f"Please install optimum>=1.7.0 to use Better Transformer. The version {optimum_version} was found."
            )

        from optimum.bettertransformer import BetterTransformer

        return BetterTransformer.transform(self)

    def reverse_bettertransformer(self):
        """
        Reverts the transformation from [`~PreTrainedModel.to_bettertransformer`] so that the original modeling is
        used, for example in order to save the model.

        Returns:
            [`PreTrainedModel`]: The model converted back to the original modeling.
        """
        if not is_optimum_available():
            raise ImportError("The package `optimum` is required to use Better Transformer.")

        from optimum.version import __version__ as optimum_version

        if version.parse(optimum_version) < version.parse("1.7.0"):
            raise ImportError(
                f"Please install optimum>=1.7.0 to use Better Transformer. The version {optimum_version} was found."
            )

        from optimum.bettertransformer import BetterTransformer

        return BetterTransformer.reverse(self)

3933
3934
3935
3936
    def warn_if_padding_and_no_attention_mask(self, input_ids, attention_mask):
        """
        Shows a one-time warning if the input_ids appear to contain padding and no attention mask was given.
        """
3937
3938

        # Skip the check during tracing.
3939
        if is_torch_fx_proxy(input_ids) or torch.jit.is_tracing() or is_torchdynamo_compiling():
3940
3941
            return

3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
        if (attention_mask is not None) or (self.config.pad_token_id is None):
            return

        # Check only the first and last input IDs to reduce overhead.
        if self.config.pad_token_id in input_ids[:, [-1, 0]]:
            warn_string = (
                "We strongly recommend passing in an `attention_mask` since your input_ids may be padded. See "
                "https://huggingface.co/docs/transformers/troubleshooting"
                "#incorrect-output-when-padding-tokens-arent-masked."
            )

            # If the pad token is equal to either BOS, EOS, or SEP, we do not know whether the user should use an
            # attention_mask or not. In this case, we should still show a warning because this is a rare case.
            if (
                (self.config.bos_token_id is not None and self.config.bos_token_id == self.config.pad_token_id)
                or (self.config.eos_token_id is not None and self.config.eos_token_id == self.config.pad_token_id)
                or (self.config.sep_token_id is not None and self.config.sep_token_id == self.config.pad_token_id)
            ):
                warn_string += (
                    f"\nYou may ignore this warning if your `pad_token_id` ({self.config.pad_token_id}) is identical "
                    f"to the `bos_token_id` ({self.config.bos_token_id}), `eos_token_id` ({self.config.eos_token_id}), "
                    f"or the `sep_token_id` ({self.config.sep_token_id}), and your input is not padded."
                )

            logger.warning_once(warn_string)

thomwolf's avatar
thomwolf committed
3968

3969
PreTrainedModel.push_to_hub = copy_func(PreTrainedModel.push_to_hub)
3970
3971
3972
3973
if PreTrainedModel.push_to_hub.__doc__ is not None:
    PreTrainedModel.push_to_hub.__doc__ = PreTrainedModel.push_to_hub.__doc__.format(
        object="model", object_class="AutoModel", object_files="model file"
    )
3974
3975


thomwolf's avatar
thomwolf committed
3976
class PoolerStartLogits(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
3977
3978
    """
    Compute SQuAD start logits from sequence hidden states.
3979

Sylvain Gugger's avatar
Sylvain Gugger committed
3980
    Args:
3981
3982
        config ([`PretrainedConfig`]):
            The config used by the model, will be used to grab the `hidden_size` of the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
3983
3984
3985
    """

    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
3986
        super().__init__()
thomwolf's avatar
thomwolf committed
3987
3988
        self.dense = nn.Linear(config.hidden_size, 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
3989
3990
3991
3992
3993
    def forward(
        self, hidden_states: torch.FloatTensor, p_mask: Optional[torch.FloatTensor] = None
    ) -> torch.FloatTensor:
        """
        Args:
3994
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
3995
                The final hidden states of the model.
3996
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
3997
3998
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
Sylvain Gugger's avatar
Sylvain Gugger committed
3999
4000

        Returns:
4001
            `torch.FloatTensor`: The start logits for SQuAD.
thomwolf's avatar
thomwolf committed
4002
        """
thomwolf's avatar
thomwolf committed
4003
4004
4005
        x = self.dense(hidden_states).squeeze(-1)

        if p_mask is not None:
Lysandre Debut's avatar
Lysandre Debut committed
4006
            if get_parameter_dtype(self) == torch.float16:
4007
4008
4009
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask
thomwolf's avatar
thomwolf committed
4010
4011
4012
4013
4014
4015

        return x


class PoolerEndLogits(nn.Module):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
4016
    Compute SQuAD end logits from sequence hidden states.
4017

Sylvain Gugger's avatar
Sylvain Gugger committed
4018
    Args:
4019
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
4020
4021
            The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps`
            to use.
Sylvain Gugger's avatar
Sylvain Gugger committed
4022
4023
4024
    """

    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
4025
        super().__init__()
thomwolf's avatar
thomwolf committed
4026
4027
4028
4029
4030
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dense_1 = nn.Linear(config.hidden_size, 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
4031
4032
4033
4034
4035
4036
4037
4038
4039
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        start_states: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        p_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
        """
        Args:
4040
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
4041
                The final hidden states of the model.
4042
            start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4043
                The hidden states of the first tokens for the labeled span.
4044
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4045
                The position of the first token for the labeled span.
4046
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4047
4048
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
Sylvain Gugger's avatar
Sylvain Gugger committed
4049

4050
        <Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
4051

Stas Bekman's avatar
Stas Bekman committed
4052
4053
        One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides
        `start_states`.
4054
4055

        </Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
4056
4057

        Returns:
4058
            `torch.FloatTensor`: The end logits for SQuAD.
thomwolf's avatar
thomwolf committed
4059
        """
4060
4061
4062
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
thomwolf's avatar
thomwolf committed
4063
        if start_positions is not None:
4064
            slen, hsz = hidden_states.shape[-2:]
4065
4066
4067
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions)  # shape (bsz, 1, hsz)
            start_states = start_states.expand(-1, slen, -1)  # shape (bsz, slen, hsz)
thomwolf's avatar
thomwolf committed
4068
4069
4070
4071
4072
4073
4074

        x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1))
        x = self.activation(x)
        x = self.LayerNorm(x)
        x = self.dense_1(x).squeeze(-1)

        if p_mask is not None:
Lysandre Debut's avatar
Lysandre Debut committed
4075
            if get_parameter_dtype(self) == torch.float16:
4076
4077
4078
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask
thomwolf's avatar
thomwolf committed
4079
4080
4081
4082
4083

        return x


class PoolerAnswerClass(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
4084
4085
4086
4087
    """
    Compute SQuAD 2.0 answer class from classification and start tokens hidden states.

    Args:
4088
4089
        config ([`PretrainedConfig`]):
            The config used by the model, will be used to grab the `hidden_size` of the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
4090
    """
4091

thomwolf's avatar
thomwolf committed
4092
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
4093
        super().__init__()
thomwolf's avatar
thomwolf committed
4094
4095
4096
4097
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False)

Sylvain Gugger's avatar
Sylvain Gugger committed
4098
4099
4100
4101
4102
4103
4104
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        start_states: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        cls_index: Optional[torch.LongTensor] = None,
    ) -> torch.FloatTensor:
4105
4106
        """
        Args:
4107
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
4108
                The final hidden states of the model.
4109
            start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4110
                The hidden states of the first tokens for the labeled span.
4111
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4112
                The position of the first token for the labeled span.
4113
4114
4115
4116
            cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
                Position of the CLS token for each sentence in the batch. If `None`, takes the last token.

        <Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
4117

Stas Bekman's avatar
Stas Bekman committed
4118
4119
        One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides
        `start_states`.
Sylvain Gugger's avatar
Sylvain Gugger committed
4120

4121
        </Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
4122
4123

        Returns:
4124
            `torch.FloatTensor`: The SQuAD 2.0 answer class.
thomwolf's avatar
thomwolf committed
4125
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
4126
        # No dependency on end_feature so that we can obtain one single `cls_logits` for each sample.
4127
        hsz = hidden_states.shape[-1]
4128
4129
4130
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
thomwolf's avatar
thomwolf committed
4131
        if start_positions is not None:
4132
4133
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions).squeeze(-2)  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
4134
4135

        if cls_index is not None:
4136
4137
            cls_index = cls_index[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
4138
        else:
4139
            cls_token_state = hidden_states[:, -1, :]  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
4140
4141
4142
4143
4144
4145
4146
4147

        x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1))
        x = self.activation(x)
        x = self.dense_1(x).squeeze(-1)

        return x


4148
4149
4150
@dataclass
class SquadHeadOutput(ModelOutput):
    """
4151
    Base class for outputs of question answering models using a [`~modeling_utils.SQuADHead`].
4152
4153

    Args:
4154
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned if both `start_positions` and `end_positions` are provided):
Sylvain Gugger's avatar
Sylvain Gugger committed
4155
4156
            Classification loss as the sum of start token, end token (and is_impossible if provided) classification
            losses.
4157
        start_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
4158
            Log probabilities for the top config.start_n_top start token possibilities (beam-search).
4159
        start_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
4160
            Indices for the top config.start_n_top start token possibilities (beam-search).
4161
4162
        end_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Log probabilities for the top `config.start_n_top * config.end_n_top` end token possibilities
Sylvain Gugger's avatar
Sylvain Gugger committed
4163
            (beam-search).
4164
4165
4166
4167
        end_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Indices for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search).
        cls_logits (`torch.FloatTensor` of shape `(batch_size,)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Log probabilities for the `is_impossible` label of the answers.
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178

    """

    loss: Optional[torch.FloatTensor] = None
    start_top_log_probs: Optional[torch.FloatTensor] = None
    start_top_index: Optional[torch.LongTensor] = None
    end_top_log_probs: Optional[torch.FloatTensor] = None
    end_top_index: Optional[torch.LongTensor] = None
    cls_logits: Optional[torch.FloatTensor] = None


thomwolf's avatar
thomwolf committed
4179
class SQuADHead(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
4180
4181
    r"""
    A SQuAD head inspired by XLNet.
4182

Sylvain Gugger's avatar
Sylvain Gugger committed
4183
    Args:
4184
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
4185
4186
            The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps`
            to use.
thomwolf's avatar
thomwolf committed
4187
    """
4188

thomwolf's avatar
thomwolf committed
4189
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
4190
        super().__init__()
thomwolf's avatar
thomwolf committed
4191
4192
4193
4194
4195
4196
4197
        self.start_n_top = config.start_n_top
        self.end_n_top = config.end_n_top

        self.start_logits = PoolerStartLogits(config)
        self.end_logits = PoolerEndLogits(config)
        self.answer_class = PoolerAnswerClass(config)

Sylvain Gugger's avatar
Sylvain Gugger committed
4198
    @replace_return_docstrings(output_type=SquadHeadOutput, config_class=PretrainedConfig)
4199
    def forward(
4200
        self,
Sylvain Gugger's avatar
Sylvain Gugger committed
4201
4202
4203
4204
4205
4206
        hidden_states: torch.FloatTensor,
        start_positions: Optional[torch.LongTensor] = None,
        end_positions: Optional[torch.LongTensor] = None,
        cls_index: Optional[torch.LongTensor] = None,
        is_impossible: Optional[torch.LongTensor] = None,
        p_mask: Optional[torch.FloatTensor] = None,
4207
        return_dict: bool = False,
Sylvain Gugger's avatar
Sylvain Gugger committed
4208
4209
    ) -> Union[SquadHeadOutput, Tuple[torch.FloatTensor]]:
        """
Lysandre's avatar
Lysandre committed
4210
        Args:
4211
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Lysandre's avatar
Lysandre committed
4212
                Final hidden states of the model on the sequence tokens.
4213
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
4214
                Positions of the first token for the labeled span.
4215
            end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
4216
                Positions of the last token for the labeled span.
4217
4218
4219
            cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
                Position of the CLS token for each sentence in the batch. If `None`, takes the last token.
            is_impossible (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
4220
                Whether the question has a possible answer in the paragraph or not.
4221
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4222
4223
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
4224
            return_dict (`bool`, *optional*, defaults to `False`):
4225
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Sylvain Gugger's avatar
Sylvain Gugger committed
4226

Lysandre's avatar
Lysandre committed
4227
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
4228
        """
thomwolf's avatar
thomwolf committed
4229
        start_logits = self.start_logits(hidden_states, p_mask=p_mask)
thomwolf's avatar
thomwolf committed
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252

        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, let's remove the dimension added by batch splitting
            for x in (start_positions, end_positions, cls_index, is_impossible):
                if x is not None and x.dim() > 1:
                    x.squeeze_(-1)

            # during training, compute the end logits based on the ground truth of the start position
            end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)

            loss_fct = CrossEntropyLoss()
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

            if cls_index is not None and is_impossible is not None:
                # Predict answerability from the representation of CLS and START
                cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
                loss_fct_cls = nn.BCEWithLogitsLoss()
                cls_loss = loss_fct_cls(cls_logits, is_impossible)

                # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss
                total_loss += cls_loss * 0.5
4253

4254
            return SquadHeadOutput(loss=total_loss) if return_dict else (total_loss,)
thomwolf's avatar
thomwolf committed
4255
4256
4257
4258

        else:
            # during inference, compute the end logits based on beam search
            bsz, slen, hsz = hidden_states.size()
4259
            start_log_probs = nn.functional.softmax(start_logits, dim=-1)  # shape (bsz, slen)
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270

            start_top_log_probs, start_top_index = torch.topk(
                start_log_probs, self.start_n_top, dim=-1
            )  # shape (bsz, start_n_top)
            start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz)  # shape (bsz, start_n_top, hsz)
            start_states = torch.gather(hidden_states, -2, start_top_index_exp)  # shape (bsz, start_n_top, hsz)
            start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1)  # shape (bsz, slen, start_n_top, hsz)

            hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(
                start_states
            )  # shape (bsz, slen, start_n_top, hsz)
thomwolf's avatar
thomwolf committed
4271
4272
            p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
            end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
4273
            end_log_probs = nn.functional.softmax(end_logits, dim=1)  # shape (bsz, slen, start_n_top)
thomwolf's avatar
thomwolf committed
4274

4275
4276
4277
            end_top_log_probs, end_top_index = torch.topk(
                end_log_probs, self.end_n_top, dim=1
            )  # shape (bsz, end_n_top, start_n_top)
thomwolf's avatar
thomwolf committed
4278
4279
4280
4281
4282
4283
            end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
            end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)

            start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs)
            cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index)

4284
            if not return_dict:
4285
4286
4287
4288
4289
4290
4291
4292
4293
                return (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits)
            else:
                return SquadHeadOutput(
                    start_top_log_probs=start_top_log_probs,
                    start_top_index=start_top_index,
                    end_top_log_probs=end_top_log_probs,
                    end_top_index=end_top_index,
                    cls_logits=cls_logits,
                )
thomwolf's avatar
thomwolf committed
4294
4295
4296


class SequenceSummary(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
4297
4298
4299
4300
    r"""
    Compute a single vector summary of a sequence hidden states.

    Args:
4301
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
4302
4303
            The config used by the model. Relevant arguments in the config class of the model are (refer to the actual
            config class of your model for the default values it uses):
Sylvain Gugger's avatar
Sylvain Gugger committed
4304

4305
            - **summary_type** (`str`) -- The method to use to make this summary. Accepted values are:
Sylvain Gugger's avatar
Sylvain Gugger committed
4306

4307
4308
4309
4310
4311
                - `"last"` -- Take the last token hidden state (like XLNet)
                - `"first"` -- Take the first token hidden state (like Bert)
                - `"mean"` -- Take the mean of all tokens hidden states
                - `"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2)
                - `"attn"` -- Not implemented now, use multi-head attention
Sylvain Gugger's avatar
Sylvain Gugger committed
4312

4313
            - **summary_use_proj** (`bool`) -- Add a projection after the vector extraction.
Sylvain Gugger's avatar
Sylvain Gugger committed
4314
4315
4316
4317
4318
4319
            - **summary_proj_to_labels** (`bool`) -- If `True`, the projection outputs to `config.num_labels` classes
              (otherwise to `config.hidden_size`).
            - **summary_activation** (`Optional[str]`) -- Set to `"tanh"` to add a tanh activation to the output,
              another string or `None` will add no activation.
            - **summary_first_dropout** (`float`) -- Optional dropout probability before the projection and activation.
            - **summary_last_dropout** (`float`)-- Optional dropout probability after the projection and activation.
thomwolf's avatar
thomwolf committed
4320
    """
4321

4322
    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
4323
        super().__init__()
thomwolf's avatar
thomwolf committed
4324

4325
        self.summary_type = getattr(config, "summary_type", "last")
4326
        if self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
4327
4328
4329
4330
4331
            # We should use a standard multi-head attention module with absolute positional embedding for that.
            # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
            # We can probably just use the multi-head attention module of PyTorch >=1.1.0
            raise NotImplementedError

thomwolf's avatar
thomwolf committed
4332
        self.summary = Identity()
4333
4334
        if hasattr(config, "summary_use_proj") and config.summary_use_proj:
            if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0:
4335
                num_classes = config.num_labels
thomwolf's avatar
thomwolf committed
4336
4337
4338
4339
            else:
                num_classes = config.hidden_size
            self.summary = nn.Linear(config.hidden_size, num_classes)

4340
        activation_string = getattr(config, "summary_activation", None)
Lysandre's avatar
Lysandre committed
4341
        self.activation: Callable = get_activation(activation_string) if activation_string else Identity()
thomwolf's avatar
thomwolf committed
4342

thomwolf's avatar
thomwolf committed
4343
        self.first_dropout = Identity()
4344
        if hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0:
4345
4346
            self.first_dropout = nn.Dropout(config.summary_first_dropout)

thomwolf's avatar
thomwolf committed
4347
        self.last_dropout = Identity()
4348
        if hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0:
4349
            self.last_dropout = nn.Dropout(config.summary_last_dropout)
thomwolf's avatar
thomwolf committed
4350

Sylvain Gugger's avatar
Sylvain Gugger committed
4351
4352
4353
4354
4355
4356
4357
    def forward(
        self, hidden_states: torch.FloatTensor, cls_index: Optional[torch.LongTensor] = None
    ) -> torch.FloatTensor:
        """
        Compute a single vector summary of a sequence hidden states.

        Args:
4358
            hidden_states (`torch.FloatTensor` of shape `[batch_size, seq_len, hidden_size]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
4359
                The hidden states of the last layer.
4360
            cls_index (`torch.LongTensor` of shape `[batch_size]` or `[batch_size, ...]` where ... are optional leading dimensions of `hidden_states`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4361
                Used if `summary_type == "cls_index"` and takes the last token of the sequence as classification token.
Sylvain Gugger's avatar
Sylvain Gugger committed
4362
4363

        Returns:
4364
            `torch.FloatTensor`: The summary of the sequence hidden states.
thomwolf's avatar
thomwolf committed
4365
        """
4366
        if self.summary_type == "last":
thomwolf's avatar
thomwolf committed
4367
            output = hidden_states[:, -1]
4368
        elif self.summary_type == "first":
thomwolf's avatar
thomwolf committed
4369
            output = hidden_states[:, 0]
4370
        elif self.summary_type == "mean":
thomwolf's avatar
thomwolf committed
4371
            output = hidden_states.mean(dim=1)
4372
        elif self.summary_type == "cls_index":
thomwolf's avatar
thomwolf committed
4373
            if cls_index is None:
Lysandre's avatar
Lysandre committed
4374
4375
4376
4377
4378
                cls_index = torch.full_like(
                    hidden_states[..., :1, :],
                    hidden_states.shape[-2] - 1,
                    dtype=torch.long,
                )
thomwolf's avatar
thomwolf committed
4379
            else:
thomwolf's avatar
thomwolf committed
4380
                cls_index = cls_index.unsqueeze(-1).unsqueeze(-1)
4381
                cls_index = cls_index.expand((-1,) * (cls_index.dim() - 1) + (hidden_states.size(-1),))
thomwolf's avatar
thomwolf committed
4382
            # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
4383
4384
            output = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, XX, hidden_size)
        elif self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
4385
4386
            raise NotImplementedError

4387
        output = self.first_dropout(output)
thomwolf's avatar
thomwolf committed
4388
4389
        output = self.summary(output)
        output = self.activation(output)
4390
        output = self.last_dropout(output)
thomwolf's avatar
thomwolf committed
4391
4392
4393
4394

        return output


4395
def unwrap_model(model: nn.Module) -> nn.Module:
4396
4397
4398
4399
    """
    Recursively unwraps a model from potential containers (as used in distributed training).

    Args:
4400
        model (`torch.nn.Module`): The model to unwrap.
4401
4402
4403
4404
4405
4406
    """
    # since there could be multiple levels of wrapping, unwrap recursively
    if hasattr(model, "module"):
        return unwrap_model(model.module)
    else:
        return model
Sylvain Gugger's avatar
Sylvain Gugger committed
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429


def expand_device_map(device_map, param_names):
    """
    Expand a device map to return the correspondance parameter name to device.
    """
    new_device_map = {}
    for module, device in device_map.items():
        new_device_map.update({p: device for p in param_names if p == module or p.startswith(f"{module}.")})
    return new_device_map


def get_disk_only_shard_files(device_map, sharded_metadata):
    """
    Returns the list of shard files containing only weights offloaded to disk.
    """
    files_content = collections.defaultdict(list)
    for weight_name, filename in sharded_metadata["weight_map"].items():
        while len(weight_name) > 0 and weight_name not in device_map:
            weight_name = ".".join(weight_name.split(".")[:-1])
        files_content[filename].append(device_map[weight_name])

    return [fname for fname, devices in files_content.items() if set(devices) == {"disk"}]