modeling_utils.py 225 KB
Newer Older
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
16
import collections
17
import copy
18
import functools
19
import gc
20
import importlib.metadata
Yih-Dar's avatar
Yih-Dar committed
21
import inspect
22
import itertools
Sylvain Gugger's avatar
Sylvain Gugger committed
23
import json
24
import os
25
import re
Sylvain Gugger's avatar
Sylvain Gugger committed
26
27
import shutil
import tempfile
28
import warnings
29
from contextlib import contextmanager
30
from dataclasses import dataclass
31
from functools import partial, wraps
32
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
33
from zipfile import is_zipfile
34
35

import torch
36
from packaging import version
Sylvain Gugger's avatar
Sylvain Gugger committed
37
from torch import Tensor, nn
38
from torch.nn import CrossEntropyLoss, Identity
39
from torch.utils.checkpoint import checkpoint
40

41
from .activations import get_activation
42
from .configuration_utils import PretrainedConfig
43
from .dynamic_module_utils import custom_object_save
44
from .generation import GenerationConfig, GenerationMixin
45
from .integrations import PeftAdapterMixin, deepspeed_config, is_deepspeed_zero3_enabled
46
47
48
49
from .pytorch_utils import (  # noqa: F401
    Conv1D,
    apply_chunking_to_forward,
    find_pruneable_heads_and_indices,
Thomas Wang's avatar
Thomas Wang committed
50
    id_tensor_storage,
51
    is_torch_greater_or_equal_than_1_13,
52
53
54
55
    prune_conv1d_layer,
    prune_layer,
    prune_linear_layer,
)
56
from .quantizers import AutoHfQuantizer, HfQuantizer
57
from .quantizers.quantizers_utils import get_module_from_name
58
from .safetensors_conversion import auto_conversion
59
from .utils import (
60
61
    ADAPTER_SAFE_WEIGHTS_NAME,
    ADAPTER_WEIGHTS_NAME,
62
    CONFIG_NAME,
Aymeric Augustin's avatar
Aymeric Augustin committed
63
    DUMMY_INPUTS,
64
    FLAX_WEIGHTS_NAME,
65
66
    SAFE_WEIGHTS_INDEX_NAME,
    SAFE_WEIGHTS_NAME,
67
68
    TF2_WEIGHTS_NAME,
    TF_WEIGHTS_NAME,
Sylvain Gugger's avatar
Sylvain Gugger committed
69
    WEIGHTS_INDEX_NAME,
70
    WEIGHTS_NAME,
71
    ContextManagers,
72
    ModelOutput,
Sylvain Gugger's avatar
Sylvain Gugger committed
73
    PushToHubMixin,
74
    cached_file,
75
    copy_func,
76
    download_url,
77
    extract_commit_hash,
78
    has_file,
79
    is_accelerate_available,
80
    is_bitsandbytes_available,
81
    is_flash_attn_2_available,
82
    is_offline_mode,
83
    is_optimum_available,
84
    is_peft_available,
85
    is_remote_url,
86
    is_safetensors_available,
87
    is_torch_sdpa_available,
88
    is_torch_xla_available,
89
    logging,
Sylvain Gugger's avatar
Sylvain Gugger committed
90
    replace_return_docstrings,
91
    strtobool,
92
)
93
from .utils.hub import convert_file_size_to_int, create_and_tag_model_card, get_checkpoint_shard_files
94
95
96
97
98
99
from .utils.import_utils import (
    ENV_VARS_TRUE_VALUES,
    is_sagemaker_mp_enabled,
    is_torch_fx_proxy,
    is_torchdynamo_compiling,
)
100
from .utils.quantization_config import BitsAndBytesConfig, QuantizationMethod
101

Aymeric Augustin's avatar
Aymeric Augustin committed
102

103
104
105
XLA_USE_BF16 = os.environ.get("XLA_USE_BF16", "0").upper()
XLA_DOWNCAST_BF16 = os.environ.get("XLA_DOWNCAST_BF16", "0").upper()

106
107
if is_accelerate_available():
    from accelerate import dispatch_model, infer_auto_device_map, init_empty_weights
108
    from accelerate.hooks import add_hook_to_module
109
    from accelerate.utils import (
110
        check_tied_parameters_on_same_device,
111
        find_tied_parameters,
112
        get_balanced_memory,
Marc Sun's avatar
Marc Sun committed
113
        get_max_memory,
114
115
116
117
118
119
        load_offloaded_weights,
        offload_weight,
        save_offload_index,
        set_module_tensor_to_device,
    )

120
121
122
123
if is_safetensors_available():
    from safetensors import safe_open
    from safetensors.torch import load_file as safe_load_file
    from safetensors.torch import save_file as safe_save_file
124

Lysandre Debut's avatar
Lysandre Debut committed
125
logger = logging.get_logger(__name__)
126

127
128
129
130

_init_weights = True


131
def is_fsdp_enabled():
132
133
134
135
    return (
        torch.distributed.is_available()
        and torch.distributed.is_initialized()
        and strtobool(os.environ.get("ACCELERATE_USE_FSDP", "False")) == 1
136
        and strtobool(os.environ.get("FSDP_CPU_RAM_EFFICIENT_LOADING", "False")) == 1
137
    )
138
139


140
141
142
143
144
145
def is_local_dist_rank_0():
    return (
        torch.distributed.is_available()
        and torch.distributed.is_initialized()
        and int(os.environ.get("LOCAL_RANK", -1)) == 0
    )
146
147


148
149
150
151
152
153
154
155
if is_sagemaker_mp_enabled():
    import smdistributed.modelparallel.torch as smp
    from smdistributed.modelparallel import __version__ as SMP_VERSION

    IS_SAGEMAKER_MP_POST_1_10 = version.parse(SMP_VERSION) >= version.parse("1.10")
else:
    IS_SAGEMAKER_MP_POST_1_10 = False

156
157
158
if is_peft_available():
    from .utils import find_adapter_config_file

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
TORCH_INIT_FUNCTIONS = {
    "uniform_": nn.init.uniform_,
    "normal_": nn.init.normal_,
    "trunc_normal_": nn.init.trunc_normal_,
    "constant_": nn.init.constant_,
    "xavier_uniform_": nn.init.xavier_uniform_,
    "xavier_normal_": nn.init.xavier_normal_,
    "kaiming_uniform_": nn.init.kaiming_uniform_,
    "kaiming_normal_": nn.init.kaiming_normal_,
    "uniform": nn.init.uniform,
    "normal": nn.init.normal,
    "xavier_uniform": nn.init.xavier_uniform,
    "xavier_normal": nn.init.xavier_normal,
    "kaiming_uniform": nn.init.kaiming_uniform,
    "kaiming_normal": nn.init.kaiming_normal,
}

176

177
178
179
180
181
182
183
184
@contextmanager
def no_init_weights(_enable=True):
    """
    Context manager to globally disable weight initialization to speed up loading large models.

    TODO(Patrick): Delete safety argument `_enable=True` at next major version. .
    """
    global _init_weights
185
    old_init_weights = _init_weights
186

187
188
    if _enable:
        _init_weights = False
189
190
191
192
193
194
195

        def _skip_init(*args, **kwargs):
            pass

        # # Save the original initialization functions
        for name, init_func in TORCH_INIT_FUNCTIONS.items():
            setattr(torch.nn.init, name, _skip_init)
196
197
198
    try:
        yield
    finally:
199
        _init_weights = old_init_weights
200
201
202
203
        if _enable:
            # # Restore the original initialization functions
            for name, init_func in TORCH_INIT_FUNCTIONS.items():
                setattr(torch.nn.init, name, init_func)
204
205


Lysandre Debut's avatar
Lysandre Debut committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
def get_parameter_device(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    try:
        return next(parameter.parameters()).device
    except StopIteration:
        # For nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].device


221
222
223
224
def get_first_parameter_dtype(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    """
    Returns the first parameter dtype (can be non-floating) or asserts if none were found.
    """
Lysandre Debut's avatar
Lysandre Debut committed
225
226
227
    try:
        return next(parameter.parameters()).dtype
    except StopIteration:
Sylvain Gugger's avatar
Sylvain Gugger committed
228
        # For nn.DataParallel compatibility in PyTorch > 1.5
Lysandre Debut's avatar
Lysandre Debut committed
229
230
231
232
233
234
235
236
237
238

        def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].dtype


239
240
def get_parameter_dtype(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
241
    Returns the first found floating dtype in parameters if there is one, otherwise returns the last dtype it found.
242
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
243
244
245
246
    last_dtype = None
    for t in parameter.parameters():
        last_dtype = t.dtype
        if t.is_floating_point():
247
248
249
            # Adding fix for https://github.com/pytorch/xla/issues/4152
            # Fixes issue where the model code passes a value that is out of range for XLA_USE_BF16=1
            # and XLA_DOWNCAST_BF16=1 so the conversion would cast it to -inf
250
251
            # NOTE: `is_torch_xla_available()` is checked last as it induces a graph break in torch dynamo
            if XLA_USE_BF16 in ENV_VARS_TRUE_VALUES and is_torch_xla_available():
252
                return torch.bfloat16
253
            if XLA_DOWNCAST_BF16 in ENV_VARS_TRUE_VALUES and is_torch_xla_available():
254
                if t.dtype == torch.float:
255
                    return torch.bfloat16
256
257
                if t.dtype == torch.double:
                    return torch.float32
Sylvain Gugger's avatar
Sylvain Gugger committed
258
            return t.dtype
259

Sylvain Gugger's avatar
Sylvain Gugger committed
260
261
262
    if last_dtype is not None:
        # if no floating dtype was found return whatever the first dtype is
        return last_dtype
263

264
265
266
267
268
269
270
271
272
273
274
275
276
    # For nn.DataParallel compatibility in PyTorch > 1.5
    def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
        tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
        return tuples

    gen = parameter._named_members(get_members_fn=find_tensor_attributes)
    last_tuple = None
    for tuple in gen:
        last_tuple = tuple
        if tuple[1].is_floating_point():
            return tuple[1].dtype

    if last_tuple is not None:
277
278
        # fallback to the last dtype
        return last_tuple[1].dtype
279

280
281
282
283
284
285
286
    # fallback to buffer dtype
    for t in parameter.buffers():
        last_dtype = t.dtype
        if t.is_floating_point():
            return t.dtype
    return last_dtype

287
288
289
290
291
292
293
294
295
296
297
298
299
300

def get_state_dict_float_dtype(state_dict):
    """
    Returns the first found floating dtype in `state_dict` or asserts if none were found.
    """
    for t in state_dict.values():
        if t.is_floating_point():
            return t.dtype

    raise ValueError("couldn't find any floating point dtypes in state_dict")


def get_state_dict_dtype(state_dict):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
301
    Returns the first found floating dtype in `state_dict` if there is one, otherwise returns the first dtype.
302
303
304
305
306
307
308
    """
    for t in state_dict.values():
        if t.is_floating_point():
            return t.dtype

    # if no floating dtype was found return whatever the first dtype is
    else:
Sylvain Gugger's avatar
Sylvain Gugger committed
309
        return next(state_dict.values()).dtype
310
311


Sylvain Gugger's avatar
Sylvain Gugger committed
312
313
314
315
316
317
318
319
320
321
322
323
324
def dtype_byte_size(dtype):
    """
    Returns the size (in bytes) occupied by one parameter of type `dtype`.

    Example:

    ```py
    >>> dtype_byte_size(torch.float32)
    4
    ```
    """
    if dtype == torch.bool:
        return 1 / 8
325
    bit_search = re.search(r"[^\d](\d+)$", str(dtype))
Sylvain Gugger's avatar
Sylvain Gugger committed
326
327
328
329
330
331
    if bit_search is None:
        raise ValueError(f"`dtype` is not a valid dtype: {dtype}.")
    bit_size = int(bit_search.groups()[0])
    return bit_size // 8


332
333
334
def shard_checkpoint(
    state_dict: Dict[str, torch.Tensor], max_shard_size: Union[int, str] = "10GB", weights_name: str = WEIGHTS_NAME
):
Sylvain Gugger's avatar
Sylvain Gugger committed
335
336
337
338
339
340
341
342
343
344
345
    """
    Splits a model state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a
    given size.

    The sub-checkpoints are determined by iterating through the `state_dict` in the order of its keys, so there is no
    optimization made to make each sub-checkpoint as close as possible to the maximum size passed. For example, if the
    limit is 10GB and we have weights of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as [6GB], [6+2GB],
    [6+2+2GB] and not [6+2+2GB], [6+2GB], [6GB].

    <Tip warning={true}>

Alan Ji's avatar
Alan Ji committed
346
    If one of the model's weight is bigger than `max_shard_size`, it will end up in its own sub-checkpoint which will
Sylvain Gugger's avatar
Sylvain Gugger committed
347
348
349
350
351
352
353
354
355
    have a size greater than `max_shard_size`.

    </Tip>

    Args:
        state_dict (`Dict[str, torch.Tensor]`): The state dictionary of a model to save.
        max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
            The maximum size of each sub-checkpoint. If expressed as a string, needs to be digits followed by a unit
            (like `"5MB"`).
356
357
        weights_name (`str`, *optional*, defaults to `"pytorch_model.bin"`):
            The name of the model save file.
Sylvain Gugger's avatar
Sylvain Gugger committed
358
359
360
    """
    max_shard_size = convert_file_size_to_int(max_shard_size)

Thomas Wang's avatar
Thomas Wang committed
361
362
    sharded_state_dicts = [{}]
    last_block_size = 0
Sylvain Gugger's avatar
Sylvain Gugger committed
363
    total_size = 0
Thomas Wang's avatar
Thomas Wang committed
364
    storage_id_to_block = {}
Sylvain Gugger's avatar
Sylvain Gugger committed
365
366

    for key, weight in state_dict.items():
367
368
369
370
371
372
        # when bnb serialization is used the weights in the state dict can be strings
        # check: https://github.com/huggingface/transformers/pull/24416 for more details
        if isinstance(weight, str):
            continue
        else:
            storage_id = id_tensor_storage(weight)
Thomas Wang's avatar
Thomas Wang committed
373
374
375
376
377
378
379

        # If a `weight` shares the same underlying storage as another tensor, we put `weight` in the same `block`
        if storage_id in storage_id_to_block:
            block_id = storage_id_to_block[storage_id]
            sharded_state_dicts[block_id][key] = weight
            continue

Sylvain Gugger's avatar
Sylvain Gugger committed
380
381
        weight_size = weight.numel() * dtype_byte_size(weight.dtype)

Sylvain Gugger's avatar
Sylvain Gugger committed
382
383
384
        # If this weight is going to tip up over the maximal size, we split, but only if we have put at least one
        # weight in the current shard.
        if last_block_size + weight_size > max_shard_size and len(sharded_state_dicts[-1]) > 0:
Thomas Wang's avatar
Thomas Wang committed
385
386
            sharded_state_dicts.append({})
            last_block_size = 0
Sylvain Gugger's avatar
Sylvain Gugger committed
387

Thomas Wang's avatar
Thomas Wang committed
388
389
        sharded_state_dicts[-1][key] = weight
        last_block_size += weight_size
Sylvain Gugger's avatar
Sylvain Gugger committed
390
        total_size += weight_size
Thomas Wang's avatar
Thomas Wang committed
391
        storage_id_to_block[storage_id] = len(sharded_state_dicts) - 1
Sylvain Gugger's avatar
Sylvain Gugger committed
392
393
394

    # If we only have one shard, we return it
    if len(sharded_state_dicts) == 1:
395
        return {weights_name: sharded_state_dicts[0]}, None
Sylvain Gugger's avatar
Sylvain Gugger committed
396
397
398
399
400

    # Otherwise, let's build the index
    weight_map = {}
    shards = {}
    for idx, shard in enumerate(sharded_state_dicts):
401
402
403
404
        shard_file = weights_name.replace(".bin", f"-{idx+1:05d}-of-{len(sharded_state_dicts):05d}.bin")
        shard_file = shard_file.replace(
            ".safetensors", f"-{idx + 1:05d}-of-{len(sharded_state_dicts):05d}.safetensors"
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
405
406
407
408
409
410
411
412
413
414
        shards[shard_file] = shard
        for key in shard.keys():
            weight_map[key] = shard_file

    # Add the metadata
    metadata = {"total_size": total_size}
    index = {"metadata": metadata, "weight_map": weight_map}
    return shards, index


415
def load_sharded_checkpoint(model, folder, strict=True, prefer_safe=True):
416
417
418
419
420
421
422
423
424
425
426
427
428
    """
    This is the same as
    [`torch.nn.Module.load_state_dict`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html?highlight=load_state_dict#torch.nn.Module.load_state_dict)
    but for a sharded checkpoint.

    This load is performed efficiently: each checkpoint shard is loaded one by one in RAM and deleted after being
    loaded in the model.

    Args:
        model (`torch.nn.Module`): The model in which to load the checkpoint.
        folder (`str` or `os.PathLike`): A path to a folder containing the sharded checkpoint.
        strict (`bool`, *optional`, defaults to `True`):
            Whether to strictly enforce that the keys in the model state dict match the keys in the sharded checkpoint.
429
430
431
        prefer_safe (`bool`, *optional*, defaults to `False`)
            If both safetensors and PyTorch save files are present in checkpoint and `prefer_safe` is True, the
            safetensors files will be loaded. Otherwise, PyTorch files are always loaded when possible.
432
433
434
435
436
437
438
439

    Returns:
        `NamedTuple`: A named tuple with `missing_keys` and `unexpected_keys` fields
            - `missing_keys` is a list of str containing the missing keys
            - `unexpected_keys` is a list of str containing the unexpected keys
    """
    # Load the index
    index_file = os.path.join(folder, WEIGHTS_INDEX_NAME)
440
    safe_index_file = os.path.join(folder, SAFE_WEIGHTS_INDEX_NAME)
441

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
    index_present = os.path.isfile(index_file)
    safe_index_present = os.path.isfile(safe_index_file)

    if not index_present and not (safe_index_present and is_safetensors_available()):
        filenames = (
            (WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_INDEX_NAME) if is_safetensors_available() else (WEIGHTS_INDEX_NAME,)
        )
        raise ValueError(f"Can't find a checkpoint index ({' or '.join(filenames)}) in {folder}.")

    load_safe = False
    if safe_index_present:
        if prefer_safe:
            if is_safetensors_available():
                load_safe = True  # load safe due to preference
            else:
                logger.warning(
                    f"Cannot load sharded checkpoint at {folder} safely since safetensors is not installed!"
                )
        elif not index_present:
            load_safe = True  # load safe since we have no other choice

    load_index = safe_index_file if load_safe else index_file

    with open(load_index, "r", encoding="utf-8") as f:
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
        index = json.load(f)

    shard_files = list(set(index["weight_map"].values()))

    # If strict=True, error before loading any of the state dicts.
    loaded_keys = index["weight_map"].keys()
    model_keys = model.state_dict().keys()
    missing_keys = [key for key in model_keys if key not in loaded_keys]
    unexpected_keys = [key for key in loaded_keys if key not in model_keys]
    if strict and (len(missing_keys) > 0 or len(unexpected_keys) > 0):
        error_message = f"Error(s) in loading state_dict for {model.__class__.__name__}"
        if len(missing_keys) > 0:
            str_missing_keys = ",".join([f'"{k}"' for k in missing_keys])
            error_message += f"\nMissing key(s): {str_missing_keys}."
        if len(unexpected_keys) > 0:
            str_unexpected_keys = ",".join([f'"{k}"' for k in unexpected_keys])
            error_message += f"\nMissing key(s): {str_unexpected_keys}."
        raise RuntimeError(error_message)

Yih-Dar's avatar
Yih-Dar committed
485
486
    weights_only_kwarg = {"weights_only": True} if is_torch_greater_or_equal_than_1_13 else {}
    loader = safe_load_file if load_safe else partial(torch.load, map_location="cpu", **weights_only_kwarg)
487

488
    for shard_file in shard_files:
489
        state_dict = loader(os.path.join(folder, shard_file))
490
491
        model.load_state_dict(state_dict, strict=False)

492
        # Make sure memory is freed before we load the next state dict.
493
494
495
496
497
498
499
        del state_dict
        gc.collect()

    # Return the same thing as PyTorch load_state_dict function.
    return torch.nn.modules.module._IncompatibleKeys(missing_keys, unexpected_keys)


500
def load_state_dict(checkpoint_file: Union[str, os.PathLike], is_quantized: bool = False):
Sylvain Gugger's avatar
Sylvain Gugger committed
501
502
503
    """
    Reads a PyTorch checkpoint file, returning properly formatted errors if they arise.
    """
504
505
506
507
    if checkpoint_file.endswith(".safetensors") and is_safetensors_available():
        # Check format of the archive
        with safe_open(checkpoint_file, framework="pt") as f:
            metadata = f.metadata()
508
        if metadata.get("format") not in ["pt", "tf", "flax", "mlx"]:
509
510
511
512
513
            raise OSError(
                f"The safetensors archive passed at {checkpoint_file} does not contain the valid metadata. Make sure "
                "you save your model with the `save_pretrained` method."
            )
        return safe_load_file(checkpoint_file)
Sylvain Gugger's avatar
Sylvain Gugger committed
514
    try:
515
        if (
516
517
518
            (is_deepspeed_zero3_enabled() and torch.distributed.is_initialized() and torch.distributed.get_rank() > 0)
            or (is_fsdp_enabled() and not is_local_dist_rank_0())
        ) and not is_quantized:
519
520
521
            map_location = "meta"
        else:
            map_location = "cpu"
522
523
524
525
526
527
528
529
530
        extra_args = {}
        # mmap can only be used with files serialized with zipfile-based format.
        if (
            isinstance(checkpoint_file, str)
            and map_location != "meta"
            and version.parse(torch.__version__) >= version.parse("2.1.0")
            and is_zipfile(checkpoint_file)
        ):
            extra_args = {"mmap": True}
Yih-Dar's avatar
Yih-Dar committed
531
        weights_only_kwarg = {"weights_only": True} if is_torch_greater_or_equal_than_1_13 else {}
532
533
534
        return torch.load(
            checkpoint_file,
            map_location=map_location,
Yih-Dar's avatar
Yih-Dar committed
535
            **weights_only_kwarg,
536
537
            **extra_args,
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
538
539
540
    except Exception as e:
        try:
            with open(checkpoint_file) as f:
541
                if f.read(7) == "version":
Sylvain Gugger's avatar
Sylvain Gugger committed
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
                    raise OSError(
                        "You seem to have cloned a repository without having git-lfs installed. Please install "
                        "git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
                        "you cloned."
                    )
                else:
                    raise ValueError(
                        f"Unable to locate the file {checkpoint_file} which is necessary to load this pretrained "
                        "model. Make sure you have saved the model properly."
                    ) from e
        except (UnicodeDecodeError, ValueError):
            raise OSError(
                f"Unable to load weights from pytorch checkpoint file for '{checkpoint_file}' "
                f"at '{checkpoint_file}'. "
                "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True."
            )


560
561
562
563
564
def set_initialized_submodules(model, state_dict_keys):
    """
    Sets the `_is_hf_initialized` flag in all submodules of a given model when all its weights are in the loaded state
    dict.
    """
565
    not_initialized_submodules = {}
566
    for module_name, module in model.named_modules():
567
568
        loaded_keys = {k.replace(f"{module_name}.", "") for k in state_dict_keys if k.startswith(f"{module_name}.")}
        if loaded_keys.issuperset(module.state_dict()):
569
            module._is_hf_initialized = True
570
571
572
        else:
            not_initialized_submodules[module_name] = module
    return not_initialized_submodules
573
574


Sylvain Gugger's avatar
Sylvain Gugger committed
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
def _load_state_dict_into_model(model_to_load, state_dict, start_prefix):
    # Convert old format to new format if needed from a PyTorch state_dict
    old_keys = []
    new_keys = []
    for key in state_dict.keys():
        new_key = None
        if "gamma" in key:
            new_key = key.replace("gamma", "weight")
        if "beta" in key:
            new_key = key.replace("beta", "bias")
        if new_key:
            old_keys.append(key)
            new_keys.append(new_key)
    for old_key, new_key in zip(old_keys, new_keys):
        state_dict[new_key] = state_dict.pop(old_key)

    # copy state_dict so _load_from_state_dict can modify it
    metadata = getattr(state_dict, "_metadata", None)
    state_dict = state_dict.copy()
    if metadata is not None:
        state_dict._metadata = metadata

    error_msgs = []

    # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
    # so we need to apply the function recursively.
601
    def load(module: nn.Module, state_dict, prefix=""):
Sylvain Gugger's avatar
Sylvain Gugger committed
602
        local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
Arthur Zucker's avatar
Arthur Zucker committed
603
604
605
        unexpected_keys = []
        missing_keys = []
        args = (state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
        # Parameters of module and children will start with prefix. We can exit early if there are none in this
        # state_dict
        if len([key for key in state_dict if key.startswith(prefix)]) > 0:
            if is_deepspeed_zero3_enabled():
                import deepspeed

                # In sharded models, each shard has only part of the full state_dict, so only gather
                # parameters that are in the current state_dict.
                named_parameters = dict(module.named_parameters(prefix=prefix[:-1], recurse=False))
                params_to_gather = [named_parameters[k] for k in state_dict.keys() if k in named_parameters]
                if len(params_to_gather) > 0:
                    # because zero3 puts placeholders in model params, this context
                    # manager gathers (unpartitions) the params of the current layer, then loads from
                    # the state dict and then re-partitions them again
                    with deepspeed.zero.GatheredParameters(params_to_gather, modifier_rank=0):
                        if torch.distributed.get_rank() == 0:
                            module._load_from_state_dict(*args)
            else:
                module._load_from_state_dict(*args)
Sylvain Gugger's avatar
Sylvain Gugger committed
625
626
627

        for name, child in module._modules.items():
            if child is not None:
628
                load(child, state_dict, prefix + name + ".")
Sylvain Gugger's avatar
Sylvain Gugger committed
629

630
631
632
633
    load(model_to_load, state_dict, prefix=start_prefix)
    # Delete `state_dict` so it could be collected by GC earlier. Note that `state_dict` is a copy of the argument, so
    # it's safe to delete it.
    del state_dict
Sylvain Gugger's avatar
Sylvain Gugger committed
634
635
636
637

    return error_msgs


638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
def find_submodule_and_param_name(model, long_key, start_prefix):
    """
    A helper util to find the last sub-module and the param/buffer name. If `start_prefix` is supplied it'll be removed
    from the start of the key
    """

    if len(start_prefix) > 0 and long_key.startswith(start_prefix):
        long_key = ".".join(long_key.split(".")[1:])

    split_key = long_key.split(".")
    submodule = model
    while len(split_key) > 1:
        if hasattr(submodule, split_key[0]):
            submodule = getattr(submodule, split_key[0])
            del split_key[0]
        else:
            submodule = None
            break
    if submodule == model:
        submodule = None
    return submodule, split_key[0]


def _move_model_to_meta(model, loaded_state_dict_keys, start_prefix):
    """
    Moves `loaded_state_dict_keys` in model to meta device which frees up the memory taken by those params.

    `start_prefix` is used for models which insert their name into model keys, e.g. `bert` in
    `bert.pooler.dense.weight`

    """

    # dematerialize param storage for keys that are going to be replaced by state_dict, by
    # putting those on the meta device
    for k in loaded_state_dict_keys:
        submodule, param_name = find_submodule_and_param_name(model, k, start_prefix)
        if submodule is not None:
            # selectively switch to the meta device only those params/buffers that will
            # be next replaced from state_dict. This a complex way to do p.to_("meta")
            # since we have no in-place to_ for tensors.
            new_val = getattr(submodule, param_name)
            if isinstance(new_val, torch.nn.Parameter):
                # isinstance returns False for Params on meta device, so switch after the check
                new_val = torch.nn.Parameter(new_val.to("meta"))
            else:
                new_val = new_val.to("meta")
            setattr(submodule, param_name, new_val)


687
688
689
690
691
692
693
694
695
696
697
698
def _load_state_dict_into_meta_model(
    model,
    state_dict,
    loaded_state_dict_keys,  # left for now but could be removed, see below
    start_prefix,
    expected_keys,
    device_map=None,
    offload_folder=None,
    offload_index=None,
    state_dict_folder=None,
    state_dict_index=None,
    dtype=None,
699
    hf_quantizer=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
700
    is_safetensors=False,
701
    keep_in_fp32_modules=None,
702
    unexpected_keys=None,  # passing `unexpected` for cleanup from quantization items
703
):
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
    """
    This is somewhat similar to `_load_state_dict_into_model`, but deals with a model that has some or all of its
    params on a `meta` device. It replaces the model params with the data from the `state_dict`, while moving the
    params back to the normal device, but only for `loaded_state_dict_keys`.

    `start_prefix` is used for models which insert their name into model keys, e.g. `bert` in
    `bert.pooler.dense.weight`

    """

    # XXX: remaining features to implement to be fully compatible with _load_state_dict_into_model
    # - deepspeed zero 3 support
    # - need to copy metadata if any - see _load_state_dict_into_model
    # - handling error_msgs - mimicking the error handling in module._load_from_state_dict()
    # - Is there a situation where some keys aren't in `loaded_state_dict_keys` and in which case
    #   they won't get loaded.

    error_msgs = []

723
724
    old_keys = []
    new_keys = []
725
    is_quantized = hf_quantizer is not None
726
727
728
729
730
731
732
733
734
735
736
    for key in state_dict.keys():
        new_key = None
        if "gamma" in key:
            new_key = key.replace("gamma", "weight")
        if "beta" in key:
            new_key = key.replace("beta", "bias")
        if new_key:
            old_keys.append(key)
            new_keys.append(new_key)
    for old_key, new_key in zip(old_keys, new_keys):
        state_dict[new_key] = state_dict.pop(old_key)
737

738
739
740
741
742
743
744
745
746
    for param_name, param in state_dict.items():
        # First part of the test is always true as load_state_dict_keys always contains state_dict keys.
        if param_name not in loaded_state_dict_keys or param_name not in expected_keys:
            continue

        if param_name.startswith(start_prefix):
            param_name = param_name[len(start_prefix) :]

        module_name = param_name
747
        set_module_kwargs = {}
748

749
        # We convert floating dtypes to the `dtype` passed. We want to keep the buffers/params
750
751
        # in int/uint/bool and not cast them.
        if dtype is not None and torch.is_floating_point(param):
752
753
            if (
                keep_in_fp32_modules is not None
754
755
756
                and any(
                    module_to_keep_in_fp32 in param_name.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules
                )
757
758
759
                and dtype == torch.float16
            ):
                param = param.to(torch.float32)
760
761
762
763
764

                # For backward compatibility with older versions of `accelerate`
                # TODO: @sgugger replace this check with version check at the next `accelerate` release
                if "dtype" in list(inspect.signature(set_module_tensor_to_device).parameters):
                    set_module_kwargs["dtype"] = torch.float32
765
766
            else:
                param = param.to(dtype)
767

768
769
770
771
772
773
774
775
776
777
778
779
        # For compatibility with PyTorch load_state_dict which converts state dict dtype to existing dtype in model, and which
        # uses `param.copy_(input_param)` that preserves the contiguity of the parameter in the model.
        # Reference: https://github.com/pytorch/pytorch/blob/db79ceb110f6646523019a59bbd7b838f43d4a86/torch/nn/modules/module.py#L2040C29-L2040C29
        old_param = model
        splits = param_name.split(".")
        for split in splits:
            old_param = getattr(old_param, split)
            if old_param is None:
                break

        if old_param is not None:
            if dtype is None:
780
                param = param.to(old_param.dtype)
781

782
783
784
            if old_param.is_contiguous():
                param = param.contiguous()

785
786
        set_module_kwargs["value"] = param

787
788
789
790
791
792
793
794
795
796
797
        if device_map is None:
            param_device = "cpu"
        else:
            # find next higher level module that is defined in device_map:
            # bert.lm_head.weight -> bert.lm_head -> bert -> ''
            while len(module_name) > 0 and module_name not in device_map:
                module_name = ".".join(module_name.split(".")[:-1])
            if module_name == "" and "" not in device_map:
                # TODO: group all errors and raise at the end.
                raise ValueError(f"{param_name} doesn't have any device set.")
            param_device = device_map[module_name]
798

799
        if param_device == "disk":
Sylvain Gugger's avatar
Sylvain Gugger committed
800
801
            if not is_safetensors:
                offload_index = offload_weight(param, param_name, offload_folder, offload_index)
802
        elif param_device == "cpu" and state_dict_index is not None:
803
            state_dict_index = offload_weight(param, param_name, state_dict_folder, state_dict_index)
804
        elif (
805
            not is_quantized
806
            or (not hf_quantizer.requires_parameters_quantization)
807
808
809
810
811
            or (
                not hf_quantizer.check_quantized_param(
                    model, param, param_name, state_dict, param_device=param_device, device_map=device_map
                )
            )
812
813
        ):
            # For backward compatibility with older versions of `accelerate` and for non-quantized params
814
            set_module_tensor_to_device(model, param_name, param_device, **set_module_kwargs)
815
        else:
816
            hf_quantizer.create_quantized_param(model, param, param_name, param_device, state_dict, unexpected_keys)
817
818
819
820
821
822
823
824
            # For quantized modules with FSDP/DeepSpeed Stage 3, we need to quantize the parameter on the GPU
            # and then cast it to CPU to avoid excessive memory usage on each GPU
            # in comparison to the sharded model across GPUs.
            if is_fsdp_enabled() or is_deepspeed_zero3_enabled():
                module, tensor_name = get_module_from_name(model, param_name)
                value = getattr(module, tensor_name)
                value = type(value)(value.data.to("cpu"), **value.__dict__)
                setattr(module, tensor_name, value)
825
            # TODO: consider removing used param_parts from state_dict before return
826
827

    return error_msgs, offload_index, state_dict_index
828
829


830
831
832
833
834
835
836
837
838
def _add_variant(weights_name: str, variant: Optional[str] = None) -> str:
    if variant is not None:
        splits = weights_name.split(".")
        splits = splits[:-1] + [variant] + splits[-1:]
        weights_name = ".".join(splits)

    return weights_name


839
class ModuleUtilsMixin:
Julien Chaumond's avatar
Julien Chaumond committed
840
    """
841
    A few utilities for `torch.nn.Modules`, to be used as a mixin.
Julien Chaumond's avatar
Julien Chaumond committed
842
843
    """

844
845
846
847
    @staticmethod
    def _hook_rss_memory_pre_forward(module, *args, **kwargs):
        try:
            import psutil
Sylvain Gugger's avatar
Sylvain Gugger committed
848
        except ImportError:
849
850
851
852
853
854
855
856
857
858
859
            raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")

        process = psutil.Process(os.getpid())
        mem = process.memory_info()
        module.mem_rss_pre_forward = mem.rss
        return None

    @staticmethod
    def _hook_rss_memory_post_forward(module, *args, **kwargs):
        try:
            import psutil
Sylvain Gugger's avatar
Sylvain Gugger committed
860
        except ImportError:
861
862
863
864
865
866
867
868
869
870
            raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")

        process = psutil.Process(os.getpid())
        mem = process.memory_info()
        module.mem_rss_post_forward = mem.rss
        mem_rss_diff = module.mem_rss_post_forward - module.mem_rss_pre_forward
        module.mem_rss_diff = mem_rss_diff + (module.mem_rss_diff if hasattr(module, "mem_rss_diff") else 0)
        return None

    def add_memory_hooks(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
871
872
873
        """
        Add a memory hook before and after each sub-module forward pass to record increase in memory consumption.

Sylvain Gugger's avatar
Sylvain Gugger committed
874
875
        Increase in memory consumption is stored in a `mem_rss_diff` attribute for each module and can be reset to zero
        with `model.reset_memory_hooks_state()`.
876
877
878
879
880
881
882
        """
        for module in self.modules():
            module.register_forward_pre_hook(self._hook_rss_memory_pre_forward)
            module.register_forward_hook(self._hook_rss_memory_post_forward)
        self.reset_memory_hooks_state()

    def reset_memory_hooks_state(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
883
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
884
        Reset the `mem_rss_diff` attribute of each module (see [`~modeling_utils.ModuleUtilsMixin.add_memory_hooks`]).
Sylvain Gugger's avatar
Sylvain Gugger committed
885
        """
886
887
888
889
890
        for module in self.modules():
            module.mem_rss_diff = 0
            module.mem_rss_post_forward = 0
            module.mem_rss_pre_forward = 0

891
    @property
Sylvain Gugger's avatar
Sylvain Gugger committed
892
    def device(self) -> torch.device:
893
        """
894
        `torch.device`: The device on which the module is (assuming that all the module parameters are on the same
895
        device).
896
        """
Lysandre Debut's avatar
Lysandre Debut committed
897
        return get_parameter_device(self)
898

899
    @property
900
    def dtype(self) -> torch.dtype:
901
        """
902
        `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
903
        """
Lysandre Debut's avatar
Lysandre Debut committed
904
        return get_parameter_dtype(self)
905
906

    def invert_attention_mask(self, encoder_attention_mask: Tensor) -> Tensor:
Sylvain Gugger's avatar
Sylvain Gugger committed
907
908
909
910
        """
        Invert an attention mask (e.g., switches 0. and 1.).

        Args:
911
            encoder_attention_mask (`torch.Tensor`): An attention mask.
Sylvain Gugger's avatar
Sylvain Gugger committed
912
913

        Returns:
914
            `torch.Tensor`: The inverted attention mask.
Sylvain Gugger's avatar
Sylvain Gugger committed
915
        """
916
917
918
919
920
921
922
923
924
925
        if encoder_attention_mask.dim() == 3:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
        if encoder_attention_mask.dim() == 2:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
        # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
        # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
        # /transformer/transformer_layers.py#L270
        # encoder_extended_attention_mask = (encoder_extended_attention_mask ==
        # encoder_extended_attention_mask.transpose(-1, -2))
        encoder_extended_attention_mask = encoder_extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
Yih-Dar's avatar
Yih-Dar committed
926
        encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * torch.finfo(self.dtype).min
927

928
929
        return encoder_extended_attention_mask

930
    @staticmethod
931
932
933
934
935
936
937
    def create_extended_attention_mask_for_decoder(input_shape, attention_mask, device=None):
        if device is not None:
            warnings.warn(
                "The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
            )
        else:
            device = attention_mask.device
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
        batch_size, seq_length = input_shape
        seq_ids = torch.arange(seq_length, device=device)
        causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
        # in case past_key_values are used we need to add a prefix ones mask to the causal mask
        # causal and attention masks must have same type with pytorch version < 1.3
        causal_mask = causal_mask.to(attention_mask.dtype)

        if causal_mask.shape[1] < attention_mask.shape[1]:
            prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
            causal_mask = torch.cat(
                [
                    torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype),
                    causal_mask,
                ],
                axis=-1,
            )

        extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
        return extended_attention_mask

958
    def get_extended_attention_mask(
959
        self, attention_mask: Tensor, input_shape: Tuple[int], device: torch.device = None, dtype: torch.float = None
960
    ) -> Tensor:
Sylvain Gugger's avatar
Sylvain Gugger committed
961
962
        """
        Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
963
964

        Arguments:
965
            attention_mask (`torch.Tensor`):
Sylvain Gugger's avatar
Sylvain Gugger committed
966
                Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
967
            input_shape (`Tuple[int]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
968
                The shape of the input to the model.
969
970

        Returns:
971
            `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
972
        """
Yih-Dar's avatar
Yih-Dar committed
973
974
975
        if dtype is None:
            dtype = self.dtype

976
977
978
979
980
981
        if not (attention_mask.dim() == 2 and self.config.is_decoder):
            # show warning only if it won't be shown in `create_extended_attention_mask_for_decoder`
            if device is not None:
                warnings.warn(
                    "The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
                )
982
983
984
985
986
987
988
989
990
        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        if attention_mask.dim() == 3:
            extended_attention_mask = attention_mask[:, None, :, :]
        elif attention_mask.dim() == 2:
            # Provided a padding mask of dimensions [batch_size, seq_length]
            # - if the model is a decoder, apply a causal mask in addition to the padding mask
            # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
            if self.config.is_decoder:
991
                extended_attention_mask = ModuleUtilsMixin.create_extended_attention_mask_for_decoder(
992
993
                    input_shape, attention_mask, device
                )
994
995
996
997
            else:
                extended_attention_mask = attention_mask[:, None, None, :]
        else:
            raise ValueError(
998
                f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})"
999
1000
1001
1002
            )

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
1003
        # positions we want to attend and the dtype's smallest value for masked positions.
1004
1005
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
Yih-Dar's avatar
Yih-Dar committed
1006
1007
        extended_attention_mask = extended_attention_mask.to(dtype=dtype)  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(dtype).min
1008
1009
        return extended_attention_mask

Sylvain Gugger's avatar
Sylvain Gugger committed
1010
1011
1012
    def get_head_mask(
        self, head_mask: Optional[Tensor], num_hidden_layers: int, is_attention_chunked: bool = False
    ) -> Tensor:
1013
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1014
1015
1016
        Prepare the head mask if needed.

        Args:
1017
            head_mask (`torch.Tensor` with shape `[num_heads]` or `[num_hidden_layers x num_heads]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1018
                The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard).
1019
            num_hidden_layers (`int`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1020
                The number of hidden layers in the model.
1021
            is_attention_chunked (`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1022
1023
                Whether or not the attentions scores are computed by chunks or not.

1024
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
1025
1026
            `torch.Tensor` with shape `[num_hidden_layers x batch x num_heads x seq_length x seq_length]` or list with
            `[None]` for each layer.
1027
1028
1029
        """
        if head_mask is not None:
            head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
1030
1031
            if is_attention_chunked is True:
                head_mask = head_mask.unsqueeze(-1)
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
        else:
            head_mask = [None] * num_hidden_layers

        return head_mask

    def _convert_head_mask_to_5d(self, head_mask, num_hidden_layers):
        """-> [num_hidden_layers x batch x num_heads x seq_length x seq_length]"""
        if head_mask.dim() == 1:
            head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
            head_mask = head_mask.expand(num_hidden_layers, -1, -1, -1, -1)
        elif head_mask.dim() == 2:
            head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
        assert head_mask.dim() == 5, f"head_mask.dim != 5, instead {head_mask.dim()}"
1045
        head_mask = head_mask.to(dtype=self.dtype)  # switch to float if need + fp16 compatibility
1046
1047
        return head_mask

1048
1049
1050
1051
1052
    def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int:
        """
        Get number of (optionally, trainable or non-embeddings) parameters in the module.

        Args:
1053
            only_trainable (`bool`, *optional*, defaults to `False`):
1054
1055
                Whether or not to return only the number of trainable parameters

1056
            exclude_embeddings (`bool`, *optional*, defaults to `False`):
1057
1058
1059
                Whether or not to return only the number of non-embeddings parameters

        Returns:
1060
            `int`: The number of parameters.
1061
1062
        """

1063
1064
1065
1066
        if exclude_embeddings:
            embedding_param_names = [
                f"{name}.weight" for name, module_type in self.named_modules() if isinstance(module_type, nn.Embedding)
            ]
1067
            total_parameters = [
1068
1069
1070
                parameter for name, parameter in self.named_parameters() if name not in embedding_param_names
            ]
        else:
1071
1072
1073
1074
            total_parameters = list(self.parameters())

        total_numel = []
        is_loaded_in_4bit = getattr(self, "is_loaded_in_4bit", False)
1075

1076
1077
1078
1079
1080
1081
        if is_loaded_in_4bit:
            if is_bitsandbytes_available():
                import bitsandbytes as bnb
            else:
                raise ValueError(
                    "bitsandbytes is not installed but it seems that the model has been loaded in 4bit precision, something went wrong"
1082
                    " make sure to install bitsandbytes with `pip install bitsandbytes`. You also need a GPU. "
1083
1084
1085
1086
1087
1088
1089
                )

        for param in total_parameters:
            if param.requires_grad or not only_trainable:
                # For 4bit models, we need to multiply the number of parameters by 2 as half of the parameters are
                # used for the 4bit quantization (uint8 tensors are stored)
                if is_loaded_in_4bit and isinstance(param, bnb.nn.Params4bit):
1090
1091
1092
                    total_numel.append(
                        param.numel() * 2 * self.hf_quantizer.quantization_config.bnb_4bit_quant_storage.itemsize
                    )
1093
1094
1095
1096
                else:
                    total_numel.append(param.numel())

        return sum(total_numel)
1097
1098
1099
1100
1101
1102

    def estimate_tokens(self, input_dict: Dict[str, Union[torch.Tensor, Any]]) -> int:
        """
        Helper function to estimate the total number of tokens from the model inputs.

        Args:
1103
            inputs (`dict`): The model inputs.
1104
1105

        Returns:
1106
            `int`: The total number of tokens.
1107
        """
1108
1109
        if not hasattr(self, "warnings_issued"):
            self.warnings_issued = {}
1110
1111
        if self.main_input_name in input_dict:
            return input_dict[self.main_input_name].numel()
1112
        elif "estimate_tokens" not in self.warnings_issued:
1113
            logger.warning(
1114
1115
                "Could not estimate the number of tokens of the input, floating-point operations will not be computed"
            )
1116
1117
            self.warnings_issued["estimate_tokens"] = True
        return 0
1118
1119
1120
1121
1122
1123
1124

    def floating_point_ops(
        self, input_dict: Dict[str, Union[torch.Tensor, Any]], exclude_embeddings: bool = True
    ) -> int:
        """
        Get number of (optionally, non-embeddings) floating-point operations for the forward and backward passes of a
        batch with this transformer model. Default approximation neglects the quadratic dependency on the number of
Sylvain Gugger's avatar
Sylvain Gugger committed
1125
1126
        tokens (valid if `12 * d_model << sequence_length`) as laid out in [this
        paper](https://arxiv.org/pdf/2001.08361.pdf) section 2.1. Should be overridden for transformers with parameter
Sylvain Gugger's avatar
Sylvain Gugger committed
1127
        re-use e.g. Albert or Universal Transformers, or if doing long-range modeling with very high sequence lengths.
1128
1129

        Args:
1130
            batch_size (`int`):
1131
1132
                The batch size for the forward pass.

1133
            sequence_length (`int`):
1134
1135
                The number of tokens in each line of the batch.

1136
            exclude_embeddings (`bool`, *optional*, defaults to `True`):
1137
1138
1139
                Whether or not to count embedding and softmax operations.

        Returns:
1140
            `int`: The number of floating-point operations.
1141
1142
1143
1144
        """

        return 6 * self.estimate_tokens(input_dict) * self.num_parameters(exclude_embeddings=exclude_embeddings)

Julien Chaumond's avatar
Julien Chaumond committed
1145

1146
class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMixin, PeftAdapterMixin):
1147
1148
    r"""
    Base class for all models.
1149

Sylvain Gugger's avatar
Sylvain Gugger committed
1150
1151
    [`PreTrainedModel`] takes care of storing the configuration of the models and handles methods for loading,
    downloading and saving models as well as a few methods common to all models to:
1152

1153
1154
        - resize the input embeddings,
        - prune heads in the self-attention heads.
1155

1156
    Class attributes (overridden by derived classes):
Sylvain Gugger's avatar
Sylvain Gugger committed
1157

Sylvain Gugger's avatar
Sylvain Gugger committed
1158
1159
1160
1161
        - **config_class** ([`PretrainedConfig`]) -- A subclass of [`PretrainedConfig`] to use as configuration class
          for this model architecture.
        - **load_tf_weights** (`Callable`) -- A python *method* for loading a TensorFlow checkpoint in a PyTorch model,
          taking as arguments:
1162

Sylvain Gugger's avatar
Sylvain Gugger committed
1163
1164
            - **model** ([`PreTrainedModel`]) -- An instance of the model on which to load the TensorFlow checkpoint.
            - **config** ([`PreTrainedConfig`]) -- An instance of the configuration associated to the model.
1165
            - **path** (`str`) -- A path to the TensorFlow checkpoint.
1166

Sylvain Gugger's avatar
Sylvain Gugger committed
1167
1168
        - **base_model_prefix** (`str`) -- A string indicating the attribute associated to the base model in derived
          classes of the same architecture adding modules on top of the base model.
1169
        - **is_parallelizable** (`bool`) -- A flag indicating whether this model supports model parallelization.
Sylvain Gugger's avatar
Sylvain Gugger committed
1170
1171
        - **main_input_name** (`str`) -- The name of the principal input to the model (often `input_ids` for NLP
          models, `pixel_values` for vision models and `input_values` for speech models).
1172
    """
1173

1174
    config_class = None
1175
    base_model_prefix = ""
1176
    main_input_name = "input_ids"
1177
1178
    model_tags = None

1179
    _auto_class = None
1180
    _no_split_modules = None
1181
    _skip_keys_device_placement = None
1182
    _keep_in_fp32_modules = None
1183

1184
1185
    # a list of `re` patterns of `state_dict` keys that should be removed from the list of missing
    # keys we find (keys inside the model but not in the checkpoint) and avoid unnecessary warnings.
1186
    _keys_to_ignore_on_load_missing = None
1187
1188
1189
    # a list of `re` patterns of `state_dict` keys that should be removed from the list of
    # unexpected keys we find (keys inside the checkpoint but not the model) and avoid unnecessary
    # warnings.
1190
    _keys_to_ignore_on_load_unexpected = None
1191
1192
    # a list of `state_dict` keys to ignore when saving the model (useful for keys that aren't
    # trained, but which are either deterministic or tied variables)
1193
    _keys_to_ignore_on_save = None
Sylvain Gugger's avatar
Sylvain Gugger committed
1194
1195
    # a list of `state_dict` keys that are potentially tied to another key in the state_dict.
    _tied_weights_keys = None
1196

1197
    is_parallelizable = False
1198
    supports_gradient_checkpointing = False
1199

1200
1201
1202
    # Flash Attention 2 support
    _supports_flash_attn_2 = False

1203
1204
1205
    # SDPA support
    _supports_sdpa = False

1206
1207
1208
    # Has support for a `Cache` instance as `past_key_values`
    _supports_cache_class = False

1209
    @property
1210
    def dummy_inputs(self) -> Dict[str, torch.Tensor]:
1211
        """
1212
        `Dict[str, torch.Tensor]`: Dummy inputs to do a forward pass in the network.
1213
        """
1214
        return {"input_ids": torch.tensor(DUMMY_INPUTS)}
1215

1216
1217
1218
1219
1220
1221
1222
    @property
    def framework(self) -> str:
        """
        :str: Identifies that this is a PyTorch model.
        """
        return "pt"

1223
    def __init__(self, config: PretrainedConfig, *inputs, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
1224
        super().__init__()
1225
1226
        if not isinstance(config, PretrainedConfig):
            raise ValueError(
1227
1228
1229
                f"Parameter config in `{self.__class__.__name__}(config)` should be an instance of class "
                "`PretrainedConfig`. To create a model from a pretrained model use "
                f"`model = {self.__class__.__name__}.from_pretrained(PRETRAINED_MODEL_NAME)`"
1230
            )
1231
        # Save config and origin of the pretrained weights if given in model
1232
1233
1234
        config = self._autoset_attn_implementation(
            config, torch_dtype=torch.get_default_dtype(), check_device_map=False
        )
1235
        self.config = config
1236

1237
        self.name_or_path = config.name_or_path
1238
        self.warnings_issued = {}
1239
        self.generation_config = GenerationConfig.from_model_config(config) if self.can_generate() else None
1240
1241
1242
1243
        # Overwrite the class attribute to make it an instance attribute, so models like
        # `InstructBlipForConditionalGeneration` can dynamically update it without modifying the class attribute
        # when a different component (e.g. language_model) is used.
        self._keep_in_fp32_modules = copy.copy(self.__class__._keep_in_fp32_modules)
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257

    def post_init(self):
        """
        A method executed at the end of each Transformer model initialization, to execute code that needs the model's
        modules properly initialized (such as weight initialization).
        """
        self.init_weights()
        self._backward_compatibility_gradient_checkpointing()

    def _backward_compatibility_gradient_checkpointing(self):
        if self.supports_gradient_checkpointing and getattr(self.config, "gradient_checkpointing", False):
            self.gradient_checkpointing_enable()
            # Remove the attribute now that is has been consumed, so it's no saved in the config.
            delattr(self.config, "gradient_checkpointing")
1258

1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
    def add_model_tags(self, tags: Union[List[str], str]) -> None:
        r"""
        Add custom tags into the model that gets pushed to the Hugging Face Hub. Will
        not overwrite existing tags in the model.

        Args:
            tags (`Union[List[str], str]`):
                The desired tags to inject in the model

        Examples:

        ```python
        from transformers import AutoModel

1273
        model = AutoModel.from_pretrained("google-bert/bert-base-cased")
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290

        model.add_model_tags(["custom", "custom-bert"])

        # Push the model to your namespace with the name "my-custom-bert".
        model.push_to_hub("my-custom-bert")
        ```
        """
        if isinstance(tags, str):
            tags = [tags]

        if self.model_tags is None:
            self.model_tags = []

        for tag in tags:
            if tag not in self.model_tags:
                self.model_tags.append(tag)

1291
1292
1293
1294
1295
1296
    @classmethod
    def _from_config(cls, config, **kwargs):
        """
        All context managers that the model should be initialized under go here.

        Args:
1297
1298
            torch_dtype (`torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model under this dtype.
1299
1300
        """
        torch_dtype = kwargs.pop("torch_dtype", None)
1301
        use_flash_attention_2 = kwargs.pop("use_flash_attention_2", False)
1302
1303
1304
1305
1306
1307

        # override default dtype if needed
        dtype_orig = None
        if torch_dtype is not None:
            dtype_orig = cls._set_default_torch_dtype(torch_dtype)

1308
1309
1310
        config = copy.deepcopy(config)  # We do not want to modify the config inplace in _from_config.
        config._attn_implementation = kwargs.pop("attn_implementation", None)
        config = cls._autoset_attn_implementation(
1311
1312
1313
1314
            config,
            use_flash_attention_2=use_flash_attention_2,
            check_device_map=False,
            torch_dtype=torch_dtype,
1315
        )
1316

1317
1318
1319
1320
1321
1322
        if is_deepspeed_zero3_enabled():
            import deepspeed

            logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
            # this immediately partitions the model across all gpus, to avoid the overhead in time
            # and memory copying it on CPU or each GPU first
1323
            with deepspeed.zero.Init(config_dict_or_path=deepspeed_config()):
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
                model = cls(config, **kwargs)
        else:
            model = cls(config, **kwargs)

        # restore default dtype if it was modified
        if dtype_orig is not None:
            torch.set_default_dtype(dtype_orig)

        return model

1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
    @classmethod
    def _autoset_attn_implementation(
        cls,
        config,
        use_flash_attention_2: bool = False,
        torch_dtype: Optional[torch.dtype] = None,
        device_map: Optional[Union[str, Dict[str, int]]] = None,
        check_device_map: bool = True,
    ):
        """
        Automatically checks and dispatches to a default attention implementation. In order of priority:
            1. An implementation specified in `config._attn_implementation` (due for example to the argument attn_implementation="sdpa" in from_pretrained).
            2. DEPRECATED: if use_flash_attention_2 is set to `True` and `flash_attn` is available, flash attention. (`LlamaFlashAttention` for example)
            3. SDPA implementation, if available and supported by the model type. (`LlamaSdpaAttention` for example)
            4. The default model's implementation otherwise (`LlamaAttention` for example) .
        """
        # Here we use config._attn_implementation_internal to check whether the attention implementation was explicitely set by the user.
        # The property `PretrainedConfig._attn_implementation` is never `None`, for backward compatibility (always fall back on "eager").
        # The `hasattr` here is used as some Transformers tests for some reason do not call PretrainedConfig __init__ (e.g. test_no_super_init_config_and_model)
1353
        requested_attn_implementation = None
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
        if hasattr(config, "_attn_implementation_internal") and config._attn_implementation_internal is not None:
            if config._attn_implementation != "flash_attention_2" and use_flash_attention_2:
                raise ValueError(
                    f'Both attn_implementation="{config._attn_implementation}" and `use_flash_attention_2=True` were used when loading the model, which are not compatible.'
                    ' We recommend to just use `attn_implementation="flash_attention_2"` when loading the model.'
                )

            if config._attn_implementation not in ["eager", "sdpa", "flash_attention_2"]:
                message = f'Specified `attn_implementation="{config._attn_implementation}"` is not supported. The only possible arguments are `attn_implementation="eager"` (manual attention implementation)'
                if cls._supports_flash_attn_2:
                    message += ', `"attn_implementation=flash_attention_2"` (implementation using flash attention 2)'
                if cls._supports_sdpa:
                    message += ', `"attn_implementation=sdpa"` (implementation using torch.nn.functional.scaled_dot_product_attention)'
                raise ValueError(message + ".")

            # If a config is passed with a preset attn_implementation, we skip the automatic dispatch and use the user-provided config, with hard checks that the requested attention implementation is available.
1370
            requested_attn_implementation = config._attn_implementation_internal
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382

        if use_flash_attention_2:
            logger.warning_once(
                'The model was loaded with use_flash_attention_2=True, which is deprecated and may be removed in a future release. Please use `attn_implementation="flash_attention_2"` instead.'
            )
            config._attn_implementation = "flash_attention_2"

        if config._attn_implementation == "flash_attention_2":
            cls._check_and_enable_flash_attn_2(
                config,
                torch_dtype=torch_dtype,
                device_map=device_map,
1383
                hard_check_only=False,
1384
1385
                check_device_map=check_device_map,
            )
1386
        elif requested_attn_implementation in [None, "sdpa"] and not is_torch_xla_available():
1387
            # use_flash_attention_2 takes priority over SDPA, hence SDPA treated in this elif.
1388
            config = cls._check_and_enable_sdpa(
1389
1390
                config,
                hard_check_only=False if requested_attn_implementation is None else True,
1391
1392
            )
        else:
1393
1394
1395
1396
            config._attn_implementation = "eager"

        return config

1397
1398
1399
1400
1401
1402
1403
    @classmethod
    def _set_default_torch_dtype(cls, dtype: torch.dtype) -> torch.dtype:
        """
        Change the default dtype and return the previous one. This is needed when wanting to instantiate the model
        under specific dtype.

        Args:
1404
            dtype (`torch.dtype`):
1405
1406
1407
                a floating dtype to set to.

        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
1408
1409
            `torch.dtype`: the original `dtype` that can be used to restore `torch.set_default_dtype(dtype)` if it was
            modified. If it wasn't, returns `None`.
1410

1411
1412
        Note `set_default_dtype` currently only works with floating-point types and asserts if for example,
        `torch.int64` is passed. So if a non-float `dtype` is passed this functions will throw an exception.
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
        """
        if not dtype.is_floating_point:
            raise ValueError(
                f"Can't instantiate {cls.__name__} model under dtype={dtype} since it is not a floating point dtype"
            )

        logger.info(f"Instantiating {cls.__name__} model under default dtype {dtype}.")
        dtype_orig = torch.get_default_dtype()
        torch.set_default_dtype(dtype)
        return dtype_orig

1424
    @property
1425
1426
    def base_model(self) -> nn.Module:
        """
1427
        `torch.nn.Module`: The main body of the model.
1428
        """
1429
        return getattr(self, self.base_model_prefix, self)
thomwolf's avatar
thomwolf committed
1430

1431
1432
    @classmethod
    def can_generate(cls) -> bool:
1433
1434
1435
1436
1437
1438
        """
        Returns whether this model can generate sequences with `.generate()`.

        Returns:
            `bool`: Whether this model can generate sequences with `.generate()`.
        """
1439
1440
1441
        # Detects whether `prepare_inputs_for_generation` has been overwritten, which is a requirement for generation.
        # Alternativelly, the model can also have a custom `generate` function.
        if "GenerationMixin" in str(cls.prepare_inputs_for_generation) and "GenerationMixin" in str(cls.generate):
1442
1443
1444
            return False
        return True

1445
1446
    @classmethod
    def _check_and_enable_flash_attn_2(
1447
1448
1449
1450
1451
1452
        cls,
        config,
        torch_dtype: Optional[torch.dtype] = None,
        device_map: Optional[Union[str, Dict[str, int]]] = None,
        check_device_map: bool = True,
        hard_check_only: bool = False,
1453
1454
    ) -> PretrainedConfig:
        """
1455
        Checks the availability of Flash Attention 2 and compatibility with the current model.
1456

1457
        If all checks pass and `hard_check_only` is False, the method will set the config attribute `attn_implementation` to "flash_attention_2" so that the model can initialize the correct attention module.
1458
1459
1460
        """
        if not cls._supports_flash_attn_2:
            raise ValueError(
1461
1462
1463
                f"{cls.__name__} does not support Flash Attention 2.0 yet. Please request to add support where"
                f" the model is hosted, on its model hub page: https://huggingface.co/{config._name_or_path}/discussions/new"
                " or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new"
1464
1465
            )

1466
        if not is_flash_attn_2_available():
1467
1468
1469
            preface = "FlashAttention2 has been toggled on, but it cannot be used due to the following error:"
            install_message = "Please refer to the documentation of https://huggingface.co/docs/transformers/perf_infer_gpu_one#flashattention-2 to install Flash Attention 2."

1470
1471
1472
1473
1474
            if importlib.util.find_spec("flash_attn") is None:
                raise ImportError(f"{preface} the package flash_attn seems to be not installed. {install_message}")

            flash_attention_version = version.parse(importlib.metadata.version("flash_attn"))
            if torch.version.cuda:
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
                if flash_attention_version < version.parse("2.1.0"):
                    raise ImportError(
                        f"{preface} you need flash_attn package version to be greater or equal than 2.1.0. Detected version {flash_attention_version}. {install_message}"
                    )
                else:
                    raise ImportError(f"{preface} Flash Attention 2 is not available. {install_message}")
            elif torch.version.hip:
                if flash_attention_version < version.parse("2.0.4"):
                    raise ImportError(
                        f"{preface} you need flash_attn package version to be greater or equal than 2.0.4. Make sure to have that version installed - detected version {flash_attention_version}. {install_message}"
                    )
                else:
                    raise ImportError(f"{preface} Flash Attention 2 is not available. {install_message}")
1488
1489
1490
1491
1492
1493
1494
1495
1496

        _is_bettertransformer = getattr(cls, "use_bettertransformer", False)

        if _is_bettertransformer:
            raise ValueError(
                "Flash Attention 2 and BetterTransformer API are not compatible. Please make sure to disable BetterTransformers by doing model.reverse_bettertransformer()"
            )

        if torch_dtype is None:
1497
            logger.warning_once(
1498
1499
1500
                "You are attempting to use Flash Attention 2.0 without specifying a torch dtype. This might lead to unexpected behaviour"
            )
        elif torch_dtype is not None and torch_dtype not in [torch.float16, torch.bfloat16]:
1501
1502
1503
1504
            logger.warning_once(
                "Flash Attention 2.0 only supports torch.float16 and torch.bfloat16 dtypes, but"
                f" the current dype in {cls.__name__} is {torch_dtype}. You should run training or inference using Automatic Mixed-Precision via the `with torch.autocast(device_type='torch_device'):` decorator,"
                ' or load the model with the `torch_dtype` argument. Example: `model = AutoModel.from_pretrained("openai/whisper-tiny", attn_implementation="flash_attention_2", torch_dtype=torch.float16)`'
1505
1506
            )

1507
1508
1509
        # The check `torch.empty(0).device.type != "cuda"` is needed as the model may be initialized after `torch.set_default_device` has been called,
        # or the model may be initialized under the context manager `with torch.device("cuda"):`.
        if check_device_map and device_map is None and torch.empty(0).device.type != "cuda":
1510
            if torch.cuda.is_available():
1511
                logger.warning_once(
1512
                    "You are attempting to use Flash Attention 2.0 with a model not initialized on GPU. Make sure to move the model to GPU"
1513
1514
1515
1516
                    " after initializing it on CPU with `model.to('cuda')`."
                )
            else:
                raise ValueError(
1517
                    "You are attempting to use Flash Attention 2.0 with a model not initialized on GPU and with no GPU available. "
1518
1519
1520
1521
                    "This is not supported yet. Please make sure to have access to a GPU and either initialise the model on a GPU by passing a device_map "
                    "or initialising the model on CPU and then moving it to GPU."
                )
        elif (
1522
1523
            check_device_map
            and device_map is not None
1524
1525
1526
1527
1528
1529
1530
            and isinstance(device_map, dict)
            and ("cpu" in device_map.values() or "disk" in device_map.values())
        ):
            raise ValueError(
                "You are attempting to use Flash Attention 2.0 with a model dispatched on CPU or disk. This is not supported. Please make sure to "
                "initialise the model on a GPU by passing a device_map that contains only GPU devices as keys."
            )
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
        if not hard_check_only:
            config._attn_implementation = "flash_attention_2"
        return config

    @classmethod
    def _check_and_enable_sdpa(cls, config, hard_check_only: bool = False) -> PretrainedConfig:
        """
        Checks the availability of SDPA for a given model.

        If all checks pass and `hard_check_only` is False, the method will set the config attribute `_attn_implementation` to "flash_attention_2" so that the model can initialize the correct attention module.
        """
        if hard_check_only:
            if not cls._supports_sdpa:
                raise ValueError(
1545
1546
1547
                    f"{cls.__name__} does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet."
                    " Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe"
                    ' this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation="eager"` meanwhile. Example: `model = AutoModel.from_pretrained("openai/whisper-tiny", attn_implementation="eager")`'
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
                )
            if not is_torch_sdpa_available():
                raise ImportError(
                    "PyTorch SDPA requirements in Transformers are not met. Please install torch>=2.1.1."
                )

        if not is_torch_sdpa_available() or not cls._supports_sdpa:
            return config

        _is_bettertransformer = getattr(cls, "use_bettertransformer", False)
        if _is_bettertransformer:
            return config

        if not hard_check_only:
            config._attn_implementation = "sdpa"
1563
1564
        return config

1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
    def enable_input_require_grads(self):
        """
        Enables the gradients for the input embeddings. This is useful for fine-tuning adapter weights while keeping
        the model weights fixed.
        """

        def make_inputs_require_grads(module, input, output):
            output.requires_grad_(True)

        self._require_grads_hook = self.get_input_embeddings().register_forward_hook(make_inputs_require_grads)

    def disable_input_require_grads(self):
        """
        Removes the `_require_grads_hook`.
        """
        self._require_grads_hook.remove()

1582
    def get_input_embeddings(self) -> nn.Module:
1583
1584
1585
1586
        """
        Returns the model's input embeddings.

        Returns:
1587
            `nn.Module`: A torch module mapping vocabulary to hidden states.
thomwolf's avatar
thomwolf committed
1588
        """
1589
        base_model = getattr(self, self.base_model_prefix, self)
thomwolf's avatar
thomwolf committed
1590
1591
1592
1593
        if base_model is not self:
            return base_model.get_input_embeddings()
        else:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
1594

1595
    def set_input_embeddings(self, value: nn.Module):
1596
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1597
        Set model's input embeddings.
1598
1599

        Args:
1600
            value (`nn.Module`): A module mapping vocabulary to hidden states.
thomwolf's avatar
thomwolf committed
1601
1602
1603
1604
1605
1606
        """
        base_model = getattr(self, self.base_model_prefix, self)
        if base_model is not self:
            base_model.set_input_embeddings(value)
        else:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
1607

1608
    def get_output_embeddings(self) -> nn.Module:
1609
1610
1611
1612
        """
        Returns the model's output embeddings.

        Returns:
1613
            `nn.Module`: A torch module mapping hidden states to vocabulary.
thomwolf's avatar
thomwolf committed
1614
        """
1615
        return None  # Overwrite for models with output embeddings
thomwolf's avatar
thomwolf committed
1616

1617
1618
    def _init_weights(self, module):
        """
1619
1620
1621
1622
        Initialize the weights. This method should be overridden by derived class and is
        the only initialization method that will be called when loading a checkpoint
        using `from_pretrained`. Any attempt to initialize outside of this function
        will be useless as the torch.nn.init function are all replaced with skip.
1623
        """
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
        pass

    def _initialize_weights(self, module):
        """
        Initialize the weights if they are not already initialized.
        """
        if getattr(module, "_is_hf_initialized", False):
            return
        self._init_weights(module)
        module._is_hf_initialized = True
1634

1635
    def tie_weights(self):
1636
1637
        """
        Tie the weights between the input embeddings and the output embeddings.
1638

Sylvain Gugger's avatar
Sylvain Gugger committed
1639
1640
        If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the
        weights instead.
thomwolf's avatar
thomwolf committed
1641
        """
1642
1643
1644
1645
        if getattr(self.config, "tie_word_embeddings", True):
            output_embeddings = self.get_output_embeddings()
            if output_embeddings is not None:
                self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings())
thomwolf's avatar
thomwolf committed
1646

1647
        if getattr(self.config, "is_encoder_decoder", False) and getattr(self.config, "tie_encoder_decoder", False):
Weizhen's avatar
Weizhen committed
1648
1649
            if hasattr(self, self.base_model_prefix):
                self = getattr(self, self.base_model_prefix)
1650
1651
            self._tie_encoder_decoder_weights(self.encoder, self.decoder, self.base_model_prefix)

Sylvain Gugger's avatar
Sylvain Gugger committed
1652
1653
1654
1655
        for module in self.modules():
            if hasattr(module, "_tie_weights"):
                module._tie_weights()

1656
1657
1658
    @staticmethod
    def _tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str):
        uninitialized_encoder_weights: List[str] = []
Weizhen's avatar
Weizhen committed
1659
1660
        if decoder.__class__ != encoder.__class__:
            logger.info(
Sylvain Gugger's avatar
Sylvain Gugger committed
1661
1662
                f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder"
                " weights are correctly initialized."
Weizhen's avatar
Weizhen committed
1663
            )
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

        def tie_encoder_to_decoder_recursively(
            decoder_pointer: nn.Module,
            encoder_pointer: nn.Module,
            module_name: str,
            uninitialized_encoder_weights: List[str],
            depth=0,
        ):
            assert isinstance(decoder_pointer, nn.Module) and isinstance(
                encoder_pointer, nn.Module
1674
            ), f"{decoder_pointer} and {encoder_pointer} have to be of type nn.Module"
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
            if hasattr(decoder_pointer, "weight"):
                assert hasattr(encoder_pointer, "weight")
                encoder_pointer.weight = decoder_pointer.weight
                if hasattr(decoder_pointer, "bias"):
                    assert hasattr(encoder_pointer, "bias")
                    encoder_pointer.bias = decoder_pointer.bias
                return

            encoder_modules = encoder_pointer._modules
            decoder_modules = decoder_pointer._modules
            if len(decoder_modules) > 0:
                assert (
                    len(encoder_modules) > 0
                ), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"

1690
                all_encoder_weights = {module_name + "/" + sub_name for sub_name in encoder_modules.keys()}
1691
1692
1693
1694
1695
                encoder_layer_pos = 0
                for name, module in decoder_modules.items():
                    if name.isdigit():
                        encoder_name = str(int(name) + encoder_layer_pos)
                        decoder_name = name
Weizhen's avatar
Weizhen committed
1696
1697
1698
                        if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len(
                            encoder_modules
                        ) != len(decoder_modules):
1699
1700
                            # this can happen if the name corresponds to the position in a list module list of layers
                            # in this case the decoder has added a cross-attention that the encoder does not have
1701
                            # thus skip this step and subtract one layer pos from encoder
1702
1703
1704
1705
1706
1707
                            encoder_layer_pos -= 1
                            continue
                    elif name not in encoder_modules:
                        continue
                    elif depth > 500:
                        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1708
1709
                            "Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is"
                            " a circular dependency between two or more `nn.Modules` of your model."
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
                        )
                    else:
                        decoder_name = encoder_name = name
                    tie_encoder_to_decoder_recursively(
                        decoder_modules[decoder_name],
                        encoder_modules[encoder_name],
                        module_name + "/" + name,
                        uninitialized_encoder_weights,
                        depth=depth + 1,
                    )
                    all_encoder_weights.remove(module_name + "/" + encoder_name)

                uninitialized_encoder_weights += list(all_encoder_weights)

        # tie weights recursively
        tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights)
        if len(uninitialized_encoder_weights) > 0:
            logger.warning(
                f"The following encoder weights were not tied to the decoder {uninitialized_encoder_weights}"
            )

1731
    def _tie_or_clone_weights(self, output_embeddings, input_embeddings):
Lysandre's avatar
Lysandre committed
1732
        """Tie or clone module weights depending of whether we are using TorchScript or not"""
thomwolf's avatar
thomwolf committed
1733
        if self.config.torchscript:
1734
            output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone())
thomwolf's avatar
thomwolf committed
1735
        else:
1736
            output_embeddings.weight = input_embeddings.weight
thomwolf's avatar
thomwolf committed
1737

Sam Shleifer's avatar
Sam Shleifer committed
1738
        if getattr(output_embeddings, "bias", None) is not None:
1739
            output_embeddings.bias.data = nn.functional.pad(
1740
                output_embeddings.bias.data,
Lysandre's avatar
Lysandre committed
1741
1742
1743
1744
                (
                    0,
                    output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0],
                ),
1745
1746
                "constant",
                0,
1747
            )
1748
        if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"):
1749
            output_embeddings.out_features = input_embeddings.num_embeddings
1750

Marc Sun's avatar
Marc Sun committed
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
    def _get_no_split_modules(self, device_map: str):
        """
        Get the modules of the model that should not be spit when using device_map. We iterate through the modules to
        get the underlying `_no_split_modules`.

        Args:
            device_map (`str`):
                The device map value. Options are ["auto", "balanced", "balanced_low_0", "sequential"]

        Returns:
            `List[str]`: List of modules that should not be split
        """
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
        _no_split_modules = set()
        modules_to_check = [self]
        while len(modules_to_check) > 0:
            module = modules_to_check.pop(-1)
            # if the module does not appear in _no_split_modules, we also check the children
            if module.__class__.__name__ not in _no_split_modules:
                if isinstance(module, PreTrainedModel):
                    if module._no_split_modules is None:
                        raise ValueError(
                            f"{module.__class__.__name__} does not support `device_map='{device_map}'`. To implement support, the model "
                            "class needs to implement the `_no_split_modules` attribute."
                        )
                    else:
                        _no_split_modules = _no_split_modules | set(module._no_split_modules)
                modules_to_check += list(module.children())
Marc Sun's avatar
Marc Sun committed
1778
1779
        return list(_no_split_modules)

1780
1781
1782
    def resize_token_embeddings(
        self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None
    ) -> nn.Embedding:
1783
        """
1784
        Resizes input token embeddings matrix of the model if `new_num_tokens != config.vocab_size`.
1785

1786
        Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
thomwolf's avatar
thomwolf committed
1787

1788
        Arguments:
1789
            new_num_tokens (`int`, *optional*):
1790
                The new number of tokens in the embedding matrix. Increasing the size will add newly initialized
Sylvain Gugger's avatar
Sylvain Gugger committed
1791
1792
                vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
                returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything.
1793
            pad_to_multiple_of (`int`, *optional*):
Arthur's avatar
Arthur committed
1794
1795
                If set will pad the embedding matrix to a multiple of the provided value.If `new_num_tokens` is set to
                `None` will just pad the embedding to a multiple of `pad_to_multiple_of`.
1796
1797
1798
1799
1800

                This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
                `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more
                details about this, or help on choosing the correct value for resizing, refer to this guide:
                https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc
1801
1802

        Return:
1803
            `torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model.
thomwolf's avatar
thomwolf committed
1804
        """
1805
        model_embeds = self._resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
Arthur's avatar
Arthur committed
1806
        if new_num_tokens is None and pad_to_multiple_of is None:
thomwolf's avatar
thomwolf committed
1807
            return model_embeds
thomwolf's avatar
thomwolf committed
1808
1809

        # Update base model and current model config
Arthur's avatar
Arthur committed
1810
1811
        self.config.vocab_size = model_embeds.weight.shape[0]
        self.vocab_size = model_embeds.weight.shape[0]
thomwolf's avatar
thomwolf committed
1812
1813

        # Tie weights again if needed
1814
        self.tie_weights()
thomwolf's avatar
thomwolf committed
1815

thomwolf's avatar
thomwolf committed
1816
1817
        return model_embeds

1818
    def _resize_token_embeddings(self, new_num_tokens, pad_to_multiple_of=None):
thomwolf's avatar
thomwolf committed
1819
        old_embeddings = self.get_input_embeddings()
1820
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens, pad_to_multiple_of)
1821
1822
1823
        if hasattr(old_embeddings, "_hf_hook"):
            hook = old_embeddings._hf_hook
            add_hook_to_module(new_embeddings, hook)
1824
1825
        old_embeddings_requires_grad = old_embeddings.weight.requires_grad
        new_embeddings.requires_grad_(old_embeddings_requires_grad)
thomwolf's avatar
thomwolf committed
1826
        self.set_input_embeddings(new_embeddings)
1827
        is_quantized = hasattr(self, "hf_quantizer") and self.hf_quantizer is not None
1828

1829
1830
        # Update new_num_tokens with the actual size of new_embeddings
        if pad_to_multiple_of is not None:
1831
            if is_deepspeed_zero3_enabled() and not is_quantized:
1832
1833
1834
1835
1836
1837
1838
                import deepspeed

                with deepspeed.zero.GatheredParameters(new_embeddings.weight, modifier_rank=None):
                    new_num_tokens = new_embeddings.weight.shape[0]
            else:
                new_num_tokens = new_embeddings.weight.shape[0]

1839
1840
1841
        # if word embeddings are not tied, make sure that lm head is resized as well
        if self.get_output_embeddings() is not None and not self.config.tie_word_embeddings:
            old_lm_head = self.get_output_embeddings()
1842
            new_lm_head = self._get_resized_lm_head(old_lm_head, new_num_tokens)
1843
1844
1845
            if hasattr(old_lm_head, "_hf_hook"):
                hook = old_lm_head._hf_hook
                add_hook_to_module(new_lm_head, hook)
1846
1847
            old_lm_head_requires_grad = old_lm_head.weight.requires_grad
            new_lm_head.requires_grad_(old_lm_head_requires_grad)
1848
1849
            self.set_output_embeddings(new_lm_head)

thomwolf's avatar
thomwolf committed
1850
        return self.get_input_embeddings()
1851

1852
    def _get_resized_embeddings(
1853
1854
1855
1856
        self,
        old_embeddings: nn.Embedding,
        new_num_tokens: Optional[int] = None,
        pad_to_multiple_of: Optional[int] = None,
1857
    ) -> nn.Embedding:
1858
1859
1860
        """
        Build a resized Embedding Module from a provided token Embedding Module. Increasing the size will add newly
        initialized vectors at the end. Reducing the size will remove vectors from the end
1861
1862

        Args:
1863
            old_embeddings (`torch.nn.Embedding`):
1864
                Old embeddings to be resized.
1865
            new_num_tokens (`int`, *optional*):
1866
                New number of tokens in the embedding matrix.
1867
1868

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
1869
                vectors from the end. If not provided or `None`, just returns a pointer to the input tokens
1870
                `torch.nn.Embedding` module of the model without doing anything.
1871
            pad_to_multiple_of (`int`, *optional*):
Arthur's avatar
Arthur committed
1872
1873
                If set will pad the embedding matrix to a multiple of the provided value. If `new_num_tokens` is set to
                `None` will just pad the embedding to a multiple of `pad_to_multiple_of`.
1874
1875
1876
1877
1878
1879

                This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
                `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more
                details about this, or help on choosing the correct value for resizing, refer to this guide:
                https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc

1880
1881

        Return:
1882
1883
            `torch.nn.Embedding`: Pointer to the resized Embedding Module or the old Embedding Module if
            `new_num_tokens` is `None`
1884
        """
1885
1886
1887
1888
1889
1890
1891
1892

        if pad_to_multiple_of is not None:
            if not isinstance(pad_to_multiple_of, int):
                raise ValueError(
                    f"Asking to pad the embedding matrix to a multiple of `{pad_to_multiple_of}`, which is not and integer. Please make sure to pass an integer"
                )
            if new_num_tokens is None:
                new_num_tokens = old_embeddings.weight.shape[0]
1893
            new_num_tokens = ((new_num_tokens + pad_to_multiple_of - 1) // pad_to_multiple_of) * pad_to_multiple_of
1894
        else:
1895
            logger.info(
1896
                "You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding"
1897
                f" dimension will be {new_num_tokens}. This might induce some performance reduction as *Tensor Cores* will not be available."
1898
                " For more details about this, or help on choosing the correct value for resizing, refer to this guide:"
1899
1900
1901
                " https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc"
            )

1902
1903
1904
        if new_num_tokens is None:
            return old_embeddings

1905
1906
        is_quantized = hasattr(self, "hf_quantizer") and self.hf_quantizer is not None
        if is_deepspeed_zero3_enabled() and not is_quantized:
1907
1908
1909
1910
1911
1912
1913
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_embeddings.weight, modifier_rank=None):
                old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
        else:
            old_num_tokens, old_embedding_dim = old_embeddings.weight.size()

1914
        if old_num_tokens == new_num_tokens and not is_deepspeed_zero3_enabled():
1915
1916
            return old_embeddings

1917
1918
        if not isinstance(old_embeddings, nn.Embedding):
            raise TypeError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1919
1920
1921
                f"Old embeddings are of type {type(old_embeddings)}, which is not an instance of {nn.Embedding}. You"
                " should either use a different resize function or make sure that `old_embeddings` are an instance of"
                f" {nn.Embedding}."
1922
1923
            )

1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
        # Build new embeddings

        # When using DeepSpeed ZeRO-3, we shouldn't create new embeddings with DeepSpeed init
        # because the shape of the new embedding layer is used across various modeling files
        # as well as to update config vocab size. Shape will be 0 when using DeepSpeed init leading
        # to errors when training.
        new_embeddings = nn.Embedding(
            new_num_tokens,
            old_embedding_dim,
            device=old_embeddings.weight.device,
            dtype=old_embeddings.weight.dtype,
        )

        # initialize all new embeddings (in particular added tokens)
        self._init_weights(new_embeddings)

        # Copy token embeddings from the previous weights

1942
1943
        # numbers of tokens to copy
        n = min(old_num_tokens, new_num_tokens)
1944

1945
        if is_deepspeed_zero3_enabled() and not is_quantized:
1946
1947
            import deepspeed

1948
1949
1950
            params = [old_embeddings.weight, new_embeddings.weight]
            with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
                new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :]
1951
1952
        else:
            new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :]
1953
1954
1955

        return new_embeddings

1956
    def _get_resized_lm_head(
1957
1958
        self, old_lm_head: nn.Linear, new_num_tokens: Optional[int] = None, transposed: Optional[bool] = False
    ) -> nn.Linear:
1959
1960
1961
1962
1963
        """
        Build a resized Linear Module from a provided old Linear Module. Increasing the size will add newly initialized
        vectors at the end. Reducing the size will remove vectors from the end

        Args:
1964
            old_lm_head (`torch.nn.Linear`):
1965
                Old lm head liner layer to be resized.
1966
            new_num_tokens (`int`, *optional*):
1967
1968
1969
                New number of tokens in the linear matrix.

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
1970
                vectors from the end. If not provided or `None`, just returns a pointer to the input tokens
1971
1972
1973
                `torch.nn.Linear` module of the model without doing anything. transposed (`bool`, *optional*, defaults
                to `False`): Whether `old_lm_head` is transposed or not. If True `old_lm_head.size()` is `lm_head_dim,
                vocab_size` else `vocab_size, lm_head_dim`.
1974
1975

        Return:
Sylvain Gugger's avatar
Sylvain Gugger committed
1976
1977
            `torch.nn.Linear`: Pointer to the resized Linear Module or the old Linear Module if `new_num_tokens` is
            `None`
1978
1979
1980
1981
        """
        if new_num_tokens is None:
            return old_lm_head

1982
1983
        is_quantized = hasattr(self, "hf_quantizer") and self.hf_quantizer is not None
        if is_deepspeed_zero3_enabled() and not is_quantized:
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_lm_head.weight, modifier_rank=None):
                old_num_tokens, old_lm_head_dim = (
                    old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
                )
        else:
            old_num_tokens, old_lm_head_dim = (
                old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
            )
1994

1995
        if old_num_tokens == new_num_tokens and not is_deepspeed_zero3_enabled():
1996
1997
1998
1999
            return old_lm_head

        if not isinstance(old_lm_head, nn.Linear):
            raise TypeError(
Sylvain Gugger's avatar
Sylvain Gugger committed
2000
2001
2002
                f"Old language model head is of type {type(old_lm_head)}, which is not an instance of {nn.Linear}. You"
                " should either use a different resize function or make sure that `old_lm_head` are an instance of"
                f" {nn.Linear}."
2003
2004
2005
2006
2007
2008
            )

        # Build new lm head
        new_lm_head_shape = (old_lm_head_dim, new_num_tokens) if not transposed else (new_num_tokens, old_lm_head_dim)
        has_new_lm_head_bias = old_lm_head.bias is not None

2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
        # When using DeepSpeed ZeRO-3, we shouldn't create new embeddings with DeepSpeed init
        # because the shape of the new embedding layer is used across various modeling files
        # as well as to update config vocab size. Shape will be 0 when using DeepSpeed init leading
        # to errors when training.
        new_lm_head = nn.Linear(
            *new_lm_head_shape,
            bias=has_new_lm_head_bias,
            device=old_lm_head.weight.device,
            dtype=old_lm_head.weight.dtype,
        )

        # initialize new lm head (in particular added tokens)
        self._init_weights(new_lm_head)

2023
2024
        num_tokens_to_copy = min(old_num_tokens, new_num_tokens)

2025
        if is_deepspeed_zero3_enabled() and not is_quantized:
2026
2027
            import deepspeed

2028
2029
            params = [old_lm_head.weight, old_lm_head.bias, new_lm_head.weight, new_lm_head.bias]
            with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
2030
2031
2032
                self._copy_lm_head_original_to_resized(
                    new_lm_head, old_lm_head, num_tokens_to_copy, transposed, has_new_lm_head_bias
                )
2033
        else:
2034
2035
            self._copy_lm_head_original_to_resized(
                new_lm_head, old_lm_head, num_tokens_to_copy, transposed, has_new_lm_head_bias
2036
            )
2037
2038
2039

        return new_lm_head

2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
    def _copy_lm_head_original_to_resized(
        self, new_lm_head, old_lm_head, num_tokens_to_copy, transposed, has_new_lm_head_bias
    ):
        # Copy old lm head weights to new lm head
        if not transposed:
            new_lm_head.weight.data[:num_tokens_to_copy, :] = old_lm_head.weight.data[:num_tokens_to_copy, :]
        else:
            new_lm_head.weight.data[:, :num_tokens_to_copy] = old_lm_head.weight.data[:, :num_tokens_to_copy]

        # Copy bias weights to new lm head
        if has_new_lm_head_bias:
            new_lm_head.bias.data[:num_tokens_to_copy] = old_lm_head.bias.data[:num_tokens_to_copy]

2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
    def resize_position_embeddings(self, new_num_position_embeddings: int):
        raise NotImplementedError(
            f"`resize_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should "
            f"overwrite this method in the class {self.__class__} in `modeling_{self.__class__.__module__}.py`"
        )

    def get_position_embeddings(self) -> Union[nn.Embedding, Tuple[nn.Embedding]]:
        raise NotImplementedError(
            f"`get_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should "
            f"overwrite this method in the class {self.__class__} in `modeling_{self.__class__.__module__}.py`"
        )

2065
    def init_weights(self):
2066
        """
2067
2068
        If needed prunes and maybe initializes weights. If using a custom `PreTrainedModel`, you need to implement any
        initialization logic in `_init_weights`.
2069
        """
2070
2071
2072
2073
        # Prune heads if needed
        if self.config.pruned_heads:
            self.prune_heads(self.config.pruned_heads)

2074
2075
        if _init_weights:
            # Initialize weights
2076
            self.apply(self._initialize_weights)
2077
2078
2079
2080

            # Tie weights should be skipped when not initializing all weights
            # since from_pretrained(...) calls tie weights anyways
            self.tie_weights()
2081

2082
2083
2084
    def prune_heads(self, heads_to_prune: Dict[int, List[int]]):
        """
        Prunes heads of the base model.
2085

2086
        Arguments:
2087
            heads_to_prune (`Dict[int, List[int]]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2088
2089
2090
                Dictionary with keys being selected layer indices (`int`) and associated values being the list of heads
                to prune in said layer (list of `int`). For instance {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on
                layer 1 and heads 2 and 3 on layer 2.
thomwolf's avatar
thomwolf committed
2091
        """
2092
        # save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads
2093
        for layer, heads in heads_to_prune.items():
2094
2095
2096
            union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads)
            self.config.pruned_heads[layer] = list(union_heads)  # Unfortunately we have to store it as list for JSON

2097
        self.base_model._prune_heads(heads_to_prune)
thomwolf's avatar
thomwolf committed
2098

2099
    def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None):
2100
2101
2102
2103
2104
        """
        Activates gradient checkpointing for the current model.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
2105
2106
2107
2108
2109
2110
2111

        We pass the `__call__` method of the modules instead of `forward` because `__call__` attaches all the hooks of
        the module. https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2

        Args:
            gradient_checkpointing_kwargs (dict, *optional*):
                Additional keyword arguments passed along to the `torch.utils.checkpoint.checkpoint` function.
2112
2113
2114
        """
        if not self.supports_gradient_checkpointing:
            raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
2115
2116

        if gradient_checkpointing_kwargs is None:
2117
            gradient_checkpointing_kwargs = {"use_reentrant": True}
2118

2119
        gradient_checkpointing_func = functools.partial(checkpoint, **gradient_checkpointing_kwargs)
2120

2121
        # For old GC format (transformers < 4.35.0) for models that live on the Hub
Stas Bekman's avatar
Stas Bekman committed
2122
        # we will fall back to the overwritten `_set_gradient_checkpointing` method
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
        _is_using_old_format = "value" in inspect.signature(self._set_gradient_checkpointing).parameters

        if not _is_using_old_format:
            self._set_gradient_checkpointing(enable=True, gradient_checkpointing_func=gradient_checkpointing_func)
        else:
            self.apply(partial(self._set_gradient_checkpointing, value=True))
            logger.warn(
                "You are using an old version of the checkpointing format that is deprecated (We will also silently ignore `gradient_checkpointing_kwargs` in case you passed it)."
                "Please update to the new format on your modeling file. To use the new format, you need to completely remove the definition of the method `_set_gradient_checkpointing` in your model."
            )
2133

2134
2135
2136
2137
2138
2139
2140
        if getattr(self, "_hf_peft_config_loaded", False):
            # When using PEFT + gradient checkpointing + Trainer we need to make sure the input has requires_grad=True
            # we do it also on PEFT: https://github.com/huggingface/peft/blob/85013987aa82aa1af3da1236b6902556ce3e483e/src/peft/peft_model.py#L334
            # When training with PEFT, only LoRA layers will have requires grad set to True, but the output of frozen layers need to propagate
            # the gradients to make sure the gradient flows.
            self.enable_input_require_grads()

2141
    def _set_gradient_checkpointing(self, enable: bool = True, gradient_checkpointing_func: Callable = checkpoint):
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
        is_gradient_checkpointing_set = False

        # Apply it on the top-level module in case the top-level modules supports it
        # for example, LongT5Stack inherits from `PreTrainedModel`.
        if hasattr(self, "gradient_checkpointing"):
            self._gradient_checkpointing_func = gradient_checkpointing_func
            self.gradient_checkpointing = enable
            is_gradient_checkpointing_set = True

        for module in self.modules():
            if hasattr(module, "gradient_checkpointing"):
                module._gradient_checkpointing_func = gradient_checkpointing_func
                module.gradient_checkpointing = enable
                is_gradient_checkpointing_set = True

        if not is_gradient_checkpointing_set:
            raise ValueError(
                f"{self.__class__.__name__} is not compatible with gradient checkpointing. Make sure all the architecture support it by setting a boolean attribute"
                " `gradient_checkpointing` to modules of the model that uses checkpointing."
            )

2163
    def gradient_checkpointing_disable(self):
2164
2165
2166
2167
2168
2169
2170
        """
        Deactivates gradient checkpointing for the current model.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        if self.supports_gradient_checkpointing:
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
            # For old GC format (transformers < 4.35.0) for models that live on the Hub
            # we will fall back to the overwritten `_set_gradient_checkpointing` methid
            _is_using_old_format = "value" in inspect.signature(self._set_gradient_checkpointing).parameters
            if not _is_using_old_format:
                self._set_gradient_checkpointing(enable=False)
            else:
                logger.warn(
                    "You are using an old version of the checkpointing format that is deprecated (We will also silently ignore `gradient_checkpointing_kwargs` in case you passed it)."
                    "Please update to the new format on your modeling file. To use the new format, you need to completely remove the definition of the method `_set_gradient_checkpointing` in your model."
                )
                self.apply(partial(self._set_gradient_checkpointing, value=False))
2182

2183
2184
2185
        if getattr(self, "_hf_peft_config_loaded", False):
            self.disable_input_require_grads()

2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
    @property
    def is_gradient_checkpointing(self) -> bool:
        """
        Whether gradient checkpointing is activated for this model or not.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules())

2196
2197
2198
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
2199
        is_main_process: bool = True,
2200
2201
        state_dict: Optional[dict] = None,
        save_function: Callable = torch.save,
Sylvain Gugger's avatar
Sylvain Gugger committed
2202
        push_to_hub: bool = False,
2203
        max_shard_size: Union[int, str] = "5GB",
2204
        safe_serialization: bool = True,
2205
        variant: Optional[str] = None,
2206
        token: Optional[Union[str, bool]] = None,
2207
        save_peft_format: bool = True,
Sylvain Gugger's avatar
Sylvain Gugger committed
2208
        **kwargs,
2209
    ):
2210
2211
        """
        Save a model and its configuration file to a directory, so that it can be re-loaded using the
2212
        [`~PreTrainedModel.from_pretrained`] class method.
2213

2214
        Arguments:
2215
            save_directory (`str` or `os.PathLike`):
2216
                Directory to which to save. Will be created if it doesn't exist.
2217
2218
2219
2220
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful when in distributed training like
                TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on
                the main process to avoid race conditions.
2221
            state_dict (nested dictionary of `torch.Tensor`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2222
2223
2224
                The state dictionary of the model to save. Will default to `self.state_dict()`, but can be used to only
                save parts of the model or if special precautions need to be taken when recovering the state dictionary
                of a model (like when using model parallelism).
2225
            save_function (`Callable`):
2226
                The function to use to save the state dictionary. Useful on distributed training like TPUs when one
2227
2228
                need to replace `torch.save` by another method.
            push_to_hub (`bool`, *optional*, defaults to `False`):
2229
2230
2231
                Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
2232
            max_shard_size (`int` or `str`, *optional*, defaults to `"5GB"`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2233
2234
                The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size
                lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`).
2235
2236
                We default it to 5GB in order for models to be able to run easily on free-tier google colab instances
                without CPU OOM issues.
Sylvain Gugger's avatar
Sylvain Gugger committed
2237
2238
2239
2240
2241
2242
2243
2244

                <Tip warning={true}>

                If a single weight of the model is bigger than `max_shard_size`, it will be in its own checkpoint shard
                which will be bigger than `max_shard_size`.

                </Tip>

2245
            safe_serialization (`bool`, *optional*, defaults to `True`):
2246
                Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
2247
2248
            variant (`str`, *optional*):
                If specified, weights are saved in the format pytorch_model.<variant>.bin.
2249
2250
2251
            token (`str` or `bool`, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
                the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
2252
2253
2254
2255
            save_peft_format (`bool`, *optional*, defaults to `True`):
                For backward compatibility with PEFT library, in case adapter weights are attached to the model, all
                keys of the state dict of adapters needs to be pre-pended with `base_model.model`. Advanced users can
                disable this behaviours by setting `save_peft_format` to `False`.
2256
            kwargs (`Dict[str, Any]`, *optional*):
2257
                Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
2258
        """
2259
        use_auth_token = kwargs.pop("use_auth_token", None)
2260
        ignore_metadata_errors = kwargs.pop("ignore_metadata_errors", False)
2261
2262
2263

        if use_auth_token is not None:
            warnings.warn(
2264
2265
                "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
                FutureWarning,
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
            )
            if token is not None:
                raise ValueError(
                    "`token` and `use_auth_token` are both specified. Please set only the argument `token`."
                )
            token = use_auth_token

        if token is not None:
            kwargs["token"] = token

Younes Belkada's avatar
Younes Belkada committed
2276
2277
        _hf_peft_config_loaded = getattr(self, "_hf_peft_config_loaded", False)

2278
2279
2280
2281
        hf_quantizer = getattr(self, "hf_quantizer", None)
        quantization_serializable = (
            hf_quantizer is not None and isinstance(hf_quantizer, HfQuantizer) and hf_quantizer.is_serializable
        )
2282

2283
2284
2285
2286
        if hf_quantizer is not None and not _hf_peft_config_loaded and not quantization_serializable:
            raise ValueError(
                f"The model is quantized with {hf_quantizer.quantization_config.quant_method} and is not serializable - check out the warnings from"
                " the logger on the traceback to understand the reason why the quantized model is not serializable."
2287
2288
            )

2289
2290
2291
2292
2293
        if "save_config" in kwargs:
            warnings.warn(
                "`save_config` is deprecated and will be removed in v5 of Transformers. Use `is_main_process` instead."
            )
            is_main_process = kwargs.pop("save_config")
2294
2295
        if safe_serialization and not is_safetensors_available():
            raise ImportError("`safe_serialization` requires the `safetensors library: `pip install safetensors`.")
2296

2297
        if os.path.isfile(save_directory):
2298
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
2299
            return
2300

2301
2302
        os.makedirs(save_directory, exist_ok=True)

2303
2304
        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
2305
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
2306
            repo_id = self._create_repo(repo_id, **kwargs)
2307
            files_timestamps = self._get_files_timestamps(save_directory)
2308

Julien Chaumond's avatar
Julien Chaumond committed
2309
        # Only save the model itself if we are using distributed training
2310
        model_to_save = unwrap_model(self)
2311

2312
2313
2314
2315
2316
        # save the string version of dtype to the config, e.g. convert torch.float32 => "float32"
        # we currently don't use this setting automatically, but may start to use with v5
        dtype = get_parameter_dtype(model_to_save)
        model_to_save.config.torch_dtype = str(dtype).split(".")[1]

Julien Chaumond's avatar
Julien Chaumond committed
2317
2318
2319
        # Attach architecture to the config
        model_to_save.config.architectures = [model_to_save.__class__.__name__]

2320
2321
2322
2323
2324
        # If we have a custom model, we copy the file defining it in the folder and set the attributes so it can be
        # loaded from the Hub.
        if self._auto_class is not None:
            custom_object_save(self, save_directory, config=self.config)

2325
        # Save the config
2326
        if is_main_process:
2327
2328
            if not _hf_peft_config_loaded:
                model_to_save.config.save_pretrained(save_directory)
2329
            if self.can_generate():
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
                # generation config built from the model config + the model config holds generation kwargs -> generate
                # may revert to legacy behavior if the two don't match
                if (
                    model_to_save.generation_config._from_model_config
                    and model_to_save.config._has_non_default_generation_parameters()
                ):
                    new_generation_config = GenerationConfig.from_model_config(model_to_save.config)
                    if new_generation_config != model_to_save.generation_config:
                        logger.warning(
                            "Your generation config was originally created from the model config, but the model "
                            "config has changed since then. Unless you pass the `generation_config` argument to this "
                            "model's `generate` calls, they will revert to the legacy behavior where the base "
                            "`generate` parameterization is loaded from the model config instead. "
                            "To avoid this behavior and this warning, we recommend you to overwrite the generation "
                            "config model attribute before calling the model's `save_pretrained`, preferably also "
                            "removing any generation kwargs from the model config. This warning will be raised to an "
                            "exception in v4.41."
                        )
2348
                model_to_save.generation_config.save_pretrained(save_directory)
2349

2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
            if _hf_peft_config_loaded:
                logger.info(
                    "Detected adapters on the model, saving the model in the PEFT format, only adapter weights will be saved."
                )
                state_dict = model_to_save.get_adapter_state_dict()

                if save_peft_format:
                    logger.info(
                        "To match the expected format of the PEFT library, all keys of the state dict of adapters will be pre-pended with `base_model.model`."
                    )
                    peft_state_dict = {}
                    for key, value in state_dict.items():
                        peft_state_dict[f"base_model.model.{key}"] = value
                    state_dict = peft_state_dict

2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
                active_adapter = self.active_adapters()

                if len(active_adapter) > 1:
                    raise ValueError(
                        "Multiple active adapters detected, saving multiple active adapters is not supported yet. You can save adapters separately one by one "
                        "by iteratively calling `model.set_adapter(adapter_name)` then `model.save_pretrained(...)`"
                    )
                active_adapter = active_adapter[0]

                current_peft_config = self.peft_config[active_adapter]
2375
2376
                current_peft_config.save_pretrained(save_directory)

2377
2378
2379
        # Save the model
        if state_dict is None:
            state_dict = model_to_save.state_dict()
2380

2381
2382
2383
2384
2385
        # Translate state_dict from smp to hf if saving with smp >= 1.10
        if IS_SAGEMAKER_MP_POST_1_10:
            for smp_to_hf, _ in smp.state.module_manager.translate_functions:
                state_dict = smp_to_hf(state_dict)

2386
        # Handle the case where some state_dict keys shouldn't be saved
2387
        if self._keys_to_ignore_on_save is not None:
2388
            for ignore_key in self._keys_to_ignore_on_save:
2389
2390
                if ignore_key in state_dict.keys():
                    del state_dict[ignore_key]
2391
2392
2393
2394
2395
        if safe_serialization:
            # Safetensors does not allow tensor aliasing.
            # We're going to remove aliases before saving
            ptrs = collections.defaultdict(list)
            for name, tensor in state_dict.items():
2396
2397
2398
2399
2400
2401
2402
                # Sometimes in the state_dict we have non-tensor objects.
                # e.g. in bitsandbytes we have some `str` objects in the state_dict
                if isinstance(tensor, torch.Tensor):
                    ptrs[id_tensor_storage(tensor)].append(name)
                else:
                    # In the non-tensor case, fall back to the pointer of the object itself
                    ptrs[id(tensor)].append(name)
2403
2404
2405
2406
2407
2408
2409

            # These are all the pointers of shared tensors.
            shared_ptrs = {ptr: names for ptr, names in ptrs.items() if len(names) > 1}
            warn_names = set()
            for names in shared_ptrs.values():
                # Removing the keys which are declared as known duplicates on
                # load. This allows to make sure the name which is kept is consistent.
Sylvain Gugger's avatar
Sylvain Gugger committed
2410
                if self._tied_weights_keys is not None:
2411
2412
                    found = 0
                    for name in sorted(names):
Sylvain Gugger's avatar
Sylvain Gugger committed
2413
                        matches_pattern = any(re.search(pat, name) for pat in self._tied_weights_keys)
2414
                        if matches_pattern and name in state_dict:
2415
2416
                            found += 1
                            if found < len(names):
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
                                del state_dict[name]

                # When not all duplicates have been cleaned, still remove those keys, but put a clear warning.
                # If the link between tensors was done at runtime then `from_pretrained` will not get
                # the key back leading to random tensor. A proper warning will be shown
                # during reload (if applicable), but since the file is not necessarily compatible with
                # the config, better show a proper warning.
                found = 0
                for name in names:
                    if name in state_dict:
                        found += 1
                        if found > 1:
                            del state_dict[name]
                            warn_names.add(name)
2431
2432
2433
2434
            if len(warn_names) > 0:
                logger.warning_once(
                    f"Removed shared tensor {warn_names} while saving. This should be OK, but check by verifying that you don't receive any warning while reloading",
                )
2435

Sylvain Gugger's avatar
Sylvain Gugger committed
2436
        # Shard the model if it is too big.
2437
2438
2439
2440
2441
        if not _hf_peft_config_loaded:
            weights_name = SAFE_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME
            weights_name = _add_variant(weights_name, variant)
        else:
            weights_name = ADAPTER_SAFE_WEIGHTS_NAME if safe_serialization else ADAPTER_WEIGHTS_NAME
2442

2443
        shards, index = shard_checkpoint(state_dict, max_shard_size=max_shard_size, weights_name=weights_name)
Sylvain Gugger's avatar
Sylvain Gugger committed
2444
2445
2446
2447

        # Clean the folder from a previous save
        for filename in os.listdir(save_directory):
            full_filename = os.path.join(save_directory, filename)
2448
2449
            # If we have a shard file that is not going to be replaced, we delete it, but only from the main process
            # in distributed settings to avoid race conditions.
2450
            weights_no_suffix = weights_name.replace(".bin", "").replace(".safetensors", "")
2451
2452
2453

            # make sure that file to be deleted matches format of sharded file, e.g. pytorch_model-00001-of-00005
            filename_no_suffix = filename.replace(".bin", "").replace(".safetensors", "")
2454
            reg = re.compile(r"(.*?)-\d{5}-of-\d{5}")
2455

2456
            if (
2457
                filename.startswith(weights_no_suffix)
2458
2459
2460
                and os.path.isfile(full_filename)
                and filename not in shards.keys()
                and is_main_process
2461
                and reg.fullmatch(filename_no_suffix) is not None
2462
            ):
Sylvain Gugger's avatar
Sylvain Gugger committed
2463
                os.remove(full_filename)
2464

Sylvain Gugger's avatar
Sylvain Gugger committed
2465
2466
        # Save the model
        for shard_file, shard in shards.items():
2467
2468
2469
2470
2471
2472
            if safe_serialization:
                # At some point we will need to deal better with save_function (used for TPU and other distributed
                # joyfulness), but for now this enough.
                safe_save_file(shard, os.path.join(save_directory, shard_file), metadata={"format": "pt"})
            else:
                save_function(shard, os.path.join(save_directory, shard_file))
Sylvain Gugger's avatar
Sylvain Gugger committed
2473
2474

        if index is None:
2475
            path_to_weights = os.path.join(save_directory, weights_name)
2476
            logger.info(f"Model weights saved in {path_to_weights}")
Sylvain Gugger's avatar
Sylvain Gugger committed
2477
        else:
2478
            save_index_file = SAFE_WEIGHTS_INDEX_NAME if safe_serialization else WEIGHTS_INDEX_NAME
2479
            save_index_file = os.path.join(save_directory, _add_variant(save_index_file, variant))
Sylvain Gugger's avatar
Sylvain Gugger committed
2480
2481
2482
2483
2484
2485
2486
2487
2488
            # Save the index as well
            with open(save_index_file, "w", encoding="utf-8") as f:
                content = json.dumps(index, indent=2, sort_keys=True) + "\n"
                f.write(content)
            logger.info(
                f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be "
                f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the "
                f"index located at {save_index_file}."
            )
2489

Sylvain Gugger's avatar
Sylvain Gugger committed
2490
        if push_to_hub:
2491
2492
2493
2494
2495
2496
2497
2498
            # Eventually create an empty model card
            model_card = create_and_tag_model_card(
                repo_id, self.model_tags, token=token, ignore_metadata_errors=ignore_metadata_errors
            )

            # Update model card if needed:
            model_card.save(os.path.join(save_directory, "README.md"))

2499
            self._upload_modified_files(
2500
2501
2502
2503
                save_directory,
                repo_id,
                files_timestamps,
                commit_message=commit_message,
2504
                token=token,
2505
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
2506

2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
    @wraps(PushToHubMixin.push_to_hub)
    def push_to_hub(self, *args, **kwargs):
        tags = self.model_tags if self.model_tags is not None else []

        tags_kwargs = kwargs.get("tags", [])
        if isinstance(tags_kwargs, str):
            tags_kwargs = [tags_kwargs]

        for tag in tags_kwargs:
            if tag not in tags:
                tags.append(tag)

        if tags:
            kwargs["tags"] = tags
        return super().push_to_hub(*args, **kwargs)

2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
    def get_memory_footprint(self, return_buffers=True):
        r"""
        Get the memory footprint of a model. This will return the memory footprint of the current model in bytes.
        Useful to benchmark the memory footprint of the current model and design some tests. Solution inspired from the
        PyTorch discussions: https://discuss.pytorch.org/t/gpu-memory-that-model-uses/56822/2

        Arguments:
            return_buffers (`bool`, *optional*, defaults to `True`):
                Whether to return the size of the buffer tensors in the computation of the memory footprint. Buffers
                are tensors that do not require gradients and not registered as parameters. E.g. mean and std in batch
                norm layers. Please see: https://discuss.pytorch.org/t/what-pytorch-means-by-buffers/120266/2
        """
        mem = sum([param.nelement() * param.element_size() for param in self.parameters()])
        if return_buffers:
            mem_bufs = sum([buf.nelement() * buf.element_size() for buf in self.buffers()])
            mem = mem + mem_bufs
        return mem

2541
    @wraps(torch.nn.Module.cuda)
2542
2543
    def cuda(self, *args, **kwargs):
        # Checks if the model has been loaded in 8-bit
Marc Sun's avatar
Marc Sun committed
2544
        if getattr(self, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES:
2545
2546
2547
2548
2549
2550
2551
            raise ValueError(
                "Calling `cuda()` is not supported for `4-bit` or `8-bit` quantized models. Please use the model as it is, since the"
                " model has already been set to the correct devices and casted to the correct `dtype`."
            )
        else:
            return super().cuda(*args, **kwargs)

2552
    @wraps(torch.nn.Module.to)
2553
2554
    def to(self, *args, **kwargs):
        # Checks if the model has been loaded in 8-bit
Marc Sun's avatar
Marc Sun committed
2555
        if getattr(self, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES:
2556
            raise ValueError(
Marc Sun's avatar
Marc Sun committed
2557
                "`.to` is not supported for `4-bit` or `8-bit` bitsandbytes models. Please use the model as it is, since the"
2558
2559
                " model has already been set to the correct devices and casted to the correct `dtype`."
            )
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
        elif getattr(self, "quantization_method", None) == QuantizationMethod.GPTQ:
            # For GPTQ models, we prevent users from casting the model to another dytpe to restrict unwanted behaviours.
            # the correct API should be to load the model with the desired dtype directly through `from_pretrained`.
            dtype_present_in_args = False

            if "dtype" not in kwargs:
                for arg in args:
                    if isinstance(arg, torch.dtype):
                        dtype_present_in_args = True
                        break
            else:
                dtype_present_in_args = True

            if dtype_present_in_args:
                raise ValueError(
                    "You cannot cast a GPTQ model in a new `dtype`. Make sure to load the model using `from_pretrained` using the desired"
                    " `dtype` by passing the correct `torch_dtype` argument."
                )
        return super().to(*args, **kwargs)
2579
2580

    def half(self, *args):
Marc Sun's avatar
Marc Sun committed
2581
        # Checks if the model is quantized
2582
        if getattr(self, "is_quantized", False):
2583
            raise ValueError(
Marc Sun's avatar
Marc Sun committed
2584
                "`.half()` is not supported for quantized model. Please use the model as it is, since the"
2585
2586
2587
2588
2589
2590
                " model has already been casted to the correct `dtype`."
            )
        else:
            return super().half(*args)

    def float(self, *args):
Marc Sun's avatar
Marc Sun committed
2591
        # Checks if the model is quantized
2592
        if getattr(self, "is_quantized", False):
2593
            raise ValueError(
Marc Sun's avatar
Marc Sun committed
2594
                "`.float()` is not supported for quantized model. Please use the model as it is, since the"
2595
2596
2597
2598
2599
                " model has already been casted to the correct `dtype`."
            )
        else:
            return super().float(*args)

2600
    @classmethod
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
    def from_pretrained(
        cls,
        pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
        *model_args,
        config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
        cache_dir: Optional[Union[str, os.PathLike]] = None,
        ignore_mismatched_sizes: bool = False,
        force_download: bool = False,
        local_files_only: bool = False,
        token: Optional[Union[str, bool]] = None,
        revision: str = "main",
        use_safetensors: bool = None,
        **kwargs,
    ):
2615
2616
        r"""
        Instantiate a pretrained pytorch model from a pre-trained model configuration.
2617

Sylvain Gugger's avatar
Sylvain Gugger committed
2618
2619
        The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
        the model, you should first set it back in training mode with `model.train()`.
2620

2621
        The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
2622
2623
        pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
        task.
2624

2625
        The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
2626
        weights are discarded.
2627

2628
        Parameters:
2629
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
2630
2631
                Can be either:

2632
2633
2634
2635
                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
                    - A path to a *directory* containing model weights saved using
                      [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
                    - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
Sylvain Gugger's avatar
Sylvain Gugger committed
2636
2637
2638
                      this case, `from_tf` should be set to `True` and a configuration object should be provided as
                      `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
                      PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
2639
                    - A path or url to a model folder containing a *flax checkpoint file* in *.msgpack* format (e.g,
Sylvain Gugger's avatar
Sylvain Gugger committed
2640
2641
                      `./flax_model/` containing `flax_model.msgpack`). In this case, `from_flax` should be set to
                      `True`.
2642
2643
2644
2645
2646
                    - `None` if you are both providing the configuration and state dictionary (resp. with keyword
                      arguments `config` and `state_dict`).
            model_args (sequence of positional arguments, *optional*):
                All remaining positional arguments will be passed to the underlying model's `__init__` method.
            config (`Union[PretrainedConfig, str, os.PathLike]`, *optional*):
2647
2648
                Can be either:

2649
2650
                    - an instance of a class derived from [`PretrainedConfig`],
                    - a string or path valid as input to [`~PretrainedConfig.from_pretrained`].
2651

2652
                Configuration for the model to use instead of an automatically loaded configuration. Configuration can
2653
2654
                be automatically loaded when:

2655
                    - The model is a model provided by the library (loaded with the *model id* string of a pretrained
2656
                      model).
Sylvain Gugger's avatar
Sylvain Gugger committed
2657
2658
                    - The model was saved using [`~PreTrainedModel.save_pretrained`] and is reloaded by supplying the
                      save directory.
2659
2660
2661
                    - The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a
                      configuration JSON file named *config.json* is found in the directory.
            state_dict (`Dict[str, torch.Tensor]`, *optional*):
2662
2663
2664
                A state dictionary to use instead of a state dictionary loaded from saved weights file.

                This option can be used if you want to create a model from a pretrained configuration but load your own
Sylvain Gugger's avatar
Sylvain Gugger committed
2665
                weights. In this case though, you should check if using [`~PreTrainedModel.save_pretrained`] and
2666
2667
                [`~PreTrainedModel.from_pretrained`] is not a simpler option.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
2668
2669
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
2670
            from_tf (`bool`, *optional*, defaults to `False`):
2671
                Load the model weights from a TensorFlow checkpoint save file (see docstring of
2672
2673
                `pretrained_model_name_or_path` argument).
            from_flax (`bool`, *optional*, defaults to `False`):
2674
                Load the model weights from a Flax checkpoint save file (see docstring of
2675
2676
                `pretrained_model_name_or_path` argument).
            ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`):
2677
2678
2679
                Whether or not to raise an error if some of the weights from the checkpoint do not have the same size
                as the weights of the model (if for instance, you are instantiating a model with 10 labels from a
                checkpoint with 3 labels).
2680
            force_download (`bool`, *optional*, defaults to `False`):
2681
2682
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
2683
            resume_download (`bool`, *optional*, defaults to `False`):
2684
2685
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
2686
            proxies (`Dict[str, str]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2687
2688
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
2689
            output_loading_info(`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2690
                Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
2691
            local_files_only(`bool`, *optional*, defaults to `False`):
Stas Bekman's avatar
Stas Bekman committed
2692
                Whether or not to only look at local files (i.e., do not try to download the model).
2693
            token (`str` or `bool`, *optional*):
2694
2695
                The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
                the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
2696
            revision (`str`, *optional*, defaults to `"main"`):
Julien Chaumond's avatar
Julien Chaumond committed
2697
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
2698
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
Julien Chaumond's avatar
Julien Chaumond committed
2699
                identifier allowed by git.
2700
2701
2702
2703
2704
2705
2706

                <Tip>

                To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>".

                </Tip>

2707
            mirror (`str`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2708
2709
2710
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information.
2711
            _fast_init(`bool`, *optional*, defaults to `True`):
2712
2713
                Whether or not to disable fast initialization.

2714
2715
                <Tip warning={true}>

Sylvain Gugger's avatar
Sylvain Gugger committed
2716
2717
2718
                One should only disable *_fast_init* to ensure backwards compatibility with `transformers.__version__ <
                4.6.0` for seeded model initialization. This argument will be removed at the next major version. See
                [pull request 11471](https://github.com/huggingface/transformers/pull/11471) for more information.
2719

2720
                </Tip>
2721
2722
            attn_implementation (`str`, *optional*):
                The attention implementation to use in the model (if relevant). Can be any of `"eager"` (manual implementation of the attention), `"sdpa"` (using [`F.scaled_dot_product_attention`](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention.html)), or `"flash_attention_2"` (using [Dao-AILab/flash-attention](https://github.com/Dao-AILab/flash-attention)). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual `"eager"` implementation.
2723

2724
2725
2726
            > Parameters for big model inference

            low_cpu_mem_usage(`bool`, *optional*):
2727
2728
2729
                Tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                This is an experimental feature and a subject to change at any moment.
            torch_dtype (`str` or `torch.dtype`, *optional*):
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
                Override the default `torch.dtype` and load the model under a specific `dtype`. The different options
                are:

                1. `torch.float16` or `torch.bfloat16` or `torch.float`: load in a specified
                  `dtype`, ignoring the model's `config.torch_dtype` if one exists. If not specified
                  - the model will get loaded in `torch.float` (fp32).

                2. `"auto"` - A `torch_dtype` entry in the `config.json` file of the model will be
                  attempted to be used. If this entry isn't found then next check the `dtype` of the first weight in
                  the checkpoint that's of a floating point type and use that as `dtype`. This will load the model
                  using the `dtype` it was saved in at the end of the training. It can't be used as an indicator of how
                  the model was trained. Since it could be trained in one of half precision dtypes, but saved in fp32.

                <Tip>

                For some models the `dtype` they were trained in is unknown - you may try to check the model's paper or
                reach out to the authors and ask them to add this information to the model's card and to insert the
                `torch_dtype` entry in `config.json` on the hub.

                </Tip>

2751
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]` or `int` or `torch.device`, *optional*):
2752
2753
                A map that specifies where each submodule should go. It doesn't need to be refined to each
                parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the
2754
2755
2756
                same device. If we only pass the device (*e.g.*, `"cpu"`, `"cuda:1"`, `"mps"`, or a GPU ordinal rank
                like `1`) on which the model will be allocated, the device map will map the entire model to this
                device. Passing `device_map = 0` means put the whole model on GPU 0.
2757

2758
2759
                To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For
                more information about each option see [designing a device
Patrick von Platen's avatar
Patrick von Platen committed
2760
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
2761
2762
2763
            max_memory (`Dict`, *optional*):
                A dictionary device identifier to maximum memory. Will default to the maximum memory available for each
                GPU and the available CPU RAM if unset.
2764
2765
            offload_folder (`str` or `os.PathLike`, *optional*):
                If the `device_map` contains any value `"disk"`, the folder where we will offload weights.
2766
            offload_state_dict (`bool`, *optional*):
2767
                If `True`, will temporarily offload the CPU state dict to the hard drive to avoid getting out of CPU
2768
2769
                RAM if the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to
                `True` when there is some disk offload.
2770
2771
            offload_buffers (`bool`, *optional*):
                Whether or not to offload the buffers with the model parameters.
Marc Sun's avatar
Marc Sun committed
2772
2773
            quantization_config (`Union[QuantizationConfigMixin,Dict]`, *optional*):
                A dictionary of configuration parameters or a QuantizationConfigMixin object for quantization (e.g
2774
2775
2776
2777
                bitsandbytes, gptq). There may be other quantization-related kwargs, including `load_in_4bit` and
                `load_in_8bit`, which are parsed by QuantizationConfigParser. Supported only for bitsandbytes
                quantizations and not preferred. consider inserting all such arguments into quantization_config
                instead.
2778
2779
2780
            subfolder (`str`, *optional*, defaults to `""`):
                In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
                specify the folder name here.
2781
2782
2783
            variant (`str`, *optional*):
                If specified load weights from `variant` filename, *e.g.* pytorch_model.<variant>.bin. `variant` is
                ignored when using `from_tf` or `from_flax`.
2784
2785
2786
            use_safetensors (`bool`, *optional*, defaults to `None`):
                Whether or not to use `safetensors` checkpoints. Defaults to `None`. If not specified and `safetensors`
                is not installed, it will be set to `False`.
2787

2788
            kwargs (remaining dictionary of keyword arguments, *optional*):
2789
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
2790
                `output_attentions=True`). Behaves differently depending on whether a `config` is provided or
2791
2792
                automatically loaded:

2793
2794
                    - If a configuration is provided with `config`, `**kwargs` will be directly passed to the
                      underlying model's `__init__` method (we assume all relevant updates to the configuration have
2795
                      already been done)
2796
                    - If a configuration is not provided, `kwargs` will be first passed to the configuration class
Sylvain Gugger's avatar
Sylvain Gugger committed
2797
2798
2799
2800
                      initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that
                      corresponds to a configuration attribute will be used to override said attribute with the
                      supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute
                      will be passed to the underlying model's `__init__` function.
2801
2802
2803

        <Tip>

Sylvain Gugger's avatar
Sylvain Gugger committed
2804
2805
        Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to
        use this method in a firewalled environment.
2806
2807
2808
2809
2810
2811
2812

        </Tip>

        Examples:

        ```python
        >>> from transformers import BertConfig, BertModel
Sylvain Gugger's avatar
Sylvain Gugger committed
2813

2814
        >>> # Download model and configuration from huggingface.co and cache.
2815
        >>> model = BertModel.from_pretrained("google-bert/bert-base-uncased")
2816
        >>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable).
Sylvain Gugger's avatar
Sylvain Gugger committed
2817
        >>> model = BertModel.from_pretrained("./test/saved_model/")
2818
        >>> # Update configuration during loading.
2819
        >>> model = BertModel.from_pretrained("google-bert/bert-base-uncased", output_attentions=True)
2820
2821
        >>> assert model.config.output_attentions == True
        >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable).
Sylvain Gugger's avatar
Sylvain Gugger committed
2822
2823
        >>> config = BertConfig.from_json_file("./tf_model/my_tf_model_config.json")
        >>> model = BertModel.from_pretrained("./tf_model/my_tf_checkpoint.ckpt.index", from_tf=True, config=config)
2824
        >>> # Loading from a Flax checkpoint file instead of a PyTorch model (slower)
2825
        >>> model = BertModel.from_pretrained("google-bert/bert-base-uncased", from_flax=True)
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
        ```

        * `low_cpu_mem_usage` algorithm:

        This is an experimental function that loads the model using ~1x model size CPU memory

        Here is how it works:

        1. save which state_dict keys we have
        2. drop state_dict before the model is created, since the latter takes 1x model size CPU memory
        3. after the model has been instantiated switch to the meta device all params/buffers that
        are going to be replaced from the loaded state_dict
        4. load state_dict 2nd time
        5. replace the params/buffers from the state_dict

        Currently, it can't handle deepspeed ZeRO stage 3 and ignores loading errors

        """
2844
2845
        state_dict = kwargs.pop("state_dict", None)
        from_tf = kwargs.pop("from_tf", False)
2846
        from_flax = kwargs.pop("from_flax", False)
2847
2848
2849
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        output_loading_info = kwargs.pop("output_loading_info", False)
2850
        use_auth_token = kwargs.pop("use_auth_token", None)
2851
        trust_remote_code = kwargs.pop("trust_remote_code", None)
Sylvain Gugger's avatar
Sylvain Gugger committed
2852
        _ = kwargs.pop("mirror", None)
2853
2854
        from_pipeline = kwargs.pop("_from_pipeline", None)
        from_auto_class = kwargs.pop("_from_auto", False)
2855
        _fast_init = kwargs.pop("_fast_init", True)
2856
        torch_dtype = kwargs.pop("torch_dtype", None)
2857
2858
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", None)
        device_map = kwargs.pop("device_map", None)
2859
        max_memory = kwargs.pop("max_memory", None)
2860
        offload_folder = kwargs.pop("offload_folder", None)
2861
        offload_state_dict = kwargs.pop("offload_state_dict", False)
2862
        offload_buffers = kwargs.pop("offload_buffers", False)
2863
        load_in_8bit = kwargs.pop("load_in_8bit", False)
2864
        load_in_4bit = kwargs.pop("load_in_4bit", False)
2865
        quantization_config = kwargs.pop("quantization_config", None)
2866
        subfolder = kwargs.pop("subfolder", "")
2867
        commit_hash = kwargs.pop("_commit_hash", None)
2868
        variant = kwargs.pop("variant", None)
2869
        adapter_kwargs = kwargs.pop("adapter_kwargs", {})
2870
        adapter_name = kwargs.pop("adapter_name", "default")
2871
        use_flash_attention_2 = kwargs.pop("use_flash_attention_2", False)
2872

2873
2874
2875
        if is_fsdp_enabled():
            low_cpu_mem_usage = True

2876
2877
        if use_auth_token is not None:
            warnings.warn(
2878
2879
                "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
                FutureWarning,
2880
2881
2882
2883
2884
2885
2886
            )
            if token is not None:
                raise ValueError(
                    "`token` and `use_auth_token` are both specified. Please set only the argument `token`."
                )
            token = use_auth_token

2887
        if token is not None and adapter_kwargs is not None and "token" not in adapter_kwargs:
2888
2889
            adapter_kwargs["token"] = token

2890
2891
        if use_safetensors is None and not is_safetensors_available():
            use_safetensors = False
2892
2893
2894
2895
2896
        if trust_remote_code is True:
            logger.warning(
                "The argument `trust_remote_code` is to be used with Auto classes. It has no effect here and is"
                " ignored."
            )
2897

2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
        if commit_hash is None:
            if not isinstance(config, PretrainedConfig):
                # We make a call to the config file first (which may be absent) to get the commit hash as soon as possible
                resolved_config_file = cached_file(
                    pretrained_model_name_or_path,
                    CONFIG_NAME,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    token=token,
                    revision=revision,
                    subfolder=subfolder,
2912
                    _raise_exceptions_for_gated_repo=False,
2913
2914
2915
2916
2917
2918
2919
                    _raise_exceptions_for_missing_entries=False,
                    _raise_exceptions_for_connection_errors=False,
                )
                commit_hash = extract_commit_hash(resolved_config_file, commit_hash)
            else:
                commit_hash = getattr(config, "_commit_hash", None)

2920
        if is_peft_available():
2921
2922
            _adapter_model_path = adapter_kwargs.pop("_adapter_model_path", None)

2923
2924
2925
2926
2927
2928
2929
2930
2931
            if _adapter_model_path is None:
                _adapter_model_path = find_adapter_config_file(
                    pretrained_model_name_or_path,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    _commit_hash=commit_hash,
2932
                    **adapter_kwargs,
2933
2934
                )
            if _adapter_model_path is not None and os.path.isfile(_adapter_model_path):
2935
                with open(_adapter_model_path, "r", encoding="utf-8") as f:
2936
                    _adapter_model_path = pretrained_model_name_or_path
2937
                    pretrained_model_name_or_path = json.load(f)["base_model_name_or_path"]
2938
2939
        else:
            _adapter_model_path = None
2940

2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
        # change device_map into a map if we passed an int, a str or a torch.device
        if isinstance(device_map, torch.device):
            device_map = {"": device_map}
        elif isinstance(device_map, str) and device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
            try:
                device_map = {"": torch.device(device_map)}
            except RuntimeError:
                raise ValueError(
                    "When passing device_map as a string, the value needs to be a device name (e.g. cpu, cuda:0) or "
                    f"'auto', 'balanced', 'balanced_low_0', 'sequential' but found {device_map}."
                )
        elif isinstance(device_map, int):
            if device_map < 0:
                raise ValueError(
                    "You can't pass device_map as a negative int. If you want to put the model on the cpu, pass device_map = 'cpu' "
                )
            else:
                device_map = {"": device_map}

2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
        if device_map is not None:
            if low_cpu_mem_usage is None:
                low_cpu_mem_usage = True
            elif not low_cpu_mem_usage:
                raise ValueError("Passing along a `device_map` requires `low_cpu_mem_usage=True`")

        if low_cpu_mem_usage:
            if is_deepspeed_zero3_enabled():
                raise ValueError(
                    "DeepSpeed Zero-3 is not compatible with `low_cpu_mem_usage=True` or with passing a `device_map`."
                )
            elif not is_accelerate_available():
                raise ImportError(
                    "Using `low_cpu_mem_usage=True` or a `device_map` requires Accelerate: `pip install accelerate`"
                )
2975

2976
2977
2978
        # handling bnb config from kwargs, remove after `load_in_{4/8}bit` deprecation.
        if load_in_4bit or load_in_8bit:
            if quantization_config is not None:
2979
                raise ValueError(
2980
                    "You can't pass `load_in_4bit`or `load_in_8bit` as a kwarg when passing "
2981
2982
2983
                    "`quantization_config` argument at the same time."
                )

2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
            # preparing BitsAndBytesConfig from kwargs
            config_dict = {k: v for k, v in kwargs.items() if k in inspect.signature(BitsAndBytesConfig).parameters}
            config_dict = {**config_dict, "load_in_4bit": load_in_4bit, "load_in_8bit": load_in_8bit}
            quantization_config, kwargs = BitsAndBytesConfig.from_dict(
                config_dict=config_dict, return_unused_kwargs=True, **kwargs
            )
            logger.warning(
                "The `load_in_4bit` and `load_in_8bit` arguments are deprecated and will be removed in the future versions. "
                "Please, pass a `BitsAndBytesConfig` object in `quantization_config` argument instead."
            )
2994

2995
        from_pt = not (from_tf | from_flax)
2996

2997
2998
2999
        user_agent = {"file_type": "model", "framework": "pytorch", "from_auto_class": from_auto_class}
        if from_pipeline is not None:
            user_agent["using_pipeline"] = from_pipeline
thomwolf's avatar
thomwolf committed
3000

3001
3002
3003
3004
        if is_offline_mode() and not local_files_only:
            logger.info("Offline mode: forcing local_files_only=True")
            local_files_only = True

3005
3006
3007
        # Load config if we don't provide a configuration
        if not isinstance(config, PretrainedConfig):
            config_path = config if config is not None else pretrained_model_name_or_path
3008
            config, model_kwargs = cls.config_class.from_pretrained(
3009
3010
3011
                config_path,
                cache_dir=cache_dir,
                return_unused_kwargs=True,
3012
                force_download=force_download,
3013
                resume_download=resume_download,
3014
                proxies=proxies,
3015
                local_files_only=local_files_only,
3016
                token=token,
Julien Chaumond's avatar
Julien Chaumond committed
3017
                revision=revision,
3018
                subfolder=subfolder,
3019
3020
                _from_auto=from_auto_class,
                _from_pipeline=from_pipeline,
3021
                **kwargs,
3022
3023
            )
        else:
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
            # In case one passes a config to `from_pretrained` + "attn_implementation"
            # override the `_attn_implementation` attribute to `attn_implementation` of the kwargs
            # Please see: https://github.com/huggingface/transformers/issues/28038

            # Overwrite `config._attn_implementation` by the one from the kwargs --> in auto-factory
            # we pop attn_implementation from the kwargs but this handles the case where users
            # passes manually the config to `from_pretrained`.
            config = copy.deepcopy(config)

            kwarg_attn_imp = kwargs.pop("attn_implementation", None)
            if kwarg_attn_imp is not None and config._attn_implementation != kwarg_attn_imp:
                config._attn_implementation = kwarg_attn_imp
3036
            model_kwargs = kwargs
3037

3038
3039
3040
3041
3042
        pre_quantized = getattr(config, "quantization_config", None) is not None
        if pre_quantized or quantization_config is not None:
            if pre_quantized:
                config.quantization_config = AutoHfQuantizer.merge_quantization_configs(
                    config.quantization_config, quantization_config
Marc Sun's avatar
Marc Sun committed
3043
3044
3045
                )
            else:
                config.quantization_config = quantization_config
3046
3047
3048
            hf_quantizer = AutoHfQuantizer.from_config(config.quantization_config, pre_quantized=pre_quantized)
        else:
            hf_quantizer = None
3049

3050
3051
3052
3053
3054
3055
        if hf_quantizer is not None:
            hf_quantizer.validate_environment(
                torch_dtype=torch_dtype, from_tf=from_tf, from_flax=from_flax, device_map=device_map
            )
            torch_dtype = hf_quantizer.update_torch_dtype(torch_dtype)
            device_map = hf_quantizer.update_device_map(device_map)
3056
3057
3058
3059

            # Force-set to `True` for more mem efficiency
            if low_cpu_mem_usage is None:
                low_cpu_mem_usage = True
3060
                logger.warning("`low_cpu_mem_usage` was None, now set to True since model is quantized.")
3061
        is_quantized = hf_quantizer is not None
3062

Sylvain Gugger's avatar
Sylvain Gugger committed
3063
3064
3065
3066
        # This variable will flag if we're loading a sharded checkpoint. In this case the archive file is just the
        # index of the files.
        is_sharded = False
        sharded_metadata = None
thomwolf's avatar
thomwolf committed
3067
        # Load model
Yih-Dar's avatar
Yih-Dar committed
3068
3069
        loading_info = None

3070
3071
3072
3073
        # Keep in fp32 modules
        keep_in_fp32_modules = None
        use_keep_in_fp32_modules = False

thomwolf's avatar
thomwolf committed
3074
        if pretrained_model_name_or_path is not None:
3075
            pretrained_model_name_or_path = str(pretrained_model_name_or_path)
3076
3077
            is_local = os.path.isdir(pretrained_model_name_or_path)
            if is_local:
3078
3079
3080
                if from_tf and os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index")
                ):
3081
                    # Load from a TF 1.0 checkpoint in priority if from_tf
3082
3083
3084
3085
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index")
                elif from_tf and os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME)
                ):
3086
                    # Load from a TF 2.0 checkpoint in priority if from_tf
3087
3088
3089
3090
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME)
                elif from_flax and os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)
                ):
3091
                    # Load from a Flax checkpoint in priority if from_flax
3092
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)
3093
                elif use_safetensors is not False and os.path.isfile(
3094
                    os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_NAME, variant))
3095
3096
                ):
                    # Load from a safetensors checkpoint
3097
3098
3099
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_NAME, variant)
                    )
3100
                elif use_safetensors is not False and os.path.isfile(
3101
3102
3103
                    os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)
                    )
3104
3105
                ):
                    # Load from a sharded safetensors checkpoint
3106
3107
3108
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)
                    )
3109
                    is_sharded = True
3110
3111
3112
                elif os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_NAME, variant))
                ):
thomwolf's avatar
thomwolf committed
3113
                    # Load from a PyTorch checkpoint
3114
3115
3116
3117
3118
3119
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_NAME, variant)
                    )
                elif os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_INDEX_NAME, variant))
                ):
Sylvain Gugger's avatar
Sylvain Gugger committed
3120
                    # Load from a sharded PyTorch checkpoint
3121
3122
3123
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_INDEX_NAME, variant)
                    )
Sylvain Gugger's avatar
Sylvain Gugger committed
3124
                    is_sharded = True
3125
3126
                # At this stage we don't have a weight file so we will raise an error.
                elif os.path.isfile(
3127
3128
                    os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index")
                ) or os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME)):
3129
                    raise EnvironmentError(
3130
3131
3132
                        f"Error no file named {_add_variant(WEIGHTS_NAME, variant)} found in directory"
                        f" {pretrained_model_name_or_path} but there is a file for TensorFlow weights. Use"
                        " `from_tf=True` to load this model from those weights."
3133
                    )
3134
                elif os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)):
3135
                    raise EnvironmentError(
3136
3137
3138
                        f"Error no file named {_add_variant(WEIGHTS_NAME, variant)} found in directory"
                        f" {pretrained_model_name_or_path} but there is a file for Flax weights. Use `from_flax=True`"
                        " to load this model from those weights."
3139
                    )
3140
3141
3142
3143
3144
                elif use_safetensors:
                    raise EnvironmentError(
                        f"Error no file named {_add_variant(SAFE_WEIGHTS_NAME, variant)} found in directory"
                        f" {pretrained_model_name_or_path}."
                    )
thomwolf's avatar
thomwolf committed
3145
                else:
3146
                    raise EnvironmentError(
3147
3148
3149
                        f"Error no file named {_add_variant(WEIGHTS_NAME, variant)}, {TF2_WEIGHTS_NAME},"
                        f" {TF_WEIGHTS_NAME + '.index'} or {FLAX_WEIGHTS_NAME} found in directory"
                        f" {pretrained_model_name_or_path}."
3150
                    )
3151
            elif os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path)):
3152
                archive_file = pretrained_model_name_or_path
3153
                is_local = True
3154
            elif os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path + ".index")):
3155
3156
3157
3158
3159
                if not from_tf:
                    raise ValueError(
                        f"We found a TensorFlow checkpoint at {pretrained_model_name_or_path + '.index'}, please set "
                        "from_tf to True to load from this checkpoint."
                    )
3160
                archive_file = os.path.join(subfolder, pretrained_model_name_or_path + ".index")
3161
                is_local = True
3162
            elif is_remote_url(pretrained_model_name_or_path):
3163
                filename = pretrained_model_name_or_path
3164
                resolved_archive_file = download_url(pretrained_model_name_or_path)
3165
            else:
3166
3167
3168
3169
3170
                # set correct filename
                if from_tf:
                    filename = TF2_WEIGHTS_NAME
                elif from_flax:
                    filename = FLAX_WEIGHTS_NAME
3171
                elif use_safetensors is not False:
3172
                    filename = _add_variant(SAFE_WEIGHTS_NAME, variant)
3173
                else:
3174
                    filename = _add_variant(WEIGHTS_NAME, variant)
3175

3176
3177
                try:
                    # Load from URL or cache if already cached
3178
3179
3180
3181
3182
3183
                    cached_file_kwargs = {
                        "cache_dir": cache_dir,
                        "force_download": force_download,
                        "proxies": proxies,
                        "resume_download": resume_download,
                        "local_files_only": local_files_only,
3184
                        "token": token,
3185
3186
3187
                        "user_agent": user_agent,
                        "revision": revision,
                        "subfolder": subfolder,
3188
                        "_raise_exceptions_for_gated_repo": False,
3189
3190
3191
                        "_raise_exceptions_for_missing_entries": False,
                        "_commit_hash": commit_hash,
                    }
3192
                    resolved_archive_file = cached_file(pretrained_model_name_or_path, filename, **cached_file_kwargs)
3193

3194
                    # Since we set _raise_exceptions_for_missing_entries=False, we don't get an exception but a None
3195
                    # result when internet is up, the repo and revision exist, but the file does not.
3196
                    if resolved_archive_file is None and filename == _add_variant(SAFE_WEIGHTS_NAME, variant):
3197
3198
                        # Maybe the checkpoint is sharded, we try to grab the index name in this case.
                        resolved_archive_file = cached_file(
3199
3200
3201
                            pretrained_model_name_or_path,
                            _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant),
                            **cached_file_kwargs,
3202
3203
3204
                        )
                        if resolved_archive_file is not None:
                            is_sharded = True
3205
                        elif use_safetensors:
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
                            if revision == "main":
                                resolved_archive_file, revision, is_sharded = auto_conversion(
                                    pretrained_model_name_or_path, **cached_file_kwargs
                                )
                            cached_file_kwargs["revision"] = revision
                            if resolved_archive_file is None:
                                raise EnvironmentError(
                                    f"{pretrained_model_name_or_path} does not appear to have a file named"
                                    f" {_add_variant(SAFE_WEIGHTS_NAME, variant)} or {_add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)} "
                                    "and thus cannot be loaded with `safetensors`. Please make sure that the model has "
                                    "been saved with `safe_serialization=True` or do not set `use_safetensors=True`."
                                )
3218
3219
                        else:
                            # This repo has no safetensors file of any kind, we switch to PyTorch.
3220
                            filename = _add_variant(WEIGHTS_NAME, variant)
3221
                            resolved_archive_file = cached_file(
3222
                                pretrained_model_name_or_path, filename, **cached_file_kwargs
3223
                            )
3224
                    if resolved_archive_file is None and filename == _add_variant(WEIGHTS_NAME, variant):
Sylvain Gugger's avatar
Sylvain Gugger committed
3225
                        # Maybe the checkpoint is sharded, we try to grab the index name in this case.
3226
                        resolved_archive_file = cached_file(
3227
3228
3229
                            pretrained_model_name_or_path,
                            _add_variant(WEIGHTS_INDEX_NAME, variant),
                            **cached_file_kwargs,
3230
                        )
3231
3232
                        if resolved_archive_file is not None:
                            is_sharded = True
3233
3234
3235
                    if resolved_archive_file is None:
                        # Otherwise, maybe there is a TF or Flax model file.  We try those to give a helpful error
                        # message.
Sylvain Gugger's avatar
Sylvain Gugger committed
3236
3237
3238
                        has_file_kwargs = {
                            "revision": revision,
                            "proxies": proxies,
3239
                            "token": token,
Sylvain Gugger's avatar
Sylvain Gugger committed
3240
3241
3242
                        }
                        if has_file(pretrained_model_name_or_path, TF2_WEIGHTS_NAME, **has_file_kwargs):
                            raise EnvironmentError(
Sylvain Gugger's avatar
Sylvain Gugger committed
3243
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
3244
3245
                                f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file for TensorFlow weights."
                                " Use `from_tf=True` to load this model from those weights."
Sylvain Gugger's avatar
Sylvain Gugger committed
3246
3247
3248
                            )
                        elif has_file(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME, **has_file_kwargs):
                            raise EnvironmentError(
Sylvain Gugger's avatar
Sylvain Gugger committed
3249
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
                                f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file for Flax weights. Use"
                                " `from_flax=True` to load this model from those weights."
                            )
                        elif variant is not None and has_file(
                            pretrained_model_name_or_path, WEIGHTS_NAME, **has_file_kwargs
                        ):
                            raise EnvironmentError(
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
                                f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file without the variant"
                                f" {variant}. Use `variant=None` to load this model from those weights."
Sylvain Gugger's avatar
Sylvain Gugger committed
3260
3261
3262
                            )
                        else:
                            raise EnvironmentError(
3263
3264
3265
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
                                f" {_add_variant(WEIGHTS_NAME, variant)}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or"
                                f" {FLAX_WEIGHTS_NAME}."
Sylvain Gugger's avatar
Sylvain Gugger committed
3266
                            )
3267
3268
3269
3270
                except EnvironmentError:
                    # Raise any environment error raise by `cached_file`. It will have a helpful error message adapted
                    # to the original exception.
                    raise
3271
                except Exception as e:
3272
                    # For any other exception, we throw a generic error.
3273
                    raise EnvironmentError(
3274
3275
3276
                        f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it"
                        " from 'https://huggingface.co/models', make sure you don't have a local directory with the"
                        f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a"
3277
3278
                        f" directory containing a file named {_add_variant(WEIGHTS_NAME, variant)},"
                        f" {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or {FLAX_WEIGHTS_NAME}."
3279
                    ) from e
3280

3281
            if is_local:
3282
                logger.info(f"loading weights file {archive_file}")
3283
                resolved_archive_file = archive_file
3284
            else:
3285
                logger.info(f"loading weights file {filename} from cache at {resolved_archive_file}")
3286
        else:
thomwolf's avatar
thomwolf committed
3287
            resolved_archive_file = None
3288

Sylvain Gugger's avatar
Sylvain Gugger committed
3289
3290
        # We'll need to download and cache each checkpoint shard if the checkpoint is sharded.
        if is_sharded:
3291
            # rsolved_archive_file becomes a list of files that point to the different checkpoint shards in this case.
Sylvain Gugger's avatar
Sylvain Gugger committed
3292
3293
3294
3295
3296
3297
3298
3299
            resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(
                pretrained_model_name_or_path,
                resolved_archive_file,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                resume_download=resume_download,
                local_files_only=local_files_only,
3300
                token=token,
Sylvain Gugger's avatar
Sylvain Gugger committed
3301
3302
                user_agent=user_agent,
                revision=revision,
3303
                subfolder=subfolder,
3304
                _commit_hash=commit_hash,
Sylvain Gugger's avatar
Sylvain Gugger committed
3305
3306
            )

3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
        if (
            is_safetensors_available()
            and isinstance(resolved_archive_file, str)
            and resolved_archive_file.endswith(".safetensors")
        ):
            with safe_open(resolved_archive_file, framework="pt") as f:
                metadata = f.metadata()

            if metadata.get("format") == "pt":
                pass
            elif metadata.get("format") == "tf":
                from_tf = True
                logger.info("A TensorFlow safetensors file is being loaded in a PyTorch model.")
            elif metadata.get("format") == "flax":
                from_flax = True
                logger.info("A Flax safetensors file is being loaded in a PyTorch model.")
3323
3324
3325
            elif metadata.get("format") == "mlx":
                # This is a mlx file, we assume weights are compatible with pt
                pass
3326
3327
            else:
                raise ValueError(
3328
                    f"Incompatible safetensors file. File metadata is not ['pt', 'tf', 'flax', 'mlx'] but {metadata.get('format')}"
3329
3330
3331
3332
                )

        from_pt = not (from_tf | from_flax)

3333
3334
        # load pt weights early so that we know which dtype to init the model under
        if from_pt:
3335
            if not is_sharded and state_dict is None:
Sylvain Gugger's avatar
Sylvain Gugger committed
3336
3337
                # Time to load the checkpoint
                state_dict = load_state_dict(resolved_archive_file)
3338

3339
3340
3341
            # set dtype to instantiate the model under:
            # 1. If torch_dtype is not None, we use that dtype
            # 2. If torch_dtype is "auto", we auto-detect dtype from the loaded state_dict, by checking its first
3342
            #    weights entry that is of a floating type - we assume all floating dtype weights are of the same dtype
3343
3344
            # we also may have config.torch_dtype available, but we won't rely on it till v5
            dtype_orig = None
3345

3346
3347
3348
            if torch_dtype is not None:
                if isinstance(torch_dtype, str):
                    if torch_dtype == "auto":
3349
3350
3351
                        if hasattr(config, "torch_dtype") and config.torch_dtype is not None:
                            torch_dtype = config.torch_dtype
                            logger.info(f"Will use torch_dtype={torch_dtype} as defined in model's config object")
Sylvain Gugger's avatar
Sylvain Gugger committed
3352
                        else:
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
                            if is_sharded and "dtype" in sharded_metadata:
                                torch_dtype = sharded_metadata["dtype"]
                            elif not is_sharded:
                                torch_dtype = get_state_dict_dtype(state_dict)
                            else:
                                one_state_dict = load_state_dict(resolved_archive_file[0])
                                torch_dtype = get_state_dict_dtype(one_state_dict)
                                del one_state_dict  # free CPU memory
                            logger.info(
                                "Since the `torch_dtype` attribute can't be found in model's config object, "
                                "will use torch_dtype={torch_dtype} as derived from model's weights"
                            )
3365
3366
                    else:
                        raise ValueError(
3367
                            f'`torch_dtype` can be either `torch.dtype` or `"auto"`, but received {torch_dtype}'
3368
3369
3370
                        )
                dtype_orig = cls._set_default_torch_dtype(torch_dtype)

3371
            # Check if `_keep_in_fp32_modules` is not None
3372
            use_keep_in_fp32_modules = (cls._keep_in_fp32_modules is not None) and (
3373
                (torch_dtype == torch.float16) or hasattr(hf_quantizer, "use_keep_in_fp32_modules")
3374
3375
            )

3376
3377
3378
            if is_sharded:
                loaded_state_dict_keys = sharded_metadata["all_checkpoint_keys"]
            else:
3379
                loaded_state_dict_keys = list(state_dict.keys())
3380
3381
3382
3383
            if low_cpu_mem_usage or (use_keep_in_fp32_modules and is_accelerate_available()):
                # In case some weights need to be kept in float32 and accelerate is not installed,
                # we later on want to take the path where state_dict is not None, that is the one
                # that do not require accelerate.
3384
                state_dict = None
3385

3386
3387
        config.name_or_path = pretrained_model_name_or_path

3388
        # Instantiate model.
3389
3390
        init_contexts = [no_init_weights(_enable=_fast_init)]

3391
        if is_deepspeed_zero3_enabled() and not is_quantized:
3392
3393
3394
            import deepspeed

            logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
3395
            init_contexts = [deepspeed.zero.Init(config_dict_or_path=deepspeed_config())] + init_contexts
3396
        elif low_cpu_mem_usage:
3397
3398
            init_contexts.append(init_empty_weights())

3399
3400
3401
3402
        config = copy.deepcopy(config)  # We do not want to modify the config inplace in from_pretrained.
        config = cls._autoset_attn_implementation(
            config, use_flash_attention_2=use_flash_attention_2, torch_dtype=torch_dtype, device_map=device_map
        )
3403

3404
        with ContextManagers(init_contexts):
3405
            # Let's make sure we don't run the init function of buffer modules
3406
3407
            model = cls(config, *model_args, **model_kwargs)

3408
3409
3410
        # make sure we use the model's config since the __init__ call might have copied it
        config = model.config

3411
3412
        # Check first if we are `from_pt`
        if use_keep_in_fp32_modules:
3413
            if is_accelerate_available() and not is_deepspeed_zero3_enabled():
3414
                low_cpu_mem_usage = True
3415
3416
3417
3418
            keep_in_fp32_modules = model._keep_in_fp32_modules
        else:
            keep_in_fp32_modules = []

3419
3420
3421
        if hf_quantizer is not None:
            hf_quantizer.preprocess_model(
                model=model, device_map=device_map, keep_in_fp32_modules=keep_in_fp32_modules
3422
            )
3423

3424
3425
3426
3427
3428
3429
            # We store the original dtype for quantized models as we cannot easily retrieve it
            # once the weights have been quantized
            # Note that once you have loaded a quantized model, you can't change its dtype so this will
            # remain a single source of truth
            config._pre_quantization_dtype = torch_dtype

3430
        if isinstance(device_map, str):
3431
            special_dtypes = {}
3432
3433
3434

            if hf_quantizer is not None:
                special_dtypes.update(hf_quantizer.get_special_dtypes_update(model, torch_dtype))
3435
3436
3437
3438
3439
3440
3441
3442
3443

            special_dtypes.update(
                {
                    name: torch.float32
                    for name, _ in model.named_parameters()
                    if any(m in name for m in keep_in_fp32_modules)
                }
            )

3444
3445
            target_dtype = torch_dtype

3446
3447
            if hf_quantizer is not None:
                target_dtype = hf_quantizer.adjust_target_dtype(target_dtype)
3448

Marc Sun's avatar
Marc Sun committed
3449
            no_split_modules = model._get_no_split_modules(device_map)
3450
3451
3452
3453
3454
            if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
                raise ValueError(
                    "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or "
                    "'sequential'."
                )
3455

3456
            device_map_kwargs = {"no_split_module_classes": no_split_modules}
3457
            if "special_dtypes" in inspect.signature(infer_auto_device_map).parameters:
3458
                device_map_kwargs["special_dtypes"] = special_dtypes
3459
            elif len(special_dtypes) > 0:
3460
                logger.warning(
3461
3462
3463
                    "This model has some weights that should be kept in higher precision, you need to upgrade "
                    "`accelerate` to properly deal with them (`pip install --upgrade accelerate`)."
                )
3464
            if device_map != "sequential":
3465
3466
                max_memory = get_balanced_memory(
                    model,
3467
                    dtype=target_dtype,
3468
                    low_zero=(device_map == "balanced_low_0"),
3469
                    max_memory=max_memory,
3470
                    **device_map_kwargs,
3471
                )
Marc Sun's avatar
Marc Sun committed
3472
3473
            else:
                max_memory = get_max_memory(max_memory)
3474
3475
            if hf_quantizer is not None:
                max_memory = hf_quantizer.adjust_max_memory(max_memory)
3476
            device_map_kwargs["max_memory"] = max_memory
Marc Sun's avatar
Marc Sun committed
3477

3478
3479
            # Make sure tied weights are tied before creating the device map.
            model.tie_weights()
3480
            device_map = infer_auto_device_map(model, dtype=target_dtype, **device_map_kwargs)
3481

3482
3483
            if hf_quantizer is not None:
                hf_quantizer.validate_environment(device_map=device_map)
3484

3485
3486
3487
3488
        elif device_map is not None:
            model.tie_weights()
            tied_params = find_tied_parameters(model)
            # check if we don't have tied param in different devices
3489
            check_tied_parameters_on_same_device(tied_params, device_map)
3490

3491
        if from_tf:
3492
            if resolved_archive_file.endswith(".index"):
3493
3494
3495
3496
3497
                # Load from a TensorFlow 1.X checkpoint - provided by original authors
                model = cls.load_tf_weights(model, config, resolved_archive_file[:-6])  # Remove the '.index'
            else:
                # Load from our TensorFlow 2.0 checkpoints
                try:
3498
                    from .modeling_tf_pytorch_utils import load_tf2_checkpoint_in_pytorch_model
3499

Yih-Dar's avatar
Yih-Dar committed
3500
3501
3502
                    model, loading_info = load_tf2_checkpoint_in_pytorch_model(
                        model, resolved_archive_file, allow_missing_keys=True, output_loading_info=True
                    )
3503
                except ImportError:
3504
                    logger.error(
Sylvain Gugger's avatar
Sylvain Gugger committed
3505
3506
3507
                        "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed."
                        " Please see https://pytorch.org/ and https://www.tensorflow.org/install/ for installation"
                        " instructions."
3508
                    )
3509
                    raise
3510
3511
3512
3513
3514
3515
3516
        elif from_flax:
            try:
                from .modeling_flax_pytorch_utils import load_flax_checkpoint_in_pytorch_model

                model = load_flax_checkpoint_in_pytorch_model(model, resolved_archive_file)
            except ImportError:
                logger.error(
Sylvain Gugger's avatar
Sylvain Gugger committed
3517
3518
3519
                    "Loading a Flax model in PyTorch, requires both PyTorch and Flax to be installed. Please see"
                    " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for"
                    " installation instructions."
3520
3521
                )
                raise
3522
        elif from_pt:
3523
3524
3525
            # restore default dtype
            if dtype_orig is not None:
                torch.set_default_dtype(dtype_orig)
Sylvain Gugger's avatar
Sylvain Gugger committed
3526
3527
3528
3529
3530
3531
3532
3533
            (
                model,
                missing_keys,
                unexpected_keys,
                mismatched_keys,
                offload_index,
                error_msgs,
            ) = cls._load_pretrained_model(
3534
3535
3536
3537
3538
3539
3540
3541
3542
                model,
                state_dict,
                loaded_state_dict_keys,  # XXX: rename?
                resolved_archive_file,
                pretrained_model_name_or_path,
                ignore_mismatched_sizes=ignore_mismatched_sizes,
                sharded_metadata=sharded_metadata,
                _fast_init=_fast_init,
                low_cpu_mem_usage=low_cpu_mem_usage,
3543
3544
3545
3546
                device_map=device_map,
                offload_folder=offload_folder,
                offload_state_dict=offload_state_dict,
                dtype=torch_dtype,
3547
                hf_quantizer=hf_quantizer,
3548
                keep_in_fp32_modules=keep_in_fp32_modules,
3549
            )
3550

3551
3552
        # make sure token embedding weights are still tied if needed
        model.tie_weights()
3553

3554
        # Set model in evaluation mode to deactivate DropOut modules by default
3555
3556
        model.eval()

3557
        # If it is a model with generation capabilities, attempt to load the generation config
3558
        if model.can_generate() and pretrained_model_name_or_path is not None:
3559
3560
3561
3562
3563
3564
3565
3566
            try:
                model.generation_config = GenerationConfig.from_pretrained(
                    pretrained_model_name_or_path,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
3567
                    token=token,
3568
3569
3570
3571
3572
3573
                    revision=revision,
                    subfolder=subfolder,
                    _from_auto=from_auto_class,
                    _from_pipeline=from_pipeline,
                    **kwargs,
                )
3574
            except OSError:
3575
3576
3577
3578
3579
                logger.info(
                    "Generation config file not found, using a generation config created from the model config."
                )
                pass

3580
3581
        # Dispatch model with hooks on all devices if necessary
        if device_map is not None:
3582
3583
3584
3585
            device_map_kwargs = {
                "device_map": device_map,
                "offload_dir": offload_folder,
                "offload_index": offload_index,
3586
                "offload_buffers": offload_buffers,
3587
            }
3588
            if "skip_keys" in inspect.signature(dispatch_model).parameters:
3589
                device_map_kwargs["skip_keys"] = model._skip_keys_device_placement
3590
3591
            if not is_fsdp_enabled() and not is_deepspeed_zero3_enabled():
                dispatch_model(model, **device_map_kwargs)
3592

3593
3594
3595
        if hf_quantizer is not None:
            hf_quantizer.postprocess_model(model)
            model.hf_quantizer = hf_quantizer
Marc Sun's avatar
Marc Sun committed
3596

3597
        if _adapter_model_path is not None:
3598
            model.load_adapter(
3599
                _adapter_model_path,
3600
3601
                adapter_name=adapter_name,
                token=token,
3602
                adapter_kwargs=adapter_kwargs,
3603
3604
            )

thomwolf's avatar
thomwolf committed
3605
        if output_loading_info:
Yih-Dar's avatar
Yih-Dar committed
3606
3607
3608
3609
3610
3611
3612
            if loading_info is None:
                loading_info = {
                    "missing_keys": missing_keys,
                    "unexpected_keys": unexpected_keys,
                    "mismatched_keys": mismatched_keys,
                    "error_msgs": error_msgs,
                }
thomwolf's avatar
thomwolf committed
3613
3614
            return model, loading_info

3615
3616
        return model

3617
    @classmethod
Sylvain Gugger's avatar
Sylvain Gugger committed
3618
3619
3620
3621
    def _load_pretrained_model(
        cls,
        model,
        state_dict,
3622
        loaded_keys,
Sylvain Gugger's avatar
Sylvain Gugger committed
3623
3624
3625
3626
3627
        resolved_archive_file,
        pretrained_model_name_or_path,
        ignore_mismatched_sizes=False,
        sharded_metadata=None,
        _fast_init=True,
3628
        low_cpu_mem_usage=False,
3629
3630
        device_map=None,
        offload_folder=None,
3631
        offload_state_dict=None,
3632
        dtype=None,
3633
        hf_quantizer=None,
3634
        keep_in_fp32_modules=None,
3635
    ):
Sylvain Gugger's avatar
Sylvain Gugger committed
3636
        is_safetensors = False
3637
        is_quantized = hf_quantizer is not None
3638

Sylvain Gugger's avatar
Sylvain Gugger committed
3639
        if device_map is not None and "disk" in device_map.values():
Sylvain Gugger's avatar
Sylvain Gugger committed
3640
3641
3642
3643
3644
            archive_file = (
                resolved_archive_file[0] if isinstance(resolved_archive_file, (list, tuple)) else resolved_archive_file
            )
            is_safetensors = archive_file.endswith(".safetensors")
            if offload_folder is None and not is_safetensors:
Sylvain Gugger's avatar
Sylvain Gugger committed
3645
3646
                raise ValueError(
                    "The current `device_map` had weights offloaded to the disk. Please provide an `offload_folder`"
Sylvain Gugger's avatar
Sylvain Gugger committed
3647
3648
                    " for them. Alternatively, make sure you have `safetensors` installed if the model you are using"
                    " offers the weights in this format."
Sylvain Gugger's avatar
Sylvain Gugger committed
3649
                )
Sylvain Gugger's avatar
Sylvain Gugger committed
3650
3651
            if offload_folder is not None:
                os.makedirs(offload_folder, exist_ok=True)
3652
3653
3654
            if offload_state_dict is None:
                offload_state_dict = True

3655
        is_sharded_safetensors = is_safetensors and sharded_metadata is not None
Patrick von Platen's avatar
Patrick von Platen committed
3656
3657
3658
3659

        # tie the model weights before retrieving the state_dict
        model.tie_weights()

3660
        # Retrieve missing & unexpected_keys
3661
3662
        model_state_dict = model.state_dict()
        expected_keys = list(model_state_dict.keys())
3663
3664
        prefix = model.base_model_prefix

Sylvain Gugger's avatar
Sylvain Gugger committed
3665
3666
3667
3668
3669
3670
3671
        def _fix_key(key):
            if "beta" in key:
                return key.replace("beta", "bias")
            if "gamma" in key:
                return key.replace("gamma", "weight")
            return key

3672
        original_loaded_keys = loaded_keys
Sylvain Gugger's avatar
Sylvain Gugger committed
3673
3674
        loaded_keys = [_fix_key(key) for key in loaded_keys]

3675
3676
3677
3678
3679
3680
        if len(prefix) > 0:
            has_prefix_module = any(s.startswith(prefix) for s in loaded_keys)
            expects_prefix_module = any(s.startswith(prefix) for s in expected_keys)
        else:
            has_prefix_module = False
            expects_prefix_module = False
Patrick von Platen's avatar
Patrick von Platen committed
3681
3682
3683

        # key re-naming operations are never done on the keys
        # that are loaded, but always on the keys of the newly initialized model
3684
3685
        remove_prefix_from_model = not has_prefix_module and expects_prefix_module
        add_prefix_to_model = has_prefix_module and not expects_prefix_module
3686

3687
        if remove_prefix_from_model:
3688
3689
3690
            _prefix = f"{prefix}."
            expected_keys_not_prefixed = [s for s in expected_keys if not s.startswith(_prefix)]
            expected_keys = [s[len(_prefix) :] if s.startswith(_prefix) else s for s in expected_keys]
3691
        elif add_prefix_to_model:
3692
3693
            expected_keys = [".".join([prefix, s]) for s in expected_keys]

3694
        missing_keys = sorted(set(expected_keys) - set(loaded_keys))
Sylvain Gugger's avatar
Sylvain Gugger committed
3695
3696
3697
3698
3699
3700
3701
3702
        unexpected_keys = set(loaded_keys) - set(expected_keys)
        # Remove nonpersistent buffers from unexpected keys: they are not in the state dict but will be in the model
        # buffers
        model_buffers = {n for n, _ in model.named_buffers()}
        if remove_prefix_from_model:
            model_buffers = {key[len(_prefix) :] if key.startswith(_prefix) else key for key in model_buffers}
        elif add_prefix_to_model:
            model_buffers = {".".join([prefix, key]) for key in model_buffers}
3703
        unexpected_keys = sorted(unexpected_keys - model_buffers)
3704

3705
        model.tie_weights()
3706
        if device_map is None and not is_fsdp_enabled() and not is_deepspeed_zero3_enabled():
3707
3708
3709
3710
            ptrs = collections.defaultdict(list)
            for name, tensor in model.state_dict().items():
                id_tensor = id_tensor_storage(tensor)
                ptrs[id_tensor].append(name)
Sylvain Gugger's avatar
Sylvain Gugger committed
3711

3712
3713
3714
3715
3716
            # These are all the pointers of shared tensors.
            tied_params = [names for _, names in ptrs.items() if len(names) > 1]
        else:
            # id function doesn't work for meta tensor so we need this function
            tied_params = find_tied_parameters(model)
Sylvain Gugger's avatar
Sylvain Gugger committed
3717
3718

        for group in tied_params:
Sylvain Gugger's avatar
Sylvain Gugger committed
3719
3720
3721
3722
            if remove_prefix_from_model:
                group = [key[len(_prefix) :] if key.startswith(_prefix) else key for key in group]
            elif add_prefix_to_model:
                group = [".".join([prefix, key]) for key in group]
Sylvain Gugger's avatar
Sylvain Gugger committed
3723
3724
3725
            missing_in_group = [k for k in missing_keys if k in group]
            if len(missing_in_group) > 0 and len(missing_in_group) < len(group):
                missing_keys = [k for k in missing_keys if k not in missing_in_group]
3726

3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
        # Some models may have keys that are not in the state by design, removing them before needlessly warning
        # the user.
        if cls._keys_to_ignore_on_load_missing is not None:
            for pat in cls._keys_to_ignore_on_load_missing:
                missing_keys = [k for k in missing_keys if re.search(pat, k) is None]

        if cls._keys_to_ignore_on_load_unexpected is not None:
            for pat in cls._keys_to_ignore_on_load_unexpected:
                unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

3737
3738
3739
        if hf_quantizer is not None:
            missing_keys = hf_quantizer.update_missing_keys(model, missing_keys, prefix)

3740
3741
3742
3743
        # retrieve weights on meta device and put them back on CPU.
        # This is not ideal in terms of memory, but if we don't do that not, we can't initialize them in the next step
        if low_cpu_mem_usage:
            for key in missing_keys:
Susnato Dhar's avatar
Susnato Dhar committed
3744
3745
                if key in list(model_state_dict.keys()):
                    key = key
3746
3747
                elif f"{prefix}.{key}" in list(model_state_dict.keys()):
                    key = f"{prefix}.{key}"
Susnato Dhar's avatar
Susnato Dhar committed
3748
                elif key.startswith(prefix) and ".".join(key.split(".")[1:]) in list(model_state_dict.keys()):
3749
3750
                    key = ".".join(key.split(".")[1:])
                param = model_state_dict[key]
3751
3752
3753
3754
3755
3756

                # upcast in fp32 if any
                target_dtype = dtype
                if (
                    keep_in_fp32_modules is not None
                    and dtype == torch.float16
3757
3758
3759
                    and any(
                        module_to_keep_in_fp32 in key.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules
                    )
3760
3761
3762
                ):
                    target_dtype = torch.float32

3763
                if param.device == torch.device("meta"):
3764
                    value = torch.empty(*param.size(), dtype=target_dtype)
3765
                    if (
3766
                        not is_quantized
3767
3768
3769
3770
                        or getattr(hf_quantizer, "requires_parameters_quantization", False)
                        or not hf_quantizer.check_quantized_param(
                            model, param_value=value, param_name=key, state_dict={}
                        )
3771
3772
                    ):
                        set_module_tensor_to_device(model, key, "cpu", value)
3773
                    else:
3774
                        hf_quantizer.create_quantized_param(model, value, key, "cpu", state_dict, unexpected_keys)
3775

3776
        # retrieve uninitialized modules and initialize before maybe overriding that with the pretrained weights.
3777
        if _fast_init:
3778
3779
3780
3781
3782
3783
3784
            if not ignore_mismatched_sizes:
                if remove_prefix_from_model:
                    _loaded_keys = [f"{prefix}.{k}" for k in loaded_keys]
                elif add_prefix_to_model:
                    _loaded_keys = [k[len(prefix) + 1 :] for k in loaded_keys]
                else:
                    _loaded_keys = loaded_keys
3785
                not_initialized_submodules = set_initialized_submodules(model, _loaded_keys)
3786
                # If we're about to tie the output embeds to the input embeds we don't need to init them
3787
3788
3789
                if hasattr(model.config, "tie_word_embeddings") and model.config.tie_word_embeddings:
                    output_embeddings = model.get_output_embeddings()
                    if output_embeddings is not None:
3790
3791
3792
                        # Still need to initialize if there is a bias term since biases are not tied.
                        if not hasattr(output_embeddings, "bias") or output_embeddings.bias is None:
                            output_embeddings._is_hf_initialized = True
3793
3794
            else:
                not_initialized_submodules = dict(model.named_modules())
3795
            # This will only initialize submodules that are not marked as initialized by the line above.
3796
            if is_deepspeed_zero3_enabled() and not is_quantized:
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
                import deepspeed

                not_initialized_parameters = list(
                    set(
                        itertools.chain.from_iterable(
                            submodule.parameters(recurse=False) for submodule in not_initialized_submodules.values()
                        )
                    )
                )
                with deepspeed.zero.GatheredParameters(not_initialized_parameters, modifier_rank=0):
                    model.apply(model._initialize_weights)
            else:
                model.apply(model._initialize_weights)
3810

3811
3812
3813
        # Set some modules to fp32 if any
        if keep_in_fp32_modules is not None:
            for name, param in model.named_parameters():
3814
                if any(module_to_keep_in_fp32 in name.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules):
3815
3816
                    # param = param.to(torch.float32) does not work here as only in the local scope.
                    param.data = param.data.to(torch.float32)
3817

3818
3819
3820
        # Make sure we are able to load base models as well as derived models (with heads)
        start_prefix = ""
        model_to_load = model
3821
        if len(cls.base_model_prefix) > 0 and not hasattr(model, cls.base_model_prefix) and has_prefix_module:
3822
            start_prefix = cls.base_model_prefix + "."
3823
        if len(cls.base_model_prefix) > 0 and hasattr(model, cls.base_model_prefix) and not has_prefix_module:
3824
            model_to_load = getattr(model, cls.base_model_prefix)
Sylvain Gugger's avatar
Sylvain Gugger committed
3825
3826
            base_model_expected_keys = list(model_to_load.state_dict().keys())
            if any(key in expected_keys_not_prefixed and key not in base_model_expected_keys for key in loaded_keys):
3827
                raise ValueError(
3828
                    "The state dictionary of the model you are trying to load is corrupted. Are you sure it was "
3829
3830
                    "properly saved?"
                )
3831
3832
            if device_map is not None:
                device_map = {k.replace(f"{cls.base_model_prefix}.", ""): v for k, v in device_map.items()}
3833

3834
3835
3836
3837
3838
3839
3840
3841
        def _find_mismatched_keys(
            state_dict,
            model_state_dict,
            loaded_keys,
            add_prefix_to_model,
            remove_prefix_from_model,
            ignore_mismatched_sizes,
        ):
Sylvain Gugger's avatar
Sylvain Gugger committed
3842
3843
3844
            mismatched_keys = []
            if ignore_mismatched_sizes:
                for checkpoint_key in loaded_keys:
3845
3846
3847
                    # If the checkpoint is sharded, we may not have the key here.
                    if checkpoint_key not in state_dict:
                        continue
Sylvain Gugger's avatar
Sylvain Gugger committed
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
                    model_key = checkpoint_key
                    if remove_prefix_from_model:
                        # The model key starts with `prefix` but `checkpoint_key` doesn't so we add it.
                        model_key = f"{prefix}.{checkpoint_key}"
                    elif add_prefix_to_model:
                        # The model key doesn't start with `prefix` but `checkpoint_key` does so we remove it.
                        model_key = ".".join(checkpoint_key.split(".")[1:])

                    if (
                        model_key in model_state_dict
                        and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
                    ):
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
                        if (
                            state_dict[checkpoint_key].shape[-1] == 1
                            and state_dict[checkpoint_key].numel() * 2 == model_state_dict[model_key].numel()
                        ):
                            # This skips size mismatches for 4-bit weights. Two 4-bit values share an 8-bit container, causing size differences.
                            # Without matching with module type or paramter type it seems like a practical way to detect valid 4bit weights.
                            pass
                        else:
                            mismatched_keys.append(
                                (checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
                            )
                            del state_dict[checkpoint_key]
3872
3873
            return mismatched_keys

3874
3875
3876
3877
        if resolved_archive_file is not None:
            folder = os.path.sep.join(resolved_archive_file[0].split(os.path.sep)[:-1])
        else:
            folder = None
Sylvain Gugger's avatar
Sylvain Gugger committed
3878
        if device_map is not None and is_safetensors:
3879
            param_device_map = expand_device_map(device_map, original_loaded_keys, start_prefix)
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
            str_dtype = str(dtype).replace("torch.", "") if dtype is not None else "float32"
            if sharded_metadata is None:
                archive_file = (
                    resolved_archive_file[0]
                    if isinstance(resolved_archive_file, (list, tuple))
                    else resolved_archive_file
                )
                weight_map = {p: archive_file for p in original_loaded_keys}
            else:
                weight_map = {p: os.path.join(folder, f) for p, f in sharded_metadata["weight_map"].items()}
Sylvain Gugger's avatar
Sylvain Gugger committed
3890
            offload_index = {
3891
                p[len(start_prefix) :]: {"safetensors_file": f, "weight_name": p, "dtype": str_dtype}
3892
                for p, f in weight_map.items()
3893
                if p.startswith(start_prefix) and param_device_map[p[len(start_prefix) :]] == "disk"
Sylvain Gugger's avatar
Sylvain Gugger committed
3894
3895
            }

3896
3897
3898
3899
3900
        if state_dict is not None:
            # Whole checkpoint
            mismatched_keys = _find_mismatched_keys(
                state_dict,
                model_state_dict,
3901
                original_loaded_keys,
3902
3903
3904
3905
                add_prefix_to_model,
                remove_prefix_from_model,
                ignore_mismatched_sizes,
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
3906
            error_msgs = _load_state_dict_into_model(model_to_load, state_dict, start_prefix)
Sylvain Gugger's avatar
Sylvain Gugger committed
3907
            offload_index = None
Sylvain Gugger's avatar
Sylvain Gugger committed
3908
        else:
3909
3910
            # Sharded checkpoint or whole but low_cpu_mem_usage==True

Sylvain Gugger's avatar
Sylvain Gugger committed
3911
3912
3913
3914
3915
            # This should always be a list but, just to be sure.
            if not isinstance(resolved_archive_file, list):
                resolved_archive_file = [resolved_archive_file]

            error_msgs = []
3916
            mismatched_keys = []
Sylvain Gugger's avatar
Sylvain Gugger committed
3917
3918
            if not is_safetensors:
                offload_index = {} if device_map is not None and "disk" in device_map.values() else None
3919
3920
3921
3922
3923
3924
3925
            if offload_state_dict:
                state_dict_folder = tempfile.mkdtemp()
                state_dict_index = {}
            else:
                state_dict_folder = None
                state_dict_index = None

3926
            if is_sharded_safetensors:
3927
3928
3929
                disk_only_shard_files = get_disk_only_shard_files(
                    device_map, sharded_metadata=sharded_metadata, start_prefix=start_prefix
                )
Sylvain Gugger's avatar
Sylvain Gugger committed
3930
3931
3932
3933
                disk_only_shard_files = [os.path.join(folder, f) for f in disk_only_shard_files]
            else:
                disk_only_shard_files = []

3934
3935
            if len(resolved_archive_file) > 1:
                resolved_archive_file = logging.tqdm(resolved_archive_file, desc="Loading checkpoint shards")
Sylvain Gugger's avatar
Sylvain Gugger committed
3936
            for shard_file in resolved_archive_file:
Sylvain Gugger's avatar
Sylvain Gugger committed
3937
3938
3939
                # Skip the load for shards that only contain disk-offloaded weights when using safetensors for the offload.
                if shard_file in disk_only_shard_files:
                    continue
3940
                state_dict = load_state_dict(shard_file, is_quantized=is_quantized)
3941

Sylvain Gugger's avatar
Sylvain Gugger committed
3942
3943
                # Mistmatched keys contains tuples key/shape1/shape2 of weights in the checkpoint that have a shape not
                # matching the weights in the model.
3944
3945
3946
                mismatched_keys += _find_mismatched_keys(
                    state_dict,
                    model_state_dict,
3947
                    original_loaded_keys,
3948
3949
3950
3951
                    add_prefix_to_model,
                    remove_prefix_from_model,
                    ignore_mismatched_sizes,
                )
3952
                if low_cpu_mem_usage:
3953
                    if is_fsdp_enabled() and not is_local_dist_rank_0() and not is_quantized:
3954
3955
                        for key, param in model_to_load.state_dict().items():
                            if param.device == torch.device("meta"):
3956
3957
3958
                                set_module_tensor_to_device(
                                    model_to_load, key, "cpu", torch.empty(*param.size(), dtype=dtype)
                                )
3959
                    else:
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
                        new_error_msgs, offload_index, state_dict_index = _load_state_dict_into_meta_model(
                            model_to_load,
                            state_dict,
                            loaded_keys,
                            start_prefix,
                            expected_keys,
                            device_map=device_map,
                            offload_folder=offload_folder,
                            offload_index=offload_index,
                            state_dict_folder=state_dict_folder,
                            state_dict_index=state_dict_index,
                            dtype=dtype,
3972
                            hf_quantizer=hf_quantizer,
3973
3974
                            is_safetensors=is_safetensors,
                            keep_in_fp32_modules=keep_in_fp32_modules,
3975
                            unexpected_keys=unexpected_keys,
3976
3977
                        )
                        error_msgs += new_error_msgs
3978
3979
                else:
                    error_msgs += _load_state_dict_into_model(model_to_load, state_dict, start_prefix)
3980

3981
3982
3983
3984
                # force memory release
                del state_dict
                gc.collect()

3985
            if offload_index is not None and len(offload_index) > 0:
Sylvain Gugger's avatar
Sylvain Gugger committed
3986
3987
3988
                if model != model_to_load:
                    # We need to add the prefix of the base model
                    prefix = cls.base_model_prefix
Sylvain Gugger's avatar
Sylvain Gugger committed
3989
3990
3991
3992
3993
3994
                    if not is_safetensors:
                        for weight_name in offload_index:
                            shutil.move(
                                os.path.join(offload_folder, f"{weight_name}.dat"),
                                os.path.join(offload_folder, f"{prefix}.{weight_name}.dat"),
                            )
Sylvain Gugger's avatar
Sylvain Gugger committed
3995
                    offload_index = {f"{prefix}.{key}": value for key, value in offload_index.items()}
Sylvain Gugger's avatar
Sylvain Gugger committed
3996
3997
3998
                if not is_safetensors:
                    save_offload_index(offload_index, offload_folder)
                    offload_index = None
3999
4000
4001

            if offload_state_dict:
                # Load back temporarily offloaded state dict
4002
                load_offloaded_weights(model_to_load, state_dict_index, state_dict_folder)
4003
4004
                shutil.rmtree(state_dict_folder)

4005
4006
        if len(error_msgs) > 0:
            error_msg = "\n\t".join(error_msgs)
4007
4008
4009
4010
            if "size mismatch" in error_msg:
                error_msg += (
                    "\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
                )
4011
4012
            raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")

4013
        if len(unexpected_keys) > 0:
Sylvain Gugger's avatar
Sylvain Gugger committed
4014
            archs = [] if model.config.architectures is None else model.config.architectures
4015
            warner = logger.warning if model.__class__.__name__ in archs else logger.info
Sylvain Gugger's avatar
Sylvain Gugger committed
4016
            warner(
Sylvain Gugger's avatar
Sylvain Gugger committed
4017
4018
4019
4020
4021
4022
4023
                f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
                f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
                f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task or"
                " with another architecture (e.g. initializing a BertForSequenceClassification model from a"
                " BertForPreTraining model).\n- This IS NOT expected if you are initializing"
                f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly identical"
                " (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
4024
4025
4026
4027
4028
            )
        else:
            logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
        if len(missing_keys) > 0:
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
4029
4030
4031
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
                " TRAIN this model on a down-stream task to be able to use it for predictions and inference."
4032
            )
4033
        elif len(mismatched_keys) == 0:
4034
            logger.info(
Sylvain Gugger's avatar
Sylvain Gugger committed
4035
4036
4037
4038
                f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the checkpoint"
                f" was trained on, you can already use {model.__class__.__name__} for predictions without further"
                " training."
4039
            )
4040
4041
4042
4043
4044
4045
4046
4047
        if len(mismatched_keys) > 0:
            mismatched_warning = "\n".join(
                [
                    f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
                    for key, shape1, shape2 in mismatched_keys
                ]
            )
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
4048
4049
4050
4051
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
                f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be able"
                " to use it for predictions and inference."
4052
            )
4053

Sylvain Gugger's avatar
Sylvain Gugger committed
4054
        return model, missing_keys, unexpected_keys, mismatched_keys, offload_index, error_msgs
4055
4056

    def retrieve_modules_from_names(self, names, add_prefix=False, remove_prefix=False):
4057
        module_keys = {".".join(key.split(".")[:-1]) for key in names}
4058

Patrick von Platen's avatar
Patrick von Platen committed
4059
4060
        # torch.nn.ParameterList is a special case where two parameter keywords
        # are appended to the module name, *e.g.* bert.special_embeddings.0
4061
        module_keys = module_keys.union(
4062
            {".".join(key.split(".")[:-2]) for key in names if len(key) > 0 and key[-1].isdigit()}
4063
        )
Patrick von Platen's avatar
Patrick von Platen committed
4064

4065
4066
4067
4068
        retrieved_modules = []
        # retrieve all modules that has at least one missing weight name
        for name, module in self.named_modules():
            if remove_prefix:
4069
4070
                _prefix = f"{self.base_model_prefix}."
                name = name[len(_prefix) :] if name.startswith(_prefix) else name
4071
            elif add_prefix:
Patrick von Platen's avatar
Patrick von Platen committed
4072
                name = ".".join([self.base_model_prefix, name]) if len(name) > 0 else self.base_model_prefix
4073
4074
4075
4076
4077
4078

            if name in module_keys:
                retrieved_modules.append(module)

        return retrieved_modules

4079
    @staticmethod
4080
4081
4082
    def _load_pretrained_model_low_mem(
        model, loaded_state_dict_keys, resolved_archive_file, start_prefix="", hf_quantizer=None
    ):
4083
4084
4085
        """
        This is an experimental function that loads the model using ~1.x model size CPU memory

4086
        Before you call it do:
4087

4088
        1. save which state_dict keys are available
4089
4090
4091
4092
4093
4094
4095
4096
        2. drop state_dict before model is created, since the latter takes 1x model size memory

        Here then we continue:

        3. switch to the meta device all params/buffers that are going to be replaced from the loaded state_dict
        4. load state_dict 2nd time
        5. replace the params/buffers from the state_dict

4097
4098
        Currently, it doesn't handle missing_keys, unexpected_keys, mismatched_keys. It can't handle deepspeed. To
        handle bitsandbytes, needs non-empty hf_quantizer argument.
4099
4100
        """

4101
4102
        _move_model_to_meta(model, loaded_state_dict_keys, start_prefix)
        state_dict = load_state_dict(resolved_archive_file)
4103
4104
4105
4106
4107
4108
4109
4110
4111
        expected_keys = loaded_state_dict_keys  # plug for missing expected_keys. TODO: replace with proper keys
        error_msgs = _load_state_dict_into_meta_model(
            model,
            state_dict,
            loaded_state_dict_keys,
            start_prefix,
            expected_keys=expected_keys,
            hf_quantizer=hf_quantizer,
        )
4112
        return error_msgs
4113

4114
4115
4116
4117
4118
4119
    @classmethod
    def register_for_auto_class(cls, auto_class="AutoModel"):
        """
        Register this class with a given auto class. This should only be used for custom models as the ones in the
        library are already mapped with an auto class.

4120
4121
4122
4123
4124
4125
        <Tip warning={true}>

        This API is experimental and may have some slight breaking changes in the next releases.

        </Tip>

4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
        Args:
            auto_class (`str` or `type`, *optional*, defaults to `"AutoModel"`):
                The auto class to register this new model with.
        """
        if not isinstance(auto_class, str):
            auto_class = auto_class.__name__

        import transformers.models.auto as auto_module

        if not hasattr(auto_module, auto_class):
            raise ValueError(f"{auto_class} is not a valid auto class.")

        cls._auto_class = auto_class

4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
    def to_bettertransformer(self) -> "PreTrainedModel":
        """
        Converts the model to use [PyTorch's native attention
        implementation](https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html), integrated to
        Transformers through [Optimum library](https://huggingface.co/docs/optimum/bettertransformer/overview). Only a
        subset of all Transformers models are supported.

        PyTorch's attention fastpath allows to speed up inference through kernel fusions and the use of [nested
        tensors](https://pytorch.org/docs/stable/nested.html). Detailed benchmarks can be found in [this blog
        post](https://medium.com/pytorch/bettertransformer-out-of-the-box-performance-for-huggingface-transformers-3fbe27d50ab2).

        Returns:
            [`PreTrainedModel`]: The model converted to BetterTransformer.
        """
        if not is_optimum_available():
            raise ImportError("The package `optimum` is required to use Better Transformer.")

        from optimum.version import __version__ as optimum_version

        if version.parse(optimum_version) < version.parse("1.7.0"):
            raise ImportError(
                f"Please install optimum>=1.7.0 to use Better Transformer. The version {optimum_version} was found."
            )

        from optimum.bettertransformer import BetterTransformer

        return BetterTransformer.transform(self)

    def reverse_bettertransformer(self):
        """
        Reverts the transformation from [`~PreTrainedModel.to_bettertransformer`] so that the original modeling is
        used, for example in order to save the model.

        Returns:
            [`PreTrainedModel`]: The model converted back to the original modeling.
        """
        if not is_optimum_available():
            raise ImportError("The package `optimum` is required to use Better Transformer.")

        from optimum.version import __version__ as optimum_version

        if version.parse(optimum_version) < version.parse("1.7.0"):
            raise ImportError(
                f"Please install optimum>=1.7.0 to use Better Transformer. The version {optimum_version} was found."
            )

        from optimum.bettertransformer import BetterTransformer

        return BetterTransformer.reverse(self)

4190
4191
4192
4193
    def warn_if_padding_and_no_attention_mask(self, input_ids, attention_mask):
        """
        Shows a one-time warning if the input_ids appear to contain padding and no attention mask was given.
        """
4194
4195

        # Skip the check during tracing.
4196
        if is_torch_fx_proxy(input_ids) or torch.jit.is_tracing() or is_torchdynamo_compiling():
4197
4198
            return

4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
        if (attention_mask is not None) or (self.config.pad_token_id is None):
            return

        # Check only the first and last input IDs to reduce overhead.
        if self.config.pad_token_id in input_ids[:, [-1, 0]]:
            warn_string = (
                "We strongly recommend passing in an `attention_mask` since your input_ids may be padded. See "
                "https://huggingface.co/docs/transformers/troubleshooting"
                "#incorrect-output-when-padding-tokens-arent-masked."
            )

            # If the pad token is equal to either BOS, EOS, or SEP, we do not know whether the user should use an
            # attention_mask or not. In this case, we should still show a warning because this is a rare case.
            if (
                (self.config.bos_token_id is not None and self.config.bos_token_id == self.config.pad_token_id)
                or (self.config.eos_token_id is not None and self.config.eos_token_id == self.config.pad_token_id)
                or (self.config.sep_token_id is not None and self.config.sep_token_id == self.config.pad_token_id)
            ):
                warn_string += (
                    f"\nYou may ignore this warning if your `pad_token_id` ({self.config.pad_token_id}) is identical "
                    f"to the `bos_token_id` ({self.config.bos_token_id}), `eos_token_id` ({self.config.eos_token_id}), "
                    f"or the `sep_token_id` ({self.config.sep_token_id}), and your input is not padded."
                )

            logger.warning_once(warn_string)

4225
4226
    @property
    def _is_quantized_training_enabled(self):
4227
        warnings.warn(
4228
4229
4230
4231
4232
4233
4234
4235
4236
            "`_is_quantized_training_enabled` is going to be deprecated in transformers 4.39.0. Please use `model.hf_quantizer.is_trainable` instead",
            FutureWarning,
        )

        if not hasattr(self, "hf_quantizer"):
            return False

        return self.hf_quantizer.is_trainable

thomwolf's avatar
thomwolf committed
4237

4238
PreTrainedModel.push_to_hub = copy_func(PreTrainedModel.push_to_hub)
4239
4240
4241
4242
if PreTrainedModel.push_to_hub.__doc__ is not None:
    PreTrainedModel.push_to_hub.__doc__ = PreTrainedModel.push_to_hub.__doc__.format(
        object="model", object_class="AutoModel", object_files="model file"
    )
4243
4244


thomwolf's avatar
thomwolf committed
4245
class PoolerStartLogits(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
4246
4247
    """
    Compute SQuAD start logits from sequence hidden states.
4248

Sylvain Gugger's avatar
Sylvain Gugger committed
4249
    Args:
4250
4251
        config ([`PretrainedConfig`]):
            The config used by the model, will be used to grab the `hidden_size` of the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
4252
4253
4254
    """

    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
4255
        super().__init__()
thomwolf's avatar
thomwolf committed
4256
4257
        self.dense = nn.Linear(config.hidden_size, 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
4258
4259
4260
4261
4262
    def forward(
        self, hidden_states: torch.FloatTensor, p_mask: Optional[torch.FloatTensor] = None
    ) -> torch.FloatTensor:
        """
        Args:
4263
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
4264
                The final hidden states of the model.
4265
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4266
4267
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
Sylvain Gugger's avatar
Sylvain Gugger committed
4268
4269

        Returns:
4270
            `torch.FloatTensor`: The start logits for SQuAD.
thomwolf's avatar
thomwolf committed
4271
        """
thomwolf's avatar
thomwolf committed
4272
4273
4274
        x = self.dense(hidden_states).squeeze(-1)

        if p_mask is not None:
Lysandre Debut's avatar
Lysandre Debut committed
4275
            if get_parameter_dtype(self) == torch.float16:
4276
4277
4278
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask
thomwolf's avatar
thomwolf committed
4279
4280
4281
4282
4283
4284

        return x


class PoolerEndLogits(nn.Module):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
4285
    Compute SQuAD end logits from sequence hidden states.
4286

Sylvain Gugger's avatar
Sylvain Gugger committed
4287
    Args:
4288
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
4289
4290
            The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps`
            to use.
Sylvain Gugger's avatar
Sylvain Gugger committed
4291
4292
4293
    """

    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
4294
        super().__init__()
thomwolf's avatar
thomwolf committed
4295
4296
4297
4298
4299
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dense_1 = nn.Linear(config.hidden_size, 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
4300
4301
4302
4303
4304
4305
4306
4307
4308
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        start_states: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        p_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
        """
        Args:
4309
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
4310
                The final hidden states of the model.
4311
            start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4312
                The hidden states of the first tokens for the labeled span.
4313
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4314
                The position of the first token for the labeled span.
4315
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4316
4317
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
Sylvain Gugger's avatar
Sylvain Gugger committed
4318

4319
        <Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
4320

Stas Bekman's avatar
Stas Bekman committed
4321
4322
        One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides
        `start_states`.
4323
4324

        </Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
4325
4326

        Returns:
4327
            `torch.FloatTensor`: The end logits for SQuAD.
thomwolf's avatar
thomwolf committed
4328
        """
4329
4330
4331
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
thomwolf's avatar
thomwolf committed
4332
        if start_positions is not None:
4333
            slen, hsz = hidden_states.shape[-2:]
4334
4335
4336
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions)  # shape (bsz, 1, hsz)
            start_states = start_states.expand(-1, slen, -1)  # shape (bsz, slen, hsz)
thomwolf's avatar
thomwolf committed
4337
4338
4339
4340
4341
4342
4343

        x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1))
        x = self.activation(x)
        x = self.LayerNorm(x)
        x = self.dense_1(x).squeeze(-1)

        if p_mask is not None:
Lysandre Debut's avatar
Lysandre Debut committed
4344
            if get_parameter_dtype(self) == torch.float16:
4345
4346
4347
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask
thomwolf's avatar
thomwolf committed
4348
4349
4350
4351
4352

        return x


class PoolerAnswerClass(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
4353
4354
4355
4356
    """
    Compute SQuAD 2.0 answer class from classification and start tokens hidden states.

    Args:
4357
4358
        config ([`PretrainedConfig`]):
            The config used by the model, will be used to grab the `hidden_size` of the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
4359
    """
4360

thomwolf's avatar
thomwolf committed
4361
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
4362
        super().__init__()
thomwolf's avatar
thomwolf committed
4363
4364
4365
4366
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False)

Sylvain Gugger's avatar
Sylvain Gugger committed
4367
4368
4369
4370
4371
4372
4373
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        start_states: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        cls_index: Optional[torch.LongTensor] = None,
    ) -> torch.FloatTensor:
4374
4375
        """
        Args:
4376
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
4377
                The final hidden states of the model.
4378
            start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4379
                The hidden states of the first tokens for the labeled span.
4380
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4381
                The position of the first token for the labeled span.
4382
4383
4384
4385
            cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
                Position of the CLS token for each sentence in the batch. If `None`, takes the last token.

        <Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
4386

Stas Bekman's avatar
Stas Bekman committed
4387
4388
        One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides
        `start_states`.
Sylvain Gugger's avatar
Sylvain Gugger committed
4389

4390
        </Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
4391
4392

        Returns:
4393
            `torch.FloatTensor`: The SQuAD 2.0 answer class.
thomwolf's avatar
thomwolf committed
4394
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
4395
        # No dependency on end_feature so that we can obtain one single `cls_logits` for each sample.
4396
        hsz = hidden_states.shape[-1]
4397
4398
4399
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
thomwolf's avatar
thomwolf committed
4400
        if start_positions is not None:
4401
4402
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions).squeeze(-2)  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
4403
4404

        if cls_index is not None:
4405
4406
            cls_index = cls_index[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
4407
        else:
4408
            cls_token_state = hidden_states[:, -1, :]  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
4409
4410
4411
4412
4413
4414
4415
4416

        x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1))
        x = self.activation(x)
        x = self.dense_1(x).squeeze(-1)

        return x


4417
4418
4419
@dataclass
class SquadHeadOutput(ModelOutput):
    """
4420
    Base class for outputs of question answering models using a [`~modeling_utils.SQuADHead`].
4421
4422

    Args:
4423
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned if both `start_positions` and `end_positions` are provided):
Sylvain Gugger's avatar
Sylvain Gugger committed
4424
4425
            Classification loss as the sum of start token, end token (and is_impossible if provided) classification
            losses.
4426
        start_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
4427
            Log probabilities for the top config.start_n_top start token possibilities (beam-search).
4428
        start_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
4429
            Indices for the top config.start_n_top start token possibilities (beam-search).
4430
4431
        end_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Log probabilities for the top `config.start_n_top * config.end_n_top` end token possibilities
Sylvain Gugger's avatar
Sylvain Gugger committed
4432
            (beam-search).
4433
4434
4435
4436
        end_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Indices for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search).
        cls_logits (`torch.FloatTensor` of shape `(batch_size,)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Log probabilities for the `is_impossible` label of the answers.
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447

    """

    loss: Optional[torch.FloatTensor] = None
    start_top_log_probs: Optional[torch.FloatTensor] = None
    start_top_index: Optional[torch.LongTensor] = None
    end_top_log_probs: Optional[torch.FloatTensor] = None
    end_top_index: Optional[torch.LongTensor] = None
    cls_logits: Optional[torch.FloatTensor] = None


thomwolf's avatar
thomwolf committed
4448
class SQuADHead(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
4449
4450
    r"""
    A SQuAD head inspired by XLNet.
4451

Sylvain Gugger's avatar
Sylvain Gugger committed
4452
    Args:
4453
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
4454
4455
            The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps`
            to use.
thomwolf's avatar
thomwolf committed
4456
    """
4457

thomwolf's avatar
thomwolf committed
4458
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
4459
        super().__init__()
thomwolf's avatar
thomwolf committed
4460
4461
4462
4463
4464
4465
4466
        self.start_n_top = config.start_n_top
        self.end_n_top = config.end_n_top

        self.start_logits = PoolerStartLogits(config)
        self.end_logits = PoolerEndLogits(config)
        self.answer_class = PoolerAnswerClass(config)

Sylvain Gugger's avatar
Sylvain Gugger committed
4467
    @replace_return_docstrings(output_type=SquadHeadOutput, config_class=PretrainedConfig)
4468
    def forward(
4469
        self,
Sylvain Gugger's avatar
Sylvain Gugger committed
4470
4471
4472
4473
4474
4475
        hidden_states: torch.FloatTensor,
        start_positions: Optional[torch.LongTensor] = None,
        end_positions: Optional[torch.LongTensor] = None,
        cls_index: Optional[torch.LongTensor] = None,
        is_impossible: Optional[torch.LongTensor] = None,
        p_mask: Optional[torch.FloatTensor] = None,
4476
        return_dict: bool = False,
Sylvain Gugger's avatar
Sylvain Gugger committed
4477
4478
    ) -> Union[SquadHeadOutput, Tuple[torch.FloatTensor]]:
        """
Lysandre's avatar
Lysandre committed
4479
        Args:
4480
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Lysandre's avatar
Lysandre committed
4481
                Final hidden states of the model on the sequence tokens.
4482
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
4483
                Positions of the first token for the labeled span.
4484
            end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
4485
                Positions of the last token for the labeled span.
4486
4487
4488
            cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
                Position of the CLS token for each sentence in the batch. If `None`, takes the last token.
            is_impossible (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
4489
                Whether the question has a possible answer in the paragraph or not.
4490
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4491
4492
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
4493
            return_dict (`bool`, *optional*, defaults to `False`):
4494
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Sylvain Gugger's avatar
Sylvain Gugger committed
4495

Lysandre's avatar
Lysandre committed
4496
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
4497
        """
thomwolf's avatar
thomwolf committed
4498
        start_logits = self.start_logits(hidden_states, p_mask=p_mask)
thomwolf's avatar
thomwolf committed
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521

        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, let's remove the dimension added by batch splitting
            for x in (start_positions, end_positions, cls_index, is_impossible):
                if x is not None and x.dim() > 1:
                    x.squeeze_(-1)

            # during training, compute the end logits based on the ground truth of the start position
            end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)

            loss_fct = CrossEntropyLoss()
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

            if cls_index is not None and is_impossible is not None:
                # Predict answerability from the representation of CLS and START
                cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
                loss_fct_cls = nn.BCEWithLogitsLoss()
                cls_loss = loss_fct_cls(cls_logits, is_impossible)

                # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss
                total_loss += cls_loss * 0.5
4522

4523
            return SquadHeadOutput(loss=total_loss) if return_dict else (total_loss,)
thomwolf's avatar
thomwolf committed
4524
4525
4526
4527

        else:
            # during inference, compute the end logits based on beam search
            bsz, slen, hsz = hidden_states.size()
4528
            start_log_probs = nn.functional.softmax(start_logits, dim=-1)  # shape (bsz, slen)
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539

            start_top_log_probs, start_top_index = torch.topk(
                start_log_probs, self.start_n_top, dim=-1
            )  # shape (bsz, start_n_top)
            start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz)  # shape (bsz, start_n_top, hsz)
            start_states = torch.gather(hidden_states, -2, start_top_index_exp)  # shape (bsz, start_n_top, hsz)
            start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1)  # shape (bsz, slen, start_n_top, hsz)

            hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(
                start_states
            )  # shape (bsz, slen, start_n_top, hsz)
thomwolf's avatar
thomwolf committed
4540
4541
            p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
            end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
4542
            end_log_probs = nn.functional.softmax(end_logits, dim=1)  # shape (bsz, slen, start_n_top)
thomwolf's avatar
thomwolf committed
4543

4544
4545
4546
            end_top_log_probs, end_top_index = torch.topk(
                end_log_probs, self.end_n_top, dim=1
            )  # shape (bsz, end_n_top, start_n_top)
thomwolf's avatar
thomwolf committed
4547
4548
4549
4550
4551
4552
            end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
            end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)

            start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs)
            cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index)

4553
            if not return_dict:
4554
4555
4556
4557
4558
4559
4560
4561
4562
                return (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits)
            else:
                return SquadHeadOutput(
                    start_top_log_probs=start_top_log_probs,
                    start_top_index=start_top_index,
                    end_top_log_probs=end_top_log_probs,
                    end_top_index=end_top_index,
                    cls_logits=cls_logits,
                )
thomwolf's avatar
thomwolf committed
4563
4564
4565


class SequenceSummary(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
4566
4567
4568
4569
    r"""
    Compute a single vector summary of a sequence hidden states.

    Args:
4570
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
4571
4572
            The config used by the model. Relevant arguments in the config class of the model are (refer to the actual
            config class of your model for the default values it uses):
Sylvain Gugger's avatar
Sylvain Gugger committed
4573

4574
            - **summary_type** (`str`) -- The method to use to make this summary. Accepted values are:
Sylvain Gugger's avatar
Sylvain Gugger committed
4575

4576
4577
4578
4579
4580
                - `"last"` -- Take the last token hidden state (like XLNet)
                - `"first"` -- Take the first token hidden state (like Bert)
                - `"mean"` -- Take the mean of all tokens hidden states
                - `"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2)
                - `"attn"` -- Not implemented now, use multi-head attention
Sylvain Gugger's avatar
Sylvain Gugger committed
4581

4582
            - **summary_use_proj** (`bool`) -- Add a projection after the vector extraction.
Sylvain Gugger's avatar
Sylvain Gugger committed
4583
4584
4585
4586
4587
4588
            - **summary_proj_to_labels** (`bool`) -- If `True`, the projection outputs to `config.num_labels` classes
              (otherwise to `config.hidden_size`).
            - **summary_activation** (`Optional[str]`) -- Set to `"tanh"` to add a tanh activation to the output,
              another string or `None` will add no activation.
            - **summary_first_dropout** (`float`) -- Optional dropout probability before the projection and activation.
            - **summary_last_dropout** (`float`)-- Optional dropout probability after the projection and activation.
thomwolf's avatar
thomwolf committed
4589
    """
4590

4591
    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
4592
        super().__init__()
thomwolf's avatar
thomwolf committed
4593

4594
        self.summary_type = getattr(config, "summary_type", "last")
4595
        if self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
4596
4597
4598
4599
4600
            # We should use a standard multi-head attention module with absolute positional embedding for that.
            # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
            # We can probably just use the multi-head attention module of PyTorch >=1.1.0
            raise NotImplementedError

thomwolf's avatar
thomwolf committed
4601
        self.summary = Identity()
4602
4603
        if hasattr(config, "summary_use_proj") and config.summary_use_proj:
            if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0:
4604
                num_classes = config.num_labels
thomwolf's avatar
thomwolf committed
4605
4606
4607
4608
            else:
                num_classes = config.hidden_size
            self.summary = nn.Linear(config.hidden_size, num_classes)

4609
        activation_string = getattr(config, "summary_activation", None)
Lysandre's avatar
Lysandre committed
4610
        self.activation: Callable = get_activation(activation_string) if activation_string else Identity()
thomwolf's avatar
thomwolf committed
4611

thomwolf's avatar
thomwolf committed
4612
        self.first_dropout = Identity()
4613
        if hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0:
4614
4615
            self.first_dropout = nn.Dropout(config.summary_first_dropout)

thomwolf's avatar
thomwolf committed
4616
        self.last_dropout = Identity()
4617
        if hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0:
4618
            self.last_dropout = nn.Dropout(config.summary_last_dropout)
thomwolf's avatar
thomwolf committed
4619

Sylvain Gugger's avatar
Sylvain Gugger committed
4620
4621
4622
4623
4624
4625
4626
    def forward(
        self, hidden_states: torch.FloatTensor, cls_index: Optional[torch.LongTensor] = None
    ) -> torch.FloatTensor:
        """
        Compute a single vector summary of a sequence hidden states.

        Args:
4627
            hidden_states (`torch.FloatTensor` of shape `[batch_size, seq_len, hidden_size]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
4628
                The hidden states of the last layer.
4629
            cls_index (`torch.LongTensor` of shape `[batch_size]` or `[batch_size, ...]` where ... are optional leading dimensions of `hidden_states`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4630
                Used if `summary_type == "cls_index"` and takes the last token of the sequence as classification token.
Sylvain Gugger's avatar
Sylvain Gugger committed
4631
4632

        Returns:
4633
            `torch.FloatTensor`: The summary of the sequence hidden states.
thomwolf's avatar
thomwolf committed
4634
        """
4635
        if self.summary_type == "last":
thomwolf's avatar
thomwolf committed
4636
            output = hidden_states[:, -1]
4637
        elif self.summary_type == "first":
thomwolf's avatar
thomwolf committed
4638
            output = hidden_states[:, 0]
4639
        elif self.summary_type == "mean":
thomwolf's avatar
thomwolf committed
4640
            output = hidden_states.mean(dim=1)
4641
        elif self.summary_type == "cls_index":
thomwolf's avatar
thomwolf committed
4642
            if cls_index is None:
Lysandre's avatar
Lysandre committed
4643
4644
4645
4646
4647
                cls_index = torch.full_like(
                    hidden_states[..., :1, :],
                    hidden_states.shape[-2] - 1,
                    dtype=torch.long,
                )
thomwolf's avatar
thomwolf committed
4648
            else:
thomwolf's avatar
thomwolf committed
4649
                cls_index = cls_index.unsqueeze(-1).unsqueeze(-1)
4650
                cls_index = cls_index.expand((-1,) * (cls_index.dim() - 1) + (hidden_states.size(-1),))
thomwolf's avatar
thomwolf committed
4651
            # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
4652
4653
            output = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, XX, hidden_size)
        elif self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
4654
4655
            raise NotImplementedError

4656
        output = self.first_dropout(output)
thomwolf's avatar
thomwolf committed
4657
4658
        output = self.summary(output)
        output = self.activation(output)
4659
        output = self.last_dropout(output)
thomwolf's avatar
thomwolf committed
4660
4661
4662
4663

        return output


4664
def unwrap_model(model: nn.Module) -> nn.Module:
4665
4666
4667
4668
    """
    Recursively unwraps a model from potential containers (as used in distributed training).

    Args:
4669
        model (`torch.nn.Module`): The model to unwrap.
4670
4671
4672
4673
4674
4675
    """
    # since there could be multiple levels of wrapping, unwrap recursively
    if hasattr(model, "module"):
        return unwrap_model(model.module)
    else:
        return model
Sylvain Gugger's avatar
Sylvain Gugger committed
4676
4677


4678
def expand_device_map(device_map, param_names, start_prefix):
Sylvain Gugger's avatar
Sylvain Gugger committed
4679
4680
4681
4682
    """
    Expand a device map to return the correspondance parameter name to device.
    """
    new_device_map = {}
4683
    param_names = [p[len(start_prefix) :] for p in param_names if p.startswith(start_prefix)]
Sylvain Gugger's avatar
Sylvain Gugger committed
4684
    for module, device in device_map.items():
4685
4686
4687
        new_device_map.update(
            {p: device for p in param_names if p == module or p.startswith(f"{module}.") or module == ""}
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
4688
4689
4690
    return new_device_map


4691
def get_disk_only_shard_files(device_map, sharded_metadata, start_prefix):
Sylvain Gugger's avatar
Sylvain Gugger committed
4692
4693
4694
    """
    Returns the list of shard files containing only weights offloaded to disk.
    """
4695
4696
4697
4698

    weight_map = {
        p[len(start_prefix) :]: v for p, v in sharded_metadata["weight_map"].items() if p.startswith(start_prefix)
    }
Sylvain Gugger's avatar
Sylvain Gugger committed
4699
    files_content = collections.defaultdict(list)
4700
    for weight_name, filename in weight_map.items():
Sylvain Gugger's avatar
Sylvain Gugger committed
4701
4702
4703
4704
4705
        while len(weight_name) > 0 and weight_name not in device_map:
            weight_name = ".".join(weight_name.split(".")[:-1])
        files_content[filename].append(device_map[weight_name])

    return [fname for fname, devices in files_content.items() if set(devices) == {"disk"}]