modeling_utils.py 189 KB
Newer Older
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
16
import collections
17
import gc
18
import importlib.metadata
Yih-Dar's avatar
Yih-Dar committed
19
import inspect
Sylvain Gugger's avatar
Sylvain Gugger committed
20
import json
21
import os
22
import re
Sylvain Gugger's avatar
Sylvain Gugger committed
23
24
import shutil
import tempfile
25
import warnings
26
from contextlib import contextmanager
27
from dataclasses import dataclass
28
from functools import partial, wraps
29
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
30
31

import torch
32
from packaging import version
Sylvain Gugger's avatar
Sylvain Gugger committed
33
from torch import Tensor, nn
34
from torch.nn import CrossEntropyLoss
35

36
from .activations import get_activation
37
from .configuration_utils import PretrainedConfig
38
from .deepspeed import deepspeed_config, is_deepspeed_zero3_enabled
39
from .dynamic_module_utils import custom_object_save
40
from .generation import GenerationConfig, GenerationMixin
41
42
43
44
from .pytorch_utils import (  # noqa: F401
    Conv1D,
    apply_chunking_to_forward,
    find_pruneable_heads_and_indices,
Thomas Wang's avatar
Thomas Wang committed
45
    id_tensor_storage,
46
47
48
49
    prune_conv1d_layer,
    prune_layer,
    prune_linear_layer,
)
50
from .utils import (
Aymeric Augustin's avatar
Aymeric Augustin committed
51
    DUMMY_INPUTS,
52
    FLAX_WEIGHTS_NAME,
53
54
    SAFE_WEIGHTS_INDEX_NAME,
    SAFE_WEIGHTS_NAME,
55
56
    TF2_WEIGHTS_NAME,
    TF_WEIGHTS_NAME,
Sylvain Gugger's avatar
Sylvain Gugger committed
57
    WEIGHTS_INDEX_NAME,
58
    WEIGHTS_NAME,
59
    ContextManagers,
60
    ModelOutput,
Sylvain Gugger's avatar
Sylvain Gugger committed
61
    PushToHubMixin,
62
    cached_file,
63
    copy_func,
64
    download_url,
65
    has_file,
66
    is_accelerate_available,
67
    is_bitsandbytes_available,
68
    is_offline_mode,
69
    is_optimum_available,
70
    is_remote_url,
71
    is_safetensors_available,
72
    is_torch_tpu_available,
73
    logging,
Sylvain Gugger's avatar
Sylvain Gugger committed
74
    replace_return_docstrings,
75
)
76
from .utils.hub import convert_file_size_to_int, get_checkpoint_shard_files
77
from .utils.import_utils import ENV_VARS_TRUE_VALUES, is_sagemaker_mp_enabled, is_torch_fx_proxy
78
from .utils.quantization_config import BitsAndBytesConfig
79
from .utils.versions import require_version_core
80

Aymeric Augustin's avatar
Aymeric Augustin committed
81

82
83
84
XLA_USE_BF16 = os.environ.get("XLA_USE_BF16", "0").upper()
XLA_DOWNCAST_BF16 = os.environ.get("XLA_DOWNCAST_BF16", "0").upper()

85
86
87
if is_accelerate_available():
    from accelerate import dispatch_model, infer_auto_device_map, init_empty_weights
    from accelerate.utils import (
88
        check_tied_parameters_on_same_device,
89
        find_tied_parameters,
90
        get_balanced_memory,
91
92
93
94
95
96
        load_offloaded_weights,
        offload_weight,
        save_offload_index,
        set_module_tensor_to_device,
    )

97
98
99
100
if is_safetensors_available():
    from safetensors import safe_open
    from safetensors.torch import load_file as safe_load_file
    from safetensors.torch import save_file as safe_save_file
101

Lysandre Debut's avatar
Lysandre Debut committed
102
logger = logging.get_logger(__name__)
103

104
105
106
107

_init_weights = True


108
109
110
111
112
113
114
115
116
if is_sagemaker_mp_enabled():
    import smdistributed.modelparallel.torch as smp
    from smdistributed.modelparallel import __version__ as SMP_VERSION

    IS_SAGEMAKER_MP_POST_1_10 = version.parse(SMP_VERSION) >= version.parse("1.10")
else:
    IS_SAGEMAKER_MP_POST_1_10 = False


117
118
119
120
121
122
123
124
@contextmanager
def no_init_weights(_enable=True):
    """
    Context manager to globally disable weight initialization to speed up loading large models.

    TODO(Patrick): Delete safety argument `_enable=True` at next major version. .
    """
    global _init_weights
125
    old_init_weights = _init_weights
126
127
128
129
130
    if _enable:
        _init_weights = False
    try:
        yield
    finally:
131
        _init_weights = old_init_weights
132
133


thomwolf's avatar
thomwolf committed
134
135
136
137
138
try:
    from torch.nn import Identity
except ImportError:
    # Older PyTorch compatibility
    class Identity(nn.Module):
Lysandre's avatar
Lysandre committed
139
        r"""A placeholder identity operator that is argument-insensitive."""
140

thomwolf's avatar
thomwolf committed
141
        def __init__(self, *args, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
142
            super().__init__()
thomwolf's avatar
thomwolf committed
143
144
145
146

        def forward(self, input):
            return input

147

Lysandre Debut's avatar
Lysandre Debut committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
def get_parameter_device(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    try:
        return next(parameter.parameters()).device
    except StopIteration:
        # For nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].device


163
164
165
166
def get_first_parameter_dtype(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    """
    Returns the first parameter dtype (can be non-floating) or asserts if none were found.
    """
Lysandre Debut's avatar
Lysandre Debut committed
167
168
169
    try:
        return next(parameter.parameters()).dtype
    except StopIteration:
Sylvain Gugger's avatar
Sylvain Gugger committed
170
        # For nn.DataParallel compatibility in PyTorch > 1.5
Lysandre Debut's avatar
Lysandre Debut committed
171
172
173
174
175
176
177
178
179
180

        def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].dtype


181
182
def get_parameter_dtype(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
183
    Returns the first found floating dtype in parameters if there is one, otherwise returns the last dtype it found.
184
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
185
186
187
188
    last_dtype = None
    for t in parameter.parameters():
        last_dtype = t.dtype
        if t.is_floating_point():
189
190
191
            # Adding fix for https://github.com/pytorch/xla/issues/4152
            # Fixes issue where the model code passes a value that is out of range for XLA_USE_BF16=1
            # and XLA_DOWNCAST_BF16=1 so the conversion would cast it to -inf
192
193
194
195
196
            # NOTE: `is_torch_tpu_available()` is checked last as it induces a graph break in torch dynamo
            if XLA_USE_BF16 in ENV_VARS_TRUE_VALUES and is_torch_tpu_available():
                return torch.bfloat16
            if XLA_DOWNCAST_BF16 in ENV_VARS_TRUE_VALUES and is_torch_tpu_available():
                if t.dtype == torch.float:
197
                    return torch.bfloat16
198
199
                if t.dtype == torch.double:
                    return torch.float32
Sylvain Gugger's avatar
Sylvain Gugger committed
200
            return t.dtype
201

Sylvain Gugger's avatar
Sylvain Gugger committed
202
203
204
    if last_dtype is not None:
        # if no floating dtype was found return whatever the first dtype is
        return last_dtype
205

206
207
208
209
210
211
212
213
214
215
216
217
218
    # For nn.DataParallel compatibility in PyTorch > 1.5
    def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
        tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
        return tuples

    gen = parameter._named_members(get_members_fn=find_tensor_attributes)
    last_tuple = None
    for tuple in gen:
        last_tuple = tuple
        if tuple[1].is_floating_point():
            return tuple[1].dtype

    if last_tuple is not None:
219
220
        # fallback to the last dtype
        return last_tuple[1].dtype
221

222
223
224
225
226
227
228
    # fallback to buffer dtype
    for t in parameter.buffers():
        last_dtype = t.dtype
        if t.is_floating_point():
            return t.dtype
    return last_dtype

229
230
231
232
233
234
235
236
237
238
239
240
241
242

def get_state_dict_float_dtype(state_dict):
    """
    Returns the first found floating dtype in `state_dict` or asserts if none were found.
    """
    for t in state_dict.values():
        if t.is_floating_point():
            return t.dtype

    raise ValueError("couldn't find any floating point dtypes in state_dict")


def get_state_dict_dtype(state_dict):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
243
    Returns the first found floating dtype in `state_dict` if there is one, otherwise returns the first dtype.
244
245
246
247
248
249
250
    """
    for t in state_dict.values():
        if t.is_floating_point():
            return t.dtype

    # if no floating dtype was found return whatever the first dtype is
    else:
Sylvain Gugger's avatar
Sylvain Gugger committed
251
        return next(state_dict.values()).dtype
252
253


Sylvain Gugger's avatar
Sylvain Gugger committed
254
255
256
257
258
259
260
261
262
263
264
265
266
def dtype_byte_size(dtype):
    """
    Returns the size (in bytes) occupied by one parameter of type `dtype`.

    Example:

    ```py
    >>> dtype_byte_size(torch.float32)
    4
    ```
    """
    if dtype == torch.bool:
        return 1 / 8
267
    bit_search = re.search(r"[^\d](\d+)$", str(dtype))
Sylvain Gugger's avatar
Sylvain Gugger committed
268
269
270
271
272
273
    if bit_search is None:
        raise ValueError(f"`dtype` is not a valid dtype: {dtype}.")
    bit_size = int(bit_search.groups()[0])
    return bit_size // 8


274
275
276
def shard_checkpoint(
    state_dict: Dict[str, torch.Tensor], max_shard_size: Union[int, str] = "10GB", weights_name: str = WEIGHTS_NAME
):
Sylvain Gugger's avatar
Sylvain Gugger committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
    """
    Splits a model state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a
    given size.

    The sub-checkpoints are determined by iterating through the `state_dict` in the order of its keys, so there is no
    optimization made to make each sub-checkpoint as close as possible to the maximum size passed. For example, if the
    limit is 10GB and we have weights of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as [6GB], [6+2GB],
    [6+2+2GB] and not [6+2+2GB], [6+2GB], [6GB].

    <Tip warning={true}>

    If one of the model's weight is bigger that `max_sahrd_size`, it will end up in its own sub-checkpoint which will
    have a size greater than `max_shard_size`.

    </Tip>

    Args:
        state_dict (`Dict[str, torch.Tensor]`): The state dictionary of a model to save.
        max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
            The maximum size of each sub-checkpoint. If expressed as a string, needs to be digits followed by a unit
            (like `"5MB"`).
298
299
        weights_name (`str`, *optional*, defaults to `"pytorch_model.bin"`):
            The name of the model save file.
Sylvain Gugger's avatar
Sylvain Gugger committed
300
301
302
    """
    max_shard_size = convert_file_size_to_int(max_shard_size)

Thomas Wang's avatar
Thomas Wang committed
303
304
    sharded_state_dicts = [{}]
    last_block_size = 0
Sylvain Gugger's avatar
Sylvain Gugger committed
305
    total_size = 0
Thomas Wang's avatar
Thomas Wang committed
306
    storage_id_to_block = {}
Sylvain Gugger's avatar
Sylvain Gugger committed
307
308

    for key, weight in state_dict.items():
309
310
311
312
313
314
        # when bnb serialization is used the weights in the state dict can be strings
        # check: https://github.com/huggingface/transformers/pull/24416 for more details
        if isinstance(weight, str):
            continue
        else:
            storage_id = id_tensor_storage(weight)
Thomas Wang's avatar
Thomas Wang committed
315
316
317
318
319
320
321

        # If a `weight` shares the same underlying storage as another tensor, we put `weight` in the same `block`
        if storage_id in storage_id_to_block:
            block_id = storage_id_to_block[storage_id]
            sharded_state_dicts[block_id][key] = weight
            continue

Sylvain Gugger's avatar
Sylvain Gugger committed
322
323
        weight_size = weight.numel() * dtype_byte_size(weight.dtype)

Sylvain Gugger's avatar
Sylvain Gugger committed
324
325
326
        # If this weight is going to tip up over the maximal size, we split, but only if we have put at least one
        # weight in the current shard.
        if last_block_size + weight_size > max_shard_size and len(sharded_state_dicts[-1]) > 0:
Thomas Wang's avatar
Thomas Wang committed
327
328
            sharded_state_dicts.append({})
            last_block_size = 0
Sylvain Gugger's avatar
Sylvain Gugger committed
329

Thomas Wang's avatar
Thomas Wang committed
330
331
        sharded_state_dicts[-1][key] = weight
        last_block_size += weight_size
Sylvain Gugger's avatar
Sylvain Gugger committed
332
        total_size += weight_size
Thomas Wang's avatar
Thomas Wang committed
333
        storage_id_to_block[storage_id] = len(sharded_state_dicts) - 1
Sylvain Gugger's avatar
Sylvain Gugger committed
334
335
336

    # If we only have one shard, we return it
    if len(sharded_state_dicts) == 1:
337
        return {weights_name: sharded_state_dicts[0]}, None
Sylvain Gugger's avatar
Sylvain Gugger committed
338
339
340
341
342

    # Otherwise, let's build the index
    weight_map = {}
    shards = {}
    for idx, shard in enumerate(sharded_state_dicts):
343
344
345
346
        shard_file = weights_name.replace(".bin", f"-{idx+1:05d}-of-{len(sharded_state_dicts):05d}.bin")
        shard_file = shard_file.replace(
            ".safetensors", f"-{idx + 1:05d}-of-{len(sharded_state_dicts):05d}.safetensors"
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
347
348
349
350
351
352
353
354
355
356
        shards[shard_file] = shard
        for key in shard.keys():
            weight_map[key] = shard_file

    # Add the metadata
    metadata = {"total_size": total_size}
    index = {"metadata": metadata, "weight_map": weight_map}
    return shards, index


357
def load_sharded_checkpoint(model, folder, strict=True, prefer_safe=True):
358
359
360
361
362
363
364
365
366
367
368
369
370
    """
    This is the same as
    [`torch.nn.Module.load_state_dict`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html?highlight=load_state_dict#torch.nn.Module.load_state_dict)
    but for a sharded checkpoint.

    This load is performed efficiently: each checkpoint shard is loaded one by one in RAM and deleted after being
    loaded in the model.

    Args:
        model (`torch.nn.Module`): The model in which to load the checkpoint.
        folder (`str` or `os.PathLike`): A path to a folder containing the sharded checkpoint.
        strict (`bool`, *optional`, defaults to `True`):
            Whether to strictly enforce that the keys in the model state dict match the keys in the sharded checkpoint.
371
372
373
        prefer_safe (`bool`, *optional*, defaults to `False`)
            If both safetensors and PyTorch save files are present in checkpoint and `prefer_safe` is True, the
            safetensors files will be loaded. Otherwise, PyTorch files are always loaded when possible.
374
375
376
377
378
379
380
381

    Returns:
        `NamedTuple`: A named tuple with `missing_keys` and `unexpected_keys` fields
            - `missing_keys` is a list of str containing the missing keys
            - `unexpected_keys` is a list of str containing the unexpected keys
    """
    # Load the index
    index_file = os.path.join(folder, WEIGHTS_INDEX_NAME)
382
    safe_index_file = os.path.join(folder, SAFE_WEIGHTS_INDEX_NAME)
383

384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
    index_present = os.path.isfile(index_file)
    safe_index_present = os.path.isfile(safe_index_file)

    if not index_present and not (safe_index_present and is_safetensors_available()):
        filenames = (
            (WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_INDEX_NAME) if is_safetensors_available() else (WEIGHTS_INDEX_NAME,)
        )
        raise ValueError(f"Can't find a checkpoint index ({' or '.join(filenames)}) in {folder}.")

    load_safe = False
    if safe_index_present:
        if prefer_safe:
            if is_safetensors_available():
                load_safe = True  # load safe due to preference
            else:
                logger.warning(
                    f"Cannot load sharded checkpoint at {folder} safely since safetensors is not installed!"
                )
        elif not index_present:
            load_safe = True  # load safe since we have no other choice

    load_index = safe_index_file if load_safe else index_file

    with open(load_index, "r", encoding="utf-8") as f:
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
        index = json.load(f)

    shard_files = list(set(index["weight_map"].values()))

    # If strict=True, error before loading any of the state dicts.
    loaded_keys = index["weight_map"].keys()
    model_keys = model.state_dict().keys()
    missing_keys = [key for key in model_keys if key not in loaded_keys]
    unexpected_keys = [key for key in loaded_keys if key not in model_keys]
    if strict and (len(missing_keys) > 0 or len(unexpected_keys) > 0):
        error_message = f"Error(s) in loading state_dict for {model.__class__.__name__}"
        if len(missing_keys) > 0:
            str_missing_keys = ",".join([f'"{k}"' for k in missing_keys])
            error_message += f"\nMissing key(s): {str_missing_keys}."
        if len(unexpected_keys) > 0:
            str_unexpected_keys = ",".join([f'"{k}"' for k in unexpected_keys])
            error_message += f"\nMissing key(s): {str_unexpected_keys}."
        raise RuntimeError(error_message)

427
428
    loader = safe_load_file if load_safe else partial(torch.load, map_location="cpu")

429
    for shard_file in shard_files:
430
        state_dict = loader(os.path.join(folder, shard_file))
431
432
        model.load_state_dict(state_dict, strict=False)

433
        # Make sure memory is freed before we load the next state dict.
434
435
436
437
438
439
440
        del state_dict
        gc.collect()

    # Return the same thing as PyTorch load_state_dict function.
    return torch.nn.modules.module._IncompatibleKeys(missing_keys, unexpected_keys)


Sylvain Gugger's avatar
Sylvain Gugger committed
441
442
443
444
def load_state_dict(checkpoint_file: Union[str, os.PathLike]):
    """
    Reads a PyTorch checkpoint file, returning properly formatted errors if they arise.
    """
445
446
447
448
449
450
451
452
453
454
455
456
457
458
    if checkpoint_file.endswith(".safetensors") and is_safetensors_available():
        # Check format of the archive
        with safe_open(checkpoint_file, framework="pt") as f:
            metadata = f.metadata()
        if metadata.get("format") not in ["pt", "tf", "flax"]:
            raise OSError(
                f"The safetensors archive passed at {checkpoint_file} does not contain the valid metadata. Make sure "
                "you save your model with the `save_pretrained` method."
            )
        elif metadata["format"] != "pt":
            raise NotImplementedError(
                f"Conversion from a {metadata['format']} safetensors archive to PyTorch is not implemented yet."
            )
        return safe_load_file(checkpoint_file)
Sylvain Gugger's avatar
Sylvain Gugger committed
459
    try:
460
461
462
463
464
        if is_deepspeed_zero3_enabled() and torch.distributed.is_initialized() and torch.distributed.get_rank() > 0:
            map_location = "meta"
        else:
            map_location = "cpu"
        return torch.load(checkpoint_file, map_location=map_location)
Sylvain Gugger's avatar
Sylvain Gugger committed
465
466
467
    except Exception as e:
        try:
            with open(checkpoint_file) as f:
468
                if f.read(7) == "version":
Sylvain Gugger's avatar
Sylvain Gugger committed
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
                    raise OSError(
                        "You seem to have cloned a repository without having git-lfs installed. Please install "
                        "git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
                        "you cloned."
                    )
                else:
                    raise ValueError(
                        f"Unable to locate the file {checkpoint_file} which is necessary to load this pretrained "
                        "model. Make sure you have saved the model properly."
                    ) from e
        except (UnicodeDecodeError, ValueError):
            raise OSError(
                f"Unable to load weights from pytorch checkpoint file for '{checkpoint_file}' "
                f"at '{checkpoint_file}'. "
                "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True."
            )


487
488
489
490
491
492
493
494
495
496
497
def set_initialized_submodules(model, state_dict_keys):
    """
    Sets the `_is_hf_initialized` flag in all submodules of a given model when all its weights are in the loaded state
    dict.
    """
    for module_name, module in model.named_modules():
        loaded_keys = [k.replace(f"{module_name}.", "") for k in state_dict_keys if k.startswith(f"{module_name}.")]
        if len(set(module.state_dict().keys()) - set(loaded_keys)) == 0:
            module._is_hf_initialized = True


Sylvain Gugger's avatar
Sylvain Gugger committed
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
def _load_state_dict_into_model(model_to_load, state_dict, start_prefix):
    # Convert old format to new format if needed from a PyTorch state_dict
    old_keys = []
    new_keys = []
    for key in state_dict.keys():
        new_key = None
        if "gamma" in key:
            new_key = key.replace("gamma", "weight")
        if "beta" in key:
            new_key = key.replace("beta", "bias")
        if new_key:
            old_keys.append(key)
            new_keys.append(new_key)
    for old_key, new_key in zip(old_keys, new_keys):
        state_dict[new_key] = state_dict.pop(old_key)

    # copy state_dict so _load_from_state_dict can modify it
    metadata = getattr(state_dict, "_metadata", None)
    state_dict = state_dict.copy()
    if metadata is not None:
        state_dict._metadata = metadata

    error_msgs = []

    # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
    # so we need to apply the function recursively.
524
    def load(module: nn.Module, state_dict, prefix=""):
Sylvain Gugger's avatar
Sylvain Gugger committed
525
526
        local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
        args = (state_dict, prefix, local_metadata, True, [], [], error_msgs)
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
        # Parameters of module and children will start with prefix. We can exit early if there are none in this
        # state_dict
        if len([key for key in state_dict if key.startswith(prefix)]) > 0:
            if is_deepspeed_zero3_enabled():
                import deepspeed

                # In sharded models, each shard has only part of the full state_dict, so only gather
                # parameters that are in the current state_dict.
                named_parameters = dict(module.named_parameters(prefix=prefix[:-1], recurse=False))
                params_to_gather = [named_parameters[k] for k in state_dict.keys() if k in named_parameters]
                if len(params_to_gather) > 0:
                    # because zero3 puts placeholders in model params, this context
                    # manager gathers (unpartitions) the params of the current layer, then loads from
                    # the state dict and then re-partitions them again
                    with deepspeed.zero.GatheredParameters(params_to_gather, modifier_rank=0):
                        if torch.distributed.get_rank() == 0:
                            module._load_from_state_dict(*args)
            else:
                module._load_from_state_dict(*args)
Sylvain Gugger's avatar
Sylvain Gugger committed
546
547
548

        for name, child in module._modules.items():
            if child is not None:
549
                load(child, state_dict, prefix + name + ".")
Sylvain Gugger's avatar
Sylvain Gugger committed
550

551
552
553
554
    load(model_to_load, state_dict, prefix=start_prefix)
    # Delete `state_dict` so it could be collected by GC earlier. Note that `state_dict` is a copy of the argument, so
    # it's safe to delete it.
    del state_dict
Sylvain Gugger's avatar
Sylvain Gugger committed
555
556
557
558

    return error_msgs


559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
def find_submodule_and_param_name(model, long_key, start_prefix):
    """
    A helper util to find the last sub-module and the param/buffer name. If `start_prefix` is supplied it'll be removed
    from the start of the key
    """

    if len(start_prefix) > 0 and long_key.startswith(start_prefix):
        long_key = ".".join(long_key.split(".")[1:])

    split_key = long_key.split(".")
    submodule = model
    while len(split_key) > 1:
        if hasattr(submodule, split_key[0]):
            submodule = getattr(submodule, split_key[0])
            del split_key[0]
        else:
            submodule = None
            break
    if submodule == model:
        submodule = None
    return submodule, split_key[0]


def _move_model_to_meta(model, loaded_state_dict_keys, start_prefix):
    """
    Moves `loaded_state_dict_keys` in model to meta device which frees up the memory taken by those params.

    `start_prefix` is used for models which insert their name into model keys, e.g. `bert` in
    `bert.pooler.dense.weight`

    """

    # dematerialize param storage for keys that are going to be replaced by state_dict, by
    # putting those on the meta device
    for k in loaded_state_dict_keys:
        submodule, param_name = find_submodule_and_param_name(model, k, start_prefix)
        if submodule is not None:
            # selectively switch to the meta device only those params/buffers that will
            # be next replaced from state_dict. This a complex way to do p.to_("meta")
            # since we have no in-place to_ for tensors.
            new_val = getattr(submodule, param_name)
            if isinstance(new_val, torch.nn.Parameter):
                # isinstance returns False for Params on meta device, so switch after the check
                new_val = torch.nn.Parameter(new_val.to("meta"))
            else:
                new_val = new_val.to("meta")
            setattr(submodule, param_name, new_val)


608
609
610
611
612
613
614
615
616
617
618
619
def _load_state_dict_into_meta_model(
    model,
    state_dict,
    loaded_state_dict_keys,  # left for now but could be removed, see below
    start_prefix,
    expected_keys,
    device_map=None,
    offload_folder=None,
    offload_index=None,
    state_dict_folder=None,
    state_dict_index=None,
    dtype=None,
620
    is_quantized=False,
Sylvain Gugger's avatar
Sylvain Gugger committed
621
    is_safetensors=False,
622
    keep_in_fp32_modules=None,
623
):
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
    """
    This is somewhat similar to `_load_state_dict_into_model`, but deals with a model that has some or all of its
    params on a `meta` device. It replaces the model params with the data from the `state_dict`, while moving the
    params back to the normal device, but only for `loaded_state_dict_keys`.

    `start_prefix` is used for models which insert their name into model keys, e.g. `bert` in
    `bert.pooler.dense.weight`

    """

    # XXX: remaining features to implement to be fully compatible with _load_state_dict_into_model
    # - deepspeed zero 3 support
    # - need to copy metadata if any - see _load_state_dict_into_model
    # - handling error_msgs - mimicking the error handling in module._load_from_state_dict()
    # - Is there a situation where some keys aren't in `loaded_state_dict_keys` and in which case
    #   they won't get loaded.

641
642
    if is_quantized:
        from .utils.bitsandbytes import set_module_quantized_tensor_to_device
643

644
645
    error_msgs = []

646
647
648
649
650
651
652
653
654
655
656
657
658
    old_keys = []
    new_keys = []
    for key in state_dict.keys():
        new_key = None
        if "gamma" in key:
            new_key = key.replace("gamma", "weight")
        if "beta" in key:
            new_key = key.replace("beta", "bias")
        if new_key:
            old_keys.append(key)
            new_keys.append(new_key)
    for old_key, new_key in zip(old_keys, new_keys):
        state_dict[new_key] = state_dict.pop(old_key)
659

660
661
662
663
664
665
666
667
668
    for param_name, param in state_dict.items():
        # First part of the test is always true as load_state_dict_keys always contains state_dict keys.
        if param_name not in loaded_state_dict_keys or param_name not in expected_keys:
            continue

        if param_name.startswith(start_prefix):
            param_name = param_name[len(start_prefix) :]

        module_name = param_name
669
        set_module_kwargs = {}
670

671
        # We convert floating dtypes to the `dtype` passed. We want to keep the buffers/params
672
673
        # in int/uint/bool and not cast them.
        if dtype is not None and torch.is_floating_point(param):
674
675
676
677
678
679
            if (
                keep_in_fp32_modules is not None
                and any(module_to_keep_in_fp32 in param_name for module_to_keep_in_fp32 in keep_in_fp32_modules)
                and dtype == torch.float16
            ):
                param = param.to(torch.float32)
680
681
682
683
684

                # For backward compatibility with older versions of `accelerate`
                # TODO: @sgugger replace this check with version check at the next `accelerate` release
                if "dtype" in list(inspect.signature(set_module_tensor_to_device).parameters):
                    set_module_kwargs["dtype"] = torch.float32
685
686
            else:
                param = param.to(dtype)
687
688
689
690
691
692
693
694
695
696
697
698

        # For compatibility with PyTorch load_state_dict which converts state dict dtype to existing dtype in model
        if dtype is None:
            old_param = model
            splits = param_name.split(".")
            for split in splits:
                old_param = getattr(old_param, split)
                if old_param is None:
                    break

            if old_param is not None:
                param = param.to(old_param.dtype)
699

700
701
        set_module_kwargs["value"] = param

702
703
704
705
706
707
708
709
710
711
712
        if device_map is None:
            param_device = "cpu"
        else:
            # find next higher level module that is defined in device_map:
            # bert.lm_head.weight -> bert.lm_head -> bert -> ''
            while len(module_name) > 0 and module_name not in device_map:
                module_name = ".".join(module_name.split(".")[:-1])
            if module_name == "" and "" not in device_map:
                # TODO: group all errors and raise at the end.
                raise ValueError(f"{param_name} doesn't have any device set.")
            param_device = device_map[module_name]
713

714
        if param_device == "disk":
Sylvain Gugger's avatar
Sylvain Gugger committed
715
716
            if not is_safetensors:
                offload_index = offload_weight(param, param_name, offload_folder, offload_index)
717
718
        elif param_device == "cpu" and state_dict_index is not None:
            state_dict_index = offload_weight(param, param_name, state_dict_folder, state_dict_index)
719
        elif not is_quantized:
720
721
            # For backward compatibility with older versions of `accelerate`
            set_module_tensor_to_device(model, param_name, param_device, **set_module_kwargs)
722
        else:
723
724
725
726
727
728
            if param.dtype == torch.int8 and param_name.replace("weight", "SCB") in state_dict.keys():
                fp16_statistics = state_dict[param_name.replace("weight", "SCB")]
            else:
                fp16_statistics = None

            if "SCB" not in param_name:
729
                set_module_quantized_tensor_to_device(
730
731
                    model, param_name, param_device, value=param, fp16_statistics=fp16_statistics
                )
732
733

    return error_msgs, offload_index, state_dict_index
734
735


736
737
738
739
740
741
742
743
744
def _add_variant(weights_name: str, variant: Optional[str] = None) -> str:
    if variant is not None:
        splits = weights_name.split(".")
        splits = splits[:-1] + [variant] + splits[-1:]
        weights_name = ".".join(splits)

    return weights_name


745
class ModuleUtilsMixin:
Julien Chaumond's avatar
Julien Chaumond committed
746
    """
747
    A few utilities for `torch.nn.Modules`, to be used as a mixin.
Julien Chaumond's avatar
Julien Chaumond committed
748
749
    """

750
751
752
753
    @staticmethod
    def _hook_rss_memory_pre_forward(module, *args, **kwargs):
        try:
            import psutil
Sylvain Gugger's avatar
Sylvain Gugger committed
754
        except ImportError:
755
756
757
758
759
760
761
762
763
764
765
            raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")

        process = psutil.Process(os.getpid())
        mem = process.memory_info()
        module.mem_rss_pre_forward = mem.rss
        return None

    @staticmethod
    def _hook_rss_memory_post_forward(module, *args, **kwargs):
        try:
            import psutil
Sylvain Gugger's avatar
Sylvain Gugger committed
766
        except ImportError:
767
768
769
770
771
772
773
774
775
776
            raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")

        process = psutil.Process(os.getpid())
        mem = process.memory_info()
        module.mem_rss_post_forward = mem.rss
        mem_rss_diff = module.mem_rss_post_forward - module.mem_rss_pre_forward
        module.mem_rss_diff = mem_rss_diff + (module.mem_rss_diff if hasattr(module, "mem_rss_diff") else 0)
        return None

    def add_memory_hooks(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
777
778
779
        """
        Add a memory hook before and after each sub-module forward pass to record increase in memory consumption.

Sylvain Gugger's avatar
Sylvain Gugger committed
780
781
        Increase in memory consumption is stored in a `mem_rss_diff` attribute for each module and can be reset to zero
        with `model.reset_memory_hooks_state()`.
782
783
784
785
786
787
788
        """
        for module in self.modules():
            module.register_forward_pre_hook(self._hook_rss_memory_pre_forward)
            module.register_forward_hook(self._hook_rss_memory_post_forward)
        self.reset_memory_hooks_state()

    def reset_memory_hooks_state(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
789
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
790
        Reset the `mem_rss_diff` attribute of each module (see [`~modeling_utils.ModuleUtilsMixin.add_memory_hooks`]).
Sylvain Gugger's avatar
Sylvain Gugger committed
791
        """
792
793
794
795
796
        for module in self.modules():
            module.mem_rss_diff = 0
            module.mem_rss_post_forward = 0
            module.mem_rss_pre_forward = 0

797
    @property
Sylvain Gugger's avatar
Sylvain Gugger committed
798
    def device(self) -> torch.device:
799
        """
800
        `torch.device`: The device on which the module is (assuming that all the module parameters are on the same
801
        device).
802
        """
Lysandre Debut's avatar
Lysandre Debut committed
803
        return get_parameter_device(self)
804

805
    @property
806
    def dtype(self) -> torch.dtype:
807
        """
808
        `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
809
        """
Lysandre Debut's avatar
Lysandre Debut committed
810
        return get_parameter_dtype(self)
811
812

    def invert_attention_mask(self, encoder_attention_mask: Tensor) -> Tensor:
Sylvain Gugger's avatar
Sylvain Gugger committed
813
814
815
816
        """
        Invert an attention mask (e.g., switches 0. and 1.).

        Args:
817
            encoder_attention_mask (`torch.Tensor`): An attention mask.
Sylvain Gugger's avatar
Sylvain Gugger committed
818
819

        Returns:
820
            `torch.Tensor`: The inverted attention mask.
Sylvain Gugger's avatar
Sylvain Gugger committed
821
        """
822
823
824
825
826
827
828
829
830
831
        if encoder_attention_mask.dim() == 3:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
        if encoder_attention_mask.dim() == 2:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
        # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
        # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
        # /transformer/transformer_layers.py#L270
        # encoder_extended_attention_mask = (encoder_extended_attention_mask ==
        # encoder_extended_attention_mask.transpose(-1, -2))
        encoder_extended_attention_mask = encoder_extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
Yih-Dar's avatar
Yih-Dar committed
832
        encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * torch.finfo(self.dtype).min
833

834
835
        return encoder_extended_attention_mask

836
    @staticmethod
837
838
839
840
841
842
843
    def create_extended_attention_mask_for_decoder(input_shape, attention_mask, device=None):
        if device is not None:
            warnings.warn(
                "The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
            )
        else:
            device = attention_mask.device
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
        batch_size, seq_length = input_shape
        seq_ids = torch.arange(seq_length, device=device)
        causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
        # in case past_key_values are used we need to add a prefix ones mask to the causal mask
        # causal and attention masks must have same type with pytorch version < 1.3
        causal_mask = causal_mask.to(attention_mask.dtype)

        if causal_mask.shape[1] < attention_mask.shape[1]:
            prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
            causal_mask = torch.cat(
                [
                    torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype),
                    causal_mask,
                ],
                axis=-1,
            )

        extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
        return extended_attention_mask

864
    def get_extended_attention_mask(
865
        self, attention_mask: Tensor, input_shape: Tuple[int], device: torch.device = None, dtype: torch.float = None
866
    ) -> Tensor:
Sylvain Gugger's avatar
Sylvain Gugger committed
867
868
        """
        Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
869
870

        Arguments:
871
            attention_mask (`torch.Tensor`):
Sylvain Gugger's avatar
Sylvain Gugger committed
872
                Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
873
            input_shape (`Tuple[int]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
874
                The shape of the input to the model.
875
876

        Returns:
877
            `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
878
        """
Yih-Dar's avatar
Yih-Dar committed
879
880
881
        if dtype is None:
            dtype = self.dtype

882
883
884
885
886
887
        if not (attention_mask.dim() == 2 and self.config.is_decoder):
            # show warning only if it won't be shown in `create_extended_attention_mask_for_decoder`
            if device is not None:
                warnings.warn(
                    "The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
                )
888
889
890
891
892
893
894
895
896
        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        if attention_mask.dim() == 3:
            extended_attention_mask = attention_mask[:, None, :, :]
        elif attention_mask.dim() == 2:
            # Provided a padding mask of dimensions [batch_size, seq_length]
            # - if the model is a decoder, apply a causal mask in addition to the padding mask
            # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
            if self.config.is_decoder:
897
                extended_attention_mask = ModuleUtilsMixin.create_extended_attention_mask_for_decoder(
898
899
                    input_shape, attention_mask, device
                )
900
901
902
903
            else:
                extended_attention_mask = attention_mask[:, None, None, :]
        else:
            raise ValueError(
904
                f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})"
905
906
907
908
            )

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
909
        # positions we want to attend and the dtype's smallest value for masked positions.
910
911
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
Yih-Dar's avatar
Yih-Dar committed
912
913
        extended_attention_mask = extended_attention_mask.to(dtype=dtype)  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(dtype).min
914
915
        return extended_attention_mask

Sylvain Gugger's avatar
Sylvain Gugger committed
916
917
918
    def get_head_mask(
        self, head_mask: Optional[Tensor], num_hidden_layers: int, is_attention_chunked: bool = False
    ) -> Tensor:
919
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
920
921
922
        Prepare the head mask if needed.

        Args:
923
            head_mask (`torch.Tensor` with shape `[num_heads]` or `[num_hidden_layers x num_heads]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
924
                The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard).
925
            num_hidden_layers (`int`):
Sylvain Gugger's avatar
Sylvain Gugger committed
926
                The number of hidden layers in the model.
927
            is_attention_chunked (`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
928
929
                Whether or not the attentions scores are computed by chunks or not.

930
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
931
932
            `torch.Tensor` with shape `[num_hidden_layers x batch x num_heads x seq_length x seq_length]` or list with
            `[None]` for each layer.
933
934
935
        """
        if head_mask is not None:
            head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
936
937
            if is_attention_chunked is True:
                head_mask = head_mask.unsqueeze(-1)
938
939
940
941
942
943
944
945
946
947
948
949
950
        else:
            head_mask = [None] * num_hidden_layers

        return head_mask

    def _convert_head_mask_to_5d(self, head_mask, num_hidden_layers):
        """-> [num_hidden_layers x batch x num_heads x seq_length x seq_length]"""
        if head_mask.dim() == 1:
            head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
            head_mask = head_mask.expand(num_hidden_layers, -1, -1, -1, -1)
        elif head_mask.dim() == 2:
            head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
        assert head_mask.dim() == 5, f"head_mask.dim != 5, instead {head_mask.dim()}"
951
        head_mask = head_mask.to(dtype=self.dtype)  # switch to float if need + fp16 compatibility
952
953
        return head_mask

954
955
956
957
958
    def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int:
        """
        Get number of (optionally, trainable or non-embeddings) parameters in the module.

        Args:
959
            only_trainable (`bool`, *optional*, defaults to `False`):
960
961
                Whether or not to return only the number of trainable parameters

962
            exclude_embeddings (`bool`, *optional*, defaults to `False`):
963
964
965
                Whether or not to return only the number of non-embeddings parameters

        Returns:
966
            `int`: The number of parameters.
967
968
        """

969
970
971
972
973
974
975
976
977
978
        if exclude_embeddings:
            embedding_param_names = [
                f"{name}.weight" for name, module_type in self.named_modules() if isinstance(module_type, nn.Embedding)
            ]
            non_embedding_parameters = [
                parameter for name, parameter in self.named_parameters() if name not in embedding_param_names
            ]
            return sum(p.numel() for p in non_embedding_parameters if p.requires_grad or not only_trainable)
        else:
            return sum(p.numel() for p in self.parameters() if p.requires_grad or not only_trainable)
979
980
981
982
983
984

    def estimate_tokens(self, input_dict: Dict[str, Union[torch.Tensor, Any]]) -> int:
        """
        Helper function to estimate the total number of tokens from the model inputs.

        Args:
985
            inputs (`dict`): The model inputs.
986
987

        Returns:
988
            `int`: The total number of tokens.
989
        """
990
991
        if not hasattr(self, "warnings_issued"):
            self.warnings_issued = {}
992
993
        if self.main_input_name in input_dict:
            return input_dict[self.main_input_name].numel()
994
        elif "estimate_tokens" not in self.warnings_issued:
995
            logger.warning(
996
997
                "Could not estimate the number of tokens of the input, floating-point operations will not be computed"
            )
998
999
            self.warnings_issued["estimate_tokens"] = True
        return 0
1000
1001
1002
1003
1004
1005
1006

    def floating_point_ops(
        self, input_dict: Dict[str, Union[torch.Tensor, Any]], exclude_embeddings: bool = True
    ) -> int:
        """
        Get number of (optionally, non-embeddings) floating-point operations for the forward and backward passes of a
        batch with this transformer model. Default approximation neglects the quadratic dependency on the number of
Sylvain Gugger's avatar
Sylvain Gugger committed
1007
1008
        tokens (valid if `12 * d_model << sequence_length`) as laid out in [this
        paper](https://arxiv.org/pdf/2001.08361.pdf) section 2.1. Should be overridden for transformers with parameter
Sylvain Gugger's avatar
Sylvain Gugger committed
1009
        re-use e.g. Albert or Universal Transformers, or if doing long-range modeling with very high sequence lengths.
1010
1011

        Args:
1012
            batch_size (`int`):
1013
1014
                The batch size for the forward pass.

1015
            sequence_length (`int`):
1016
1017
                The number of tokens in each line of the batch.

1018
            exclude_embeddings (`bool`, *optional*, defaults to `True`):
1019
1020
1021
                Whether or not to count embedding and softmax operations.

        Returns:
1022
            `int`: The number of floating-point operations.
1023
1024
1025
1026
        """

        return 6 * self.estimate_tokens(input_dict) * self.num_parameters(exclude_embeddings=exclude_embeddings)

Julien Chaumond's avatar
Julien Chaumond committed
1027

Sylvain Gugger's avatar
Sylvain Gugger committed
1028
class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMixin):
1029
1030
    r"""
    Base class for all models.
1031

Sylvain Gugger's avatar
Sylvain Gugger committed
1032
1033
    [`PreTrainedModel`] takes care of storing the configuration of the models and handles methods for loading,
    downloading and saving models as well as a few methods common to all models to:
1034

1035
1036
        - resize the input embeddings,
        - prune heads in the self-attention heads.
1037

1038
    Class attributes (overridden by derived classes):
Sylvain Gugger's avatar
Sylvain Gugger committed
1039

Sylvain Gugger's avatar
Sylvain Gugger committed
1040
1041
1042
1043
        - **config_class** ([`PretrainedConfig`]) -- A subclass of [`PretrainedConfig`] to use as configuration class
          for this model architecture.
        - **load_tf_weights** (`Callable`) -- A python *method* for loading a TensorFlow checkpoint in a PyTorch model,
          taking as arguments:
1044

Sylvain Gugger's avatar
Sylvain Gugger committed
1045
1046
            - **model** ([`PreTrainedModel`]) -- An instance of the model on which to load the TensorFlow checkpoint.
            - **config** ([`PreTrainedConfig`]) -- An instance of the configuration associated to the model.
1047
            - **path** (`str`) -- A path to the TensorFlow checkpoint.
1048

Sylvain Gugger's avatar
Sylvain Gugger committed
1049
1050
        - **base_model_prefix** (`str`) -- A string indicating the attribute associated to the base model in derived
          classes of the same architecture adding modules on top of the base model.
1051
        - **is_parallelizable** (`bool`) -- A flag indicating whether this model supports model parallelization.
Sylvain Gugger's avatar
Sylvain Gugger committed
1052
1053
        - **main_input_name** (`str`) -- The name of the principal input to the model (often `input_ids` for NLP
          models, `pixel_values` for vision models and `input_values` for speech models).
1054
    """
1055
    config_class = None
1056
    base_model_prefix = ""
1057
    main_input_name = "input_ids"
1058
    _auto_class = None
1059
    _no_split_modules = None
1060
    _skip_keys_device_placement = None
1061
    _keep_in_fp32_modules = None
1062

1063
1064
    # a list of `re` patterns of `state_dict` keys that should be removed from the list of missing
    # keys we find (keys inside the model but not in the checkpoint) and avoid unnecessary warnings.
1065
    _keys_to_ignore_on_load_missing = None
1066
1067
1068
    # a list of `re` patterns of `state_dict` keys that should be removed from the list of
    # unexpected keys we find (keys inside the checkpoint but not the model) and avoid unnecessary
    # warnings.
1069
    _keys_to_ignore_on_load_unexpected = None
1070
1071
    # a list of `state_dict` keys to ignore when saving the model (useful for keys that aren't
    # trained, but which are either deterministic or tied variables)
1072
    _keys_to_ignore_on_save = None
Sylvain Gugger's avatar
Sylvain Gugger committed
1073
1074
    # a list of `state_dict` keys that are potentially tied to another key in the state_dict.
    _tied_weights_keys = None
1075

1076
    is_parallelizable = False
1077
    supports_gradient_checkpointing = False
1078

1079
    @property
1080
    def dummy_inputs(self) -> Dict[str, torch.Tensor]:
1081
        """
1082
        `Dict[str, torch.Tensor]`: Dummy inputs to do a forward pass in the network.
1083
        """
1084
        return {"input_ids": torch.tensor(DUMMY_INPUTS)}
1085

1086
1087
1088
1089
1090
1091
1092
    @property
    def framework(self) -> str:
        """
        :str: Identifies that this is a PyTorch model.
        """
        return "pt"

1093
    def __init__(self, config: PretrainedConfig, *inputs, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
1094
        super().__init__()
1095
1096
        if not isinstance(config, PretrainedConfig):
            raise ValueError(
1097
1098
1099
                f"Parameter config in `{self.__class__.__name__}(config)` should be an instance of class "
                "`PretrainedConfig`. To create a model from a pretrained model use "
                f"`model = {self.__class__.__name__}.from_pretrained(PRETRAINED_MODEL_NAME)`"
1100
            )
1101
        # Save config and origin of the pretrained weights if given in model
1102
        self.config = config
1103
        self.name_or_path = config.name_or_path
1104
        self.warnings_issued = {}
1105
        self.generation_config = GenerationConfig.from_model_config(config) if self.can_generate() else None
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119

    def post_init(self):
        """
        A method executed at the end of each Transformer model initialization, to execute code that needs the model's
        modules properly initialized (such as weight initialization).
        """
        self.init_weights()
        self._backward_compatibility_gradient_checkpointing()

    def _backward_compatibility_gradient_checkpointing(self):
        if self.supports_gradient_checkpointing and getattr(self.config, "gradient_checkpointing", False):
            self.gradient_checkpointing_enable()
            # Remove the attribute now that is has been consumed, so it's no saved in the config.
            delattr(self.config, "gradient_checkpointing")
1120

1121
1122
1123
1124
1125
1126
    @classmethod
    def _from_config(cls, config, **kwargs):
        """
        All context managers that the model should be initialized under go here.

        Args:
1127
1128
            torch_dtype (`torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model under this dtype.
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
        """
        torch_dtype = kwargs.pop("torch_dtype", None)

        # override default dtype if needed
        dtype_orig = None
        if torch_dtype is not None:
            dtype_orig = cls._set_default_torch_dtype(torch_dtype)

        if is_deepspeed_zero3_enabled():
            import deepspeed

            logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
            # this immediately partitions the model across all gpus, to avoid the overhead in time
            # and memory copying it on CPU or each GPU first
1143
            with deepspeed.zero.Init(config_dict_or_path=deepspeed_config()):
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
                model = cls(config, **kwargs)
        else:
            model = cls(config, **kwargs)

        # restore default dtype if it was modified
        if dtype_orig is not None:
            torch.set_default_dtype(dtype_orig)

        return model

    @classmethod
    def _set_default_torch_dtype(cls, dtype: torch.dtype) -> torch.dtype:
        """
        Change the default dtype and return the previous one. This is needed when wanting to instantiate the model
        under specific dtype.

        Args:
1161
            dtype (`torch.dtype`):
1162
1163
1164
                a floating dtype to set to.

        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
1165
1166
            `torch.dtype`: the original `dtype` that can be used to restore `torch.set_default_dtype(dtype)` if it was
            modified. If it wasn't, returns `None`.
1167

1168
1169
        Note `set_default_dtype` currently only works with floating-point types and asserts if for example,
        `torch.int64` is passed. So if a non-float `dtype` is passed this functions will throw an exception.
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
        """
        if not dtype.is_floating_point:
            raise ValueError(
                f"Can't instantiate {cls.__name__} model under dtype={dtype} since it is not a floating point dtype"
            )

        logger.info(f"Instantiating {cls.__name__} model under default dtype {dtype}.")
        dtype_orig = torch.get_default_dtype()
        torch.set_default_dtype(dtype)
        return dtype_orig

1181
    @property
1182
1183
    def base_model(self) -> nn.Module:
        """
1184
        `torch.nn.Module`: The main body of the model.
1185
        """
1186
        return getattr(self, self.base_model_prefix, self)
thomwolf's avatar
thomwolf committed
1187

1188
1189
    @classmethod
    def can_generate(cls) -> bool:
1190
1191
1192
1193
1194
1195
1196
        """
        Returns whether this model can generate sequences with `.generate()`.

        Returns:
            `bool`: Whether this model can generate sequences with `.generate()`.
        """
        # Detects whether `prepare_inputs_for_generation` has been overwritten, which is a requirement for generation
1197
        if "GenerationMixin" in str(cls.prepare_inputs_for_generation):
1198
1199
1200
            return False
        return True

1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
    def enable_input_require_grads(self):
        """
        Enables the gradients for the input embeddings. This is useful for fine-tuning adapter weights while keeping
        the model weights fixed.
        """

        def make_inputs_require_grads(module, input, output):
            output.requires_grad_(True)

        self._require_grads_hook = self.get_input_embeddings().register_forward_hook(make_inputs_require_grads)

    def disable_input_require_grads(self):
        """
        Removes the `_require_grads_hook`.
        """
        self._require_grads_hook.remove()

1218
    def get_input_embeddings(self) -> nn.Module:
1219
1220
1221
1222
        """
        Returns the model's input embeddings.

        Returns:
1223
            `nn.Module`: A torch module mapping vocabulary to hidden states.
thomwolf's avatar
thomwolf committed
1224
        """
1225
        base_model = getattr(self, self.base_model_prefix, self)
thomwolf's avatar
thomwolf committed
1226
1227
1228
1229
        if base_model is not self:
            return base_model.get_input_embeddings()
        else:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
1230

1231
    def set_input_embeddings(self, value: nn.Module):
1232
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1233
        Set model's input embeddings.
1234
1235

        Args:
1236
            value (`nn.Module`): A module mapping vocabulary to hidden states.
thomwolf's avatar
thomwolf committed
1237
1238
1239
1240
1241
1242
        """
        base_model = getattr(self, self.base_model_prefix, self)
        if base_model is not self:
            base_model.set_input_embeddings(value)
        else:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
1243

1244
    def get_output_embeddings(self) -> nn.Module:
1245
1246
1247
1248
        """
        Returns the model's output embeddings.

        Returns:
1249
            `nn.Module`: A torch module mapping hidden states to vocabulary.
thomwolf's avatar
thomwolf committed
1250
        """
1251
        return None  # Overwrite for models with output embeddings
thomwolf's avatar
thomwolf committed
1252

1253
1254
1255
1256
    def _init_weights(self, module):
        """
        Initialize the weights. This method should be overridden by derived class.
        """
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
        pass

    def _initialize_weights(self, module):
        """
        Initialize the weights if they are not already initialized.
        """
        if getattr(module, "_is_hf_initialized", False):
            return
        self._init_weights(module)
        module._is_hf_initialized = True
1267

1268
    def tie_weights(self):
1269
1270
        """
        Tie the weights between the input embeddings and the output embeddings.
1271

Sylvain Gugger's avatar
Sylvain Gugger committed
1272
1273
        If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the
        weights instead.
thomwolf's avatar
thomwolf committed
1274
        """
1275
1276
1277
1278
        if getattr(self.config, "tie_word_embeddings", True):
            output_embeddings = self.get_output_embeddings()
            if output_embeddings is not None:
                self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings())
thomwolf's avatar
thomwolf committed
1279

1280
        if getattr(self.config, "is_encoder_decoder", False) and getattr(self.config, "tie_encoder_decoder", False):
Weizhen's avatar
Weizhen committed
1281
1282
            if hasattr(self, self.base_model_prefix):
                self = getattr(self, self.base_model_prefix)
1283
1284
            self._tie_encoder_decoder_weights(self.encoder, self.decoder, self.base_model_prefix)

Sylvain Gugger's avatar
Sylvain Gugger committed
1285
1286
1287
1288
        for module in self.modules():
            if hasattr(module, "_tie_weights"):
                module._tie_weights()

1289
1290
1291
    @staticmethod
    def _tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str):
        uninitialized_encoder_weights: List[str] = []
Weizhen's avatar
Weizhen committed
1292
1293
        if decoder.__class__ != encoder.__class__:
            logger.info(
Sylvain Gugger's avatar
Sylvain Gugger committed
1294
1295
                f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder"
                " weights are correctly initialized."
Weizhen's avatar
Weizhen committed
1296
            )
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306

        def tie_encoder_to_decoder_recursively(
            decoder_pointer: nn.Module,
            encoder_pointer: nn.Module,
            module_name: str,
            uninitialized_encoder_weights: List[str],
            depth=0,
        ):
            assert isinstance(decoder_pointer, nn.Module) and isinstance(
                encoder_pointer, nn.Module
1307
            ), f"{decoder_pointer} and {encoder_pointer} have to be of type nn.Module"
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
            if hasattr(decoder_pointer, "weight"):
                assert hasattr(encoder_pointer, "weight")
                encoder_pointer.weight = decoder_pointer.weight
                if hasattr(decoder_pointer, "bias"):
                    assert hasattr(encoder_pointer, "bias")
                    encoder_pointer.bias = decoder_pointer.bias
                return

            encoder_modules = encoder_pointer._modules
            decoder_modules = decoder_pointer._modules
            if len(decoder_modules) > 0:
                assert (
                    len(encoder_modules) > 0
                ), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"

1323
                all_encoder_weights = {module_name + "/" + sub_name for sub_name in encoder_modules.keys()}
1324
1325
1326
1327
1328
                encoder_layer_pos = 0
                for name, module in decoder_modules.items():
                    if name.isdigit():
                        encoder_name = str(int(name) + encoder_layer_pos)
                        decoder_name = name
Weizhen's avatar
Weizhen committed
1329
1330
1331
                        if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len(
                            encoder_modules
                        ) != len(decoder_modules):
1332
1333
                            # this can happen if the name corresponds to the position in a list module list of layers
                            # in this case the decoder has added a cross-attention that the encoder does not have
1334
                            # thus skip this step and subtract one layer pos from encoder
1335
1336
1337
1338
1339
1340
                            encoder_layer_pos -= 1
                            continue
                    elif name not in encoder_modules:
                        continue
                    elif depth > 500:
                        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1341
1342
                            "Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is"
                            " a circular dependency between two or more `nn.Modules` of your model."
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
                        )
                    else:
                        decoder_name = encoder_name = name
                    tie_encoder_to_decoder_recursively(
                        decoder_modules[decoder_name],
                        encoder_modules[encoder_name],
                        module_name + "/" + name,
                        uninitialized_encoder_weights,
                        depth=depth + 1,
                    )
                    all_encoder_weights.remove(module_name + "/" + encoder_name)

                uninitialized_encoder_weights += list(all_encoder_weights)

        # tie weights recursively
        tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights)
        if len(uninitialized_encoder_weights) > 0:
            logger.warning(
                f"The following encoder weights were not tied to the decoder {uninitialized_encoder_weights}"
            )

1364
    def _tie_or_clone_weights(self, output_embeddings, input_embeddings):
Lysandre's avatar
Lysandre committed
1365
        """Tie or clone module weights depending of whether we are using TorchScript or not"""
thomwolf's avatar
thomwolf committed
1366
        if self.config.torchscript:
1367
            output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone())
thomwolf's avatar
thomwolf committed
1368
        else:
1369
            output_embeddings.weight = input_embeddings.weight
thomwolf's avatar
thomwolf committed
1370

Sam Shleifer's avatar
Sam Shleifer committed
1371
        if getattr(output_embeddings, "bias", None) is not None:
1372
            output_embeddings.bias.data = nn.functional.pad(
1373
                output_embeddings.bias.data,
Lysandre's avatar
Lysandre committed
1374
1375
1376
1377
                (
                    0,
                    output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0],
                ),
1378
1379
                "constant",
                0,
1380
            )
1381
        if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"):
1382
            output_embeddings.out_features = input_embeddings.num_embeddings
1383

1384
    def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding:
1385
        """
1386
        Resizes input token embeddings matrix of the model if `new_num_tokens != config.vocab_size`.
1387

1388
        Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
thomwolf's avatar
thomwolf committed
1389

1390
        Arguments:
1391
            new_num_tokens (`int`, *optional*):
1392
                The number of new tokens in the embedding matrix. Increasing the size will add newly initialized
Sylvain Gugger's avatar
Sylvain Gugger committed
1393
1394
                vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
                returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything.
1395
1396

        Return:
1397
            `torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model.
thomwolf's avatar
thomwolf committed
1398
        """
1399
        model_embeds = self._resize_token_embeddings(new_num_tokens)
thomwolf's avatar
thomwolf committed
1400
1401
        if new_num_tokens is None:
            return model_embeds
thomwolf's avatar
thomwolf committed
1402
1403
1404

        # Update base model and current model config
        self.config.vocab_size = new_num_tokens
1405
        self.vocab_size = new_num_tokens
thomwolf's avatar
thomwolf committed
1406
1407

        # Tie weights again if needed
1408
        self.tie_weights()
thomwolf's avatar
thomwolf committed
1409

thomwolf's avatar
thomwolf committed
1410
1411
        return model_embeds

1412
    def _resize_token_embeddings(self, new_num_tokens):
thomwolf's avatar
thomwolf committed
1413
1414
1415
        old_embeddings = self.get_input_embeddings()
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)
        self.set_input_embeddings(new_embeddings)
1416
1417
1418
1419
1420
1421
1422

        # if word embeddings are not tied, make sure that lm head is resized as well
        if self.get_output_embeddings() is not None and not self.config.tie_word_embeddings:
            old_lm_head = self.get_output_embeddings()
            new_lm_head = self._get_resized_lm_head(old_lm_head, new_num_tokens)
            self.set_output_embeddings(new_lm_head)

thomwolf's avatar
thomwolf committed
1423
        return self.get_input_embeddings()
1424

1425
    def _get_resized_embeddings(
1426
1427
        self, old_embeddings: nn.Embedding, new_num_tokens: Optional[int] = None
    ) -> nn.Embedding:
1428
1429
1430
        """
        Build a resized Embedding Module from a provided token Embedding Module. Increasing the size will add newly
        initialized vectors at the end. Reducing the size will remove vectors from the end
1431
1432

        Args:
1433
            old_embeddings (`torch.nn.Embedding`):
1434
                Old embeddings to be resized.
1435
            new_num_tokens (`int`, *optional*):
1436
                New number of tokens in the embedding matrix.
1437
1438

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
1439
                vectors from the end. If not provided or `None`, just returns a pointer to the input tokens
1440
                `torch.nn.Embedding` module of the model without doing anything.
1441
1442

        Return:
1443
1444
            `torch.nn.Embedding`: Pointer to the resized Embedding Module or the old Embedding Module if
            `new_num_tokens` is `None`
1445
1446
1447
1448
        """
        if new_num_tokens is None:
            return old_embeddings

1449
1450
1451
1452
1453
1454
1455
1456
        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_embeddings.weight, modifier_rank=None):
                old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
        else:
            old_num_tokens, old_embedding_dim = old_embeddings.weight.size()

1457
1458
1459
        if old_num_tokens == new_num_tokens:
            return old_embeddings

1460
1461
        if not isinstance(old_embeddings, nn.Embedding):
            raise TypeError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1462
1463
1464
                f"Old embeddings are of type {type(old_embeddings)}, which is not an instance of {nn.Embedding}. You"
                " should either use a different resize function or make sure that `old_embeddings` are an instance of"
                f" {nn.Embedding}."
1465
1466
            )

1467
        # Build new embeddings
1468
        new_embeddings = nn.Embedding(new_num_tokens, old_embedding_dim)
1469
        new_embeddings.to(old_embeddings.weight.device, dtype=old_embeddings.weight.dtype)
1470
1471
1472
1473

        # initialize all new embeddings (in particular added tokens)
        self._init_weights(new_embeddings)

1474
        # Copy token embeddings from the previous weights
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485

        # numbers of tokens to copy
        n = min(old_num_tokens, new_num_tokens)
        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_embeddings.weight, modifier_rank=0):
                if torch.distributed.get_rank() == 0:
                    new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :]
        else:
            new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :]
1486
1487
1488

        return new_embeddings

1489
    def _get_resized_lm_head(
1490
1491
        self, old_lm_head: nn.Linear, new_num_tokens: Optional[int] = None, transposed: Optional[bool] = False
    ) -> nn.Linear:
1492
1493
1494
1495
1496
        """
        Build a resized Linear Module from a provided old Linear Module. Increasing the size will add newly initialized
        vectors at the end. Reducing the size will remove vectors from the end

        Args:
1497
            old_lm_head (`torch.nn.Linear`):
1498
                Old lm head liner layer to be resized.
1499
            new_num_tokens (`int`, *optional*):
1500
1501
1502
                New number of tokens in the linear matrix.

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
1503
                vectors from the end. If not provided or `None`, just returns a pointer to the input tokens
1504
1505
1506
                `torch.nn.Linear` module of the model without doing anything. transposed (`bool`, *optional*, defaults
                to `False`): Whether `old_lm_head` is transposed or not. If True `old_lm_head.size()` is `lm_head_dim,
                vocab_size` else `vocab_size, lm_head_dim`.
1507
1508

        Return:
Sylvain Gugger's avatar
Sylvain Gugger committed
1509
1510
            `torch.nn.Linear`: Pointer to the resized Linear Module or the old Linear Module if `new_num_tokens` is
            `None`
1511
1512
1513
1514
        """
        if new_num_tokens is None:
            return old_lm_head

1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_lm_head.weight, modifier_rank=None):
                old_num_tokens, old_lm_head_dim = (
                    old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
                )
        else:
            old_num_tokens, old_lm_head_dim = (
                old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
            )
1526
1527
1528
1529
1530
1531

        if old_num_tokens == new_num_tokens:
            return old_lm_head

        if not isinstance(old_lm_head, nn.Linear):
            raise TypeError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1532
1533
1534
                f"Old language model head is of type {type(old_lm_head)}, which is not an instance of {nn.Linear}. You"
                " should either use a different resize function or make sure that `old_lm_head` are an instance of"
                f" {nn.Linear}."
1535
1536
1537
1538
1539
            )

        # Build new lm head
        new_lm_head_shape = (old_lm_head_dim, new_num_tokens) if not transposed else (new_num_tokens, old_lm_head_dim)
        has_new_lm_head_bias = old_lm_head.bias is not None
1540
        new_lm_head = nn.Linear(*new_lm_head_shape, bias=has_new_lm_head_bias)
1541
        new_lm_head = new_lm_head.to(old_lm_head.weight.device, dtype=old_lm_head.weight.dtype)
1542
1543
1544
1545
1546
1547

        # initialize new lm head (in particular added tokens)
        self._init_weights(new_lm_head)

        num_tokens_to_copy = min(old_num_tokens, new_num_tokens)

1548
1549
1550
1551
        # XXX: put the long block of code in a wrapper
        if is_deepspeed_zero3_enabled():
            import deepspeed

1552
1553
            params = [old_lm_head.weight, old_lm_head.bias, new_lm_head.weight, new_lm_head.bias]
            with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
                if torch.distributed.get_rank() == 0:
                    # Copy old lm head weights to new lm head
                    if not transposed:
                        new_lm_head.weight.data[:num_tokens_to_copy, :] = old_lm_head.weight.data[
                            :num_tokens_to_copy, :
                        ]
                    else:
                        new_lm_head.weight.data[:, :num_tokens_to_copy] = old_lm_head.weight.data[
                            :, :num_tokens_to_copy
                        ]

                    # Copy bias weights to new lm head
                    if has_new_lm_head_bias:
                        new_lm_head.bias.data[:num_tokens_to_copy] = old_lm_head.bias.data[:num_tokens_to_copy]
1568
        else:
1569
1570
1571
1572
1573
            # Copy old lm head weights to new lm head
            if not transposed:
                new_lm_head.weight.data[:num_tokens_to_copy, :] = old_lm_head.weight.data[:num_tokens_to_copy, :]
            else:
                new_lm_head.weight.data[:, :num_tokens_to_copy] = old_lm_head.weight.data[:, :num_tokens_to_copy]
1574

1575
1576
1577
            # Copy bias weights to new lm head
            if has_new_lm_head_bias:
                new_lm_head.bias.data[:num_tokens_to_copy] = old_lm_head.bias.data[:num_tokens_to_copy]
1578
1579
1580

        return new_lm_head

1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
    def resize_position_embeddings(self, new_num_position_embeddings: int):
        raise NotImplementedError(
            f"`resize_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should "
            f"overwrite this method in the class {self.__class__} in `modeling_{self.__class__.__module__}.py`"
        )

    def get_position_embeddings(self) -> Union[nn.Embedding, Tuple[nn.Embedding]]:
        raise NotImplementedError(
            f"`get_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should "
            f"overwrite this method in the class {self.__class__} in `modeling_{self.__class__.__module__}.py`"
        )

1593
    def init_weights(self):
1594
        """
1595
1596
        If needed prunes and maybe initializes weights. If using a custom `PreTrainedModel`, you need to implement any
        initialization logic in `_init_weights`.
1597
        """
1598
1599
1600
1601
        # Prune heads if needed
        if self.config.pruned_heads:
            self.prune_heads(self.config.pruned_heads)

1602
1603
        if _init_weights:
            # Initialize weights
1604
            self.apply(self._initialize_weights)
1605
1606
1607
1608

            # Tie weights should be skipped when not initializing all weights
            # since from_pretrained(...) calls tie weights anyways
            self.tie_weights()
1609

1610
1611
1612
    def prune_heads(self, heads_to_prune: Dict[int, List[int]]):
        """
        Prunes heads of the base model.
1613

1614
        Arguments:
1615
            heads_to_prune (`Dict[int, List[int]]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1616
1617
1618
                Dictionary with keys being selected layer indices (`int`) and associated values being the list of heads
                to prune in said layer (list of `int`). For instance {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on
                layer 1 and heads 2 and 3 on layer 2.
thomwolf's avatar
thomwolf committed
1619
        """
1620
        # save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads
1621
        for layer, heads in heads_to_prune.items():
1622
1623
1624
            union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads)
            self.config.pruned_heads[layer] = list(union_heads)  # Unfortunately we have to store it as list for JSON

1625
        self.base_model._prune_heads(heads_to_prune)
thomwolf's avatar
thomwolf committed
1626

1627
    def gradient_checkpointing_enable(self):
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
        """
        Activates gradient checkpointing for the current model.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        if not self.supports_gradient_checkpointing:
            raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
        self.apply(partial(self._set_gradient_checkpointing, value=True))

1638
    def gradient_checkpointing_disable(self):
1639
1640
1641
1642
1643
1644
1645
1646
1647
        """
        Deactivates gradient checkpointing for the current model.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        if self.supports_gradient_checkpointing:
            self.apply(partial(self._set_gradient_checkpointing, value=False))

1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
    @property
    def is_gradient_checkpointing(self) -> bool:
        """
        Whether gradient checkpointing is activated for this model or not.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules())

1658
1659
1660
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
1661
        is_main_process: bool = True,
1662
1663
        state_dict: Optional[dict] = None,
        save_function: Callable = torch.save,
Sylvain Gugger's avatar
Sylvain Gugger committed
1664
        push_to_hub: bool = False,
Sylvain Gugger's avatar
Sylvain Gugger committed
1665
        max_shard_size: Union[int, str] = "10GB",
1666
        safe_serialization: bool = False,
1667
        variant: Optional[str] = None,
1668
        token: Optional[Union[str, bool]] = None,
Sylvain Gugger's avatar
Sylvain Gugger committed
1669
        **kwargs,
1670
    ):
1671
1672
        """
        Save a model and its configuration file to a directory, so that it can be re-loaded using the
1673
        [`~PreTrainedModel.from_pretrained`] class method.
1674

1675
        Arguments:
1676
            save_directory (`str` or `os.PathLike`):
1677
                Directory to which to save. Will be created if it doesn't exist.
1678
1679
1680
1681
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful when in distributed training like
                TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on
                the main process to avoid race conditions.
1682
            state_dict (nested dictionary of `torch.Tensor`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1683
1684
1685
                The state dictionary of the model to save. Will default to `self.state_dict()`, but can be used to only
                save parts of the model or if special precautions need to be taken when recovering the state dictionary
                of a model (like when using model parallelism).
1686
            save_function (`Callable`):
1687
                The function to use to save the state dictionary. Useful on distributed training like TPUs when one
1688
1689
                need to replace `torch.save` by another method.
            push_to_hub (`bool`, *optional*, defaults to `False`):
1690
1691
1692
                Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
Sylvain Gugger's avatar
Sylvain Gugger committed
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
            max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
                The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size
                lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`).

                <Tip warning={true}>

                If a single weight of the model is bigger than `max_shard_size`, it will be in its own checkpoint shard
                which will be bigger than `max_shard_size`.

                </Tip>

1704
1705
            safe_serialization (`bool`, *optional*, defaults to `False`):
                Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
1706
1707
            variant (`str`, *optional*):
                If specified, weights are saved in the format pytorch_model.<variant>.bin.
1708
1709
1710
            token (`str` or `bool`, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
                the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
1711
            kwargs (`Dict[str, Any]`, *optional*):
1712
                Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
1713
        """
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
        use_auth_token = kwargs.pop("use_auth_token", None)

        if use_auth_token is not None:
            warnings.warn(
                "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
            )
            if token is not None:
                raise ValueError(
                    "`token` and `use_auth_token` are both specified. Please set only the argument `token`."
                )
            token = use_auth_token

        if token is not None:
            kwargs["token"] = token

1729
        # Checks if the model has been loaded in 8-bit
1730
        if getattr(self, "is_loaded_in_8bit", False) and getattr(self, "is_8bit_serializable", False):
1731
1732
            warnings.warn(
                "You are calling `save_pretrained` to a 8-bit converted model you may likely encounter unexepected"
1733
                " behaviors. If you want to save 8-bit models, make sure to have `bitsandbytes>0.37.2` installed.",
1734
1735
1736
                UserWarning,
            )

1737
1738
1739
1740
1741
        if getattr(self, "is_loaded_in_4bit", False):
            raise NotImplementedError(
                "You are calling `save_pretrained` on a 4-bit converted model. This is currently not supported"
            )

1742
1743
1744
1745
1746
        if "save_config" in kwargs:
            warnings.warn(
                "`save_config` is deprecated and will be removed in v5 of Transformers. Use `is_main_process` instead."
            )
            is_main_process = kwargs.pop("save_config")
1747
1748
        if safe_serialization and not is_safetensors_available():
            raise ImportError("`safe_serialization` requires the `safetensors library: `pip install safetensors`.")
1749

1750
        if os.path.isfile(save_directory):
1751
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
1752
            return
1753

1754
1755
        os.makedirs(save_directory, exist_ok=True)

1756
1757
        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
1758
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
1759
            repo_id = self._create_repo(repo_id, **kwargs)
1760
            files_timestamps = self._get_files_timestamps(save_directory)
1761

Julien Chaumond's avatar
Julien Chaumond committed
1762
        # Only save the model itself if we are using distributed training
1763
        model_to_save = unwrap_model(self)
1764

1765
1766
1767
1768
1769
        # save the string version of dtype to the config, e.g. convert torch.float32 => "float32"
        # we currently don't use this setting automatically, but may start to use with v5
        dtype = get_parameter_dtype(model_to_save)
        model_to_save.config.torch_dtype = str(dtype).split(".")[1]

Julien Chaumond's avatar
Julien Chaumond committed
1770
1771
1772
        # Attach architecture to the config
        model_to_save.config.architectures = [model_to_save.__class__.__name__]

1773
1774
1775
1776
1777
        # If we have a custom model, we copy the file defining it in the folder and set the attributes so it can be
        # loaded from the Hub.
        if self._auto_class is not None:
            custom_object_save(self, save_directory, config=self.config)

1778
        # Save the config
1779
        if is_main_process:
1780
            model_to_save.config.save_pretrained(save_directory)
1781
1782
            if self.can_generate():
                model_to_save.generation_config.save_pretrained(save_directory)
1783
1784
1785
1786

        # Save the model
        if state_dict is None:
            state_dict = model_to_save.state_dict()
1787

1788
1789
1790
1791
1792
        # Translate state_dict from smp to hf if saving with smp >= 1.10
        if IS_SAGEMAKER_MP_POST_1_10:
            for smp_to_hf, _ in smp.state.module_manager.translate_functions:
                state_dict = smp_to_hf(state_dict)

1793
        # Handle the case where some state_dict keys shouldn't be saved
1794
        if self._keys_to_ignore_on_save is not None:
1795
            for ignore_key in self._keys_to_ignore_on_save:
1796
1797
                if ignore_key in state_dict.keys():
                    del state_dict[ignore_key]
1798
1799
1800
1801
1802
        if safe_serialization:
            # Safetensors does not allow tensor aliasing.
            # We're going to remove aliases before saving
            ptrs = collections.defaultdict(list)
            for name, tensor in state_dict.items():
Sylvain Gugger's avatar
Sylvain Gugger committed
1803
                ptrs[id_tensor_storage(tensor)].append(name)
1804
1805
1806
1807
1808
1809
1810

            # These are all the pointers of shared tensors.
            shared_ptrs = {ptr: names for ptr, names in ptrs.items() if len(names) > 1}
            warn_names = set()
            for names in shared_ptrs.values():
                # Removing the keys which are declared as known duplicates on
                # load. This allows to make sure the name which is kept is consistent.
Sylvain Gugger's avatar
Sylvain Gugger committed
1811
                if self._tied_weights_keys is not None:
1812
1813
                    found = 0
                    for name in sorted(names):
Sylvain Gugger's avatar
Sylvain Gugger committed
1814
                        matches_pattern = any(re.search(pat, name) for pat in self._tied_weights_keys)
1815
                        if matches_pattern and name in state_dict:
1816
1817
1818
                            found += 1
                            if found < len(names):
                                del state_dict[name]
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

                # When not all duplicates have been cleaned, still remove those keys, but put a clear warning.
                # If the link between tensors was done at runtime then `from_pretrained` will not get
                # the key back leading to random tensor. A proper warning will be shown
                # during reload (if applicable), but since the file is not necessarily compatible with
                # the config, better show a proper warning.
                found = 0
                for name in names:
                    if name in state_dict:
                        found += 1
                        if found > 1:
                            del state_dict[name]
                            warn_names.add(name)
            if len(warn_names) > 0:
                logger.warning_once(
                    f"Removed shared tensor {warn_names} while saving. This should be OK, but check by verifying that you don't receive any warning while reloading",
                )
1836

Sylvain Gugger's avatar
Sylvain Gugger committed
1837
        # Shard the model if it is too big.
1838
        weights_name = SAFE_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME
1839
1840
        weights_name = _add_variant(weights_name, variant)

1841
        shards, index = shard_checkpoint(state_dict, max_shard_size=max_shard_size, weights_name=weights_name)
Sylvain Gugger's avatar
Sylvain Gugger committed
1842
1843
1844
1845

        # Clean the folder from a previous save
        for filename in os.listdir(save_directory):
            full_filename = os.path.join(save_directory, filename)
1846
1847
            # If we have a shard file that is not going to be replaced, we delete it, but only from the main process
            # in distributed settings to avoid race conditions.
1848
            weights_no_suffix = weights_name.replace(".bin", "").replace(".safetensors", "")
1849
1850
1851

            # make sure that file to be deleted matches format of sharded file, e.g. pytorch_model-00001-of-00005
            filename_no_suffix = filename.replace(".bin", "").replace(".safetensors", "")
1852
            reg = re.compile(r"(.*?)-\d{5}-of-\d{5}")
1853

1854
            if (
1855
                filename.startswith(weights_no_suffix)
1856
1857
1858
                and os.path.isfile(full_filename)
                and filename not in shards.keys()
                and is_main_process
1859
                and reg.fullmatch(filename_no_suffix) is not None
1860
            ):
Sylvain Gugger's avatar
Sylvain Gugger committed
1861
                os.remove(full_filename)
1862

Sylvain Gugger's avatar
Sylvain Gugger committed
1863
1864
        # Save the model
        for shard_file, shard in shards.items():
1865
1866
1867
1868
1869
1870
            if safe_serialization:
                # At some point we will need to deal better with save_function (used for TPU and other distributed
                # joyfulness), but for now this enough.
                safe_save_file(shard, os.path.join(save_directory, shard_file), metadata={"format": "pt"})
            else:
                save_function(shard, os.path.join(save_directory, shard_file))
Sylvain Gugger's avatar
Sylvain Gugger committed
1871
1872

        if index is None:
1873
1874
            path_to_weights = os.path.join(save_directory, _add_variant(WEIGHTS_NAME, variant))
            logger.info(f"Model weights saved in {path_to_weights}")
Sylvain Gugger's avatar
Sylvain Gugger committed
1875
        else:
1876
            save_index_file = SAFE_WEIGHTS_INDEX_NAME if safe_serialization else WEIGHTS_INDEX_NAME
1877
            save_index_file = os.path.join(save_directory, _add_variant(save_index_file, variant))
Sylvain Gugger's avatar
Sylvain Gugger committed
1878
1879
1880
1881
1882
1883
1884
1885
1886
            # Save the index as well
            with open(save_index_file, "w", encoding="utf-8") as f:
                content = json.dumps(index, indent=2, sort_keys=True) + "\n"
                f.write(content)
            logger.info(
                f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be "
                f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the "
                f"index located at {save_index_file}."
            )
1887

Sylvain Gugger's avatar
Sylvain Gugger committed
1888
        if push_to_hub:
1889
            self._upload_modified_files(
1890
1891
1892
1893
                save_directory,
                repo_id,
                files_timestamps,
                commit_message=commit_message,
1894
                token=token,
1895
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
1896

1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
    def get_memory_footprint(self, return_buffers=True):
        r"""
        Get the memory footprint of a model. This will return the memory footprint of the current model in bytes.
        Useful to benchmark the memory footprint of the current model and design some tests. Solution inspired from the
        PyTorch discussions: https://discuss.pytorch.org/t/gpu-memory-that-model-uses/56822/2

        Arguments:
            return_buffers (`bool`, *optional*, defaults to `True`):
                Whether to return the size of the buffer tensors in the computation of the memory footprint. Buffers
                are tensors that do not require gradients and not registered as parameters. E.g. mean and std in batch
                norm layers. Please see: https://discuss.pytorch.org/t/what-pytorch-means-by-buffers/120266/2
        """
        mem = sum([param.nelement() * param.element_size() for param in self.parameters()])
        if return_buffers:
            mem_bufs = sum([buf.nelement() * buf.element_size() for buf in self.buffers()])
            mem = mem + mem_bufs
        return mem

1915
    @wraps(torch.nn.Module.cuda)
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
    def cuda(self, *args, **kwargs):
        # Checks if the model has been loaded in 8-bit
        if getattr(self, "is_quantized", False):
            raise ValueError(
                "Calling `cuda()` is not supported for `4-bit` or `8-bit` quantized models. Please use the model as it is, since the"
                " model has already been set to the correct devices and casted to the correct `dtype`."
            )
        else:
            return super().cuda(*args, **kwargs)

1926
    @wraps(torch.nn.Module.to)
1927
1928
    def to(self, *args, **kwargs):
        # Checks if the model has been loaded in 8-bit
1929
        if getattr(self, "is_quantized", False):
1930
            raise ValueError(
1931
                "`.to` is not supported for `4-bit` or `8-bit` models. Please use the model as it is, since the"
1932
1933
1934
1935
1936
1937
1938
                " model has already been set to the correct devices and casted to the correct `dtype`."
            )
        else:
            return super().to(*args, **kwargs)

    def half(self, *args):
        # Checks if the model has been loaded in 8-bit
1939
        if getattr(self, "is_quantized", False):
1940
            raise ValueError(
1941
                "`.half()` is not supported for `4-bit` or `8-bit` models. Please use the model as it is, since the"
1942
1943
1944
1945
1946
1947
1948
                " model has already been casted to the correct `dtype`."
            )
        else:
            return super().half(*args)

    def float(self, *args):
        # Checks if the model has been loaded in 8-bit
1949
        if getattr(self, "is_quantized", False):
1950
            raise ValueError(
1951
                "`.float()` is not supported for `4-bit` or `8-bit` models. Please use the model as it is, since the"
1952
1953
1954
1955
1956
                " model has already been casted to the correct `dtype`."
            )
        else:
            return super().float(*args)

1957
    @classmethod
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
    def from_pretrained(
        cls,
        pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
        *model_args,
        config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
        cache_dir: Optional[Union[str, os.PathLike]] = None,
        ignore_mismatched_sizes: bool = False,
        force_download: bool = False,
        local_files_only: bool = False,
        token: Optional[Union[str, bool]] = None,
        revision: str = "main",
        use_safetensors: bool = None,
        **kwargs,
    ):
1972
1973
        r"""
        Instantiate a pretrained pytorch model from a pre-trained model configuration.
1974

Sylvain Gugger's avatar
Sylvain Gugger committed
1975
1976
        The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
        the model, you should first set it back in training mode with `model.train()`.
1977

1978
        The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
1979
1980
        pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
        task.
1981

1982
        The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
1983
        weights are discarded.
1984

1985
        Parameters:
1986
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
1987
1988
                Can be either:

1989
                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
Sylvain Gugger's avatar
Sylvain Gugger committed
1990
1991
                      Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a
                      user or organization name, like `dbmdz/bert-base-german-cased`.
1992
1993
1994
                    - A path to a *directory* containing model weights saved using
                      [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
                    - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
Sylvain Gugger's avatar
Sylvain Gugger committed
1995
1996
1997
                      this case, `from_tf` should be set to `True` and a configuration object should be provided as
                      `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
                      PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
1998
                    - A path or url to a model folder containing a *flax checkpoint file* in *.msgpack* format (e.g,
Sylvain Gugger's avatar
Sylvain Gugger committed
1999
2000
                      `./flax_model/` containing `flax_model.msgpack`). In this case, `from_flax` should be set to
                      `True`.
2001
2002
2003
2004
2005
                    - `None` if you are both providing the configuration and state dictionary (resp. with keyword
                      arguments `config` and `state_dict`).
            model_args (sequence of positional arguments, *optional*):
                All remaining positional arguments will be passed to the underlying model's `__init__` method.
            config (`Union[PretrainedConfig, str, os.PathLike]`, *optional*):
2006
2007
                Can be either:

2008
2009
                    - an instance of a class derived from [`PretrainedConfig`],
                    - a string or path valid as input to [`~PretrainedConfig.from_pretrained`].
2010

2011
                Configuration for the model to use instead of an automatically loaded configuration. Configuration can
2012
2013
                be automatically loaded when:

2014
                    - The model is a model provided by the library (loaded with the *model id* string of a pretrained
2015
                      model).
Sylvain Gugger's avatar
Sylvain Gugger committed
2016
2017
                    - The model was saved using [`~PreTrainedModel.save_pretrained`] and is reloaded by supplying the
                      save directory.
2018
2019
2020
                    - The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a
                      configuration JSON file named *config.json* is found in the directory.
            state_dict (`Dict[str, torch.Tensor]`, *optional*):
2021
2022
2023
                A state dictionary to use instead of a state dictionary loaded from saved weights file.

                This option can be used if you want to create a model from a pretrained configuration but load your own
Sylvain Gugger's avatar
Sylvain Gugger committed
2024
                weights. In this case though, you should check if using [`~PreTrainedModel.save_pretrained`] and
2025
2026
                [`~PreTrainedModel.from_pretrained`] is not a simpler option.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
2027
2028
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
2029
            from_tf (`bool`, *optional*, defaults to `False`):
2030
                Load the model weights from a TensorFlow checkpoint save file (see docstring of
2031
2032
                `pretrained_model_name_or_path` argument).
            from_flax (`bool`, *optional*, defaults to `False`):
2033
                Load the model weights from a Flax checkpoint save file (see docstring of
2034
2035
                `pretrained_model_name_or_path` argument).
            ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`):
2036
2037
2038
                Whether or not to raise an error if some of the weights from the checkpoint do not have the same size
                as the weights of the model (if for instance, you are instantiating a model with 10 labels from a
                checkpoint with 3 labels).
2039
            force_download (`bool`, *optional*, defaults to `False`):
2040
2041
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
2042
            resume_download (`bool`, *optional*, defaults to `False`):
2043
2044
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
2045
            proxies (`Dict[str, str]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2046
2047
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
2048
            output_loading_info(`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2049
                Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
2050
            local_files_only(`bool`, *optional*, defaults to `False`):
Stas Bekman's avatar
Stas Bekman committed
2051
                Whether or not to only look at local files (i.e., do not try to download the model).
2052
            token (`str` or `bool`, *optional*):
2053
2054
                The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
                the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
2055
            revision (`str`, *optional*, defaults to `"main"`):
Julien Chaumond's avatar
Julien Chaumond committed
2056
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
2057
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
Julien Chaumond's avatar
Julien Chaumond committed
2058
                identifier allowed by git.
2059
2060
2061
2062
2063
2064
2065

                <Tip>

                To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>".

                </Tip>

2066
            mirror (`str`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2067
2068
2069
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information.
2070
            _fast_init(`bool`, *optional*, defaults to `True`):
2071
2072
                Whether or not to disable fast initialization.

2073
2074
                <Tip warning={true}>

Sylvain Gugger's avatar
Sylvain Gugger committed
2075
2076
2077
                One should only disable *_fast_init* to ensure backwards compatibility with `transformers.__version__ <
                4.6.0` for seeded model initialization. This argument will be removed at the next major version. See
                [pull request 11471](https://github.com/huggingface/transformers/pull/11471) for more information.
2078

2079
                </Tip>
2080

2081
2082
2083
            > Parameters for big model inference

            low_cpu_mem_usage(`bool`, *optional*):
2084
2085
2086
                Tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                This is an experimental feature and a subject to change at any moment.
            torch_dtype (`str` or `torch.dtype`, *optional*):
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
                Override the default `torch.dtype` and load the model under a specific `dtype`. The different options
                are:

                1. `torch.float16` or `torch.bfloat16` or `torch.float`: load in a specified
                  `dtype`, ignoring the model's `config.torch_dtype` if one exists. If not specified
                  - the model will get loaded in `torch.float` (fp32).

                2. `"auto"` - A `torch_dtype` entry in the `config.json` file of the model will be
                  attempted to be used. If this entry isn't found then next check the `dtype` of the first weight in
                  the checkpoint that's of a floating point type and use that as `dtype`. This will load the model
                  using the `dtype` it was saved in at the end of the training. It can't be used as an indicator of how
                  the model was trained. Since it could be trained in one of half precision dtypes, but saved in fp32.

                <Tip>

                For some models the `dtype` they were trained in is unknown - you may try to check the model's paper or
                reach out to the authors and ask them to add this information to the model's card and to insert the
                `torch_dtype` entry in `config.json` on the hub.

                </Tip>

2108
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]` or `int` or `torch.device`, *optional*):
2109
2110
                A map that specifies where each submodule should go. It doesn't need to be refined to each
                parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the
2111
2112
2113
                same device. If we only pass the device (*e.g.*, `"cpu"`, `"cuda:1"`, `"mps"`, or a GPU ordinal rank
                like `1`) on which the model will be allocated, the device map will map the entire model to this
                device. Passing `device_map = 0` means put the whole model on GPU 0.
2114

2115
2116
                To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For
                more information about each option see [designing a device
Patrick von Platen's avatar
Patrick von Platen committed
2117
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
2118
2119
2120
            max_memory (`Dict`, *optional*):
                A dictionary device identifier to maximum memory. Will default to the maximum memory available for each
                GPU and the available CPU RAM if unset.
2121
2122
            offload_folder (`str` or `os.PathLike`, *optional*):
                If the `device_map` contains any value `"disk"`, the folder where we will offload weights.
2123
            offload_state_dict (`bool`, *optional*):
2124
                If `True`, will temporarily offload the CPU state dict to the hard drive to avoid getting out of CPU
2125
2126
                RAM if the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to
                `True` when there is some disk offload.
2127
2128
            load_in_8bit (`bool`, *optional*, defaults to `False`):
                If `True`, will convert the loaded model into mixed-8bit quantized model. To use this feature please
2129
2130
2131
2132
                install `bitsandbytes` (`pip install -U bitsandbytes`).
            load_in_4bit (`bool`, *optional*, defaults to `False`):
                If `True`, will convert the loaded model into 4bit precision quantized model. To use this feature
                install the latest version of `bitsandbytes` (`pip install -U bitsandbytes`).
2133
2134
2135
            quantization_config (`Dict`, *optional*):
                A dictionary of configuration parameters for the `bitsandbytes` library and loading the model using
                advanced features such as offloading in fp32 on CPU or on disk.
2136
2137
2138
            subfolder (`str`, *optional*, defaults to `""`):
                In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
                specify the folder name here.
2139
2140
2141
            variant (`str`, *optional*):
                If specified load weights from `variant` filename, *e.g.* pytorch_model.<variant>.bin. `variant` is
                ignored when using `from_tf` or `from_flax`.
2142
2143
2144
            use_safetensors (`bool`, *optional*, defaults to `None`):
                Whether or not to use `safetensors` checkpoints. Defaults to `None`. If not specified and `safetensors`
                is not installed, it will be set to `False`.
2145

2146
            kwargs (remaining dictionary of keyword arguments, *optional*):
2147
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
2148
                `output_attentions=True`). Behaves differently depending on whether a `config` is provided or
2149
2150
                automatically loaded:

2151
2152
                    - If a configuration is provided with `config`, `**kwargs` will be directly passed to the
                      underlying model's `__init__` method (we assume all relevant updates to the configuration have
2153
                      already been done)
2154
                    - If a configuration is not provided, `kwargs` will be first passed to the configuration class
Sylvain Gugger's avatar
Sylvain Gugger committed
2155
2156
2157
2158
                      initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that
                      corresponds to a configuration attribute will be used to override said attribute with the
                      supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute
                      will be passed to the underlying model's `__init__` function.
2159
2160
2161

        <Tip>

Sylvain Gugger's avatar
Sylvain Gugger committed
2162
2163
        Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to
        use this method in a firewalled environment.
2164
2165
2166
2167
2168
2169
2170

        </Tip>

        Examples:

        ```python
        >>> from transformers import BertConfig, BertModel
Sylvain Gugger's avatar
Sylvain Gugger committed
2171

2172
        >>> # Download model and configuration from huggingface.co and cache.
Sylvain Gugger's avatar
Sylvain Gugger committed
2173
        >>> model = BertModel.from_pretrained("bert-base-uncased")
2174
        >>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable).
Sylvain Gugger's avatar
Sylvain Gugger committed
2175
        >>> model = BertModel.from_pretrained("./test/saved_model/")
2176
        >>> # Update configuration during loading.
Sylvain Gugger's avatar
Sylvain Gugger committed
2177
        >>> model = BertModel.from_pretrained("bert-base-uncased", output_attentions=True)
2178
2179
        >>> assert model.config.output_attentions == True
        >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable).
Sylvain Gugger's avatar
Sylvain Gugger committed
2180
2181
        >>> config = BertConfig.from_json_file("./tf_model/my_tf_model_config.json")
        >>> model = BertModel.from_pretrained("./tf_model/my_tf_checkpoint.ckpt.index", from_tf=True, config=config)
2182
        >>> # Loading from a Flax checkpoint file instead of a PyTorch model (slower)
Sylvain Gugger's avatar
Sylvain Gugger committed
2183
        >>> model = BertModel.from_pretrained("bert-base-uncased", from_flax=True)
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
        ```

        * `low_cpu_mem_usage` algorithm:

        This is an experimental function that loads the model using ~1x model size CPU memory

        Here is how it works:

        1. save which state_dict keys we have
        2. drop state_dict before the model is created, since the latter takes 1x model size CPU memory
        3. after the model has been instantiated switch to the meta device all params/buffers that
        are going to be replaced from the loaded state_dict
        4. load state_dict 2nd time
        5. replace the params/buffers from the state_dict

        Currently, it can't handle deepspeed ZeRO stage 3 and ignores loading errors

        """
2202
2203
        state_dict = kwargs.pop("state_dict", None)
        from_tf = kwargs.pop("from_tf", False)
2204
        from_flax = kwargs.pop("from_flax", False)
2205
2206
2207
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        output_loading_info = kwargs.pop("output_loading_info", False)
2208
        use_auth_token = kwargs.pop("use_auth_token", None)
2209
        trust_remote_code = kwargs.pop("trust_remote_code", None)
Sylvain Gugger's avatar
Sylvain Gugger committed
2210
        _ = kwargs.pop("mirror", None)
2211
2212
        from_pipeline = kwargs.pop("_from_pipeline", None)
        from_auto_class = kwargs.pop("_from_auto", False)
2213
        _fast_init = kwargs.pop("_fast_init", True)
2214
        torch_dtype = kwargs.pop("torch_dtype", None)
2215
2216
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", None)
        device_map = kwargs.pop("device_map", None)
2217
        max_memory = kwargs.pop("max_memory", None)
2218
        offload_folder = kwargs.pop("offload_folder", None)
2219
2220
        offload_state_dict = kwargs.pop("offload_state_dict", False)
        load_in_8bit = kwargs.pop("load_in_8bit", False)
2221
        load_in_4bit = kwargs.pop("load_in_4bit", False)
2222
        quantization_config = kwargs.pop("quantization_config", None)
2223
        subfolder = kwargs.pop("subfolder", "")
2224
        commit_hash = kwargs.pop("_commit_hash", None)
2225
        variant = kwargs.pop("variant", None)
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238

        if use_auth_token is not None:
            warnings.warn(
                "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
            )
            if token is not None:
                raise ValueError(
                    "`token` and `use_auth_token` are both specified. Please set only the argument `token`."
                )
            token = use_auth_token

        if use_safetensors is None and not is_safetensors_available():
            use_safetensors = False
2239

2240
        if is_bitsandbytes_available():
2241
            is_8bit_serializable = version.parse(importlib.metadata.version("bitsandbytes")) > version.parse("0.37.2")
2242
2243
2244
        else:
            is_8bit_serializable = False

2245
2246
2247
2248
2249
        if trust_remote_code is True:
            logger.warning(
                "The argument `trust_remote_code` is to be used with Auto classes. It has no effect here and is"
                " ignored."
            )
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269

        # change device_map into a map if we passed an int, a str or a torch.device
        if isinstance(device_map, torch.device):
            device_map = {"": device_map}
        elif isinstance(device_map, str) and device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
            try:
                device_map = {"": torch.device(device_map)}
            except RuntimeError:
                raise ValueError(
                    "When passing device_map as a string, the value needs to be a device name (e.g. cpu, cuda:0) or "
                    f"'auto', 'balanced', 'balanced_low_0', 'sequential' but found {device_map}."
                )
        elif isinstance(device_map, int):
            if device_map < 0:
                raise ValueError(
                    "You can't pass device_map as a negative int. If you want to put the model on the cpu, pass device_map = 'cpu' "
                )
            else:
                device_map = {"": device_map}

2270
2271
2272
2273
2274
2275
2276
        if device_map is not None:
            if low_cpu_mem_usage is None:
                low_cpu_mem_usage = True
            elif not low_cpu_mem_usage:
                raise ValueError("Passing along a `device_map` requires `low_cpu_mem_usage=True`")

        if low_cpu_mem_usage:
2277
            if device_map is not None:
2278
2279
                # The max memory utils require PyTorch >= 1.10 to have torch.cuda.mem_get_info.
                require_version_core("torch>=1.10")
2280
2281
2282
2283
2284
2285
2286
2287
2288

            if is_deepspeed_zero3_enabled():
                raise ValueError(
                    "DeepSpeed Zero-3 is not compatible with `low_cpu_mem_usage=True` or with passing a `device_map`."
                )
            elif not is_accelerate_available():
                raise ImportError(
                    "Using `low_cpu_mem_usage=True` or a `device_map` requires Accelerate: `pip install accelerate`"
                )
2289

2290
2291
        if quantization_config is None:
            quantization_config, kwargs = BitsAndBytesConfig.from_dict(
2292
2293
2294
                config_dict={"load_in_8bit": load_in_8bit, "load_in_4bit": load_in_4bit},
                return_unused_kwargs=True,
                **kwargs,
2295
2296
2297
            )
        elif quantization_config is not None:
            load_in_8bit = quantization_config.load_in_8bit
2298
            load_in_4bit = quantization_config.load_in_4bit
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309

            quantization_config_kwargs = {
                k: v for k, v in kwargs.items() if k in inspect.signature(BitsAndBytesConfig).parameters
            }

            if len(quantization_config_kwargs) > 0:
                raise ValueError(
                    "You can't pass `load_in_8bit` or any other `BitsAndBytesConfig` argument as a kwarg when passing "
                    "`quantization_config` argument at the same time."
                )

2310
        if load_in_8bit or load_in_4bit:
2311
2312
2313
2314
2315
2316
            if not (is_accelerate_available() and is_bitsandbytes_available()):
                raise ImportError(
                    "Using `load_in_8bit=True` requires Accelerate: `pip install accelerate` and the latest version of"
                    " bitsandbytes `pip install -i https://test.pypi.org/simple/ bitsandbytes` or"
                    " pip install bitsandbytes` "
                )
2317
2318

            if torch_dtype is None:
2319
                # We force the `dtype` to be float16, this is a requirement from `bitsandbytes`
2320
                logger.info(
2321
                    f"Overriding torch_dtype={torch_dtype} with `torch_dtype=torch.float16` due to "
2322
                    "requirements of `bitsandbytes` to enable model loading in 8-bit or 4-bit. "
2323
2324
                    "Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass"
                    " torch_dtype=torch.float16 to remove this warning."
2325
                )
2326
                torch_dtype = torch.float16
2327

2328
            if device_map is None:
2329
2330
2331
2332
2333
2334
2335
2336
                if torch.cuda.is_available():
                    device_map = {"": torch.cuda.current_device()}
                else:
                    raise RuntimeError("No GPU found. A GPU is needed for quantization.")
                logger.info(
                    "The device_map was not initialized."
                    "Setting device_map to {'':torch.cuda.current_device()}."
                    "If you want to use the model for inference, please set device_map ='auto' "
2337
                )
2338
2339
2340
                if low_cpu_mem_usage is None:
                    low_cpu_mem_usage = True

2341
2342
            if from_tf or from_flax:
                raise ValueError(
2343
                    "Converting into 4-bit or 8-bit weights from tf/flax weights is currently not supported, please make"
2344
2345
2346
                    " sure the weights are in PyTorch format."
                )

2347
        from_pt = not (from_tf | from_flax)
2348
2349
2350
2351

        user_agent = {"file_type": "model", "framework": "pytorch", "from_auto_class": from_auto_class}
        if from_pipeline is not None:
            user_agent["using_pipeline"] = from_pipeline
thomwolf's avatar
thomwolf committed
2352

2353
2354
2355
2356
        if is_offline_mode() and not local_files_only:
            logger.info("Offline mode: forcing local_files_only=True")
            local_files_only = True

2357
2358
2359
        # Load config if we don't provide a configuration
        if not isinstance(config, PretrainedConfig):
            config_path = config if config is not None else pretrained_model_name_or_path
2360
            config, model_kwargs = cls.config_class.from_pretrained(
2361
2362
2363
                config_path,
                cache_dir=cache_dir,
                return_unused_kwargs=True,
2364
                force_download=force_download,
2365
                resume_download=resume_download,
2366
                proxies=proxies,
2367
                local_files_only=local_files_only,
2368
                token=token,
Julien Chaumond's avatar
Julien Chaumond committed
2369
                revision=revision,
2370
                subfolder=subfolder,
2371
2372
                _from_auto=from_auto_class,
                _from_pipeline=from_pipeline,
2373
                **kwargs,
2374
2375
2376
            )
        else:
            model_kwargs = kwargs
2377

2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
        if is_8bit_serializable and quantization_config is not None and load_in_8bit:
            if hasattr(config, "quantization_config"):
                logger.warning(
                    "You passed `quantization_config` to `from_pretrained` but the model you're loading already has a"
                    " `quantization_config` attribute. The `quantization_config` attribute will be overwritten with the"
                    " one you passed to `from_pretrained`."
                )
            config.quantization_config = quantization_config
        elif is_8bit_serializable and not load_in_8bit and hasattr(config, "quantization_config"):
            quantization_config = config.quantization_config
            if isinstance(quantization_config, dict):
                quantization_config = BitsAndBytesConfig.from_dict(quantization_config, return_unused_kwargs=False)
            elif isinstance(quantization_config, BitsAndBytesConfig):
                pass
            else:
                raise ValueError(
                    f"Invalid type for `quantization_config`: {type(quantization_config)}. Should be a `dict` or a"
                    " `BitsAndBytesConfig` instance."
                )

            load_in_8bit = quantization_config.load_in_8bit

            if load_in_8bit:
2401
2402
                if torch_dtype is None:
                    torch_dtype = torch.float16
2403
                if device_map is None:
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
                    if torch.cuda.is_available():
                        device_map = {"": torch.cuda.current_device()}
                    else:
                        raise RuntimeError("No GPU found. A GPU is needed for quantization.")
                    logger.info(
                        "The device_map was not initialized."
                        "Setting device_map to {'':torch.cuda.current_device()}."
                        "If you want to use the model for inference, please set device_map ='auto' "
                    )
                    if low_cpu_mem_usage is None:
                        low_cpu_mem_usage = True
2415
2416
2417
2418
2419
2420
2421
2422

        elif not is_8bit_serializable and not load_in_8bit and hasattr(config, "quantization_config"):
            logger.warning(
                "Detected the presence of a `quantization_config` attribute in the model's configuration but you don't have the correct"
                " `bitsandbytes` version to support int8 serialization. Please install the latest version of `bitsandbytes` with "
                " `pip install --upgrade bitsandbytes`."
            )

2423
2424
2425
        if commit_hash is None:
            commit_hash = getattr(config, "_commit_hash", None)

Sylvain Gugger's avatar
Sylvain Gugger committed
2426
2427
2428
2429
        # This variable will flag if we're loading a sharded checkpoint. In this case the archive file is just the
        # index of the files.
        is_sharded = False
        sharded_metadata = None
thomwolf's avatar
thomwolf committed
2430
        # Load model
Yih-Dar's avatar
Yih-Dar committed
2431
2432
        loading_info = None

2433
2434
2435
2436
        # Keep in fp32 modules
        keep_in_fp32_modules = None
        use_keep_in_fp32_modules = False

thomwolf's avatar
thomwolf committed
2437
        if pretrained_model_name_or_path is not None:
2438
            pretrained_model_name_or_path = str(pretrained_model_name_or_path)
2439
2440
            is_local = os.path.isdir(pretrained_model_name_or_path)
            if is_local:
2441
2442
2443
                if from_tf and os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index")
                ):
2444
                    # Load from a TF 1.0 checkpoint in priority if from_tf
2445
2446
2447
2448
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index")
                elif from_tf and os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME)
                ):
2449
                    # Load from a TF 2.0 checkpoint in priority if from_tf
2450
2451
2452
2453
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME)
                elif from_flax and os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)
                ):
2454
                    # Load from a Flax checkpoint in priority if from_flax
2455
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)
2456
                elif use_safetensors is not False and os.path.isfile(
2457
                    os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_NAME, variant))
2458
2459
                ):
                    # Load from a safetensors checkpoint
2460
2461
2462
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_NAME, variant)
                    )
2463
                elif use_safetensors is not False and os.path.isfile(
2464
2465
2466
                    os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)
                    )
2467
2468
                ):
                    # Load from a sharded safetensors checkpoint
2469
2470
2471
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)
                    )
2472
                    is_sharded = True
2473
2474
2475
                elif os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_NAME, variant))
                ):
thomwolf's avatar
thomwolf committed
2476
                    # Load from a PyTorch checkpoint
2477
2478
2479
2480
2481
2482
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_NAME, variant)
                    )
                elif os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_INDEX_NAME, variant))
                ):
Sylvain Gugger's avatar
Sylvain Gugger committed
2483
                    # Load from a sharded PyTorch checkpoint
2484
2485
2486
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_INDEX_NAME, variant)
                    )
Sylvain Gugger's avatar
Sylvain Gugger committed
2487
                    is_sharded = True
2488
2489
                # At this stage we don't have a weight file so we will raise an error.
                elif os.path.isfile(
2490
2491
                    os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index")
                ) or os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME)):
2492
                    raise EnvironmentError(
2493
2494
2495
                        f"Error no file named {_add_variant(WEIGHTS_NAME, variant)} found in directory"
                        f" {pretrained_model_name_or_path} but there is a file for TensorFlow weights. Use"
                        " `from_tf=True` to load this model from those weights."
2496
                    )
2497
                elif os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)):
2498
                    raise EnvironmentError(
2499
2500
2501
                        f"Error no file named {_add_variant(WEIGHTS_NAME, variant)} found in directory"
                        f" {pretrained_model_name_or_path} but there is a file for Flax weights. Use `from_flax=True`"
                        " to load this model from those weights."
2502
                    )
2503
2504
2505
2506
2507
                elif use_safetensors:
                    raise EnvironmentError(
                        f"Error no file named {_add_variant(SAFE_WEIGHTS_NAME, variant)} found in directory"
                        f" {pretrained_model_name_or_path}."
                    )
thomwolf's avatar
thomwolf committed
2508
                else:
2509
                    raise EnvironmentError(
2510
2511
2512
                        f"Error no file named {_add_variant(WEIGHTS_NAME, variant)}, {TF2_WEIGHTS_NAME},"
                        f" {TF_WEIGHTS_NAME + '.index'} or {FLAX_WEIGHTS_NAME} found in directory"
                        f" {pretrained_model_name_or_path}."
2513
                    )
2514
            elif os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path)):
2515
                archive_file = pretrained_model_name_or_path
2516
                is_local = True
2517
            elif os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path + ".index")):
2518
2519
2520
2521
2522
                if not from_tf:
                    raise ValueError(
                        f"We found a TensorFlow checkpoint at {pretrained_model_name_or_path + '.index'}, please set "
                        "from_tf to True to load from this checkpoint."
                    )
2523
                archive_file = os.path.join(subfolder, pretrained_model_name_or_path + ".index")
2524
                is_local = True
2525
            elif is_remote_url(pretrained_model_name_or_path):
2526
                filename = pretrained_model_name_or_path
2527
                resolved_archive_file = download_url(pretrained_model_name_or_path)
2528
            else:
2529
2530
2531
2532
2533
                # set correct filename
                if from_tf:
                    filename = TF2_WEIGHTS_NAME
                elif from_flax:
                    filename = FLAX_WEIGHTS_NAME
2534
                elif use_safetensors is not False:
2535
                    filename = _add_variant(SAFE_WEIGHTS_NAME, variant)
2536
                else:
2537
                    filename = _add_variant(WEIGHTS_NAME, variant)
2538

2539
2540
                try:
                    # Load from URL or cache if already cached
2541
2542
2543
2544
2545
2546
                    cached_file_kwargs = {
                        "cache_dir": cache_dir,
                        "force_download": force_download,
                        "proxies": proxies,
                        "resume_download": resume_download,
                        "local_files_only": local_files_only,
2547
                        "token": token,
2548
2549
2550
2551
2552
2553
                        "user_agent": user_agent,
                        "revision": revision,
                        "subfolder": subfolder,
                        "_raise_exceptions_for_missing_entries": False,
                        "_commit_hash": commit_hash,
                    }
2554
                    resolved_archive_file = cached_file(pretrained_model_name_or_path, filename, **cached_file_kwargs)
2555

2556
                    # Since we set _raise_exceptions_for_missing_entries=False, we don't get an exception but a None
2557
                    # result when internet is up, the repo and revision exist, but the file does not.
2558
                    if resolved_archive_file is None and filename == _add_variant(SAFE_WEIGHTS_NAME, variant):
2559
2560
                        # Maybe the checkpoint is sharded, we try to grab the index name in this case.
                        resolved_archive_file = cached_file(
2561
2562
2563
                            pretrained_model_name_or_path,
                            _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant),
                            **cached_file_kwargs,
2564
2565
2566
                        )
                        if resolved_archive_file is not None:
                            is_sharded = True
2567
2568
2569
2570
                        elif use_safetensors:
                            raise EnvironmentError(
                                f" {_add_variant(SAFE_WEIGHTS_NAME, variant)} or {_add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)} and thus cannot be loaded with `safetensors`. Please make sure that the model has been saved with `safe_serialization=True` or do not set `use_safetensors=True`."
                            )
2571
2572
                        else:
                            # This repo has no safetensors file of any kind, we switch to PyTorch.
2573
                            filename = _add_variant(WEIGHTS_NAME, variant)
2574
                            resolved_archive_file = cached_file(
2575
                                pretrained_model_name_or_path, filename, **cached_file_kwargs
2576
                            )
2577
                    if resolved_archive_file is None and filename == _add_variant(WEIGHTS_NAME, variant):
Sylvain Gugger's avatar
Sylvain Gugger committed
2578
                        # Maybe the checkpoint is sharded, we try to grab the index name in this case.
2579
                        resolved_archive_file = cached_file(
2580
2581
2582
                            pretrained_model_name_or_path,
                            _add_variant(WEIGHTS_INDEX_NAME, variant),
                            **cached_file_kwargs,
2583
                        )
2584
2585
2586
                        if resolved_archive_file is not None:
                            is_sharded = True
                    if resolved_archive_file is None:
Sylvain Gugger's avatar
Sylvain Gugger committed
2587
2588
2589
2590
2591
                        # Otherwise, maybe there is a TF or Flax model file.  We try those to give a helpful error
                        # message.
                        has_file_kwargs = {
                            "revision": revision,
                            "proxies": proxies,
2592
                            "token": token,
Sylvain Gugger's avatar
Sylvain Gugger committed
2593
2594
2595
                        }
                        if has_file(pretrained_model_name_or_path, TF2_WEIGHTS_NAME, **has_file_kwargs):
                            raise EnvironmentError(
Sylvain Gugger's avatar
Sylvain Gugger committed
2596
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
2597
2598
                                f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file for TensorFlow weights."
                                " Use `from_tf=True` to load this model from those weights."
Sylvain Gugger's avatar
Sylvain Gugger committed
2599
2600
2601
                            )
                        elif has_file(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME, **has_file_kwargs):
                            raise EnvironmentError(
Sylvain Gugger's avatar
Sylvain Gugger committed
2602
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
                                f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file for Flax weights. Use"
                                " `from_flax=True` to load this model from those weights."
                            )
                        elif variant is not None and has_file(
                            pretrained_model_name_or_path, WEIGHTS_NAME, **has_file_kwargs
                        ):
                            raise EnvironmentError(
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
                                f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file without the variant"
                                f" {variant}. Use `variant=None` to load this model from those weights."
Sylvain Gugger's avatar
Sylvain Gugger committed
2613
2614
2615
                            )
                        else:
                            raise EnvironmentError(
2616
2617
2618
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
                                f" {_add_variant(WEIGHTS_NAME, variant)}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or"
                                f" {FLAX_WEIGHTS_NAME}."
Sylvain Gugger's avatar
Sylvain Gugger committed
2619
                            )
2620
2621
2622
2623
2624
2625
                except EnvironmentError:
                    # Raise any environment error raise by `cached_file`. It will have a helpful error message adapted
                    # to the original exception.
                    raise
                except Exception:
                    # For any other exception, we throw a generic error.
2626
                    raise EnvironmentError(
2627
2628
2629
                        f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it"
                        " from 'https://huggingface.co/models', make sure you don't have a local directory with the"
                        f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a"
2630
2631
                        f" directory containing a file named {_add_variant(WEIGHTS_NAME, variant)},"
                        f" {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or {FLAX_WEIGHTS_NAME}."
2632
                    )
2633

2634
            if is_local:
2635
                logger.info(f"loading weights file {archive_file}")
2636
                resolved_archive_file = archive_file
2637
            else:
2638
                logger.info(f"loading weights file {filename} from cache at {resolved_archive_file}")
2639
        else:
thomwolf's avatar
thomwolf committed
2640
            resolved_archive_file = None
2641

Sylvain Gugger's avatar
Sylvain Gugger committed
2642
2643
        # We'll need to download and cache each checkpoint shard if the checkpoint is sharded.
        if is_sharded:
2644
            # rsolved_archive_file becomes a list of files that point to the different checkpoint shards in this case.
Sylvain Gugger's avatar
Sylvain Gugger committed
2645
2646
2647
2648
2649
2650
2651
2652
            resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(
                pretrained_model_name_or_path,
                resolved_archive_file,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                resume_download=resume_download,
                local_files_only=local_files_only,
2653
                token=token,
Sylvain Gugger's avatar
Sylvain Gugger committed
2654
2655
                user_agent=user_agent,
                revision=revision,
2656
                subfolder=subfolder,
2657
                _commit_hash=commit_hash,
Sylvain Gugger's avatar
Sylvain Gugger committed
2658
2659
            )

2660
2661
        # load pt weights early so that we know which dtype to init the model under
        if from_pt:
2662
            if not is_sharded and state_dict is None:
Sylvain Gugger's avatar
Sylvain Gugger committed
2663
2664
                # Time to load the checkpoint
                state_dict = load_state_dict(resolved_archive_file)
2665

2666
2667
2668
            # set dtype to instantiate the model under:
            # 1. If torch_dtype is not None, we use that dtype
            # 2. If torch_dtype is "auto", we auto-detect dtype from the loaded state_dict, by checking its first
2669
            #    weights entry that is of a floating type - we assume all floating dtype weights are of the same dtype
2670
2671
            # we also may have config.torch_dtype available, but we won't rely on it till v5
            dtype_orig = None
2672

2673
2674
2675
            if torch_dtype is not None:
                if isinstance(torch_dtype, str):
                    if torch_dtype == "auto":
2676
2677
2678
                        if hasattr(config, "torch_dtype") and config.torch_dtype is not None:
                            torch_dtype = config.torch_dtype
                            logger.info(f"Will use torch_dtype={torch_dtype} as defined in model's config object")
Sylvain Gugger's avatar
Sylvain Gugger committed
2679
                        else:
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
                            if is_sharded and "dtype" in sharded_metadata:
                                torch_dtype = sharded_metadata["dtype"]
                            elif not is_sharded:
                                torch_dtype = get_state_dict_dtype(state_dict)
                            else:
                                one_state_dict = load_state_dict(resolved_archive_file[0])
                                torch_dtype = get_state_dict_dtype(one_state_dict)
                                del one_state_dict  # free CPU memory
                            logger.info(
                                "Since the `torch_dtype` attribute can't be found in model's config object, "
                                "will use torch_dtype={torch_dtype} as derived from model's weights"
                            )
2692
2693
                    else:
                        raise ValueError(
2694
                            f'`torch_dtype` can be either `torch.dtype` or `"auto"`, but received {torch_dtype}'
2695
2696
2697
                        )
                dtype_orig = cls._set_default_torch_dtype(torch_dtype)

2698
2699
            # Check if `_keep_in_fp32_modules` is not None
            use_keep_in_fp32_modules = (
2700
2701
2702
                (cls._keep_in_fp32_modules is not None)
                and is_accelerate_available()
                and (torch_dtype == torch.float16 or load_in_4bit or load_in_8bit)
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
            )
            if (
                (cls._keep_in_fp32_modules is not None)
                and not is_accelerate_available()
                and torch_dtype == torch.float16
            ):
                logger.warning(
                    "For stability purposes, it is recommended to have accelerate installed when using this model in"
                    " torch.float16, please install it with `pip install accelerate`"
                )

2714
2715
2716
            if is_sharded:
                loaded_state_dict_keys = sharded_metadata["all_checkpoint_keys"]
            else:
2717
                loaded_state_dict_keys = list(state_dict.keys())
2718
            if low_cpu_mem_usage or use_keep_in_fp32_modules:
2719
                state_dict = None
2720

2721
2722
        config.name_or_path = pretrained_model_name_or_path

2723
        # Instantiate model.
2724
2725
        init_contexts = [no_init_weights(_enable=_fast_init)]

2726
2727
2728
2729
        if is_deepspeed_zero3_enabled():
            import deepspeed

            logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
2730
            init_contexts = [deepspeed.zero.Init(config_dict_or_path=deepspeed_config())] + init_contexts
2731
        elif load_in_8bit or load_in_4bit or low_cpu_mem_usage:
2732
2733
2734
2735
2736
            init_contexts.append(init_empty_weights())

        with ContextManagers(init_contexts):
            model = cls(config, *model_args, **model_kwargs)

2737
2738
2739
2740
2741
2742
2743
        # Check first if we are `from_pt`
        if use_keep_in_fp32_modules:
            low_cpu_mem_usage = True
            keep_in_fp32_modules = model._keep_in_fp32_modules
        else:
            keep_in_fp32_modules = []

2744
2745
        if load_in_8bit or load_in_4bit:
            from .utils.bitsandbytes import get_keys_to_not_convert, replace_with_bnb_linear
2746

2747
            llm_int8_skip_modules = quantization_config.llm_int8_skip_modules
2748
            load_in_8bit_fp32_cpu_offload = quantization_config.llm_int8_enable_fp32_cpu_offload
2749
2750
2751
2752
            if load_in_8bit:
                logger.info("Detected 8-bit loading: activating 8-bit loading for this model")
            else:
                logger.info("Detected 4-bit loading: activating 4-bit loading for this model")
2753

2754
            # We keep some modules such as the lm_head in their original dtype for numerical stability reasons
2755
            if llm_int8_skip_modules is None:
2756
2757
                modules_to_not_convert = get_keys_to_not_convert(model)
            else:
2758
                modules_to_not_convert = llm_int8_skip_modules
2759
2760
2761
2762
2763
2764

            if not isinstance(modules_to_not_convert, list):
                modules_to_not_convert = [modules_to_not_convert]

            modules_to_not_convert.extend(keep_in_fp32_modules)

2765
2766
2767
2768
2769
2770
2771
            # Extend the modules to not convert to keys that are supposed to be offloaded to `cpu` or `disk`
            if isinstance(device_map, dict) and len(device_map.keys()) > 1:
                keys_on_cpu = [key for key, value in device_map.items() if value in ["disk", "cpu"]]

                if len(keys_on_cpu) > 0 and not load_in_8bit_fp32_cpu_offload:
                    raise ValueError(
                        "If you want to offload some keys to `cpu` or `disk`, you need to set "
Younes Belkada's avatar
Younes Belkada committed
2772
                        "`llm_int8_enable_fp32_cpu_offload=True`. Note that these modules will not be "
2773
2774
2775
2776
2777
                        " converted to 8-bit but kept in 32-bit."
                    )

                modules_to_not_convert.extend(keys_on_cpu)

2778
            supports_4bit = version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse("0.39.0")
2779
2780
2781
2782
2783
2784
2785
2786
2787

            if load_in_4bit and not supports_4bit:
                raise ValueError(
                    "You have a version of `bitsandbytes` that is not compatible with 4bit inference and training"
                    " make sure you have the latest version of `bitsandbytes` installed"
                )

            model = replace_with_bnb_linear(
                model, modules_to_not_convert=modules_to_not_convert, quantization_config=quantization_config
2788
            )
Marc Sun's avatar
Marc Sun committed
2789
            # training in 8-bit is only available in 0.37.0+ but a major bug in 8-bit optimizers was fixed in 0.41.1
2790
            model._is_quantized_training_enabled = version.parse(
2791
                importlib.metadata.version("bitsandbytes")
Marc Sun's avatar
Marc Sun committed
2792
            ) >= version.parse("0.41.1")
2793

2794
2795
2796
            model.config.quantization_config = quantization_config
            model.is_8bit_serializable = is_8bit_serializable

2797
2798
2799
        if load_in_8bit and torch_dtype is None:
            logger.warning(
                "You are loading your model in 8bit but you did not specify a `torch_dtype` attribute."
2800
2801
                "All non-linear modules will be loaded in full precision."
                " If you want to load the other modules in other precision, please specify a `torch_dtype` attribute."
2802
2803
            )

2804
        if isinstance(device_map, str):
2805
            special_dtypes = {}
2806
            if load_in_8bit or load_in_4bit:
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
                special_dtypes.update(
                    {
                        name: torch_dtype
                        for name, _ in model.named_parameters()
                        if any(m in name for m in modules_to_not_convert)
                    }
                )

            special_dtypes.update(
                {
                    name: torch.float32
                    for name, _ in model.named_parameters()
                    if any(m in name for m in keep_in_fp32_modules)
                }
            )

2823
2824
2825
            target_dtype = torch_dtype

            if load_in_4bit:
2826
                if version.parse(importlib.metadata.version("accelerate")) > version.parse("0.19.0"):
2827
2828
2829
2830
2831
2832
2833
                    from accelerate.utils import CustomDtype

                    target_dtype = CustomDtype.INT4
                else:
                    raise ValueError(
                        "You are using `device_map='auto'` on a 4bit loaded version of the model. To automatically compute"
                        " the appropriate device map, you should upgrade your `accelerate` library,"
2834
                        "`pip install --upgrade accelerate` or install it from source to support fp4 auto device map"
2835
2836
2837
2838
2839
                        "calculation. You may encounter unexpected behavior, or pass your own device map"
                    )
            elif load_in_8bit:
                target_dtype = torch.int8

2840
            if model._no_split_modules is None:
2841
2842
2843
2844
                raise ValueError(
                    f"{model.__class__.__name__} does not support `device_map='{device_map}'`. To implement support, the model"
                    "class needs to implement the `_no_split_modules` attribute."
                )
2845
            no_split_modules = model._no_split_modules
2846
2847
2848
2849
2850
            if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
                raise ValueError(
                    "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or "
                    "'sequential'."
                )
2851

2852
            device_map_kwargs = {"no_split_module_classes": no_split_modules}
2853
            if "special_dtypes" in inspect.signature(infer_auto_device_map).parameters:
2854
                device_map_kwargs["special_dtypes"] = special_dtypes
2855
            elif len(special_dtypes) > 0:
2856
                logger.warning(
2857
2858
2859
                    "This model has some weights that should be kept in higher precision, you need to upgrade "
                    "`accelerate` to properly deal with them (`pip install --upgrade accelerate`)."
                )
2860
            if device_map != "sequential":
2861
2862
                max_memory = get_balanced_memory(
                    model,
2863
                    dtype=target_dtype,
2864
                    low_zero=(device_map == "balanced_low_0"),
2865
                    max_memory=max_memory,
2866
                    **device_map_kwargs,
2867
                )
2868
            device_map_kwargs["max_memory"] = max_memory
2869
2870
            # Make sure tied weights are tied before creating the device map.
            model.tie_weights()
2871
            device_map = infer_auto_device_map(model, dtype=target_dtype, **device_map_kwargs)
2872

2873
            if load_in_8bit or load_in_4bit:
2874
                # The LM head / tied weights or any last module can stay on disk / CPU
2875
                device_map_without_lm_head = {
2876
                    key: device_map[key] for key in device_map.keys() if key not in modules_to_not_convert
2877
2878
                }
                if "cpu" in device_map_without_lm_head.values() or "disk" in device_map_without_lm_head.values():
2879
2880
2881
                    raise ValueError(
                        """
                        Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit
2882
2883
2884
2885
2886
                        the quantized model. If you want to dispatch the model on the CPU or the disk while keeping
                        these modules in 32-bit, you need to set `load_in_8bit_fp32_cpu_offload=True` and pass a custom
                        `device_map` to `from_pretrained`. Check
                        https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu
                        for more details.
2887
2888
                        """
                    )
2889
2890
                del device_map_without_lm_head

2891
2892
2893
2894
        elif device_map is not None:
            model.tie_weights()
            tied_params = find_tied_parameters(model)
            # check if we don't have tied param in different devices
2895
            check_tied_parameters_on_same_device(tied_params, device_map)
2896

2897
        if from_tf:
2898
            if resolved_archive_file.endswith(".index"):
2899
2900
2901
2902
2903
                # Load from a TensorFlow 1.X checkpoint - provided by original authors
                model = cls.load_tf_weights(model, config, resolved_archive_file[:-6])  # Remove the '.index'
            else:
                # Load from our TensorFlow 2.0 checkpoints
                try:
2904
                    from .modeling_tf_pytorch_utils import load_tf2_checkpoint_in_pytorch_model
2905

Yih-Dar's avatar
Yih-Dar committed
2906
2907
2908
                    model, loading_info = load_tf2_checkpoint_in_pytorch_model(
                        model, resolved_archive_file, allow_missing_keys=True, output_loading_info=True
                    )
2909
                except ImportError:
2910
                    logger.error(
Sylvain Gugger's avatar
Sylvain Gugger committed
2911
2912
2913
                        "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed."
                        " Please see https://pytorch.org/ and https://www.tensorflow.org/install/ for installation"
                        " instructions."
2914
                    )
2915
                    raise
2916
2917
2918
2919
2920
2921
2922
        elif from_flax:
            try:
                from .modeling_flax_pytorch_utils import load_flax_checkpoint_in_pytorch_model

                model = load_flax_checkpoint_in_pytorch_model(model, resolved_archive_file)
            except ImportError:
                logger.error(
Sylvain Gugger's avatar
Sylvain Gugger committed
2923
2924
2925
                    "Loading a Flax model in PyTorch, requires both PyTorch and Flax to be installed. Please see"
                    " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for"
                    " installation instructions."
2926
2927
                )
                raise
2928
        elif from_pt:
2929
2930
2931
2932
            # restore default dtype
            if dtype_orig is not None:
                torch.set_default_dtype(dtype_orig)

Sylvain Gugger's avatar
Sylvain Gugger committed
2933
2934
2935
2936
2937
2938
2939
2940
            (
                model,
                missing_keys,
                unexpected_keys,
                mismatched_keys,
                offload_index,
                error_msgs,
            ) = cls._load_pretrained_model(
2941
2942
2943
2944
2945
2946
2947
2948
2949
                model,
                state_dict,
                loaded_state_dict_keys,  # XXX: rename?
                resolved_archive_file,
                pretrained_model_name_or_path,
                ignore_mismatched_sizes=ignore_mismatched_sizes,
                sharded_metadata=sharded_metadata,
                _fast_init=_fast_init,
                low_cpu_mem_usage=low_cpu_mem_usage,
2950
2951
2952
2953
                device_map=device_map,
                offload_folder=offload_folder,
                offload_state_dict=offload_state_dict,
                dtype=torch_dtype,
2954
                is_quantized=(load_in_8bit or load_in_4bit),
2955
                keep_in_fp32_modules=keep_in_fp32_modules,
2956
            )
2957

2958
        model.is_loaded_in_4bit = load_in_4bit
Younes Belkada's avatar
Younes Belkada committed
2959
        model.is_loaded_in_8bit = load_in_8bit
2960
        model.is_quantized = load_in_8bit or load_in_4bit
2961

2962
2963
        # make sure token embedding weights are still tied if needed
        model.tie_weights()
2964

2965
        # Set model in evaluation mode to deactivate DropOut modules by default
2966
2967
        model.eval()

2968
        # If it is a model with generation capabilities, attempt to load the generation config
2969
        if model.can_generate() and pretrained_model_name_or_path is not None:
2970
2971
2972
2973
2974
2975
2976
2977
            try:
                model.generation_config = GenerationConfig.from_pretrained(
                    pretrained_model_name_or_path,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
2978
                    token=token,
2979
2980
2981
2982
2983
2984
                    revision=revision,
                    subfolder=subfolder,
                    _from_auto=from_auto_class,
                    _from_pipeline=from_pipeline,
                    **kwargs,
                )
2985
            except OSError:
2986
2987
2988
2989
2990
                logger.info(
                    "Generation config file not found, using a generation config created from the model config."
                )
                pass

2991
2992
        # Dispatch model with hooks on all devices if necessary
        if device_map is not None:
2993
2994
2995
2996
2997
            device_map_kwargs = {
                "device_map": device_map,
                "offload_dir": offload_folder,
                "offload_index": offload_index,
            }
2998
            if "skip_keys" in inspect.signature(dispatch_model).parameters:
2999
3000
                device_map_kwargs["skip_keys"] = model._skip_keys_device_placement
            dispatch_model(model, **device_map_kwargs)
3001

thomwolf's avatar
thomwolf committed
3002
        if output_loading_info:
Yih-Dar's avatar
Yih-Dar committed
3003
3004
3005
3006
3007
3008
3009
            if loading_info is None:
                loading_info = {
                    "missing_keys": missing_keys,
                    "unexpected_keys": unexpected_keys,
                    "mismatched_keys": mismatched_keys,
                    "error_msgs": error_msgs,
                }
thomwolf's avatar
thomwolf committed
3010
3011
            return model, loading_info

3012
3013
        return model

3014
    @classmethod
Sylvain Gugger's avatar
Sylvain Gugger committed
3015
3016
3017
3018
    def _load_pretrained_model(
        cls,
        model,
        state_dict,
3019
        loaded_keys,
Sylvain Gugger's avatar
Sylvain Gugger committed
3020
3021
3022
3023
3024
        resolved_archive_file,
        pretrained_model_name_or_path,
        ignore_mismatched_sizes=False,
        sharded_metadata=None,
        _fast_init=True,
3025
        low_cpu_mem_usage=False,
3026
3027
        device_map=None,
        offload_folder=None,
3028
        offload_state_dict=None,
3029
        dtype=None,
3030
        is_quantized=False,
3031
        keep_in_fp32_modules=None,
3032
    ):
Sylvain Gugger's avatar
Sylvain Gugger committed
3033
        is_safetensors = False
3034
3035
        if is_quantized:
            from .utils.bitsandbytes import set_module_quantized_tensor_to_device
3036

Sylvain Gugger's avatar
Sylvain Gugger committed
3037
        if device_map is not None and "disk" in device_map.values():
Sylvain Gugger's avatar
Sylvain Gugger committed
3038
3039
3040
3041
3042
            archive_file = (
                resolved_archive_file[0] if isinstance(resolved_archive_file, (list, tuple)) else resolved_archive_file
            )
            is_safetensors = archive_file.endswith(".safetensors")
            if offload_folder is None and not is_safetensors:
Sylvain Gugger's avatar
Sylvain Gugger committed
3043
3044
                raise ValueError(
                    "The current `device_map` had weights offloaded to the disk. Please provide an `offload_folder`"
Sylvain Gugger's avatar
Sylvain Gugger committed
3045
3046
                    " for them. Alternatively, make sure you have `safetensors` installed if the model you are using"
                    " offers the weights in this format."
Sylvain Gugger's avatar
Sylvain Gugger committed
3047
                )
Sylvain Gugger's avatar
Sylvain Gugger committed
3048
3049
            if offload_folder is not None:
                os.makedirs(offload_folder, exist_ok=True)
3050
3051
3052
            if offload_state_dict is None:
                offload_state_dict = True

3053
        is_sharded_safetensors = is_safetensors and sharded_metadata is not None
Patrick von Platen's avatar
Patrick von Platen committed
3054
3055
3056
3057

        # tie the model weights before retrieving the state_dict
        model.tie_weights()

3058
        # Retrieve missing & unexpected_keys
3059
3060
        model_state_dict = model.state_dict()
        expected_keys = list(model_state_dict.keys())
3061
3062
        prefix = model.base_model_prefix

Sylvain Gugger's avatar
Sylvain Gugger committed
3063
3064
3065
3066
3067
3068
3069
        def _fix_key(key):
            if "beta" in key:
                return key.replace("beta", "bias")
            if "gamma" in key:
                return key.replace("gamma", "weight")
            return key

3070
        original_loaded_keys = loaded_keys
Sylvain Gugger's avatar
Sylvain Gugger committed
3071
3072
        loaded_keys = [_fix_key(key) for key in loaded_keys]

3073
3074
3075
3076
3077
3078
        if len(prefix) > 0:
            has_prefix_module = any(s.startswith(prefix) for s in loaded_keys)
            expects_prefix_module = any(s.startswith(prefix) for s in expected_keys)
        else:
            has_prefix_module = False
            expects_prefix_module = False
Patrick von Platen's avatar
Patrick von Platen committed
3079
3080
3081

        # key re-naming operations are never done on the keys
        # that are loaded, but always on the keys of the newly initialized model
3082
3083
        remove_prefix_from_model = not has_prefix_module and expects_prefix_module
        add_prefix_to_model = has_prefix_module and not expects_prefix_module
3084

3085
        if remove_prefix_from_model:
3086
3087
3088
            _prefix = f"{prefix}."
            expected_keys_not_prefixed = [s for s in expected_keys if not s.startswith(_prefix)]
            expected_keys = [s[len(_prefix) :] if s.startswith(_prefix) else s for s in expected_keys]
3089
        elif add_prefix_to_model:
3090
3091
3092
            expected_keys = [".".join([prefix, s]) for s in expected_keys]

        missing_keys = list(set(expected_keys) - set(loaded_keys))
Sylvain Gugger's avatar
Sylvain Gugger committed
3093
3094
3095
3096
3097
3098
3099
3100
3101
        unexpected_keys = set(loaded_keys) - set(expected_keys)
        # Remove nonpersistent buffers from unexpected keys: they are not in the state dict but will be in the model
        # buffers
        model_buffers = {n for n, _ in model.named_buffers()}
        if remove_prefix_from_model:
            model_buffers = {key[len(_prefix) :] if key.startswith(_prefix) else key for key in model_buffers}
        elif add_prefix_to_model:
            model_buffers = {".".join([prefix, key]) for key in model_buffers}
        unexpected_keys = list(unexpected_keys - model_buffers)
3102

3103
3104
3105
3106
3107
        if device_map is None:
            ptrs = collections.defaultdict(list)
            for name, tensor in model.state_dict().items():
                id_tensor = id_tensor_storage(tensor)
                ptrs[id_tensor].append(name)
Sylvain Gugger's avatar
Sylvain Gugger committed
3108

3109
3110
3111
3112
3113
            # These are all the pointers of shared tensors.
            tied_params = [names for _, names in ptrs.items() if len(names) > 1]
        else:
            # id function doesn't work for meta tensor so we need this function
            tied_params = find_tied_parameters(model)
Sylvain Gugger's avatar
Sylvain Gugger committed
3114
3115

        for group in tied_params:
Sylvain Gugger's avatar
Sylvain Gugger committed
3116
3117
3118
3119
            if remove_prefix_from_model:
                group = [key[len(_prefix) :] if key.startswith(_prefix) else key for key in group]
            elif add_prefix_to_model:
                group = [".".join([prefix, key]) for key in group]
Sylvain Gugger's avatar
Sylvain Gugger committed
3120
3121
3122
            missing_in_group = [k for k in missing_keys if k in group]
            if len(missing_in_group) > 0 and len(missing_in_group) < len(group):
                missing_keys = [k for k in missing_keys if k not in missing_in_group]
3123

3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
        # Some models may have keys that are not in the state by design, removing them before needlessly warning
        # the user.
        if cls._keys_to_ignore_on_load_missing is not None:
            for pat in cls._keys_to_ignore_on_load_missing:
                missing_keys = [k for k in missing_keys if re.search(pat, k) is None]

        if cls._keys_to_ignore_on_load_unexpected is not None:
            for pat in cls._keys_to_ignore_on_load_unexpected:
                unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

3134
3135
3136
3137
        # retrieve weights on meta device and put them back on CPU.
        # This is not ideal in terms of memory, but if we don't do that not, we can't initialize them in the next step
        if low_cpu_mem_usage:
            for key in missing_keys:
Susnato Dhar's avatar
Susnato Dhar committed
3138
3139
                if key in list(model_state_dict.keys()):
                    key = key
3140
3141
                elif f"{prefix}.{key}" in list(model_state_dict.keys()):
                    key = f"{prefix}.{key}"
Susnato Dhar's avatar
Susnato Dhar committed
3142
                elif key.startswith(prefix) and ".".join(key.split(".")[1:]) in list(model_state_dict.keys()):
3143
3144
                    key = ".".join(key.split(".")[1:])
                param = model_state_dict[key]
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154

                # upcast in fp32 if any
                target_dtype = dtype
                if (
                    keep_in_fp32_modules is not None
                    and dtype == torch.float16
                    and any(module_to_keep_in_fp32 in key for module_to_keep_in_fp32 in keep_in_fp32_modules)
                ):
                    target_dtype = torch.float32

3155
                if param.device == torch.device("meta"):
3156
                    if not (is_quantized):
3157
                        set_module_tensor_to_device(model, key, "cpu", torch.empty(*param.size(), dtype=target_dtype))
3158
                    else:
3159
                        set_module_quantized_tensor_to_device(
3160
3161
                            model, key, "cpu", torch.empty(*param.size(), dtype=target_dtype)
                        )
3162
3163

        # retrieve unintialized modules and initialize before maybe overriding that with the pretrained weights.
3164
        if _fast_init:
3165
3166
3167
3168
3169
3170
3171
3172
3173
            if remove_prefix_from_model:
                _loaded_keys = [f"{prefix}.{k}" for k in loaded_keys]
            elif add_prefix_to_model:
                _loaded_keys = [k[len(prefix) + 1 :] for k in loaded_keys]
            else:
                _loaded_keys = loaded_keys
            set_initialized_submodules(model, _loaded_keys)
            # This will only initialize submodules that are not marked as initialized by the line above.
            model.apply(model._initialize_weights)
3174

3175
3176
3177
3178
3179
3180
        # Set some modules to fp32 if any
        if keep_in_fp32_modules is not None:
            for name, param in model.named_parameters():
                if any(module_to_keep_in_fp32 in name for module_to_keep_in_fp32 in keep_in_fp32_modules):
                    param = param.to(torch.float32)

3181
3182
3183
        # Make sure we are able to load base models as well as derived models (with heads)
        start_prefix = ""
        model_to_load = model
3184
        if len(cls.base_model_prefix) > 0 and not hasattr(model, cls.base_model_prefix) and has_prefix_module:
3185
            start_prefix = cls.base_model_prefix + "."
3186
        if len(cls.base_model_prefix) > 0 and hasattr(model, cls.base_model_prefix) and not has_prefix_module:
3187
            model_to_load = getattr(model, cls.base_model_prefix)
Sylvain Gugger's avatar
Sylvain Gugger committed
3188
3189
            base_model_expected_keys = list(model_to_load.state_dict().keys())
            if any(key in expected_keys_not_prefixed and key not in base_model_expected_keys for key in loaded_keys):
3190
                raise ValueError(
3191
                    "The state dictionary of the model you are trying to load is corrupted. Are you sure it was "
3192
3193
                    "properly saved?"
                )
3194
3195
            if device_map is not None:
                device_map = {k.replace(f"{cls.base_model_prefix}.", ""): v for k, v in device_map.items()}
3196

3197
3198
3199
3200
3201
3202
3203
3204
        def _find_mismatched_keys(
            state_dict,
            model_state_dict,
            loaded_keys,
            add_prefix_to_model,
            remove_prefix_from_model,
            ignore_mismatched_sizes,
        ):
Sylvain Gugger's avatar
Sylvain Gugger committed
3205
3206
3207
            mismatched_keys = []
            if ignore_mismatched_sizes:
                for checkpoint_key in loaded_keys:
3208
3209
3210
                    # If the checkpoint is sharded, we may not have the key here.
                    if checkpoint_key not in state_dict:
                        continue
Sylvain Gugger's avatar
Sylvain Gugger committed
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
                    model_key = checkpoint_key
                    if remove_prefix_from_model:
                        # The model key starts with `prefix` but `checkpoint_key` doesn't so we add it.
                        model_key = f"{prefix}.{checkpoint_key}"
                    elif add_prefix_to_model:
                        # The model key doesn't start with `prefix` but `checkpoint_key` does so we remove it.
                        model_key = ".".join(checkpoint_key.split(".")[1:])

                    if (
                        model_key in model_state_dict
                        and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
                    ):
                        mismatched_keys.append(
                            (checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
                        )
                        del state_dict[checkpoint_key]
3227
3228
            return mismatched_keys

3229
3230
3231
3232
        if resolved_archive_file is not None:
            folder = os.path.sep.join(resolved_archive_file[0].split(os.path.sep)[:-1])
        else:
            folder = None
Sylvain Gugger's avatar
Sylvain Gugger committed
3233
        if device_map is not None and is_safetensors:
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
            param_device_map = expand_device_map(device_map, original_loaded_keys)

            str_dtype = str(dtype).replace("torch.", "") if dtype is not None else "float32"
            if sharded_metadata is None:
                archive_file = (
                    resolved_archive_file[0]
                    if isinstance(resolved_archive_file, (list, tuple))
                    else resolved_archive_file
                )
                weight_map = {p: archive_file for p in original_loaded_keys}
            else:
                weight_map = {p: os.path.join(folder, f) for p, f in sharded_metadata["weight_map"].items()}
Sylvain Gugger's avatar
Sylvain Gugger committed
3246
            offload_index = {
3247
3248
                p: {"safetensors_file": f, "weight_name": p, "dtype": str_dtype}
                for p, f in weight_map.items()
Sylvain Gugger's avatar
Sylvain Gugger committed
3249
3250
3251
                if param_device_map[p] == "disk"
            }

3252
3253
3254
3255
3256
        if state_dict is not None:
            # Whole checkpoint
            mismatched_keys = _find_mismatched_keys(
                state_dict,
                model_state_dict,
3257
                original_loaded_keys,
3258
3259
3260
3261
                add_prefix_to_model,
                remove_prefix_from_model,
                ignore_mismatched_sizes,
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
3262
            error_msgs = _load_state_dict_into_model(model_to_load, state_dict, start_prefix)
Sylvain Gugger's avatar
Sylvain Gugger committed
3263
            offload_index = None
Sylvain Gugger's avatar
Sylvain Gugger committed
3264
        else:
3265
3266
            # Sharded checkpoint or whole but low_cpu_mem_usage==True

Sylvain Gugger's avatar
Sylvain Gugger committed
3267
3268
3269
3270
3271
            # This should always be a list but, just to be sure.
            if not isinstance(resolved_archive_file, list):
                resolved_archive_file = [resolved_archive_file]

            error_msgs = []
3272
            mismatched_keys = []
Sylvain Gugger's avatar
Sylvain Gugger committed
3273
3274
            if not is_safetensors:
                offload_index = {} if device_map is not None and "disk" in device_map.values() else None
3275
3276
3277
3278
3279
3280
3281
            if offload_state_dict:
                state_dict_folder = tempfile.mkdtemp()
                state_dict_index = {}
            else:
                state_dict_folder = None
                state_dict_index = None

3282
            if is_sharded_safetensors:
Sylvain Gugger's avatar
Sylvain Gugger committed
3283
3284
3285
3286
3287
                disk_only_shard_files = get_disk_only_shard_files(device_map, sharded_metadata=sharded_metadata)
                disk_only_shard_files = [os.path.join(folder, f) for f in disk_only_shard_files]
            else:
                disk_only_shard_files = []

3288
3289
            if len(resolved_archive_file) > 1:
                resolved_archive_file = logging.tqdm(resolved_archive_file, desc="Loading checkpoint shards")
Sylvain Gugger's avatar
Sylvain Gugger committed
3290
            for shard_file in resolved_archive_file:
Sylvain Gugger's avatar
Sylvain Gugger committed
3291
3292
3293
                # Skip the load for shards that only contain disk-offloaded weights when using safetensors for the offload.
                if shard_file in disk_only_shard_files:
                    continue
Sylvain Gugger's avatar
Sylvain Gugger committed
3294
                state_dict = load_state_dict(shard_file)
3295

Sylvain Gugger's avatar
Sylvain Gugger committed
3296
3297
                # Mistmatched keys contains tuples key/shape1/shape2 of weights in the checkpoint that have a shape not
                # matching the weights in the model.
3298
3299
3300
                mismatched_keys += _find_mismatched_keys(
                    state_dict,
                    model_state_dict,
3301
                    original_loaded_keys,
3302
3303
3304
3305
                    add_prefix_to_model,
                    remove_prefix_from_model,
                    ignore_mismatched_sizes,
                )
3306
3307

                if low_cpu_mem_usage:
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
                    new_error_msgs, offload_index, state_dict_index = _load_state_dict_into_meta_model(
                        model_to_load,
                        state_dict,
                        loaded_keys,
                        start_prefix,
                        expected_keys,
                        device_map=device_map,
                        offload_folder=offload_folder,
                        offload_index=offload_index,
                        state_dict_folder=state_dict_folder,
                        state_dict_index=state_dict_index,
                        dtype=dtype,
3320
                        is_quantized=is_quantized,
Sylvain Gugger's avatar
Sylvain Gugger committed
3321
                        is_safetensors=is_safetensors,
3322
                        keep_in_fp32_modules=keep_in_fp32_modules,
3323
                    )
3324
                    error_msgs += new_error_msgs
3325
3326
                else:
                    error_msgs += _load_state_dict_into_model(model_to_load, state_dict, start_prefix)
3327

3328
3329
3330
3331
                # force memory release
                del state_dict
                gc.collect()

3332
            if offload_index is not None and len(offload_index) > 0:
Sylvain Gugger's avatar
Sylvain Gugger committed
3333
3334
3335
                if model != model_to_load:
                    # We need to add the prefix of the base model
                    prefix = cls.base_model_prefix
Sylvain Gugger's avatar
Sylvain Gugger committed
3336
3337
3338
3339
3340
3341
                    if not is_safetensors:
                        for weight_name in offload_index:
                            shutil.move(
                                os.path.join(offload_folder, f"{weight_name}.dat"),
                                os.path.join(offload_folder, f"{prefix}.{weight_name}.dat"),
                            )
Sylvain Gugger's avatar
Sylvain Gugger committed
3342
                    offload_index = {f"{prefix}.{key}": value for key, value in offload_index.items()}
Sylvain Gugger's avatar
Sylvain Gugger committed
3343
3344
3345
                if not is_safetensors:
                    save_offload_index(offload_index, offload_folder)
                    offload_index = None
3346
3347
3348

            if offload_state_dict:
                # Load back temporarily offloaded state dict
3349
                load_offloaded_weights(model_to_load, state_dict_index, state_dict_folder)
3350
3351
                shutil.rmtree(state_dict_folder)

3352
3353
        if len(error_msgs) > 0:
            error_msg = "\n\t".join(error_msgs)
3354
3355
3356
3357
            if "size mismatch" in error_msg:
                error_msg += (
                    "\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
                )
3358
3359
            raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")

3360
        if is_quantized:
3361
3362
3363
            unexpected_keys = [elem for elem in unexpected_keys if "SCB" not in elem]
            missing_keys = [elem for elem in missing_keys if "SCB" not in elem]

3364
        if len(unexpected_keys) > 0:
Sylvain Gugger's avatar
Sylvain Gugger committed
3365
            archs = [] if model.config.architectures is None else model.config.architectures
3366
            warner = logger.warning if model.__class__.__name__ in archs else logger.info
Sylvain Gugger's avatar
Sylvain Gugger committed
3367
            warner(
Sylvain Gugger's avatar
Sylvain Gugger committed
3368
3369
3370
3371
3372
3373
3374
                f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
                f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
                f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task or"
                " with another architecture (e.g. initializing a BertForSequenceClassification model from a"
                " BertForPreTraining model).\n- This IS NOT expected if you are initializing"
                f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly identical"
                " (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
3375
3376
3377
3378
3379
            )
        else:
            logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
        if len(missing_keys) > 0:
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
3380
3381
3382
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
                " TRAIN this model on a down-stream task to be able to use it for predictions and inference."
3383
            )
3384
        elif len(mismatched_keys) == 0:
3385
            logger.info(
Sylvain Gugger's avatar
Sylvain Gugger committed
3386
3387
3388
3389
                f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the checkpoint"
                f" was trained on, you can already use {model.__class__.__name__} for predictions without further"
                " training."
3390
            )
3391
3392
3393
3394
3395
3396
3397
3398
        if len(mismatched_keys) > 0:
            mismatched_warning = "\n".join(
                [
                    f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
                    for key, shape1, shape2 in mismatched_keys
                ]
            )
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
3399
3400
3401
3402
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
                f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be able"
                " to use it for predictions and inference."
3403
            )
3404

Sylvain Gugger's avatar
Sylvain Gugger committed
3405
        return model, missing_keys, unexpected_keys, mismatched_keys, offload_index, error_msgs
3406
3407

    def retrieve_modules_from_names(self, names, add_prefix=False, remove_prefix=False):
3408
        module_keys = {".".join(key.split(".")[:-1]) for key in names}
3409

Patrick von Platen's avatar
Patrick von Platen committed
3410
3411
        # torch.nn.ParameterList is a special case where two parameter keywords
        # are appended to the module name, *e.g.* bert.special_embeddings.0
3412
        module_keys = module_keys.union(
3413
            {".".join(key.split(".")[:-2]) for key in names if len(key) > 0 and key[-1].isdigit()}
3414
        )
Patrick von Platen's avatar
Patrick von Platen committed
3415

3416
3417
3418
3419
        retrieved_modules = []
        # retrieve all modules that has at least one missing weight name
        for name, module in self.named_modules():
            if remove_prefix:
3420
3421
                _prefix = f"{self.base_model_prefix}."
                name = name[len(_prefix) :] if name.startswith(_prefix) else name
3422
            elif add_prefix:
Patrick von Platen's avatar
Patrick von Platen committed
3423
                name = ".".join([self.base_model_prefix, name]) if len(name) > 0 else self.base_model_prefix
3424
3425
3426
3427
3428
3429

            if name in module_keys:
                retrieved_modules.append(module)

        return retrieved_modules

3430
    @staticmethod
3431
    def _load_pretrained_model_low_mem(model, loaded_state_dict_keys, resolved_archive_file, start_prefix=""):
3432
3433
3434
        """
        This is an experimental function that loads the model using ~1.x model size CPU memory

3435
        Before you call it do:
3436

3437
        1. save which state_dict keys are available
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
        2. drop state_dict before model is created, since the latter takes 1x model size memory

        Here then we continue:

        3. switch to the meta device all params/buffers that are going to be replaced from the loaded state_dict
        4. load state_dict 2nd time
        5. replace the params/buffers from the state_dict

        Currently, it doesn't handle missing_keys, unexpected_keys, mismatched_keys. It can't handle deepspeed.
        """

3449
3450
3451
3452
        _move_model_to_meta(model, loaded_state_dict_keys, start_prefix)
        state_dict = load_state_dict(resolved_archive_file)
        error_msgs = _load_state_dict_into_meta_model(model, state_dict, loaded_state_dict_keys, start_prefix)
        return error_msgs
3453

3454
3455
3456
3457
3458
3459
    @classmethod
    def register_for_auto_class(cls, auto_class="AutoModel"):
        """
        Register this class with a given auto class. This should only be used for custom models as the ones in the
        library are already mapped with an auto class.

3460
3461
3462
3463
3464
3465
        <Tip warning={true}>

        This API is experimental and may have some slight breaking changes in the next releases.

        </Tip>

3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
        Args:
            auto_class (`str` or `type`, *optional*, defaults to `"AutoModel"`):
                The auto class to register this new model with.
        """
        if not isinstance(auto_class, str):
            auto_class = auto_class.__name__

        import transformers.models.auto as auto_module

        if not hasattr(auto_module, auto_class):
            raise ValueError(f"{auto_class} is not a valid auto class.")

        cls._auto_class = auto_class

3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
    def to_bettertransformer(self) -> "PreTrainedModel":
        """
        Converts the model to use [PyTorch's native attention
        implementation](https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html), integrated to
        Transformers through [Optimum library](https://huggingface.co/docs/optimum/bettertransformer/overview). Only a
        subset of all Transformers models are supported.

        PyTorch's attention fastpath allows to speed up inference through kernel fusions and the use of [nested
        tensors](https://pytorch.org/docs/stable/nested.html). Detailed benchmarks can be found in [this blog
        post](https://medium.com/pytorch/bettertransformer-out-of-the-box-performance-for-huggingface-transformers-3fbe27d50ab2).

        Returns:
            [`PreTrainedModel`]: The model converted to BetterTransformer.
        """
        if not is_optimum_available():
            raise ImportError("The package `optimum` is required to use Better Transformer.")

        from optimum.version import __version__ as optimum_version

        if version.parse(optimum_version) < version.parse("1.7.0"):
            raise ImportError(
                f"Please install optimum>=1.7.0 to use Better Transformer. The version {optimum_version} was found."
            )

        from optimum.bettertransformer import BetterTransformer

        return BetterTransformer.transform(self)

    def reverse_bettertransformer(self):
        """
        Reverts the transformation from [`~PreTrainedModel.to_bettertransformer`] so that the original modeling is
        used, for example in order to save the model.

        Returns:
            [`PreTrainedModel`]: The model converted back to the original modeling.
        """
        if not is_optimum_available():
            raise ImportError("The package `optimum` is required to use Better Transformer.")

        from optimum.version import __version__ as optimum_version

        if version.parse(optimum_version) < version.parse("1.7.0"):
            raise ImportError(
                f"Please install optimum>=1.7.0 to use Better Transformer. The version {optimum_version} was found."
            )

        from optimum.bettertransformer import BetterTransformer

        return BetterTransformer.reverse(self)

3530
3531
3532
3533
    def warn_if_padding_and_no_attention_mask(self, input_ids, attention_mask):
        """
        Shows a one-time warning if the input_ids appear to contain padding and no attention mask was given.
        """
3534
3535
3536
3537
3538

        # Skip the check during tracing.
        if is_torch_fx_proxy(input_ids) or torch.jit.is_tracing():
            return

3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
        if (attention_mask is not None) or (self.config.pad_token_id is None):
            return

        # Check only the first and last input IDs to reduce overhead.
        if self.config.pad_token_id in input_ids[:, [-1, 0]]:
            warn_string = (
                "We strongly recommend passing in an `attention_mask` since your input_ids may be padded. See "
                "https://huggingface.co/docs/transformers/troubleshooting"
                "#incorrect-output-when-padding-tokens-arent-masked."
            )

            # If the pad token is equal to either BOS, EOS, or SEP, we do not know whether the user should use an
            # attention_mask or not. In this case, we should still show a warning because this is a rare case.
            if (
                (self.config.bos_token_id is not None and self.config.bos_token_id == self.config.pad_token_id)
                or (self.config.eos_token_id is not None and self.config.eos_token_id == self.config.pad_token_id)
                or (self.config.sep_token_id is not None and self.config.sep_token_id == self.config.pad_token_id)
            ):
                warn_string += (
                    f"\nYou may ignore this warning if your `pad_token_id` ({self.config.pad_token_id}) is identical "
                    f"to the `bos_token_id` ({self.config.bos_token_id}), `eos_token_id` ({self.config.eos_token_id}), "
                    f"or the `sep_token_id` ({self.config.sep_token_id}), and your input is not padded."
                )

            logger.warning_once(warn_string)

thomwolf's avatar
thomwolf committed
3565

3566
PreTrainedModel.push_to_hub = copy_func(PreTrainedModel.push_to_hub)
3567
3568
3569
3570
if PreTrainedModel.push_to_hub.__doc__ is not None:
    PreTrainedModel.push_to_hub.__doc__ = PreTrainedModel.push_to_hub.__doc__.format(
        object="model", object_class="AutoModel", object_files="model file"
    )
3571
3572


thomwolf's avatar
thomwolf committed
3573
class PoolerStartLogits(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
3574
3575
    """
    Compute SQuAD start logits from sequence hidden states.
3576

Sylvain Gugger's avatar
Sylvain Gugger committed
3577
    Args:
3578
3579
        config ([`PretrainedConfig`]):
            The config used by the model, will be used to grab the `hidden_size` of the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
3580
3581
3582
    """

    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
3583
        super().__init__()
thomwolf's avatar
thomwolf committed
3584
3585
        self.dense = nn.Linear(config.hidden_size, 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
3586
3587
3588
3589
3590
    def forward(
        self, hidden_states: torch.FloatTensor, p_mask: Optional[torch.FloatTensor] = None
    ) -> torch.FloatTensor:
        """
        Args:
3591
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
3592
                The final hidden states of the model.
3593
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
3594
3595
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
Sylvain Gugger's avatar
Sylvain Gugger committed
3596
3597

        Returns:
3598
            `torch.FloatTensor`: The start logits for SQuAD.
thomwolf's avatar
thomwolf committed
3599
        """
thomwolf's avatar
thomwolf committed
3600
3601
3602
        x = self.dense(hidden_states).squeeze(-1)

        if p_mask is not None:
Lysandre Debut's avatar
Lysandre Debut committed
3603
            if get_parameter_dtype(self) == torch.float16:
3604
3605
3606
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask
thomwolf's avatar
thomwolf committed
3607
3608
3609
3610
3611
3612

        return x


class PoolerEndLogits(nn.Module):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
3613
    Compute SQuAD end logits from sequence hidden states.
3614

Sylvain Gugger's avatar
Sylvain Gugger committed
3615
    Args:
3616
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
3617
3618
            The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps`
            to use.
Sylvain Gugger's avatar
Sylvain Gugger committed
3619
3620
3621
    """

    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
3622
        super().__init__()
thomwolf's avatar
thomwolf committed
3623
3624
3625
3626
3627
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dense_1 = nn.Linear(config.hidden_size, 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
3628
3629
3630
3631
3632
3633
3634
3635
3636
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        start_states: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        p_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
        """
        Args:
3637
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
3638
                The final hidden states of the model.
3639
            start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
3640
                The hidden states of the first tokens for the labeled span.
3641
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
3642
                The position of the first token for the labeled span.
3643
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
3644
3645
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
Sylvain Gugger's avatar
Sylvain Gugger committed
3646

3647
        <Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
3648

Stas Bekman's avatar
Stas Bekman committed
3649
3650
        One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides
        `start_states`.
3651
3652

        </Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
3653
3654

        Returns:
3655
            `torch.FloatTensor`: The end logits for SQuAD.
thomwolf's avatar
thomwolf committed
3656
        """
3657
3658
3659
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
thomwolf's avatar
thomwolf committed
3660
        if start_positions is not None:
3661
            slen, hsz = hidden_states.shape[-2:]
3662
3663
3664
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions)  # shape (bsz, 1, hsz)
            start_states = start_states.expand(-1, slen, -1)  # shape (bsz, slen, hsz)
thomwolf's avatar
thomwolf committed
3665
3666
3667
3668
3669
3670
3671

        x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1))
        x = self.activation(x)
        x = self.LayerNorm(x)
        x = self.dense_1(x).squeeze(-1)

        if p_mask is not None:
Lysandre Debut's avatar
Lysandre Debut committed
3672
            if get_parameter_dtype(self) == torch.float16:
3673
3674
3675
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask
thomwolf's avatar
thomwolf committed
3676
3677
3678
3679
3680

        return x


class PoolerAnswerClass(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
3681
3682
3683
3684
    """
    Compute SQuAD 2.0 answer class from classification and start tokens hidden states.

    Args:
3685
3686
        config ([`PretrainedConfig`]):
            The config used by the model, will be used to grab the `hidden_size` of the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
3687
    """
3688

thomwolf's avatar
thomwolf committed
3689
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
3690
        super().__init__()
thomwolf's avatar
thomwolf committed
3691
3692
3693
3694
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False)

Sylvain Gugger's avatar
Sylvain Gugger committed
3695
3696
3697
3698
3699
3700
3701
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        start_states: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        cls_index: Optional[torch.LongTensor] = None,
    ) -> torch.FloatTensor:
3702
3703
        """
        Args:
3704
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
3705
                The final hidden states of the model.
3706
            start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
3707
                The hidden states of the first tokens for the labeled span.
3708
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
3709
                The position of the first token for the labeled span.
3710
3711
3712
3713
            cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
                Position of the CLS token for each sentence in the batch. If `None`, takes the last token.

        <Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
3714

Stas Bekman's avatar
Stas Bekman committed
3715
3716
        One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides
        `start_states`.
Sylvain Gugger's avatar
Sylvain Gugger committed
3717

3718
        </Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
3719
3720

        Returns:
3721
            `torch.FloatTensor`: The SQuAD 2.0 answer class.
thomwolf's avatar
thomwolf committed
3722
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
3723
        # No dependency on end_feature so that we can obtain one single `cls_logits` for each sample.
3724
        hsz = hidden_states.shape[-1]
3725
3726
3727
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
thomwolf's avatar
thomwolf committed
3728
        if start_positions is not None:
3729
3730
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions).squeeze(-2)  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
3731
3732

        if cls_index is not None:
3733
3734
            cls_index = cls_index[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
3735
        else:
3736
            cls_token_state = hidden_states[:, -1, :]  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
3737
3738
3739
3740
3741
3742
3743
3744

        x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1))
        x = self.activation(x)
        x = self.dense_1(x).squeeze(-1)

        return x


3745
3746
3747
@dataclass
class SquadHeadOutput(ModelOutput):
    """
3748
    Base class for outputs of question answering models using a [`~modeling_utils.SQuADHead`].
3749
3750

    Args:
3751
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned if both `start_positions` and `end_positions` are provided):
Sylvain Gugger's avatar
Sylvain Gugger committed
3752
3753
            Classification loss as the sum of start token, end token (and is_impossible if provided) classification
            losses.
3754
        start_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
3755
            Log probabilities for the top config.start_n_top start token possibilities (beam-search).
3756
        start_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
3757
            Indices for the top config.start_n_top start token possibilities (beam-search).
3758
3759
        end_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Log probabilities for the top `config.start_n_top * config.end_n_top` end token possibilities
Sylvain Gugger's avatar
Sylvain Gugger committed
3760
            (beam-search).
3761
3762
3763
3764
        end_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Indices for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search).
        cls_logits (`torch.FloatTensor` of shape `(batch_size,)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Log probabilities for the `is_impossible` label of the answers.
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775

    """

    loss: Optional[torch.FloatTensor] = None
    start_top_log_probs: Optional[torch.FloatTensor] = None
    start_top_index: Optional[torch.LongTensor] = None
    end_top_log_probs: Optional[torch.FloatTensor] = None
    end_top_index: Optional[torch.LongTensor] = None
    cls_logits: Optional[torch.FloatTensor] = None


thomwolf's avatar
thomwolf committed
3776
class SQuADHead(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
3777
3778
    r"""
    A SQuAD head inspired by XLNet.
3779

Sylvain Gugger's avatar
Sylvain Gugger committed
3780
    Args:
3781
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
3782
3783
            The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps`
            to use.
thomwolf's avatar
thomwolf committed
3784
    """
3785

thomwolf's avatar
thomwolf committed
3786
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
3787
        super().__init__()
thomwolf's avatar
thomwolf committed
3788
3789
3790
3791
3792
3793
3794
        self.start_n_top = config.start_n_top
        self.end_n_top = config.end_n_top

        self.start_logits = PoolerStartLogits(config)
        self.end_logits = PoolerEndLogits(config)
        self.answer_class = PoolerAnswerClass(config)

Sylvain Gugger's avatar
Sylvain Gugger committed
3795
    @replace_return_docstrings(output_type=SquadHeadOutput, config_class=PretrainedConfig)
3796
    def forward(
3797
        self,
Sylvain Gugger's avatar
Sylvain Gugger committed
3798
3799
3800
3801
3802
3803
        hidden_states: torch.FloatTensor,
        start_positions: Optional[torch.LongTensor] = None,
        end_positions: Optional[torch.LongTensor] = None,
        cls_index: Optional[torch.LongTensor] = None,
        is_impossible: Optional[torch.LongTensor] = None,
        p_mask: Optional[torch.FloatTensor] = None,
3804
        return_dict: bool = False,
Sylvain Gugger's avatar
Sylvain Gugger committed
3805
3806
    ) -> Union[SquadHeadOutput, Tuple[torch.FloatTensor]]:
        """
Lysandre's avatar
Lysandre committed
3807
        Args:
3808
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Lysandre's avatar
Lysandre committed
3809
                Final hidden states of the model on the sequence tokens.
3810
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
3811
                Positions of the first token for the labeled span.
3812
            end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
3813
                Positions of the last token for the labeled span.
3814
3815
3816
            cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
                Position of the CLS token for each sentence in the batch. If `None`, takes the last token.
            is_impossible (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
3817
                Whether the question has a possible answer in the paragraph or not.
3818
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
3819
3820
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
3821
            return_dict (`bool`, *optional*, defaults to `False`):
3822
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Sylvain Gugger's avatar
Sylvain Gugger committed
3823

Lysandre's avatar
Lysandre committed
3824
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
3825
        """
thomwolf's avatar
thomwolf committed
3826
        start_logits = self.start_logits(hidden_states, p_mask=p_mask)
thomwolf's avatar
thomwolf committed
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849

        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, let's remove the dimension added by batch splitting
            for x in (start_positions, end_positions, cls_index, is_impossible):
                if x is not None and x.dim() > 1:
                    x.squeeze_(-1)

            # during training, compute the end logits based on the ground truth of the start position
            end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)

            loss_fct = CrossEntropyLoss()
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

            if cls_index is not None and is_impossible is not None:
                # Predict answerability from the representation of CLS and START
                cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
                loss_fct_cls = nn.BCEWithLogitsLoss()
                cls_loss = loss_fct_cls(cls_logits, is_impossible)

                # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss
                total_loss += cls_loss * 0.5
3850

3851
            return SquadHeadOutput(loss=total_loss) if return_dict else (total_loss,)
thomwolf's avatar
thomwolf committed
3852
3853
3854
3855

        else:
            # during inference, compute the end logits based on beam search
            bsz, slen, hsz = hidden_states.size()
3856
            start_log_probs = nn.functional.softmax(start_logits, dim=-1)  # shape (bsz, slen)
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867

            start_top_log_probs, start_top_index = torch.topk(
                start_log_probs, self.start_n_top, dim=-1
            )  # shape (bsz, start_n_top)
            start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz)  # shape (bsz, start_n_top, hsz)
            start_states = torch.gather(hidden_states, -2, start_top_index_exp)  # shape (bsz, start_n_top, hsz)
            start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1)  # shape (bsz, slen, start_n_top, hsz)

            hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(
                start_states
            )  # shape (bsz, slen, start_n_top, hsz)
thomwolf's avatar
thomwolf committed
3868
3869
            p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
            end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
3870
            end_log_probs = nn.functional.softmax(end_logits, dim=1)  # shape (bsz, slen, start_n_top)
thomwolf's avatar
thomwolf committed
3871

3872
3873
3874
            end_top_log_probs, end_top_index = torch.topk(
                end_log_probs, self.end_n_top, dim=1
            )  # shape (bsz, end_n_top, start_n_top)
thomwolf's avatar
thomwolf committed
3875
3876
3877
3878
3879
3880
            end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
            end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)

            start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs)
            cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index)

3881
            if not return_dict:
3882
3883
3884
3885
3886
3887
3888
3889
3890
                return (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits)
            else:
                return SquadHeadOutput(
                    start_top_log_probs=start_top_log_probs,
                    start_top_index=start_top_index,
                    end_top_log_probs=end_top_log_probs,
                    end_top_index=end_top_index,
                    cls_logits=cls_logits,
                )
thomwolf's avatar
thomwolf committed
3891
3892
3893


class SequenceSummary(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
3894
3895
3896
3897
    r"""
    Compute a single vector summary of a sequence hidden states.

    Args:
3898
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
3899
3900
            The config used by the model. Relevant arguments in the config class of the model are (refer to the actual
            config class of your model for the default values it uses):
Sylvain Gugger's avatar
Sylvain Gugger committed
3901

3902
            - **summary_type** (`str`) -- The method to use to make this summary. Accepted values are:
Sylvain Gugger's avatar
Sylvain Gugger committed
3903

3904
3905
3906
3907
3908
                - `"last"` -- Take the last token hidden state (like XLNet)
                - `"first"` -- Take the first token hidden state (like Bert)
                - `"mean"` -- Take the mean of all tokens hidden states
                - `"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2)
                - `"attn"` -- Not implemented now, use multi-head attention
Sylvain Gugger's avatar
Sylvain Gugger committed
3909

3910
            - **summary_use_proj** (`bool`) -- Add a projection after the vector extraction.
Sylvain Gugger's avatar
Sylvain Gugger committed
3911
3912
3913
3914
3915
3916
            - **summary_proj_to_labels** (`bool`) -- If `True`, the projection outputs to `config.num_labels` classes
              (otherwise to `config.hidden_size`).
            - **summary_activation** (`Optional[str]`) -- Set to `"tanh"` to add a tanh activation to the output,
              another string or `None` will add no activation.
            - **summary_first_dropout** (`float`) -- Optional dropout probability before the projection and activation.
            - **summary_last_dropout** (`float`)-- Optional dropout probability after the projection and activation.
thomwolf's avatar
thomwolf committed
3917
    """
3918

3919
    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
3920
        super().__init__()
thomwolf's avatar
thomwolf committed
3921

3922
        self.summary_type = getattr(config, "summary_type", "last")
3923
        if self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
3924
3925
3926
3927
3928
            # We should use a standard multi-head attention module with absolute positional embedding for that.
            # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
            # We can probably just use the multi-head attention module of PyTorch >=1.1.0
            raise NotImplementedError

thomwolf's avatar
thomwolf committed
3929
        self.summary = Identity()
3930
3931
        if hasattr(config, "summary_use_proj") and config.summary_use_proj:
            if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0:
3932
                num_classes = config.num_labels
thomwolf's avatar
thomwolf committed
3933
3934
3935
3936
            else:
                num_classes = config.hidden_size
            self.summary = nn.Linear(config.hidden_size, num_classes)

3937
        activation_string = getattr(config, "summary_activation", None)
Lysandre's avatar
Lysandre committed
3938
        self.activation: Callable = get_activation(activation_string) if activation_string else Identity()
thomwolf's avatar
thomwolf committed
3939

thomwolf's avatar
thomwolf committed
3940
        self.first_dropout = Identity()
3941
        if hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0:
3942
3943
            self.first_dropout = nn.Dropout(config.summary_first_dropout)

thomwolf's avatar
thomwolf committed
3944
        self.last_dropout = Identity()
3945
        if hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0:
3946
            self.last_dropout = nn.Dropout(config.summary_last_dropout)
thomwolf's avatar
thomwolf committed
3947

Sylvain Gugger's avatar
Sylvain Gugger committed
3948
3949
3950
3951
3952
3953
3954
    def forward(
        self, hidden_states: torch.FloatTensor, cls_index: Optional[torch.LongTensor] = None
    ) -> torch.FloatTensor:
        """
        Compute a single vector summary of a sequence hidden states.

        Args:
3955
            hidden_states (`torch.FloatTensor` of shape `[batch_size, seq_len, hidden_size]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
3956
                The hidden states of the last layer.
3957
            cls_index (`torch.LongTensor` of shape `[batch_size]` or `[batch_size, ...]` where ... are optional leading dimensions of `hidden_states`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
3958
                Used if `summary_type == "cls_index"` and takes the last token of the sequence as classification token.
Sylvain Gugger's avatar
Sylvain Gugger committed
3959
3960

        Returns:
3961
            `torch.FloatTensor`: The summary of the sequence hidden states.
thomwolf's avatar
thomwolf committed
3962
        """
3963
        if self.summary_type == "last":
thomwolf's avatar
thomwolf committed
3964
            output = hidden_states[:, -1]
3965
        elif self.summary_type == "first":
thomwolf's avatar
thomwolf committed
3966
            output = hidden_states[:, 0]
3967
        elif self.summary_type == "mean":
thomwolf's avatar
thomwolf committed
3968
            output = hidden_states.mean(dim=1)
3969
        elif self.summary_type == "cls_index":
thomwolf's avatar
thomwolf committed
3970
            if cls_index is None:
Lysandre's avatar
Lysandre committed
3971
3972
3973
3974
3975
                cls_index = torch.full_like(
                    hidden_states[..., :1, :],
                    hidden_states.shape[-2] - 1,
                    dtype=torch.long,
                )
thomwolf's avatar
thomwolf committed
3976
            else:
thomwolf's avatar
thomwolf committed
3977
                cls_index = cls_index.unsqueeze(-1).unsqueeze(-1)
3978
                cls_index = cls_index.expand((-1,) * (cls_index.dim() - 1) + (hidden_states.size(-1),))
thomwolf's avatar
thomwolf committed
3979
            # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
3980
3981
            output = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, XX, hidden_size)
        elif self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
3982
3983
            raise NotImplementedError

3984
        output = self.first_dropout(output)
thomwolf's avatar
thomwolf committed
3985
3986
        output = self.summary(output)
        output = self.activation(output)
3987
        output = self.last_dropout(output)
thomwolf's avatar
thomwolf committed
3988
3989
3990
3991

        return output


3992
def unwrap_model(model: nn.Module) -> nn.Module:
3993
3994
3995
3996
    """
    Recursively unwraps a model from potential containers (as used in distributed training).

    Args:
3997
        model (`torch.nn.Module`): The model to unwrap.
3998
3999
4000
4001
4002
4003
    """
    # since there could be multiple levels of wrapping, unwrap recursively
    if hasattr(model, "module"):
        return unwrap_model(model.module)
    else:
        return model
Sylvain Gugger's avatar
Sylvain Gugger committed
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026


def expand_device_map(device_map, param_names):
    """
    Expand a device map to return the correspondance parameter name to device.
    """
    new_device_map = {}
    for module, device in device_map.items():
        new_device_map.update({p: device for p in param_names if p == module or p.startswith(f"{module}.")})
    return new_device_map


def get_disk_only_shard_files(device_map, sharded_metadata):
    """
    Returns the list of shard files containing only weights offloaded to disk.
    """
    files_content = collections.defaultdict(list)
    for weight_name, filename in sharded_metadata["weight_map"].items():
        while len(weight_name) > 0 and weight_name not in device_map:
            weight_name = ".".join(weight_name.split(".")[:-1])
        files_content[filename].append(device_map[weight_name])

    return [fname for fname, devices in files_content.items() if set(devices) == {"disk"}]