modeling_utils.py 201 KB
Newer Older
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
16
import collections
17
import gc
18
import importlib.metadata
Yih-Dar's avatar
Yih-Dar committed
19
import inspect
Sylvain Gugger's avatar
Sylvain Gugger committed
20
import json
21
import os
22
import re
Sylvain Gugger's avatar
Sylvain Gugger committed
23
24
import shutil
import tempfile
25
import warnings
26
from contextlib import contextmanager
27
from dataclasses import dataclass
28
from functools import partial, wraps
29
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
30
31

import torch
32
from packaging import version
Sylvain Gugger's avatar
Sylvain Gugger committed
33
from torch import Tensor, nn
34
from torch.nn import CrossEntropyLoss
35

36
from .activations import get_activation
37
from .configuration_utils import PretrainedConfig
38
from .deepspeed import deepspeed_config, is_deepspeed_zero3_enabled
39
from .dynamic_module_utils import custom_object_save
40
from .generation import GenerationConfig, GenerationMixin
41
from .lib_integrations import PeftAdapterMixin
42
43
44
45
from .pytorch_utils import (  # noqa: F401
    Conv1D,
    apply_chunking_to_forward,
    find_pruneable_heads_and_indices,
Thomas Wang's avatar
Thomas Wang committed
46
    id_tensor_storage,
47
48
49
50
    prune_conv1d_layer,
    prune_layer,
    prune_linear_layer,
)
51
from .utils import (
52
53
    ADAPTER_SAFE_WEIGHTS_NAME,
    ADAPTER_WEIGHTS_NAME,
Aymeric Augustin's avatar
Aymeric Augustin committed
54
    DUMMY_INPUTS,
55
    FLAX_WEIGHTS_NAME,
56
57
    SAFE_WEIGHTS_INDEX_NAME,
    SAFE_WEIGHTS_NAME,
58
59
    TF2_WEIGHTS_NAME,
    TF_WEIGHTS_NAME,
Sylvain Gugger's avatar
Sylvain Gugger committed
60
    WEIGHTS_INDEX_NAME,
61
    WEIGHTS_NAME,
62
    ContextManagers,
63
    ModelOutput,
Sylvain Gugger's avatar
Sylvain Gugger committed
64
    PushToHubMixin,
65
    cached_file,
66
    copy_func,
67
    download_url,
68
    has_file,
69
    is_accelerate_available,
Marc Sun's avatar
Marc Sun committed
70
    is_auto_gptq_available,
71
    is_bitsandbytes_available,
72
    is_offline_mode,
73
    is_optimum_available,
74
    is_peft_available,
75
    is_remote_url,
76
    is_safetensors_available,
77
    is_torch_tpu_available,
78
    logging,
Sylvain Gugger's avatar
Sylvain Gugger committed
79
    replace_return_docstrings,
80
    strtobool,
81
)
82
from .utils.hub import convert_file_size_to_int, get_checkpoint_shard_files
83
from .utils.import_utils import ENV_VARS_TRUE_VALUES, is_sagemaker_mp_enabled, is_torch_fx_proxy
Marc Sun's avatar
Marc Sun committed
84
from .utils.quantization_config import BitsAndBytesConfig, GPTQConfig, QuantizationMethod
85
from .utils.versions import require_version_core
86

Aymeric Augustin's avatar
Aymeric Augustin committed
87

88
89
90
XLA_USE_BF16 = os.environ.get("XLA_USE_BF16", "0").upper()
XLA_DOWNCAST_BF16 = os.environ.get("XLA_DOWNCAST_BF16", "0").upper()

91
92
if is_accelerate_available():
    from accelerate import dispatch_model, infer_auto_device_map, init_empty_weights
93
    from accelerate.hooks import add_hook_to_module
94
    from accelerate.utils import (
95
        check_tied_parameters_on_same_device,
96
        find_tied_parameters,
97
        get_balanced_memory,
98
99
100
101
102
103
        load_offloaded_weights,
        offload_weight,
        save_offload_index,
        set_module_tensor_to_device,
    )

104
105
106
107
if is_safetensors_available():
    from safetensors import safe_open
    from safetensors.torch import load_file as safe_load_file
    from safetensors.torch import save_file as safe_save_file
108

Lysandre Debut's avatar
Lysandre Debut committed
109
logger = logging.get_logger(__name__)
110

111
112
113
114

_init_weights = True


115
def is_fsdp_enabled():
116
    return torch.distributed.is_initialized() and strtobool(os.environ.get("ACCELERATE_USE_FSDP", "False")) == 1
117
118
119


def is_fsdp_enabled_and_dist_rank_0():
120
    return is_fsdp_enabled() and torch.distributed.get_rank() == 0
121
122


123
124
125
126
127
128
129
130
if is_sagemaker_mp_enabled():
    import smdistributed.modelparallel.torch as smp
    from smdistributed.modelparallel import __version__ as SMP_VERSION

    IS_SAGEMAKER_MP_POST_1_10 = version.parse(SMP_VERSION) >= version.parse("1.10")
else:
    IS_SAGEMAKER_MP_POST_1_10 = False

131
132
133
if is_peft_available():
    from .utils import find_adapter_config_file

134

135
136
137
138
139
140
141
142
@contextmanager
def no_init_weights(_enable=True):
    """
    Context manager to globally disable weight initialization to speed up loading large models.

    TODO(Patrick): Delete safety argument `_enable=True` at next major version. .
    """
    global _init_weights
143
    old_init_weights = _init_weights
144
145
146
147
148
    if _enable:
        _init_weights = False
    try:
        yield
    finally:
149
        _init_weights = old_init_weights
150
151


thomwolf's avatar
thomwolf committed
152
153
154
155
156
try:
    from torch.nn import Identity
except ImportError:
    # Older PyTorch compatibility
    class Identity(nn.Module):
Lysandre's avatar
Lysandre committed
157
        r"""A placeholder identity operator that is argument-insensitive."""
158

thomwolf's avatar
thomwolf committed
159
        def __init__(self, *args, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
160
            super().__init__()
thomwolf's avatar
thomwolf committed
161
162
163
164

        def forward(self, input):
            return input

165

Lysandre Debut's avatar
Lysandre Debut committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
def get_parameter_device(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    try:
        return next(parameter.parameters()).device
    except StopIteration:
        # For nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].device


181
182
183
184
def get_first_parameter_dtype(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    """
    Returns the first parameter dtype (can be non-floating) or asserts if none were found.
    """
Lysandre Debut's avatar
Lysandre Debut committed
185
186
187
    try:
        return next(parameter.parameters()).dtype
    except StopIteration:
Sylvain Gugger's avatar
Sylvain Gugger committed
188
        # For nn.DataParallel compatibility in PyTorch > 1.5
Lysandre Debut's avatar
Lysandre Debut committed
189
190
191
192
193
194
195
196
197
198

        def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].dtype


199
200
def get_parameter_dtype(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
201
    Returns the first found floating dtype in parameters if there is one, otherwise returns the last dtype it found.
202
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
203
204
205
206
    last_dtype = None
    for t in parameter.parameters():
        last_dtype = t.dtype
        if t.is_floating_point():
207
208
209
            # Adding fix for https://github.com/pytorch/xla/issues/4152
            # Fixes issue where the model code passes a value that is out of range for XLA_USE_BF16=1
            # and XLA_DOWNCAST_BF16=1 so the conversion would cast it to -inf
210
211
212
213
214
            # NOTE: `is_torch_tpu_available()` is checked last as it induces a graph break in torch dynamo
            if XLA_USE_BF16 in ENV_VARS_TRUE_VALUES and is_torch_tpu_available():
                return torch.bfloat16
            if XLA_DOWNCAST_BF16 in ENV_VARS_TRUE_VALUES and is_torch_tpu_available():
                if t.dtype == torch.float:
215
                    return torch.bfloat16
216
217
                if t.dtype == torch.double:
                    return torch.float32
Sylvain Gugger's avatar
Sylvain Gugger committed
218
            return t.dtype
219

Sylvain Gugger's avatar
Sylvain Gugger committed
220
221
222
    if last_dtype is not None:
        # if no floating dtype was found return whatever the first dtype is
        return last_dtype
223

224
225
226
227
228
229
230
231
232
233
234
235
236
    # For nn.DataParallel compatibility in PyTorch > 1.5
    def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
        tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
        return tuples

    gen = parameter._named_members(get_members_fn=find_tensor_attributes)
    last_tuple = None
    for tuple in gen:
        last_tuple = tuple
        if tuple[1].is_floating_point():
            return tuple[1].dtype

    if last_tuple is not None:
237
238
        # fallback to the last dtype
        return last_tuple[1].dtype
239

240
241
242
243
244
245
246
    # fallback to buffer dtype
    for t in parameter.buffers():
        last_dtype = t.dtype
        if t.is_floating_point():
            return t.dtype
    return last_dtype

247
248
249
250
251
252
253
254
255
256
257
258
259
260

def get_state_dict_float_dtype(state_dict):
    """
    Returns the first found floating dtype in `state_dict` or asserts if none were found.
    """
    for t in state_dict.values():
        if t.is_floating_point():
            return t.dtype

    raise ValueError("couldn't find any floating point dtypes in state_dict")


def get_state_dict_dtype(state_dict):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
261
    Returns the first found floating dtype in `state_dict` if there is one, otherwise returns the first dtype.
262
263
264
265
266
267
268
    """
    for t in state_dict.values():
        if t.is_floating_point():
            return t.dtype

    # if no floating dtype was found return whatever the first dtype is
    else:
Sylvain Gugger's avatar
Sylvain Gugger committed
269
        return next(state_dict.values()).dtype
270
271


Sylvain Gugger's avatar
Sylvain Gugger committed
272
273
274
275
276
277
278
279
280
281
282
283
284
def dtype_byte_size(dtype):
    """
    Returns the size (in bytes) occupied by one parameter of type `dtype`.

    Example:

    ```py
    >>> dtype_byte_size(torch.float32)
    4
    ```
    """
    if dtype == torch.bool:
        return 1 / 8
285
    bit_search = re.search(r"[^\d](\d+)$", str(dtype))
Sylvain Gugger's avatar
Sylvain Gugger committed
286
287
288
289
290
291
    if bit_search is None:
        raise ValueError(f"`dtype` is not a valid dtype: {dtype}.")
    bit_size = int(bit_search.groups()[0])
    return bit_size // 8


292
293
294
def shard_checkpoint(
    state_dict: Dict[str, torch.Tensor], max_shard_size: Union[int, str] = "10GB", weights_name: str = WEIGHTS_NAME
):
Sylvain Gugger's avatar
Sylvain Gugger committed
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
    """
    Splits a model state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a
    given size.

    The sub-checkpoints are determined by iterating through the `state_dict` in the order of its keys, so there is no
    optimization made to make each sub-checkpoint as close as possible to the maximum size passed. For example, if the
    limit is 10GB and we have weights of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as [6GB], [6+2GB],
    [6+2+2GB] and not [6+2+2GB], [6+2GB], [6GB].

    <Tip warning={true}>

    If one of the model's weight is bigger that `max_sahrd_size`, it will end up in its own sub-checkpoint which will
    have a size greater than `max_shard_size`.

    </Tip>

    Args:
        state_dict (`Dict[str, torch.Tensor]`): The state dictionary of a model to save.
        max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
            The maximum size of each sub-checkpoint. If expressed as a string, needs to be digits followed by a unit
            (like `"5MB"`).
316
317
        weights_name (`str`, *optional*, defaults to `"pytorch_model.bin"`):
            The name of the model save file.
Sylvain Gugger's avatar
Sylvain Gugger committed
318
319
320
    """
    max_shard_size = convert_file_size_to_int(max_shard_size)

Thomas Wang's avatar
Thomas Wang committed
321
322
    sharded_state_dicts = [{}]
    last_block_size = 0
Sylvain Gugger's avatar
Sylvain Gugger committed
323
    total_size = 0
Thomas Wang's avatar
Thomas Wang committed
324
    storage_id_to_block = {}
Sylvain Gugger's avatar
Sylvain Gugger committed
325
326

    for key, weight in state_dict.items():
327
328
329
330
331
332
        # when bnb serialization is used the weights in the state dict can be strings
        # check: https://github.com/huggingface/transformers/pull/24416 for more details
        if isinstance(weight, str):
            continue
        else:
            storage_id = id_tensor_storage(weight)
Thomas Wang's avatar
Thomas Wang committed
333
334
335
336
337
338
339

        # If a `weight` shares the same underlying storage as another tensor, we put `weight` in the same `block`
        if storage_id in storage_id_to_block:
            block_id = storage_id_to_block[storage_id]
            sharded_state_dicts[block_id][key] = weight
            continue

Sylvain Gugger's avatar
Sylvain Gugger committed
340
341
        weight_size = weight.numel() * dtype_byte_size(weight.dtype)

Sylvain Gugger's avatar
Sylvain Gugger committed
342
343
344
        # If this weight is going to tip up over the maximal size, we split, but only if we have put at least one
        # weight in the current shard.
        if last_block_size + weight_size > max_shard_size and len(sharded_state_dicts[-1]) > 0:
Thomas Wang's avatar
Thomas Wang committed
345
346
            sharded_state_dicts.append({})
            last_block_size = 0
Sylvain Gugger's avatar
Sylvain Gugger committed
347

Thomas Wang's avatar
Thomas Wang committed
348
349
        sharded_state_dicts[-1][key] = weight
        last_block_size += weight_size
Sylvain Gugger's avatar
Sylvain Gugger committed
350
        total_size += weight_size
Thomas Wang's avatar
Thomas Wang committed
351
        storage_id_to_block[storage_id] = len(sharded_state_dicts) - 1
Sylvain Gugger's avatar
Sylvain Gugger committed
352
353
354

    # If we only have one shard, we return it
    if len(sharded_state_dicts) == 1:
355
        return {weights_name: sharded_state_dicts[0]}, None
Sylvain Gugger's avatar
Sylvain Gugger committed
356
357
358
359
360

    # Otherwise, let's build the index
    weight_map = {}
    shards = {}
    for idx, shard in enumerate(sharded_state_dicts):
361
362
363
364
        shard_file = weights_name.replace(".bin", f"-{idx+1:05d}-of-{len(sharded_state_dicts):05d}.bin")
        shard_file = shard_file.replace(
            ".safetensors", f"-{idx + 1:05d}-of-{len(sharded_state_dicts):05d}.safetensors"
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
365
366
367
368
369
370
371
372
373
374
        shards[shard_file] = shard
        for key in shard.keys():
            weight_map[key] = shard_file

    # Add the metadata
    metadata = {"total_size": total_size}
    index = {"metadata": metadata, "weight_map": weight_map}
    return shards, index


375
def load_sharded_checkpoint(model, folder, strict=True, prefer_safe=True):
376
377
378
379
380
381
382
383
384
385
386
387
388
    """
    This is the same as
    [`torch.nn.Module.load_state_dict`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html?highlight=load_state_dict#torch.nn.Module.load_state_dict)
    but for a sharded checkpoint.

    This load is performed efficiently: each checkpoint shard is loaded one by one in RAM and deleted after being
    loaded in the model.

    Args:
        model (`torch.nn.Module`): The model in which to load the checkpoint.
        folder (`str` or `os.PathLike`): A path to a folder containing the sharded checkpoint.
        strict (`bool`, *optional`, defaults to `True`):
            Whether to strictly enforce that the keys in the model state dict match the keys in the sharded checkpoint.
389
390
391
        prefer_safe (`bool`, *optional*, defaults to `False`)
            If both safetensors and PyTorch save files are present in checkpoint and `prefer_safe` is True, the
            safetensors files will be loaded. Otherwise, PyTorch files are always loaded when possible.
392
393
394
395
396
397
398
399

    Returns:
        `NamedTuple`: A named tuple with `missing_keys` and `unexpected_keys` fields
            - `missing_keys` is a list of str containing the missing keys
            - `unexpected_keys` is a list of str containing the unexpected keys
    """
    # Load the index
    index_file = os.path.join(folder, WEIGHTS_INDEX_NAME)
400
    safe_index_file = os.path.join(folder, SAFE_WEIGHTS_INDEX_NAME)
401

402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
    index_present = os.path.isfile(index_file)
    safe_index_present = os.path.isfile(safe_index_file)

    if not index_present and not (safe_index_present and is_safetensors_available()):
        filenames = (
            (WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_INDEX_NAME) if is_safetensors_available() else (WEIGHTS_INDEX_NAME,)
        )
        raise ValueError(f"Can't find a checkpoint index ({' or '.join(filenames)}) in {folder}.")

    load_safe = False
    if safe_index_present:
        if prefer_safe:
            if is_safetensors_available():
                load_safe = True  # load safe due to preference
            else:
                logger.warning(
                    f"Cannot load sharded checkpoint at {folder} safely since safetensors is not installed!"
                )
        elif not index_present:
            load_safe = True  # load safe since we have no other choice

    load_index = safe_index_file if load_safe else index_file

    with open(load_index, "r", encoding="utf-8") as f:
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
        index = json.load(f)

    shard_files = list(set(index["weight_map"].values()))

    # If strict=True, error before loading any of the state dicts.
    loaded_keys = index["weight_map"].keys()
    model_keys = model.state_dict().keys()
    missing_keys = [key for key in model_keys if key not in loaded_keys]
    unexpected_keys = [key for key in loaded_keys if key not in model_keys]
    if strict and (len(missing_keys) > 0 or len(unexpected_keys) > 0):
        error_message = f"Error(s) in loading state_dict for {model.__class__.__name__}"
        if len(missing_keys) > 0:
            str_missing_keys = ",".join([f'"{k}"' for k in missing_keys])
            error_message += f"\nMissing key(s): {str_missing_keys}."
        if len(unexpected_keys) > 0:
            str_unexpected_keys = ",".join([f'"{k}"' for k in unexpected_keys])
            error_message += f"\nMissing key(s): {str_unexpected_keys}."
        raise RuntimeError(error_message)

445
446
    loader = safe_load_file if load_safe else partial(torch.load, map_location="cpu")

447
    for shard_file in shard_files:
448
        state_dict = loader(os.path.join(folder, shard_file))
449
450
        model.load_state_dict(state_dict, strict=False)

451
        # Make sure memory is freed before we load the next state dict.
452
453
454
455
456
457
458
        del state_dict
        gc.collect()

    # Return the same thing as PyTorch load_state_dict function.
    return torch.nn.modules.module._IncompatibleKeys(missing_keys, unexpected_keys)


Sylvain Gugger's avatar
Sylvain Gugger committed
459
460
461
462
def load_state_dict(checkpoint_file: Union[str, os.PathLike]):
    """
    Reads a PyTorch checkpoint file, returning properly formatted errors if they arise.
    """
463
464
465
466
467
468
469
470
471
472
473
474
475
476
    if checkpoint_file.endswith(".safetensors") and is_safetensors_available():
        # Check format of the archive
        with safe_open(checkpoint_file, framework="pt") as f:
            metadata = f.metadata()
        if metadata.get("format") not in ["pt", "tf", "flax"]:
            raise OSError(
                f"The safetensors archive passed at {checkpoint_file} does not contain the valid metadata. Make sure "
                "you save your model with the `save_pretrained` method."
            )
        elif metadata["format"] != "pt":
            raise NotImplementedError(
                f"Conversion from a {metadata['format']} safetensors archive to PyTorch is not implemented yet."
            )
        return safe_load_file(checkpoint_file)
Sylvain Gugger's avatar
Sylvain Gugger committed
477
    try:
478
        if (
479
            (is_deepspeed_zero3_enabled() or is_fsdp_enabled())
480
481
482
            and torch.distributed.is_initialized()
            and torch.distributed.get_rank() > 0
        ):
483
484
485
486
            map_location = "meta"
        else:
            map_location = "cpu"
        return torch.load(checkpoint_file, map_location=map_location)
Sylvain Gugger's avatar
Sylvain Gugger committed
487
488
489
    except Exception as e:
        try:
            with open(checkpoint_file) as f:
490
                if f.read(7) == "version":
Sylvain Gugger's avatar
Sylvain Gugger committed
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
                    raise OSError(
                        "You seem to have cloned a repository without having git-lfs installed. Please install "
                        "git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
                        "you cloned."
                    )
                else:
                    raise ValueError(
                        f"Unable to locate the file {checkpoint_file} which is necessary to load this pretrained "
                        "model. Make sure you have saved the model properly."
                    ) from e
        except (UnicodeDecodeError, ValueError):
            raise OSError(
                f"Unable to load weights from pytorch checkpoint file for '{checkpoint_file}' "
                f"at '{checkpoint_file}'. "
                "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True."
            )


509
510
511
512
513
514
515
516
517
518
519
def set_initialized_submodules(model, state_dict_keys):
    """
    Sets the `_is_hf_initialized` flag in all submodules of a given model when all its weights are in the loaded state
    dict.
    """
    for module_name, module in model.named_modules():
        loaded_keys = [k.replace(f"{module_name}.", "") for k in state_dict_keys if k.startswith(f"{module_name}.")]
        if len(set(module.state_dict().keys()) - set(loaded_keys)) == 0:
            module._is_hf_initialized = True


Sylvain Gugger's avatar
Sylvain Gugger committed
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
def _load_state_dict_into_model(model_to_load, state_dict, start_prefix):
    # Convert old format to new format if needed from a PyTorch state_dict
    old_keys = []
    new_keys = []
    for key in state_dict.keys():
        new_key = None
        if "gamma" in key:
            new_key = key.replace("gamma", "weight")
        if "beta" in key:
            new_key = key.replace("beta", "bias")
        if new_key:
            old_keys.append(key)
            new_keys.append(new_key)
    for old_key, new_key in zip(old_keys, new_keys):
        state_dict[new_key] = state_dict.pop(old_key)

    # copy state_dict so _load_from_state_dict can modify it
    metadata = getattr(state_dict, "_metadata", None)
    state_dict = state_dict.copy()
    if metadata is not None:
        state_dict._metadata = metadata

    error_msgs = []

    # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
    # so we need to apply the function recursively.
546
    def load(module: nn.Module, state_dict, prefix=""):
Sylvain Gugger's avatar
Sylvain Gugger committed
547
548
        local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
        args = (state_dict, prefix, local_metadata, True, [], [], error_msgs)
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
        # Parameters of module and children will start with prefix. We can exit early if there are none in this
        # state_dict
        if len([key for key in state_dict if key.startswith(prefix)]) > 0:
            if is_deepspeed_zero3_enabled():
                import deepspeed

                # In sharded models, each shard has only part of the full state_dict, so only gather
                # parameters that are in the current state_dict.
                named_parameters = dict(module.named_parameters(prefix=prefix[:-1], recurse=False))
                params_to_gather = [named_parameters[k] for k in state_dict.keys() if k in named_parameters]
                if len(params_to_gather) > 0:
                    # because zero3 puts placeholders in model params, this context
                    # manager gathers (unpartitions) the params of the current layer, then loads from
                    # the state dict and then re-partitions them again
                    with deepspeed.zero.GatheredParameters(params_to_gather, modifier_rank=0):
                        if torch.distributed.get_rank() == 0:
                            module._load_from_state_dict(*args)
            else:
                module._load_from_state_dict(*args)
Sylvain Gugger's avatar
Sylvain Gugger committed
568
569
570

        for name, child in module._modules.items():
            if child is not None:
571
                load(child, state_dict, prefix + name + ".")
Sylvain Gugger's avatar
Sylvain Gugger committed
572

573
574
575
576
    load(model_to_load, state_dict, prefix=start_prefix)
    # Delete `state_dict` so it could be collected by GC earlier. Note that `state_dict` is a copy of the argument, so
    # it's safe to delete it.
    del state_dict
Sylvain Gugger's avatar
Sylvain Gugger committed
577
578
579
580

    return error_msgs


581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
def find_submodule_and_param_name(model, long_key, start_prefix):
    """
    A helper util to find the last sub-module and the param/buffer name. If `start_prefix` is supplied it'll be removed
    from the start of the key
    """

    if len(start_prefix) > 0 and long_key.startswith(start_prefix):
        long_key = ".".join(long_key.split(".")[1:])

    split_key = long_key.split(".")
    submodule = model
    while len(split_key) > 1:
        if hasattr(submodule, split_key[0]):
            submodule = getattr(submodule, split_key[0])
            del split_key[0]
        else:
            submodule = None
            break
    if submodule == model:
        submodule = None
    return submodule, split_key[0]


def _move_model_to_meta(model, loaded_state_dict_keys, start_prefix):
    """
    Moves `loaded_state_dict_keys` in model to meta device which frees up the memory taken by those params.

    `start_prefix` is used for models which insert their name into model keys, e.g. `bert` in
    `bert.pooler.dense.weight`

    """

    # dematerialize param storage for keys that are going to be replaced by state_dict, by
    # putting those on the meta device
    for k in loaded_state_dict_keys:
        submodule, param_name = find_submodule_and_param_name(model, k, start_prefix)
        if submodule is not None:
            # selectively switch to the meta device only those params/buffers that will
            # be next replaced from state_dict. This a complex way to do p.to_("meta")
            # since we have no in-place to_ for tensors.
            new_val = getattr(submodule, param_name)
            if isinstance(new_val, torch.nn.Parameter):
                # isinstance returns False for Params on meta device, so switch after the check
                new_val = torch.nn.Parameter(new_val.to("meta"))
            else:
                new_val = new_val.to("meta")
            setattr(submodule, param_name, new_val)


630
631
632
633
634
635
636
637
638
639
640
641
def _load_state_dict_into_meta_model(
    model,
    state_dict,
    loaded_state_dict_keys,  # left for now but could be removed, see below
    start_prefix,
    expected_keys,
    device_map=None,
    offload_folder=None,
    offload_index=None,
    state_dict_folder=None,
    state_dict_index=None,
    dtype=None,
642
    is_quantized=False,
Sylvain Gugger's avatar
Sylvain Gugger committed
643
    is_safetensors=False,
644
    keep_in_fp32_modules=None,
645
):
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
    """
    This is somewhat similar to `_load_state_dict_into_model`, but deals with a model that has some or all of its
    params on a `meta` device. It replaces the model params with the data from the `state_dict`, while moving the
    params back to the normal device, but only for `loaded_state_dict_keys`.

    `start_prefix` is used for models which insert their name into model keys, e.g. `bert` in
    `bert.pooler.dense.weight`

    """

    # XXX: remaining features to implement to be fully compatible with _load_state_dict_into_model
    # - deepspeed zero 3 support
    # - need to copy metadata if any - see _load_state_dict_into_model
    # - handling error_msgs - mimicking the error handling in module._load_from_state_dict()
    # - Is there a situation where some keys aren't in `loaded_state_dict_keys` and in which case
    #   they won't get loaded.

663
664
    if is_quantized:
        from .utils.bitsandbytes import set_module_quantized_tensor_to_device
665

666
667
    error_msgs = []

668
669
670
671
672
673
674
675
676
677
678
679
680
    old_keys = []
    new_keys = []
    for key in state_dict.keys():
        new_key = None
        if "gamma" in key:
            new_key = key.replace("gamma", "weight")
        if "beta" in key:
            new_key = key.replace("beta", "bias")
        if new_key:
            old_keys.append(key)
            new_keys.append(new_key)
    for old_key, new_key in zip(old_keys, new_keys):
        state_dict[new_key] = state_dict.pop(old_key)
681

682
683
684
685
686
687
688
689
690
    for param_name, param in state_dict.items():
        # First part of the test is always true as load_state_dict_keys always contains state_dict keys.
        if param_name not in loaded_state_dict_keys or param_name not in expected_keys:
            continue

        if param_name.startswith(start_prefix):
            param_name = param_name[len(start_prefix) :]

        module_name = param_name
691
        set_module_kwargs = {}
692

693
        # We convert floating dtypes to the `dtype` passed. We want to keep the buffers/params
694
695
        # in int/uint/bool and not cast them.
        if dtype is not None and torch.is_floating_point(param):
696
697
698
699
700
701
            if (
                keep_in_fp32_modules is not None
                and any(module_to_keep_in_fp32 in param_name for module_to_keep_in_fp32 in keep_in_fp32_modules)
                and dtype == torch.float16
            ):
                param = param.to(torch.float32)
702
703
704
705
706

                # For backward compatibility with older versions of `accelerate`
                # TODO: @sgugger replace this check with version check at the next `accelerate` release
                if "dtype" in list(inspect.signature(set_module_tensor_to_device).parameters):
                    set_module_kwargs["dtype"] = torch.float32
707
708
            else:
                param = param.to(dtype)
709
710
711
712
713
714
715
716
717
718
719
720

        # For compatibility with PyTorch load_state_dict which converts state dict dtype to existing dtype in model
        if dtype is None:
            old_param = model
            splits = param_name.split(".")
            for split in splits:
                old_param = getattr(old_param, split)
                if old_param is None:
                    break

            if old_param is not None:
                param = param.to(old_param.dtype)
721

722
723
        set_module_kwargs["value"] = param

724
725
726
727
728
729
730
731
732
733
734
        if device_map is None:
            param_device = "cpu"
        else:
            # find next higher level module that is defined in device_map:
            # bert.lm_head.weight -> bert.lm_head -> bert -> ''
            while len(module_name) > 0 and module_name not in device_map:
                module_name = ".".join(module_name.split(".")[:-1])
            if module_name == "" and "" not in device_map:
                # TODO: group all errors and raise at the end.
                raise ValueError(f"{param_name} doesn't have any device set.")
            param_device = device_map[module_name]
735

736
        if param_device == "disk":
Sylvain Gugger's avatar
Sylvain Gugger committed
737
738
            if not is_safetensors:
                offload_index = offload_weight(param, param_name, offload_folder, offload_index)
739
740
        elif param_device == "cpu" and state_dict_index is not None:
            state_dict_index = offload_weight(param, param_name, state_dict_folder, state_dict_index)
741
        elif not is_quantized:
742
743
            # For backward compatibility with older versions of `accelerate`
            set_module_tensor_to_device(model, param_name, param_device, **set_module_kwargs)
744
        else:
745
746
747
748
749
750
            if param.dtype == torch.int8 and param_name.replace("weight", "SCB") in state_dict.keys():
                fp16_statistics = state_dict[param_name.replace("weight", "SCB")]
            else:
                fp16_statistics = None

            if "SCB" not in param_name:
751
                set_module_quantized_tensor_to_device(
752
753
                    model, param_name, param_device, value=param, fp16_statistics=fp16_statistics
                )
754
755

    return error_msgs, offload_index, state_dict_index
756
757


758
759
760
761
762
763
764
765
766
def _add_variant(weights_name: str, variant: Optional[str] = None) -> str:
    if variant is not None:
        splits = weights_name.split(".")
        splits = splits[:-1] + [variant] + splits[-1:]
        weights_name = ".".join(splits)

    return weights_name


767
class ModuleUtilsMixin:
Julien Chaumond's avatar
Julien Chaumond committed
768
    """
769
    A few utilities for `torch.nn.Modules`, to be used as a mixin.
Julien Chaumond's avatar
Julien Chaumond committed
770
771
    """

772
773
774
775
    @staticmethod
    def _hook_rss_memory_pre_forward(module, *args, **kwargs):
        try:
            import psutil
Sylvain Gugger's avatar
Sylvain Gugger committed
776
        except ImportError:
777
778
779
780
781
782
783
784
785
786
787
            raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")

        process = psutil.Process(os.getpid())
        mem = process.memory_info()
        module.mem_rss_pre_forward = mem.rss
        return None

    @staticmethod
    def _hook_rss_memory_post_forward(module, *args, **kwargs):
        try:
            import psutil
Sylvain Gugger's avatar
Sylvain Gugger committed
788
        except ImportError:
789
790
791
792
793
794
795
796
797
798
            raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")

        process = psutil.Process(os.getpid())
        mem = process.memory_info()
        module.mem_rss_post_forward = mem.rss
        mem_rss_diff = module.mem_rss_post_forward - module.mem_rss_pre_forward
        module.mem_rss_diff = mem_rss_diff + (module.mem_rss_diff if hasattr(module, "mem_rss_diff") else 0)
        return None

    def add_memory_hooks(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
799
800
801
        """
        Add a memory hook before and after each sub-module forward pass to record increase in memory consumption.

Sylvain Gugger's avatar
Sylvain Gugger committed
802
803
        Increase in memory consumption is stored in a `mem_rss_diff` attribute for each module and can be reset to zero
        with `model.reset_memory_hooks_state()`.
804
805
806
807
808
809
810
        """
        for module in self.modules():
            module.register_forward_pre_hook(self._hook_rss_memory_pre_forward)
            module.register_forward_hook(self._hook_rss_memory_post_forward)
        self.reset_memory_hooks_state()

    def reset_memory_hooks_state(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
811
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
812
        Reset the `mem_rss_diff` attribute of each module (see [`~modeling_utils.ModuleUtilsMixin.add_memory_hooks`]).
Sylvain Gugger's avatar
Sylvain Gugger committed
813
        """
814
815
816
817
818
        for module in self.modules():
            module.mem_rss_diff = 0
            module.mem_rss_post_forward = 0
            module.mem_rss_pre_forward = 0

819
    @property
Sylvain Gugger's avatar
Sylvain Gugger committed
820
    def device(self) -> torch.device:
821
        """
822
        `torch.device`: The device on which the module is (assuming that all the module parameters are on the same
823
        device).
824
        """
Lysandre Debut's avatar
Lysandre Debut committed
825
        return get_parameter_device(self)
826

827
    @property
828
    def dtype(self) -> torch.dtype:
829
        """
830
        `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
831
        """
Lysandre Debut's avatar
Lysandre Debut committed
832
        return get_parameter_dtype(self)
833
834

    def invert_attention_mask(self, encoder_attention_mask: Tensor) -> Tensor:
Sylvain Gugger's avatar
Sylvain Gugger committed
835
836
837
838
        """
        Invert an attention mask (e.g., switches 0. and 1.).

        Args:
839
            encoder_attention_mask (`torch.Tensor`): An attention mask.
Sylvain Gugger's avatar
Sylvain Gugger committed
840
841

        Returns:
842
            `torch.Tensor`: The inverted attention mask.
Sylvain Gugger's avatar
Sylvain Gugger committed
843
        """
844
845
846
847
848
849
850
851
852
853
        if encoder_attention_mask.dim() == 3:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
        if encoder_attention_mask.dim() == 2:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
        # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
        # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
        # /transformer/transformer_layers.py#L270
        # encoder_extended_attention_mask = (encoder_extended_attention_mask ==
        # encoder_extended_attention_mask.transpose(-1, -2))
        encoder_extended_attention_mask = encoder_extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
Yih-Dar's avatar
Yih-Dar committed
854
        encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * torch.finfo(self.dtype).min
855

856
857
        return encoder_extended_attention_mask

858
    @staticmethod
859
860
861
862
863
864
865
    def create_extended_attention_mask_for_decoder(input_shape, attention_mask, device=None):
        if device is not None:
            warnings.warn(
                "The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
            )
        else:
            device = attention_mask.device
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
        batch_size, seq_length = input_shape
        seq_ids = torch.arange(seq_length, device=device)
        causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
        # in case past_key_values are used we need to add a prefix ones mask to the causal mask
        # causal and attention masks must have same type with pytorch version < 1.3
        causal_mask = causal_mask.to(attention_mask.dtype)

        if causal_mask.shape[1] < attention_mask.shape[1]:
            prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
            causal_mask = torch.cat(
                [
                    torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype),
                    causal_mask,
                ],
                axis=-1,
            )

        extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
        return extended_attention_mask

886
    def get_extended_attention_mask(
887
        self, attention_mask: Tensor, input_shape: Tuple[int], device: torch.device = None, dtype: torch.float = None
888
    ) -> Tensor:
Sylvain Gugger's avatar
Sylvain Gugger committed
889
890
        """
        Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
891
892

        Arguments:
893
            attention_mask (`torch.Tensor`):
Sylvain Gugger's avatar
Sylvain Gugger committed
894
                Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
895
            input_shape (`Tuple[int]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
896
                The shape of the input to the model.
897
898

        Returns:
899
            `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
900
        """
Yih-Dar's avatar
Yih-Dar committed
901
902
903
        if dtype is None:
            dtype = self.dtype

904
905
906
907
908
909
        if not (attention_mask.dim() == 2 and self.config.is_decoder):
            # show warning only if it won't be shown in `create_extended_attention_mask_for_decoder`
            if device is not None:
                warnings.warn(
                    "The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
                )
910
911
912
913
914
915
916
917
918
        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        if attention_mask.dim() == 3:
            extended_attention_mask = attention_mask[:, None, :, :]
        elif attention_mask.dim() == 2:
            # Provided a padding mask of dimensions [batch_size, seq_length]
            # - if the model is a decoder, apply a causal mask in addition to the padding mask
            # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
            if self.config.is_decoder:
919
                extended_attention_mask = ModuleUtilsMixin.create_extended_attention_mask_for_decoder(
920
921
                    input_shape, attention_mask, device
                )
922
923
924
925
            else:
                extended_attention_mask = attention_mask[:, None, None, :]
        else:
            raise ValueError(
926
                f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})"
927
928
929
930
            )

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
931
        # positions we want to attend and the dtype's smallest value for masked positions.
932
933
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
Yih-Dar's avatar
Yih-Dar committed
934
935
        extended_attention_mask = extended_attention_mask.to(dtype=dtype)  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(dtype).min
936
937
        return extended_attention_mask

Sylvain Gugger's avatar
Sylvain Gugger committed
938
939
940
    def get_head_mask(
        self, head_mask: Optional[Tensor], num_hidden_layers: int, is_attention_chunked: bool = False
    ) -> Tensor:
941
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
942
943
944
        Prepare the head mask if needed.

        Args:
945
            head_mask (`torch.Tensor` with shape `[num_heads]` or `[num_hidden_layers x num_heads]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
946
                The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard).
947
            num_hidden_layers (`int`):
Sylvain Gugger's avatar
Sylvain Gugger committed
948
                The number of hidden layers in the model.
949
            is_attention_chunked (`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
950
951
                Whether or not the attentions scores are computed by chunks or not.

952
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
953
954
            `torch.Tensor` with shape `[num_hidden_layers x batch x num_heads x seq_length x seq_length]` or list with
            `[None]` for each layer.
955
956
957
        """
        if head_mask is not None:
            head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
958
959
            if is_attention_chunked is True:
                head_mask = head_mask.unsqueeze(-1)
960
961
962
963
964
965
966
967
968
969
970
971
972
        else:
            head_mask = [None] * num_hidden_layers

        return head_mask

    def _convert_head_mask_to_5d(self, head_mask, num_hidden_layers):
        """-> [num_hidden_layers x batch x num_heads x seq_length x seq_length]"""
        if head_mask.dim() == 1:
            head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
            head_mask = head_mask.expand(num_hidden_layers, -1, -1, -1, -1)
        elif head_mask.dim() == 2:
            head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
        assert head_mask.dim() == 5, f"head_mask.dim != 5, instead {head_mask.dim()}"
973
        head_mask = head_mask.to(dtype=self.dtype)  # switch to float if need + fp16 compatibility
974
975
        return head_mask

976
977
978
979
980
    def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int:
        """
        Get number of (optionally, trainable or non-embeddings) parameters in the module.

        Args:
981
            only_trainable (`bool`, *optional*, defaults to `False`):
982
983
                Whether or not to return only the number of trainable parameters

984
            exclude_embeddings (`bool`, *optional*, defaults to `False`):
985
986
987
                Whether or not to return only the number of non-embeddings parameters

        Returns:
988
            `int`: The number of parameters.
989
990
        """

991
992
993
994
995
996
997
998
999
1000
        if exclude_embeddings:
            embedding_param_names = [
                f"{name}.weight" for name, module_type in self.named_modules() if isinstance(module_type, nn.Embedding)
            ]
            non_embedding_parameters = [
                parameter for name, parameter in self.named_parameters() if name not in embedding_param_names
            ]
            return sum(p.numel() for p in non_embedding_parameters if p.requires_grad or not only_trainable)
        else:
            return sum(p.numel() for p in self.parameters() if p.requires_grad or not only_trainable)
1001
1002
1003
1004
1005
1006

    def estimate_tokens(self, input_dict: Dict[str, Union[torch.Tensor, Any]]) -> int:
        """
        Helper function to estimate the total number of tokens from the model inputs.

        Args:
1007
            inputs (`dict`): The model inputs.
1008
1009

        Returns:
1010
            `int`: The total number of tokens.
1011
        """
1012
1013
        if not hasattr(self, "warnings_issued"):
            self.warnings_issued = {}
1014
1015
        if self.main_input_name in input_dict:
            return input_dict[self.main_input_name].numel()
1016
        elif "estimate_tokens" not in self.warnings_issued:
1017
            logger.warning(
1018
1019
                "Could not estimate the number of tokens of the input, floating-point operations will not be computed"
            )
1020
1021
            self.warnings_issued["estimate_tokens"] = True
        return 0
1022
1023
1024
1025
1026
1027
1028

    def floating_point_ops(
        self, input_dict: Dict[str, Union[torch.Tensor, Any]], exclude_embeddings: bool = True
    ) -> int:
        """
        Get number of (optionally, non-embeddings) floating-point operations for the forward and backward passes of a
        batch with this transformer model. Default approximation neglects the quadratic dependency on the number of
Sylvain Gugger's avatar
Sylvain Gugger committed
1029
1030
        tokens (valid if `12 * d_model << sequence_length`) as laid out in [this
        paper](https://arxiv.org/pdf/2001.08361.pdf) section 2.1. Should be overridden for transformers with parameter
Sylvain Gugger's avatar
Sylvain Gugger committed
1031
        re-use e.g. Albert or Universal Transformers, or if doing long-range modeling with very high sequence lengths.
1032
1033

        Args:
1034
            batch_size (`int`):
1035
1036
                The batch size for the forward pass.

1037
            sequence_length (`int`):
1038
1039
                The number of tokens in each line of the batch.

1040
            exclude_embeddings (`bool`, *optional*, defaults to `True`):
1041
1042
1043
                Whether or not to count embedding and softmax operations.

        Returns:
1044
            `int`: The number of floating-point operations.
1045
1046
1047
1048
        """

        return 6 * self.estimate_tokens(input_dict) * self.num_parameters(exclude_embeddings=exclude_embeddings)

Julien Chaumond's avatar
Julien Chaumond committed
1049

1050
class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMixin, PeftAdapterMixin):
1051
1052
    r"""
    Base class for all models.
1053

Sylvain Gugger's avatar
Sylvain Gugger committed
1054
1055
    [`PreTrainedModel`] takes care of storing the configuration of the models and handles methods for loading,
    downloading and saving models as well as a few methods common to all models to:
1056

1057
1058
        - resize the input embeddings,
        - prune heads in the self-attention heads.
1059

1060
    Class attributes (overridden by derived classes):
Sylvain Gugger's avatar
Sylvain Gugger committed
1061

Sylvain Gugger's avatar
Sylvain Gugger committed
1062
1063
1064
1065
        - **config_class** ([`PretrainedConfig`]) -- A subclass of [`PretrainedConfig`] to use as configuration class
          for this model architecture.
        - **load_tf_weights** (`Callable`) -- A python *method* for loading a TensorFlow checkpoint in a PyTorch model,
          taking as arguments:
1066

Sylvain Gugger's avatar
Sylvain Gugger committed
1067
1068
            - **model** ([`PreTrainedModel`]) -- An instance of the model on which to load the TensorFlow checkpoint.
            - **config** ([`PreTrainedConfig`]) -- An instance of the configuration associated to the model.
1069
            - **path** (`str`) -- A path to the TensorFlow checkpoint.
1070

Sylvain Gugger's avatar
Sylvain Gugger committed
1071
1072
        - **base_model_prefix** (`str`) -- A string indicating the attribute associated to the base model in derived
          classes of the same architecture adding modules on top of the base model.
1073
        - **is_parallelizable** (`bool`) -- A flag indicating whether this model supports model parallelization.
Sylvain Gugger's avatar
Sylvain Gugger committed
1074
1075
        - **main_input_name** (`str`) -- The name of the principal input to the model (often `input_ids` for NLP
          models, `pixel_values` for vision models and `input_values` for speech models).
1076
    """
1077
    config_class = None
1078
    base_model_prefix = ""
1079
    main_input_name = "input_ids"
1080
    _auto_class = None
1081
    _no_split_modules = None
1082
    _skip_keys_device_placement = None
1083
    _keep_in_fp32_modules = None
1084

1085
1086
    # a list of `re` patterns of `state_dict` keys that should be removed from the list of missing
    # keys we find (keys inside the model but not in the checkpoint) and avoid unnecessary warnings.
1087
    _keys_to_ignore_on_load_missing = None
1088
1089
1090
    # a list of `re` patterns of `state_dict` keys that should be removed from the list of
    # unexpected keys we find (keys inside the checkpoint but not the model) and avoid unnecessary
    # warnings.
1091
    _keys_to_ignore_on_load_unexpected = None
1092
1093
    # a list of `state_dict` keys to ignore when saving the model (useful for keys that aren't
    # trained, but which are either deterministic or tied variables)
1094
    _keys_to_ignore_on_save = None
Sylvain Gugger's avatar
Sylvain Gugger committed
1095
1096
    # a list of `state_dict` keys that are potentially tied to another key in the state_dict.
    _tied_weights_keys = None
1097

1098
    is_parallelizable = False
1099
    supports_gradient_checkpointing = False
1100

1101
    @property
1102
    def dummy_inputs(self) -> Dict[str, torch.Tensor]:
1103
        """
1104
        `Dict[str, torch.Tensor]`: Dummy inputs to do a forward pass in the network.
1105
        """
1106
        return {"input_ids": torch.tensor(DUMMY_INPUTS)}
1107

1108
1109
1110
1111
1112
1113
1114
    @property
    def framework(self) -> str:
        """
        :str: Identifies that this is a PyTorch model.
        """
        return "pt"

1115
    def __init__(self, config: PretrainedConfig, *inputs, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
1116
        super().__init__()
1117
1118
        if not isinstance(config, PretrainedConfig):
            raise ValueError(
1119
1120
1121
                f"Parameter config in `{self.__class__.__name__}(config)` should be an instance of class "
                "`PretrainedConfig`. To create a model from a pretrained model use "
                f"`model = {self.__class__.__name__}.from_pretrained(PRETRAINED_MODEL_NAME)`"
1122
            )
1123
        # Save config and origin of the pretrained weights if given in model
1124
        self.config = config
1125
        self.name_or_path = config.name_or_path
1126
        self.warnings_issued = {}
1127
        self.generation_config = GenerationConfig.from_model_config(config) if self.can_generate() else None
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141

    def post_init(self):
        """
        A method executed at the end of each Transformer model initialization, to execute code that needs the model's
        modules properly initialized (such as weight initialization).
        """
        self.init_weights()
        self._backward_compatibility_gradient_checkpointing()

    def _backward_compatibility_gradient_checkpointing(self):
        if self.supports_gradient_checkpointing and getattr(self.config, "gradient_checkpointing", False):
            self.gradient_checkpointing_enable()
            # Remove the attribute now that is has been consumed, so it's no saved in the config.
            delattr(self.config, "gradient_checkpointing")
1142

1143
1144
1145
1146
1147
1148
    @classmethod
    def _from_config(cls, config, **kwargs):
        """
        All context managers that the model should be initialized under go here.

        Args:
1149
1150
            torch_dtype (`torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model under this dtype.
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
        """
        torch_dtype = kwargs.pop("torch_dtype", None)

        # override default dtype if needed
        dtype_orig = None
        if torch_dtype is not None:
            dtype_orig = cls._set_default_torch_dtype(torch_dtype)

        if is_deepspeed_zero3_enabled():
            import deepspeed

            logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
            # this immediately partitions the model across all gpus, to avoid the overhead in time
            # and memory copying it on CPU or each GPU first
1165
            with deepspeed.zero.Init(config_dict_or_path=deepspeed_config()):
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
                model = cls(config, **kwargs)
        else:
            model = cls(config, **kwargs)

        # restore default dtype if it was modified
        if dtype_orig is not None:
            torch.set_default_dtype(dtype_orig)

        return model

    @classmethod
    def _set_default_torch_dtype(cls, dtype: torch.dtype) -> torch.dtype:
        """
        Change the default dtype and return the previous one. This is needed when wanting to instantiate the model
        under specific dtype.

        Args:
1183
            dtype (`torch.dtype`):
1184
1185
1186
                a floating dtype to set to.

        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
1187
1188
            `torch.dtype`: the original `dtype` that can be used to restore `torch.set_default_dtype(dtype)` if it was
            modified. If it wasn't, returns `None`.
1189

1190
1191
        Note `set_default_dtype` currently only works with floating-point types and asserts if for example,
        `torch.int64` is passed. So if a non-float `dtype` is passed this functions will throw an exception.
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
        """
        if not dtype.is_floating_point:
            raise ValueError(
                f"Can't instantiate {cls.__name__} model under dtype={dtype} since it is not a floating point dtype"
            )

        logger.info(f"Instantiating {cls.__name__} model under default dtype {dtype}.")
        dtype_orig = torch.get_default_dtype()
        torch.set_default_dtype(dtype)
        return dtype_orig

1203
    @property
1204
1205
    def base_model(self) -> nn.Module:
        """
1206
        `torch.nn.Module`: The main body of the model.
1207
        """
1208
        return getattr(self, self.base_model_prefix, self)
thomwolf's avatar
thomwolf committed
1209

1210
1211
    @classmethod
    def can_generate(cls) -> bool:
1212
1213
1214
1215
1216
1217
1218
        """
        Returns whether this model can generate sequences with `.generate()`.

        Returns:
            `bool`: Whether this model can generate sequences with `.generate()`.
        """
        # Detects whether `prepare_inputs_for_generation` has been overwritten, which is a requirement for generation
1219
        if "GenerationMixin" in str(cls.prepare_inputs_for_generation):
1220
1221
1222
            return False
        return True

1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
    def enable_input_require_grads(self):
        """
        Enables the gradients for the input embeddings. This is useful for fine-tuning adapter weights while keeping
        the model weights fixed.
        """

        def make_inputs_require_grads(module, input, output):
            output.requires_grad_(True)

        self._require_grads_hook = self.get_input_embeddings().register_forward_hook(make_inputs_require_grads)

    def disable_input_require_grads(self):
        """
        Removes the `_require_grads_hook`.
        """
        self._require_grads_hook.remove()

1240
    def get_input_embeddings(self) -> nn.Module:
1241
1242
1243
1244
        """
        Returns the model's input embeddings.

        Returns:
1245
            `nn.Module`: A torch module mapping vocabulary to hidden states.
thomwolf's avatar
thomwolf committed
1246
        """
1247
        base_model = getattr(self, self.base_model_prefix, self)
thomwolf's avatar
thomwolf committed
1248
1249
1250
1251
        if base_model is not self:
            return base_model.get_input_embeddings()
        else:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
1252

1253
    def set_input_embeddings(self, value: nn.Module):
1254
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1255
        Set model's input embeddings.
1256
1257

        Args:
1258
            value (`nn.Module`): A module mapping vocabulary to hidden states.
thomwolf's avatar
thomwolf committed
1259
1260
1261
1262
1263
1264
        """
        base_model = getattr(self, self.base_model_prefix, self)
        if base_model is not self:
            base_model.set_input_embeddings(value)
        else:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
1265

1266
    def get_output_embeddings(self) -> nn.Module:
1267
1268
1269
1270
        """
        Returns the model's output embeddings.

        Returns:
1271
            `nn.Module`: A torch module mapping hidden states to vocabulary.
thomwolf's avatar
thomwolf committed
1272
        """
1273
        return None  # Overwrite for models with output embeddings
thomwolf's avatar
thomwolf committed
1274

1275
1276
1277
1278
    def _init_weights(self, module):
        """
        Initialize the weights. This method should be overridden by derived class.
        """
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
        pass

    def _initialize_weights(self, module):
        """
        Initialize the weights if they are not already initialized.
        """
        if getattr(module, "_is_hf_initialized", False):
            return
        self._init_weights(module)
        module._is_hf_initialized = True
1289

1290
    def tie_weights(self):
1291
1292
        """
        Tie the weights between the input embeddings and the output embeddings.
1293

Sylvain Gugger's avatar
Sylvain Gugger committed
1294
1295
        If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the
        weights instead.
thomwolf's avatar
thomwolf committed
1296
        """
1297
1298
1299
1300
        if getattr(self.config, "tie_word_embeddings", True):
            output_embeddings = self.get_output_embeddings()
            if output_embeddings is not None:
                self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings())
thomwolf's avatar
thomwolf committed
1301

1302
        if getattr(self.config, "is_encoder_decoder", False) and getattr(self.config, "tie_encoder_decoder", False):
Weizhen's avatar
Weizhen committed
1303
1304
            if hasattr(self, self.base_model_prefix):
                self = getattr(self, self.base_model_prefix)
1305
1306
            self._tie_encoder_decoder_weights(self.encoder, self.decoder, self.base_model_prefix)

Sylvain Gugger's avatar
Sylvain Gugger committed
1307
1308
1309
1310
        for module in self.modules():
            if hasattr(module, "_tie_weights"):
                module._tie_weights()

1311
1312
1313
    @staticmethod
    def _tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str):
        uninitialized_encoder_weights: List[str] = []
Weizhen's avatar
Weizhen committed
1314
1315
        if decoder.__class__ != encoder.__class__:
            logger.info(
Sylvain Gugger's avatar
Sylvain Gugger committed
1316
1317
                f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder"
                " weights are correctly initialized."
Weizhen's avatar
Weizhen committed
1318
            )
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328

        def tie_encoder_to_decoder_recursively(
            decoder_pointer: nn.Module,
            encoder_pointer: nn.Module,
            module_name: str,
            uninitialized_encoder_weights: List[str],
            depth=0,
        ):
            assert isinstance(decoder_pointer, nn.Module) and isinstance(
                encoder_pointer, nn.Module
1329
            ), f"{decoder_pointer} and {encoder_pointer} have to be of type nn.Module"
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
            if hasattr(decoder_pointer, "weight"):
                assert hasattr(encoder_pointer, "weight")
                encoder_pointer.weight = decoder_pointer.weight
                if hasattr(decoder_pointer, "bias"):
                    assert hasattr(encoder_pointer, "bias")
                    encoder_pointer.bias = decoder_pointer.bias
                return

            encoder_modules = encoder_pointer._modules
            decoder_modules = decoder_pointer._modules
            if len(decoder_modules) > 0:
                assert (
                    len(encoder_modules) > 0
                ), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"

1345
                all_encoder_weights = {module_name + "/" + sub_name for sub_name in encoder_modules.keys()}
1346
1347
1348
1349
1350
                encoder_layer_pos = 0
                for name, module in decoder_modules.items():
                    if name.isdigit():
                        encoder_name = str(int(name) + encoder_layer_pos)
                        decoder_name = name
Weizhen's avatar
Weizhen committed
1351
1352
1353
                        if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len(
                            encoder_modules
                        ) != len(decoder_modules):
1354
1355
                            # this can happen if the name corresponds to the position in a list module list of layers
                            # in this case the decoder has added a cross-attention that the encoder does not have
1356
                            # thus skip this step and subtract one layer pos from encoder
1357
1358
1359
1360
1361
1362
                            encoder_layer_pos -= 1
                            continue
                    elif name not in encoder_modules:
                        continue
                    elif depth > 500:
                        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1363
1364
                            "Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is"
                            " a circular dependency between two or more `nn.Modules` of your model."
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
                        )
                    else:
                        decoder_name = encoder_name = name
                    tie_encoder_to_decoder_recursively(
                        decoder_modules[decoder_name],
                        encoder_modules[encoder_name],
                        module_name + "/" + name,
                        uninitialized_encoder_weights,
                        depth=depth + 1,
                    )
                    all_encoder_weights.remove(module_name + "/" + encoder_name)

                uninitialized_encoder_weights += list(all_encoder_weights)

        # tie weights recursively
        tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights)
        if len(uninitialized_encoder_weights) > 0:
            logger.warning(
                f"The following encoder weights were not tied to the decoder {uninitialized_encoder_weights}"
            )

1386
    def _tie_or_clone_weights(self, output_embeddings, input_embeddings):
Lysandre's avatar
Lysandre committed
1387
        """Tie or clone module weights depending of whether we are using TorchScript or not"""
thomwolf's avatar
thomwolf committed
1388
        if self.config.torchscript:
1389
            output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone())
thomwolf's avatar
thomwolf committed
1390
        else:
1391
            output_embeddings.weight = input_embeddings.weight
thomwolf's avatar
thomwolf committed
1392

Sam Shleifer's avatar
Sam Shleifer committed
1393
        if getattr(output_embeddings, "bias", None) is not None:
1394
            output_embeddings.bias.data = nn.functional.pad(
1395
                output_embeddings.bias.data,
Lysandre's avatar
Lysandre committed
1396
1397
1398
1399
                (
                    0,
                    output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0],
                ),
1400
1401
                "constant",
                0,
1402
            )
1403
        if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"):
1404
            output_embeddings.out_features = input_embeddings.num_embeddings
1405

1406
1407
1408
    def resize_token_embeddings(
        self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None
    ) -> nn.Embedding:
1409
        """
1410
        Resizes input token embeddings matrix of the model if `new_num_tokens != config.vocab_size`.
1411

1412
        Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
thomwolf's avatar
thomwolf committed
1413

1414
        Arguments:
1415
            new_num_tokens (`int`, *optional*):
1416
                The number of new tokens in the embedding matrix. Increasing the size will add newly initialized
Sylvain Gugger's avatar
Sylvain Gugger committed
1417
1418
                vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
                returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything.
1419
1420
1421
1422
1423
1424
1425
            pad_to_multiple_of (`int`, *optional*):
                If set will pad the embedding matrix to a multiple of the provided value.

                This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
                `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more
                details about this, or help on choosing the correct value for resizing, refer to this guide:
                https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc
1426
1427

        Return:
1428
            `torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model.
thomwolf's avatar
thomwolf committed
1429
        """
1430
        model_embeds = self._resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
thomwolf's avatar
thomwolf committed
1431
1432
        if new_num_tokens is None:
            return model_embeds
thomwolf's avatar
thomwolf committed
1433
1434
1435

        # Update base model and current model config
        self.config.vocab_size = new_num_tokens
1436
        self.vocab_size = new_num_tokens
thomwolf's avatar
thomwolf committed
1437
1438

        # Tie weights again if needed
1439
        self.tie_weights()
thomwolf's avatar
thomwolf committed
1440

thomwolf's avatar
thomwolf committed
1441
1442
        return model_embeds

1443
    def _resize_token_embeddings(self, new_num_tokens, pad_to_multiple_of=None):
thomwolf's avatar
thomwolf committed
1444
        old_embeddings = self.get_input_embeddings()
1445
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens, pad_to_multiple_of)
1446
1447
1448
        if hasattr(old_embeddings, "_hf_hook"):
            hook = old_embeddings._hf_hook
            add_hook_to_module(new_embeddings, hook)
thomwolf's avatar
thomwolf committed
1449
        self.set_input_embeddings(new_embeddings)
1450
1451
1452
1453

        # if word embeddings are not tied, make sure that lm head is resized as well
        if self.get_output_embeddings() is not None and not self.config.tie_word_embeddings:
            old_lm_head = self.get_output_embeddings()
1454
            new_lm_head = self._get_resized_lm_head(old_lm_head, new_embeddings.weight.shape[0])
1455
1456
1457
            if hasattr(old_lm_head, "_hf_hook"):
                hook = old_lm_head._hf_hook
                add_hook_to_module(new_lm_head, hook)
1458
1459
            self.set_output_embeddings(new_lm_head)

thomwolf's avatar
thomwolf committed
1460
        return self.get_input_embeddings()
1461

1462
    def _get_resized_embeddings(
1463
1464
1465
1466
        self,
        old_embeddings: nn.Embedding,
        new_num_tokens: Optional[int] = None,
        pad_to_multiple_of: Optional[int] = None,
1467
    ) -> nn.Embedding:
1468
1469
1470
        """
        Build a resized Embedding Module from a provided token Embedding Module. Increasing the size will add newly
        initialized vectors at the end. Reducing the size will remove vectors from the end
1471
1472

        Args:
1473
            old_embeddings (`torch.nn.Embedding`):
1474
                Old embeddings to be resized.
1475
            new_num_tokens (`int`, *optional*):
1476
                New number of tokens in the embedding matrix.
1477
1478

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
1479
                vectors from the end. If not provided or `None`, just returns a pointer to the input tokens
1480
                `torch.nn.Embedding` module of the model without doing anything.
1481
1482
1483
1484
1485
1486
1487
1488
            pad_to_multiple_of (`int`, *optional*):
                If set will pad the embedding matrix to a multiple of the provided value.

                This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
                `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more
                details about this, or help on choosing the correct value for resizing, refer to this guide:
                https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc

1489
1490

        Return:
1491
1492
            `torch.nn.Embedding`: Pointer to the resized Embedding Module or the old Embedding Module if
            `new_num_tokens` is `None`
1493
        """
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504

        if pad_to_multiple_of is not None:
            if not isinstance(pad_to_multiple_of, int):
                raise ValueError(
                    f"Asking to pad the embedding matrix to a multiple of `{pad_to_multiple_of}`, which is not and integer. Please make sure to pass an integer"
                )
            if new_num_tokens is None:
                new_num_tokens = old_embeddings.weight.shape[0]
            new_num_tokens = ((new_num_tokens // pad_to_multiple_of) + 1) * pad_to_multiple_of
        else:
            logger.warning(
1505
                "You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding"
1506
                f" dimension will be {new_num_tokens}. This might induce some performance reduction as *Tensor Cores* will not be available."
1507
                " For more details about this, or help on choosing the correct value for resizing, refer to this guide:"
1508
1509
1510
                " https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc"
            )

1511
1512
1513
        if new_num_tokens is None:
            return old_embeddings

1514
1515
1516
1517
1518
1519
1520
1521
        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_embeddings.weight, modifier_rank=None):
                old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
        else:
            old_num_tokens, old_embedding_dim = old_embeddings.weight.size()

1522
1523
1524
        if old_num_tokens == new_num_tokens:
            return old_embeddings

1525
1526
        if not isinstance(old_embeddings, nn.Embedding):
            raise TypeError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1527
1528
1529
                f"Old embeddings are of type {type(old_embeddings)}, which is not an instance of {nn.Embedding}. You"
                " should either use a different resize function or make sure that `old_embeddings` are an instance of"
                f" {nn.Embedding}."
1530
1531
            )

1532
1533
1534
1535
1536
        # numbers of tokens to copy
        n = min(old_num_tokens, new_num_tokens)
        if is_deepspeed_zero3_enabled():
            import deepspeed

1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
            with deepspeed.zero.Init(config_dict_or_path=deepspeed_config()):
                # Build new embeddings
                new_embeddings = nn.Embedding(
                    new_num_tokens,
                    old_embedding_dim,
                    device=old_embeddings.weight.device,
                    dtype=old_embeddings.weight.dtype,
                )

            params = [old_embeddings.weight, new_embeddings.weight]
            with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
                # initialize all new embeddings (in particular added tokens)
                self._init_weights(new_embeddings)

                # Copy token embeddings from the previous weights
                new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :]
1553
        else:
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
            # Build new embeddings
            new_embeddings = nn.Embedding(
                new_num_tokens,
                old_embedding_dim,
                device=old_embeddings.weight.device,
                dtype=old_embeddings.weight.dtype,
            )

            # initialize all new embeddings (in particular added tokens)
            self._init_weights(new_embeddings)

            # Copy token embeddings from the previous weights
1566
            new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :]
1567
1568
1569

        return new_embeddings

1570
    def _get_resized_lm_head(
1571
1572
        self, old_lm_head: nn.Linear, new_num_tokens: Optional[int] = None, transposed: Optional[bool] = False
    ) -> nn.Linear:
1573
1574
1575
1576
1577
        """
        Build a resized Linear Module from a provided old Linear Module. Increasing the size will add newly initialized
        vectors at the end. Reducing the size will remove vectors from the end

        Args:
1578
            old_lm_head (`torch.nn.Linear`):
1579
                Old lm head liner layer to be resized.
1580
            new_num_tokens (`int`, *optional*):
1581
1582
1583
                New number of tokens in the linear matrix.

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
1584
                vectors from the end. If not provided or `None`, just returns a pointer to the input tokens
1585
1586
1587
                `torch.nn.Linear` module of the model without doing anything. transposed (`bool`, *optional*, defaults
                to `False`): Whether `old_lm_head` is transposed or not. If True `old_lm_head.size()` is `lm_head_dim,
                vocab_size` else `vocab_size, lm_head_dim`.
1588
1589

        Return:
Sylvain Gugger's avatar
Sylvain Gugger committed
1590
1591
            `torch.nn.Linear`: Pointer to the resized Linear Module or the old Linear Module if `new_num_tokens` is
            `None`
1592
1593
1594
1595
        """
        if new_num_tokens is None:
            return old_lm_head

1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_lm_head.weight, modifier_rank=None):
                old_num_tokens, old_lm_head_dim = (
                    old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
                )
        else:
            old_num_tokens, old_lm_head_dim = (
                old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
            )
1607
1608
1609
1610
1611
1612

        if old_num_tokens == new_num_tokens:
            return old_lm_head

        if not isinstance(old_lm_head, nn.Linear):
            raise TypeError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1613
1614
1615
                f"Old language model head is of type {type(old_lm_head)}, which is not an instance of {nn.Linear}. You"
                " should either use a different resize function or make sure that `old_lm_head` are an instance of"
                f" {nn.Linear}."
1616
1617
1618
1619
1620
1621
1622
1623
            )

        # Build new lm head
        new_lm_head_shape = (old_lm_head_dim, new_num_tokens) if not transposed else (new_num_tokens, old_lm_head_dim)
        has_new_lm_head_bias = old_lm_head.bias is not None

        num_tokens_to_copy = min(old_num_tokens, new_num_tokens)

1624
1625
1626
1627
        # XXX: put the long block of code in a wrapper
        if is_deepspeed_zero3_enabled():
            import deepspeed

1628
1629
1630
1631
1632
1633
1634
            with deepspeed.zero.Init(config_dict_or_path=deepspeed_config()):
                new_lm_head = nn.Linear(
                    *new_lm_head_shape,
                    bias=has_new_lm_head_bias,
                    device=old_lm_head.weight.device,
                    dtype=old_lm_head.weight.dtype,
                )
1635
1636
            params = [old_lm_head.weight, old_lm_head.bias, new_lm_head.weight, new_lm_head.bias]
            with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
1637
1638
1639
1640
1641
1642
                self._init_weights(new_lm_head)
                # Copy old lm head weights to new lm head
                if not transposed:
                    new_lm_head.weight.data[:num_tokens_to_copy, :] = old_lm_head.weight.data[:num_tokens_to_copy, :]
                else:
                    new_lm_head.weight.data[:, :num_tokens_to_copy] = old_lm_head.weight.data[:, :num_tokens_to_copy]
1643

1644
1645
1646
                # Copy bias weights to new lm head
                if has_new_lm_head_bias:
                    new_lm_head.bias.data[:num_tokens_to_copy] = old_lm_head.bias.data[:num_tokens_to_copy]
1647
        else:
1648
1649
1650
1651
1652
1653
1654
            new_lm_head = nn.Linear(
                *new_lm_head_shape,
                bias=has_new_lm_head_bias,
                device=old_lm_head.weight.device,
                dtype=old_lm_head.weight.dtype,
            )
            self._init_weights(new_lm_head)
1655
1656
1657
1658
1659
            # Copy old lm head weights to new lm head
            if not transposed:
                new_lm_head.weight.data[:num_tokens_to_copy, :] = old_lm_head.weight.data[:num_tokens_to_copy, :]
            else:
                new_lm_head.weight.data[:, :num_tokens_to_copy] = old_lm_head.weight.data[:, :num_tokens_to_copy]
1660

1661
1662
1663
            # Copy bias weights to new lm head
            if has_new_lm_head_bias:
                new_lm_head.bias.data[:num_tokens_to_copy] = old_lm_head.bias.data[:num_tokens_to_copy]
1664
1665
1666

        return new_lm_head

1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
    def resize_position_embeddings(self, new_num_position_embeddings: int):
        raise NotImplementedError(
            f"`resize_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should "
            f"overwrite this method in the class {self.__class__} in `modeling_{self.__class__.__module__}.py`"
        )

    def get_position_embeddings(self) -> Union[nn.Embedding, Tuple[nn.Embedding]]:
        raise NotImplementedError(
            f"`get_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should "
            f"overwrite this method in the class {self.__class__} in `modeling_{self.__class__.__module__}.py`"
        )

1679
    def init_weights(self):
1680
        """
1681
1682
        If needed prunes and maybe initializes weights. If using a custom `PreTrainedModel`, you need to implement any
        initialization logic in `_init_weights`.
1683
        """
1684
1685
1686
1687
        # Prune heads if needed
        if self.config.pruned_heads:
            self.prune_heads(self.config.pruned_heads)

1688
1689
        if _init_weights:
            # Initialize weights
1690
            self.apply(self._initialize_weights)
1691
1692
1693
1694

            # Tie weights should be skipped when not initializing all weights
            # since from_pretrained(...) calls tie weights anyways
            self.tie_weights()
1695

1696
1697
1698
    def prune_heads(self, heads_to_prune: Dict[int, List[int]]):
        """
        Prunes heads of the base model.
1699

1700
        Arguments:
1701
            heads_to_prune (`Dict[int, List[int]]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1702
1703
1704
                Dictionary with keys being selected layer indices (`int`) and associated values being the list of heads
                to prune in said layer (list of `int`). For instance {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on
                layer 1 and heads 2 and 3 on layer 2.
thomwolf's avatar
thomwolf committed
1705
        """
1706
        # save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads
1707
        for layer, heads in heads_to_prune.items():
1708
1709
1710
            union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads)
            self.config.pruned_heads[layer] = list(union_heads)  # Unfortunately we have to store it as list for JSON

1711
        self.base_model._prune_heads(heads_to_prune)
thomwolf's avatar
thomwolf committed
1712

1713
    def gradient_checkpointing_enable(self):
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
        """
        Activates gradient checkpointing for the current model.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        if not self.supports_gradient_checkpointing:
            raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
        self.apply(partial(self._set_gradient_checkpointing, value=True))

1724
    def gradient_checkpointing_disable(self):
1725
1726
1727
1728
1729
1730
1731
1732
1733
        """
        Deactivates gradient checkpointing for the current model.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        if self.supports_gradient_checkpointing:
            self.apply(partial(self._set_gradient_checkpointing, value=False))

1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
    @property
    def is_gradient_checkpointing(self) -> bool:
        """
        Whether gradient checkpointing is activated for this model or not.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules())

1744
1745
1746
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
1747
        is_main_process: bool = True,
1748
1749
        state_dict: Optional[dict] = None,
        save_function: Callable = torch.save,
Sylvain Gugger's avatar
Sylvain Gugger committed
1750
        push_to_hub: bool = False,
Sylvain Gugger's avatar
Sylvain Gugger committed
1751
        max_shard_size: Union[int, str] = "10GB",
1752
        safe_serialization: bool = False,
1753
        variant: Optional[str] = None,
1754
        token: Optional[Union[str, bool]] = None,
1755
        save_peft_format: bool = True,
Sylvain Gugger's avatar
Sylvain Gugger committed
1756
        **kwargs,
1757
    ):
1758
1759
        """
        Save a model and its configuration file to a directory, so that it can be re-loaded using the
1760
        [`~PreTrainedModel.from_pretrained`] class method.
1761

1762
        Arguments:
1763
            save_directory (`str` or `os.PathLike`):
1764
                Directory to which to save. Will be created if it doesn't exist.
1765
1766
1767
1768
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful when in distributed training like
                TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on
                the main process to avoid race conditions.
1769
            state_dict (nested dictionary of `torch.Tensor`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1770
1771
1772
                The state dictionary of the model to save. Will default to `self.state_dict()`, but can be used to only
                save parts of the model or if special precautions need to be taken when recovering the state dictionary
                of a model (like when using model parallelism).
1773
            save_function (`Callable`):
1774
                The function to use to save the state dictionary. Useful on distributed training like TPUs when one
1775
1776
                need to replace `torch.save` by another method.
            push_to_hub (`bool`, *optional*, defaults to `False`):
1777
1778
1779
                Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
Sylvain Gugger's avatar
Sylvain Gugger committed
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
            max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
                The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size
                lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`).

                <Tip warning={true}>

                If a single weight of the model is bigger than `max_shard_size`, it will be in its own checkpoint shard
                which will be bigger than `max_shard_size`.

                </Tip>

1791
1792
            safe_serialization (`bool`, *optional*, defaults to `False`):
                Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
1793
1794
            variant (`str`, *optional*):
                If specified, weights are saved in the format pytorch_model.<variant>.bin.
1795
1796
1797
            token (`str` or `bool`, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
                the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
1798
1799
1800
1801
            save_peft_format (`bool`, *optional*, defaults to `True`):
                For backward compatibility with PEFT library, in case adapter weights are attached to the model, all
                keys of the state dict of adapters needs to be pre-pended with `base_model.model`. Advanced users can
                disable this behaviours by setting `save_peft_format` to `False`.
1802
            kwargs (`Dict[str, Any]`, *optional*):
1803
                Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
1804
        """
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
        use_auth_token = kwargs.pop("use_auth_token", None)

        if use_auth_token is not None:
            warnings.warn(
                "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
            )
            if token is not None:
                raise ValueError(
                    "`token` and `use_auth_token` are both specified. Please set only the argument `token`."
                )
            token = use_auth_token

        if token is not None:
            kwargs["token"] = token

1820
        # Checks if the model has been loaded in 8-bit
1821
        if getattr(self, "is_loaded_in_8bit", False) and getattr(self, "is_8bit_serializable", False):
1822
1823
            warnings.warn(
                "You are calling `save_pretrained` to a 8-bit converted model you may likely encounter unexepected"
1824
                " behaviors. If you want to save 8-bit models, make sure to have `bitsandbytes>0.37.2` installed.",
1825
1826
1827
                UserWarning,
            )

1828
1829
1830
1831
1832
        if getattr(self, "is_loaded_in_4bit", False):
            raise NotImplementedError(
                "You are calling `save_pretrained` on a 4-bit converted model. This is currently not supported"
            )

1833
1834
1835
1836
1837
        if "save_config" in kwargs:
            warnings.warn(
                "`save_config` is deprecated and will be removed in v5 of Transformers. Use `is_main_process` instead."
            )
            is_main_process = kwargs.pop("save_config")
1838
1839
        if safe_serialization and not is_safetensors_available():
            raise ImportError("`safe_serialization` requires the `safetensors library: `pip install safetensors`.")
1840

1841
        if os.path.isfile(save_directory):
1842
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
1843
            return
1844

1845
1846
        os.makedirs(save_directory, exist_ok=True)

1847
1848
        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
1849
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
1850
            repo_id = self._create_repo(repo_id, **kwargs)
1851
            files_timestamps = self._get_files_timestamps(save_directory)
1852

Julien Chaumond's avatar
Julien Chaumond committed
1853
        # Only save the model itself if we are using distributed training
1854
        model_to_save = unwrap_model(self)
1855

1856
1857
1858
1859
1860
        # save the string version of dtype to the config, e.g. convert torch.float32 => "float32"
        # we currently don't use this setting automatically, but may start to use with v5
        dtype = get_parameter_dtype(model_to_save)
        model_to_save.config.torch_dtype = str(dtype).split(".")[1]

Julien Chaumond's avatar
Julien Chaumond committed
1861
1862
1863
        # Attach architecture to the config
        model_to_save.config.architectures = [model_to_save.__class__.__name__]

1864
1865
1866
1867
1868
        # If we have a custom model, we copy the file defining it in the folder and set the attributes so it can be
        # loaded from the Hub.
        if self._auto_class is not None:
            custom_object_save(self, save_directory, config=self.config)

1869
1870
        _hf_peft_config_loaded = getattr(model_to_save, "_hf_peft_config_loaded", False)

1871
        # Save the config
1872
        if is_main_process:
1873
1874
            if not _hf_peft_config_loaded:
                model_to_save.config.save_pretrained(save_directory)
1875
1876
            if self.can_generate():
                model_to_save.generation_config.save_pretrained(save_directory)
1877

1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
            if _hf_peft_config_loaded:
                logger.info(
                    "Detected adapters on the model, saving the model in the PEFT format, only adapter weights will be saved."
                )
                state_dict = model_to_save.get_adapter_state_dict()

                if save_peft_format:
                    logger.info(
                        "To match the expected format of the PEFT library, all keys of the state dict of adapters will be pre-pended with `base_model.model`."
                    )
                    peft_state_dict = {}
                    for key, value in state_dict.items():
                        peft_state_dict[f"base_model.model.{key}"] = value
                    state_dict = peft_state_dict

                current_peft_config = self.peft_config[self.active_adapter()]
                current_peft_config.save_pretrained(save_directory)

1896
1897
1898
        # Save the model
        if state_dict is None:
            state_dict = model_to_save.state_dict()
1899

1900
1901
1902
1903
1904
        # Translate state_dict from smp to hf if saving with smp >= 1.10
        if IS_SAGEMAKER_MP_POST_1_10:
            for smp_to_hf, _ in smp.state.module_manager.translate_functions:
                state_dict = smp_to_hf(state_dict)

1905
        # Handle the case where some state_dict keys shouldn't be saved
1906
        if self._keys_to_ignore_on_save is not None:
1907
            for ignore_key in self._keys_to_ignore_on_save:
1908
1909
                if ignore_key in state_dict.keys():
                    del state_dict[ignore_key]
1910
1911
1912
1913
1914
        if safe_serialization:
            # Safetensors does not allow tensor aliasing.
            # We're going to remove aliases before saving
            ptrs = collections.defaultdict(list)
            for name, tensor in state_dict.items():
Sylvain Gugger's avatar
Sylvain Gugger committed
1915
                ptrs[id_tensor_storage(tensor)].append(name)
1916
1917
1918
1919
1920
1921
1922

            # These are all the pointers of shared tensors.
            shared_ptrs = {ptr: names for ptr, names in ptrs.items() if len(names) > 1}
            warn_names = set()
            for names in shared_ptrs.values():
                # Removing the keys which are declared as known duplicates on
                # load. This allows to make sure the name which is kept is consistent.
Sylvain Gugger's avatar
Sylvain Gugger committed
1923
                if self._tied_weights_keys is not None:
1924
1925
                    found = 0
                    for name in sorted(names):
Sylvain Gugger's avatar
Sylvain Gugger committed
1926
                        matches_pattern = any(re.search(pat, name) for pat in self._tied_weights_keys)
1927
                        if matches_pattern and name in state_dict:
1928
1929
1930
                            found += 1
                            if found < len(names):
                                del state_dict[name]
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947

                # When not all duplicates have been cleaned, still remove those keys, but put a clear warning.
                # If the link between tensors was done at runtime then `from_pretrained` will not get
                # the key back leading to random tensor. A proper warning will be shown
                # during reload (if applicable), but since the file is not necessarily compatible with
                # the config, better show a proper warning.
                found = 0
                for name in names:
                    if name in state_dict:
                        found += 1
                        if found > 1:
                            del state_dict[name]
                            warn_names.add(name)
            if len(warn_names) > 0:
                logger.warning_once(
                    f"Removed shared tensor {warn_names} while saving. This should be OK, but check by verifying that you don't receive any warning while reloading",
                )
1948

Sylvain Gugger's avatar
Sylvain Gugger committed
1949
        # Shard the model if it is too big.
1950
1951
1952
1953
1954
        if not _hf_peft_config_loaded:
            weights_name = SAFE_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME
            weights_name = _add_variant(weights_name, variant)
        else:
            weights_name = ADAPTER_SAFE_WEIGHTS_NAME if safe_serialization else ADAPTER_WEIGHTS_NAME
1955

1956
        shards, index = shard_checkpoint(state_dict, max_shard_size=max_shard_size, weights_name=weights_name)
Sylvain Gugger's avatar
Sylvain Gugger committed
1957
1958
1959
1960

        # Clean the folder from a previous save
        for filename in os.listdir(save_directory):
            full_filename = os.path.join(save_directory, filename)
1961
1962
            # If we have a shard file that is not going to be replaced, we delete it, but only from the main process
            # in distributed settings to avoid race conditions.
1963
            weights_no_suffix = weights_name.replace(".bin", "").replace(".safetensors", "")
1964
1965
1966

            # make sure that file to be deleted matches format of sharded file, e.g. pytorch_model-00001-of-00005
            filename_no_suffix = filename.replace(".bin", "").replace(".safetensors", "")
1967
            reg = re.compile(r"(.*?)-\d{5}-of-\d{5}")
1968

1969
            if (
1970
                filename.startswith(weights_no_suffix)
1971
1972
1973
                and os.path.isfile(full_filename)
                and filename not in shards.keys()
                and is_main_process
1974
                and reg.fullmatch(filename_no_suffix) is not None
1975
            ):
Sylvain Gugger's avatar
Sylvain Gugger committed
1976
                os.remove(full_filename)
1977

Sylvain Gugger's avatar
Sylvain Gugger committed
1978
1979
        # Save the model
        for shard_file, shard in shards.items():
1980
1981
1982
1983
1984
1985
            if safe_serialization:
                # At some point we will need to deal better with save_function (used for TPU and other distributed
                # joyfulness), but for now this enough.
                safe_save_file(shard, os.path.join(save_directory, shard_file), metadata={"format": "pt"})
            else:
                save_function(shard, os.path.join(save_directory, shard_file))
Sylvain Gugger's avatar
Sylvain Gugger committed
1986
1987

        if index is None:
1988
1989
            path_to_weights = os.path.join(save_directory, _add_variant(WEIGHTS_NAME, variant))
            logger.info(f"Model weights saved in {path_to_weights}")
Sylvain Gugger's avatar
Sylvain Gugger committed
1990
        else:
1991
            save_index_file = SAFE_WEIGHTS_INDEX_NAME if safe_serialization else WEIGHTS_INDEX_NAME
1992
            save_index_file = os.path.join(save_directory, _add_variant(save_index_file, variant))
Sylvain Gugger's avatar
Sylvain Gugger committed
1993
1994
1995
1996
1997
1998
1999
2000
2001
            # Save the index as well
            with open(save_index_file, "w", encoding="utf-8") as f:
                content = json.dumps(index, indent=2, sort_keys=True) + "\n"
                f.write(content)
            logger.info(
                f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be "
                f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the "
                f"index located at {save_index_file}."
            )
2002

Sylvain Gugger's avatar
Sylvain Gugger committed
2003
        if push_to_hub:
2004
            self._upload_modified_files(
2005
2006
2007
2008
                save_directory,
                repo_id,
                files_timestamps,
                commit_message=commit_message,
2009
                token=token,
2010
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
2011

2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
    def get_memory_footprint(self, return_buffers=True):
        r"""
        Get the memory footprint of a model. This will return the memory footprint of the current model in bytes.
        Useful to benchmark the memory footprint of the current model and design some tests. Solution inspired from the
        PyTorch discussions: https://discuss.pytorch.org/t/gpu-memory-that-model-uses/56822/2

        Arguments:
            return_buffers (`bool`, *optional*, defaults to `True`):
                Whether to return the size of the buffer tensors in the computation of the memory footprint. Buffers
                are tensors that do not require gradients and not registered as parameters. E.g. mean and std in batch
                norm layers. Please see: https://discuss.pytorch.org/t/what-pytorch-means-by-buffers/120266/2
        """
        mem = sum([param.nelement() * param.element_size() for param in self.parameters()])
        if return_buffers:
            mem_bufs = sum([buf.nelement() * buf.element_size() for buf in self.buffers()])
            mem = mem + mem_bufs
        return mem

2030
    @wraps(torch.nn.Module.cuda)
2031
2032
    def cuda(self, *args, **kwargs):
        # Checks if the model has been loaded in 8-bit
Marc Sun's avatar
Marc Sun committed
2033
        if getattr(self, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES:
2034
2035
2036
2037
2038
2039
2040
            raise ValueError(
                "Calling `cuda()` is not supported for `4-bit` or `8-bit` quantized models. Please use the model as it is, since the"
                " model has already been set to the correct devices and casted to the correct `dtype`."
            )
        else:
            return super().cuda(*args, **kwargs)

2041
    @wraps(torch.nn.Module.to)
2042
2043
    def to(self, *args, **kwargs):
        # Checks if the model has been loaded in 8-bit
Marc Sun's avatar
Marc Sun committed
2044
        if getattr(self, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES:
2045
            raise ValueError(
Marc Sun's avatar
Marc Sun committed
2046
                "`.to` is not supported for `4-bit` or `8-bit` bitsandbytes models. Please use the model as it is, since the"
2047
2048
2049
2050
2051
2052
                " model has already been set to the correct devices and casted to the correct `dtype`."
            )
        else:
            return super().to(*args, **kwargs)

    def half(self, *args):
Marc Sun's avatar
Marc Sun committed
2053
        # Checks if the model is quantized
2054
        if getattr(self, "is_quantized", False):
2055
            raise ValueError(
Marc Sun's avatar
Marc Sun committed
2056
                "`.half()` is not supported for quantized model. Please use the model as it is, since the"
2057
2058
2059
2060
2061
2062
                " model has already been casted to the correct `dtype`."
            )
        else:
            return super().half(*args)

    def float(self, *args):
Marc Sun's avatar
Marc Sun committed
2063
        # Checks if the model is quantized
2064
        if getattr(self, "is_quantized", False):
2065
            raise ValueError(
Marc Sun's avatar
Marc Sun committed
2066
                "`.float()` is not supported for quantized model. Please use the model as it is, since the"
2067
2068
2069
2070
2071
                " model has already been casted to the correct `dtype`."
            )
        else:
            return super().float(*args)

2072
    @classmethod
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
    def from_pretrained(
        cls,
        pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
        *model_args,
        config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
        cache_dir: Optional[Union[str, os.PathLike]] = None,
        ignore_mismatched_sizes: bool = False,
        force_download: bool = False,
        local_files_only: bool = False,
        token: Optional[Union[str, bool]] = None,
        revision: str = "main",
        use_safetensors: bool = None,
        **kwargs,
    ):
2087
2088
        r"""
        Instantiate a pretrained pytorch model from a pre-trained model configuration.
2089

Sylvain Gugger's avatar
Sylvain Gugger committed
2090
2091
        The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
        the model, you should first set it back in training mode with `model.train()`.
2092

2093
        The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
2094
2095
        pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
        task.
2096

2097
        The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
2098
        weights are discarded.
2099

2100
        Parameters:
2101
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
2102
2103
                Can be either:

2104
                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
Sylvain Gugger's avatar
Sylvain Gugger committed
2105
2106
                      Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a
                      user or organization name, like `dbmdz/bert-base-german-cased`.
2107
2108
2109
                    - A path to a *directory* containing model weights saved using
                      [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
                    - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
Sylvain Gugger's avatar
Sylvain Gugger committed
2110
2111
2112
                      this case, `from_tf` should be set to `True` and a configuration object should be provided as
                      `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
                      PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
2113
                    - A path or url to a model folder containing a *flax checkpoint file* in *.msgpack* format (e.g,
Sylvain Gugger's avatar
Sylvain Gugger committed
2114
2115
                      `./flax_model/` containing `flax_model.msgpack`). In this case, `from_flax` should be set to
                      `True`.
2116
2117
2118
2119
2120
                    - `None` if you are both providing the configuration and state dictionary (resp. with keyword
                      arguments `config` and `state_dict`).
            model_args (sequence of positional arguments, *optional*):
                All remaining positional arguments will be passed to the underlying model's `__init__` method.
            config (`Union[PretrainedConfig, str, os.PathLike]`, *optional*):
2121
2122
                Can be either:

2123
2124
                    - an instance of a class derived from [`PretrainedConfig`],
                    - a string or path valid as input to [`~PretrainedConfig.from_pretrained`].
2125

2126
                Configuration for the model to use instead of an automatically loaded configuration. Configuration can
2127
2128
                be automatically loaded when:

2129
                    - The model is a model provided by the library (loaded with the *model id* string of a pretrained
2130
                      model).
Sylvain Gugger's avatar
Sylvain Gugger committed
2131
2132
                    - The model was saved using [`~PreTrainedModel.save_pretrained`] and is reloaded by supplying the
                      save directory.
2133
2134
2135
                    - The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a
                      configuration JSON file named *config.json* is found in the directory.
            state_dict (`Dict[str, torch.Tensor]`, *optional*):
2136
2137
2138
                A state dictionary to use instead of a state dictionary loaded from saved weights file.

                This option can be used if you want to create a model from a pretrained configuration but load your own
Sylvain Gugger's avatar
Sylvain Gugger committed
2139
                weights. In this case though, you should check if using [`~PreTrainedModel.save_pretrained`] and
2140
2141
                [`~PreTrainedModel.from_pretrained`] is not a simpler option.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
2142
2143
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
2144
            from_tf (`bool`, *optional*, defaults to `False`):
2145
                Load the model weights from a TensorFlow checkpoint save file (see docstring of
2146
2147
                `pretrained_model_name_or_path` argument).
            from_flax (`bool`, *optional*, defaults to `False`):
2148
                Load the model weights from a Flax checkpoint save file (see docstring of
2149
2150
                `pretrained_model_name_or_path` argument).
            ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`):
2151
2152
2153
                Whether or not to raise an error if some of the weights from the checkpoint do not have the same size
                as the weights of the model (if for instance, you are instantiating a model with 10 labels from a
                checkpoint with 3 labels).
2154
            force_download (`bool`, *optional*, defaults to `False`):
2155
2156
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
2157
            resume_download (`bool`, *optional*, defaults to `False`):
2158
2159
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
2160
            proxies (`Dict[str, str]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2161
2162
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
2163
            output_loading_info(`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2164
                Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
2165
            local_files_only(`bool`, *optional*, defaults to `False`):
Stas Bekman's avatar
Stas Bekman committed
2166
                Whether or not to only look at local files (i.e., do not try to download the model).
2167
            token (`str` or `bool`, *optional*):
2168
2169
                The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
                the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
2170
            revision (`str`, *optional*, defaults to `"main"`):
Julien Chaumond's avatar
Julien Chaumond committed
2171
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
2172
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
Julien Chaumond's avatar
Julien Chaumond committed
2173
                identifier allowed by git.
2174
2175
2176
2177
2178
2179
2180

                <Tip>

                To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>".

                </Tip>

2181
            mirror (`str`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2182
2183
2184
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information.
2185
            _fast_init(`bool`, *optional*, defaults to `True`):
2186
2187
                Whether or not to disable fast initialization.

2188
2189
                <Tip warning={true}>

Sylvain Gugger's avatar
Sylvain Gugger committed
2190
2191
2192
                One should only disable *_fast_init* to ensure backwards compatibility with `transformers.__version__ <
                4.6.0` for seeded model initialization. This argument will be removed at the next major version. See
                [pull request 11471](https://github.com/huggingface/transformers/pull/11471) for more information.
2193

2194
                </Tip>
2195

2196
2197
2198
            > Parameters for big model inference

            low_cpu_mem_usage(`bool`, *optional*):
2199
2200
2201
                Tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                This is an experimental feature and a subject to change at any moment.
            torch_dtype (`str` or `torch.dtype`, *optional*):
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
                Override the default `torch.dtype` and load the model under a specific `dtype`. The different options
                are:

                1. `torch.float16` or `torch.bfloat16` or `torch.float`: load in a specified
                  `dtype`, ignoring the model's `config.torch_dtype` if one exists. If not specified
                  - the model will get loaded in `torch.float` (fp32).

                2. `"auto"` - A `torch_dtype` entry in the `config.json` file of the model will be
                  attempted to be used. If this entry isn't found then next check the `dtype` of the first weight in
                  the checkpoint that's of a floating point type and use that as `dtype`. This will load the model
                  using the `dtype` it was saved in at the end of the training. It can't be used as an indicator of how
                  the model was trained. Since it could be trained in one of half precision dtypes, but saved in fp32.

                <Tip>

                For some models the `dtype` they were trained in is unknown - you may try to check the model's paper or
                reach out to the authors and ask them to add this information to the model's card and to insert the
                `torch_dtype` entry in `config.json` on the hub.

                </Tip>

2223
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]` or `int` or `torch.device`, *optional*):
2224
2225
                A map that specifies where each submodule should go. It doesn't need to be refined to each
                parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the
2226
2227
2228
                same device. If we only pass the device (*e.g.*, `"cpu"`, `"cuda:1"`, `"mps"`, or a GPU ordinal rank
                like `1`) on which the model will be allocated, the device map will map the entire model to this
                device. Passing `device_map = 0` means put the whole model on GPU 0.
2229

2230
2231
                To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For
                more information about each option see [designing a device
Patrick von Platen's avatar
Patrick von Platen committed
2232
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
2233
2234
2235
            max_memory (`Dict`, *optional*):
                A dictionary device identifier to maximum memory. Will default to the maximum memory available for each
                GPU and the available CPU RAM if unset.
2236
2237
            offload_folder (`str` or `os.PathLike`, *optional*):
                If the `device_map` contains any value `"disk"`, the folder where we will offload weights.
2238
            offload_state_dict (`bool`, *optional*):
2239
                If `True`, will temporarily offload the CPU state dict to the hard drive to avoid getting out of CPU
2240
2241
                RAM if the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to
                `True` when there is some disk offload.
2242
2243
            load_in_8bit (`bool`, *optional*, defaults to `False`):
                If `True`, will convert the loaded model into mixed-8bit quantized model. To use this feature please
2244
2245
2246
2247
                install `bitsandbytes` (`pip install -U bitsandbytes`).
            load_in_4bit (`bool`, *optional*, defaults to `False`):
                If `True`, will convert the loaded model into 4bit precision quantized model. To use this feature
                install the latest version of `bitsandbytes` (`pip install -U bitsandbytes`).
Marc Sun's avatar
Marc Sun committed
2248
2249
2250
            quantization_config (`Union[QuantizationConfigMixin,Dict]`, *optional*):
                A dictionary of configuration parameters or a QuantizationConfigMixin object for quantization (e.g
                bitsandbytes, gptq)
2251
2252
2253
            subfolder (`str`, *optional*, defaults to `""`):
                In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
                specify the folder name here.
2254
2255
2256
            variant (`str`, *optional*):
                If specified load weights from `variant` filename, *e.g.* pytorch_model.<variant>.bin. `variant` is
                ignored when using `from_tf` or `from_flax`.
2257
2258
2259
            use_safetensors (`bool`, *optional*, defaults to `None`):
                Whether or not to use `safetensors` checkpoints. Defaults to `None`. If not specified and `safetensors`
                is not installed, it will be set to `False`.
2260

2261
            kwargs (remaining dictionary of keyword arguments, *optional*):
2262
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
2263
                `output_attentions=True`). Behaves differently depending on whether a `config` is provided or
2264
2265
                automatically loaded:

2266
2267
                    - If a configuration is provided with `config`, `**kwargs` will be directly passed to the
                      underlying model's `__init__` method (we assume all relevant updates to the configuration have
2268
                      already been done)
2269
                    - If a configuration is not provided, `kwargs` will be first passed to the configuration class
Sylvain Gugger's avatar
Sylvain Gugger committed
2270
2271
2272
2273
                      initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that
                      corresponds to a configuration attribute will be used to override said attribute with the
                      supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute
                      will be passed to the underlying model's `__init__` function.
2274
2275
2276

        <Tip>

Sylvain Gugger's avatar
Sylvain Gugger committed
2277
2278
        Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to
        use this method in a firewalled environment.
2279
2280
2281
2282
2283
2284
2285

        </Tip>

        Examples:

        ```python
        >>> from transformers import BertConfig, BertModel
Sylvain Gugger's avatar
Sylvain Gugger committed
2286

2287
        >>> # Download model and configuration from huggingface.co and cache.
Sylvain Gugger's avatar
Sylvain Gugger committed
2288
        >>> model = BertModel.from_pretrained("bert-base-uncased")
2289
        >>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable).
Sylvain Gugger's avatar
Sylvain Gugger committed
2290
        >>> model = BertModel.from_pretrained("./test/saved_model/")
2291
        >>> # Update configuration during loading.
Sylvain Gugger's avatar
Sylvain Gugger committed
2292
        >>> model = BertModel.from_pretrained("bert-base-uncased", output_attentions=True)
2293
2294
        >>> assert model.config.output_attentions == True
        >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable).
Sylvain Gugger's avatar
Sylvain Gugger committed
2295
2296
        >>> config = BertConfig.from_json_file("./tf_model/my_tf_model_config.json")
        >>> model = BertModel.from_pretrained("./tf_model/my_tf_checkpoint.ckpt.index", from_tf=True, config=config)
2297
        >>> # Loading from a Flax checkpoint file instead of a PyTorch model (slower)
Sylvain Gugger's avatar
Sylvain Gugger committed
2298
        >>> model = BertModel.from_pretrained("bert-base-uncased", from_flax=True)
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
        ```

        * `low_cpu_mem_usage` algorithm:

        This is an experimental function that loads the model using ~1x model size CPU memory

        Here is how it works:

        1. save which state_dict keys we have
        2. drop state_dict before the model is created, since the latter takes 1x model size CPU memory
        3. after the model has been instantiated switch to the meta device all params/buffers that
        are going to be replaced from the loaded state_dict
        4. load state_dict 2nd time
        5. replace the params/buffers from the state_dict

        Currently, it can't handle deepspeed ZeRO stage 3 and ignores loading errors

        """
2317
2318
        state_dict = kwargs.pop("state_dict", None)
        from_tf = kwargs.pop("from_tf", False)
2319
        from_flax = kwargs.pop("from_flax", False)
2320
2321
2322
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        output_loading_info = kwargs.pop("output_loading_info", False)
2323
        use_auth_token = kwargs.pop("use_auth_token", None)
2324
        trust_remote_code = kwargs.pop("trust_remote_code", None)
Sylvain Gugger's avatar
Sylvain Gugger committed
2325
        _ = kwargs.pop("mirror", None)
2326
2327
        from_pipeline = kwargs.pop("_from_pipeline", None)
        from_auto_class = kwargs.pop("_from_auto", False)
2328
        _fast_init = kwargs.pop("_fast_init", True)
2329
        torch_dtype = kwargs.pop("torch_dtype", None)
2330
2331
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", None)
        device_map = kwargs.pop("device_map", None)
2332
        max_memory = kwargs.pop("max_memory", None)
2333
        offload_folder = kwargs.pop("offload_folder", None)
2334
2335
        offload_state_dict = kwargs.pop("offload_state_dict", False)
        load_in_8bit = kwargs.pop("load_in_8bit", False)
2336
        load_in_4bit = kwargs.pop("load_in_4bit", False)
2337
        quantization_config = kwargs.pop("quantization_config", None)
2338
        subfolder = kwargs.pop("subfolder", "")
2339
        commit_hash = kwargs.pop("_commit_hash", None)
2340
        variant = kwargs.pop("variant", None)
2341
2342
        _adapter_model_path = kwargs.pop("_adapter_model_path", None)
        adapter_name = kwargs.pop("adapter_name", "default")
2343

2344
2345
2346
        if is_fsdp_enabled():
            low_cpu_mem_usage = True

2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
        if use_auth_token is not None:
            warnings.warn(
                "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
            )
            if token is not None:
                raise ValueError(
                    "`token` and `use_auth_token` are both specified. Please set only the argument `token`."
                )
            token = use_auth_token

        if use_safetensors is None and not is_safetensors_available():
            use_safetensors = False
2359

2360
        if is_bitsandbytes_available():
2361
            is_8bit_serializable = version.parse(importlib.metadata.version("bitsandbytes")) > version.parse("0.37.2")
2362
2363
2364
        else:
            is_8bit_serializable = False

2365
2366
2367
2368
2369
        if trust_remote_code is True:
            logger.warning(
                "The argument `trust_remote_code` is to be used with Auto classes. It has no effect here and is"
                " ignored."
            )
2370

2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
        if is_peft_available() and _adapter_model_path is None:
            maybe_adapter_model_path = find_adapter_config_file(
                pretrained_model_name_or_path,
                revision=revision,
                subfolder=subfolder,
                token=token,
                commit_hash=commit_hash,
            )
        elif is_peft_available() and _adapter_model_path is not None:
            maybe_adapter_model_path = _adapter_model_path
        else:
            maybe_adapter_model_path = None

        has_adapter_config = maybe_adapter_model_path is not None

        if has_adapter_config:
            if _adapter_model_path is not None:
                adapter_model_id = _adapter_model_path
            else:
                with open(maybe_adapter_model_path, "r", encoding="utf-8") as f:
                    adapter_model_id = pretrained_model_name_or_path
                    pretrained_model_name_or_path = json.load(f)["base_model_name_or_path"]

2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
        # change device_map into a map if we passed an int, a str or a torch.device
        if isinstance(device_map, torch.device):
            device_map = {"": device_map}
        elif isinstance(device_map, str) and device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
            try:
                device_map = {"": torch.device(device_map)}
            except RuntimeError:
                raise ValueError(
                    "When passing device_map as a string, the value needs to be a device name (e.g. cpu, cuda:0) or "
                    f"'auto', 'balanced', 'balanced_low_0', 'sequential' but found {device_map}."
                )
        elif isinstance(device_map, int):
            if device_map < 0:
                raise ValueError(
                    "You can't pass device_map as a negative int. If you want to put the model on the cpu, pass device_map = 'cpu' "
                )
            else:
                device_map = {"": device_map}

2413
2414
2415
2416
2417
2418
2419
        if device_map is not None:
            if low_cpu_mem_usage is None:
                low_cpu_mem_usage = True
            elif not low_cpu_mem_usage:
                raise ValueError("Passing along a `device_map` requires `low_cpu_mem_usage=True`")

        if low_cpu_mem_usage:
2420
            if device_map is not None:
2421
2422
                # The max memory utils require PyTorch >= 1.10 to have torch.cuda.mem_get_info.
                require_version_core("torch>=1.10")
2423
2424
2425
2426
2427
2428
2429
2430
2431

            if is_deepspeed_zero3_enabled():
                raise ValueError(
                    "DeepSpeed Zero-3 is not compatible with `low_cpu_mem_usage=True` or with passing a `device_map`."
                )
            elif not is_accelerate_available():
                raise ImportError(
                    "Using `low_cpu_mem_usage=True` or a `device_map` requires Accelerate: `pip install accelerate`"
                )
2432

Marc Sun's avatar
Marc Sun committed
2433
2434
2435
2436
2437
2438
2439
2440
        quantization_method_from_args = None
        if quantization_config is not None:
            quantization_method_from_args = getattr(
                quantization_config, "quant_method", QuantizationMethod.BITS_AND_BYTES
            )

        if quantization_config is None and (load_in_8bit or load_in_4bit):
            quantization_method_from_args = QuantizationMethod.BITS_AND_BYTES
2441
            quantization_config, kwargs = BitsAndBytesConfig.from_dict(
2442
2443
2444
                config_dict={"load_in_8bit": load_in_8bit, "load_in_4bit": load_in_4bit},
                return_unused_kwargs=True,
                **kwargs,
2445
            )
Marc Sun's avatar
Marc Sun committed
2446
        elif quantization_method_from_args == QuantizationMethod.BITS_AND_BYTES:
2447
            load_in_8bit = quantization_config.load_in_8bit
2448
            load_in_4bit = quantization_config.load_in_4bit
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459

            quantization_config_kwargs = {
                k: v for k, v in kwargs.items() if k in inspect.signature(BitsAndBytesConfig).parameters
            }

            if len(quantization_config_kwargs) > 0:
                raise ValueError(
                    "You can't pass `load_in_8bit` or any other `BitsAndBytesConfig` argument as a kwarg when passing "
                    "`quantization_config` argument at the same time."
                )

2460
        if load_in_8bit or load_in_4bit:
2461
2462
2463
2464
2465
2466
            if not (is_accelerate_available() and is_bitsandbytes_available()):
                raise ImportError(
                    "Using `load_in_8bit=True` requires Accelerate: `pip install accelerate` and the latest version of"
                    " bitsandbytes `pip install -i https://test.pypi.org/simple/ bitsandbytes` or"
                    " pip install bitsandbytes` "
                )
2467
2468

            if torch_dtype is None:
2469
                # We force the `dtype` to be float16, this is a requirement from `bitsandbytes`
2470
                logger.info(
2471
                    f"Overriding torch_dtype={torch_dtype} with `torch_dtype=torch.float16` due to "
2472
                    "requirements of `bitsandbytes` to enable model loading in 8-bit or 4-bit. "
2473
2474
                    "Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass"
                    " torch_dtype=torch.float16 to remove this warning."
2475
                )
2476
                torch_dtype = torch.float16
2477

2478
            if device_map is None:
2479
2480
2481
2482
2483
2484
2485
2486
                if torch.cuda.is_available():
                    device_map = {"": torch.cuda.current_device()}
                else:
                    raise RuntimeError("No GPU found. A GPU is needed for quantization.")
                logger.info(
                    "The device_map was not initialized."
                    "Setting device_map to {'':torch.cuda.current_device()}."
                    "If you want to use the model for inference, please set device_map ='auto' "
2487
                )
2488
2489
2490
                if low_cpu_mem_usage is None:
                    low_cpu_mem_usage = True

2491
2492
            if from_tf or from_flax:
                raise ValueError(
2493
                    "Converting into 4-bit or 8-bit weights from tf/flax weights is currently not supported, please make"
2494
2495
2496
                    " sure the weights are in PyTorch format."
                )

2497
        from_pt = not (from_tf | from_flax)
2498
2499
2500
2501

        user_agent = {"file_type": "model", "framework": "pytorch", "from_auto_class": from_auto_class}
        if from_pipeline is not None:
            user_agent["using_pipeline"] = from_pipeline
thomwolf's avatar
thomwolf committed
2502

2503
2504
2505
2506
        if is_offline_mode() and not local_files_only:
            logger.info("Offline mode: forcing local_files_only=True")
            local_files_only = True

2507
2508
2509
        # Load config if we don't provide a configuration
        if not isinstance(config, PretrainedConfig):
            config_path = config if config is not None else pretrained_model_name_or_path
2510
            config, model_kwargs = cls.config_class.from_pretrained(
2511
2512
2513
                config_path,
                cache_dir=cache_dir,
                return_unused_kwargs=True,
2514
                force_download=force_download,
2515
                resume_download=resume_download,
2516
                proxies=proxies,
2517
                local_files_only=local_files_only,
2518
                token=token,
Julien Chaumond's avatar
Julien Chaumond committed
2519
                revision=revision,
2520
                subfolder=subfolder,
2521
2522
                _from_auto=from_auto_class,
                _from_pipeline=from_pipeline,
2523
                **kwargs,
2524
2525
2526
            )
        else:
            model_kwargs = kwargs
2527

Marc Sun's avatar
Marc Sun committed
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
        quantizer = None
        quantization_method_from_config = None
        if hasattr(config, "quantization_config"):
            quantization_method_from_config = config.quantization_config.get(
                "quant_method", QuantizationMethod.BITS_AND_BYTES
            )

        if quantization_method_from_config == QuantizationMethod.GPTQ and quantization_method_from_args is not None:
            loading_attr_dict = quantization_config.get_loading_attributes()
            for attr, val in loading_attr_dict.items():
                config.quantization_config[attr] = val
            quantization_method_from_args = None
            logger.warning(
                "You passed `quantization_config` to `from_pretrained` but the model you're loading already has a "
                "`quantization_config` attribute and has already quantized weights. However, loading attributes"
                " (e.g. disable_exllama, use_cuda_fp16) will be overwritten with the one you passed to `from_pretrained`. The rest will be ignored."
            )
        if (
            quantization_method_from_args == QuantizationMethod.GPTQ
            or quantization_method_from_config == QuantizationMethod.GPTQ
        ):
            if not torch.cuda.is_available():
                raise RuntimeError("GPU is required to quantize or run quantize model.")
            elif not (is_optimum_available() and is_auto_gptq_available()):
                raise ImportError(
                    "Loading GPTQ quantized model requires optimum library : `pip install optimum` and auto-gptq library 'pip install auto-gptq'"
                )
            else:
                # Need to protect the import
                from optimum.gptq import GPTQQuantizer
            if quantization_method_from_config == QuantizationMethod.GPTQ:
                quantization_config = GPTQConfig.from_dict(config.quantization_config)
                config.quantization_config = quantization_config
            logger.info(
                f"Overriding torch_dtype={torch_dtype} with `torch_dtype=torch.float16` due to "
                "requirements of `auto-gptq` to enable model quantization "
            )
            torch_dtype = torch.float16
            quantizer = GPTQQuantizer.from_dict(quantization_config.to_dict())

        if (
            is_8bit_serializable
            and quantization_method_from_args == QuantizationMethod.BITS_AND_BYTES
            and load_in_8bit
        ):
            if quantization_method_from_config == QuantizationMethod.BITS_AND_BYTES:
2574
2575
2576
2577
2578
2579
                logger.warning(
                    "You passed `quantization_config` to `from_pretrained` but the model you're loading already has a"
                    " `quantization_config` attribute. The `quantization_config` attribute will be overwritten with the"
                    " one you passed to `from_pretrained`."
                )
            config.quantization_config = quantization_config
Marc Sun's avatar
Marc Sun committed
2580
2581
2582
2583
2584
        elif (
            is_8bit_serializable
            and not load_in_8bit
            and quantization_method_from_config == QuantizationMethod.BITS_AND_BYTES
        ):
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
            quantization_config = config.quantization_config
            if isinstance(quantization_config, dict):
                quantization_config = BitsAndBytesConfig.from_dict(quantization_config, return_unused_kwargs=False)
            elif isinstance(quantization_config, BitsAndBytesConfig):
                pass
            else:
                raise ValueError(
                    f"Invalid type for `quantization_config`: {type(quantization_config)}. Should be a `dict` or a"
                    " `BitsAndBytesConfig` instance."
                )

            load_in_8bit = quantization_config.load_in_8bit

            if load_in_8bit:
2599
2600
                if torch_dtype is None:
                    torch_dtype = torch.float16
2601
                if device_map is None:
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
                    if torch.cuda.is_available():
                        device_map = {"": torch.cuda.current_device()}
                    else:
                        raise RuntimeError("No GPU found. A GPU is needed for quantization.")
                    logger.info(
                        "The device_map was not initialized."
                        "Setting device_map to {'':torch.cuda.current_device()}."
                        "If you want to use the model for inference, please set device_map ='auto' "
                    )
                    if low_cpu_mem_usage is None:
                        low_cpu_mem_usage = True
2613

Marc Sun's avatar
Marc Sun committed
2614
2615
2616
2617
2618
        elif (
            not is_8bit_serializable
            and not load_in_8bit
            and quantization_method_from_config == QuantizationMethod.BITS_AND_BYTES
        ):
2619
2620
2621
2622
2623
2624
            logger.warning(
                "Detected the presence of a `quantization_config` attribute in the model's configuration but you don't have the correct"
                " `bitsandbytes` version to support int8 serialization. Please install the latest version of `bitsandbytes` with "
                " `pip install --upgrade bitsandbytes`."
            )

2625
2626
2627
        if commit_hash is None:
            commit_hash = getattr(config, "_commit_hash", None)

Sylvain Gugger's avatar
Sylvain Gugger committed
2628
2629
2630
2631
        # This variable will flag if we're loading a sharded checkpoint. In this case the archive file is just the
        # index of the files.
        is_sharded = False
        sharded_metadata = None
thomwolf's avatar
thomwolf committed
2632
        # Load model
Yih-Dar's avatar
Yih-Dar committed
2633
2634
        loading_info = None

2635
2636
2637
2638
        # Keep in fp32 modules
        keep_in_fp32_modules = None
        use_keep_in_fp32_modules = False

thomwolf's avatar
thomwolf committed
2639
        if pretrained_model_name_or_path is not None:
2640
            pretrained_model_name_or_path = str(pretrained_model_name_or_path)
2641
2642
            is_local = os.path.isdir(pretrained_model_name_or_path)
            if is_local:
2643
2644
2645
                if from_tf and os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index")
                ):
2646
                    # Load from a TF 1.0 checkpoint in priority if from_tf
2647
2648
2649
2650
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index")
                elif from_tf and os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME)
                ):
2651
                    # Load from a TF 2.0 checkpoint in priority if from_tf
2652
2653
2654
2655
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME)
                elif from_flax and os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)
                ):
2656
                    # Load from a Flax checkpoint in priority if from_flax
2657
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)
2658
                elif use_safetensors is not False and os.path.isfile(
2659
                    os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_NAME, variant))
2660
2661
                ):
                    # Load from a safetensors checkpoint
2662
2663
2664
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_NAME, variant)
                    )
2665
                elif use_safetensors is not False and os.path.isfile(
2666
2667
2668
                    os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)
                    )
2669
2670
                ):
                    # Load from a sharded safetensors checkpoint
2671
2672
2673
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)
                    )
2674
                    is_sharded = True
2675
2676
2677
                elif os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_NAME, variant))
                ):
thomwolf's avatar
thomwolf committed
2678
                    # Load from a PyTorch checkpoint
2679
2680
2681
2682
2683
2684
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_NAME, variant)
                    )
                elif os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_INDEX_NAME, variant))
                ):
Sylvain Gugger's avatar
Sylvain Gugger committed
2685
                    # Load from a sharded PyTorch checkpoint
2686
2687
2688
                    archive_file = os.path.join(
                        pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_INDEX_NAME, variant)
                    )
Sylvain Gugger's avatar
Sylvain Gugger committed
2689
                    is_sharded = True
2690
2691
                # At this stage we don't have a weight file so we will raise an error.
                elif os.path.isfile(
2692
2693
                    os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index")
                ) or os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME)):
2694
                    raise EnvironmentError(
2695
2696
2697
                        f"Error no file named {_add_variant(WEIGHTS_NAME, variant)} found in directory"
                        f" {pretrained_model_name_or_path} but there is a file for TensorFlow weights. Use"
                        " `from_tf=True` to load this model from those weights."
2698
                    )
2699
                elif os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)):
2700
                    raise EnvironmentError(
2701
2702
2703
                        f"Error no file named {_add_variant(WEIGHTS_NAME, variant)} found in directory"
                        f" {pretrained_model_name_or_path} but there is a file for Flax weights. Use `from_flax=True`"
                        " to load this model from those weights."
2704
                    )
2705
2706
2707
2708
2709
                elif use_safetensors:
                    raise EnvironmentError(
                        f"Error no file named {_add_variant(SAFE_WEIGHTS_NAME, variant)} found in directory"
                        f" {pretrained_model_name_or_path}."
                    )
thomwolf's avatar
thomwolf committed
2710
                else:
2711
                    raise EnvironmentError(
2712
2713
2714
                        f"Error no file named {_add_variant(WEIGHTS_NAME, variant)}, {TF2_WEIGHTS_NAME},"
                        f" {TF_WEIGHTS_NAME + '.index'} or {FLAX_WEIGHTS_NAME} found in directory"
                        f" {pretrained_model_name_or_path}."
2715
                    )
2716
            elif os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path)):
2717
                archive_file = pretrained_model_name_or_path
2718
                is_local = True
2719
            elif os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path + ".index")):
2720
2721
2722
2723
2724
                if not from_tf:
                    raise ValueError(
                        f"We found a TensorFlow checkpoint at {pretrained_model_name_or_path + '.index'}, please set "
                        "from_tf to True to load from this checkpoint."
                    )
2725
                archive_file = os.path.join(subfolder, pretrained_model_name_or_path + ".index")
2726
                is_local = True
2727
            elif is_remote_url(pretrained_model_name_or_path):
2728
                filename = pretrained_model_name_or_path
2729
                resolved_archive_file = download_url(pretrained_model_name_or_path)
2730
            else:
2731
2732
2733
2734
2735
                # set correct filename
                if from_tf:
                    filename = TF2_WEIGHTS_NAME
                elif from_flax:
                    filename = FLAX_WEIGHTS_NAME
2736
                elif use_safetensors is not False:
2737
                    filename = _add_variant(SAFE_WEIGHTS_NAME, variant)
2738
                else:
2739
                    filename = _add_variant(WEIGHTS_NAME, variant)
2740

2741
2742
                try:
                    # Load from URL or cache if already cached
2743
2744
2745
2746
2747
2748
                    cached_file_kwargs = {
                        "cache_dir": cache_dir,
                        "force_download": force_download,
                        "proxies": proxies,
                        "resume_download": resume_download,
                        "local_files_only": local_files_only,
2749
                        "token": token,
2750
2751
2752
2753
2754
2755
                        "user_agent": user_agent,
                        "revision": revision,
                        "subfolder": subfolder,
                        "_raise_exceptions_for_missing_entries": False,
                        "_commit_hash": commit_hash,
                    }
2756
                    resolved_archive_file = cached_file(pretrained_model_name_or_path, filename, **cached_file_kwargs)
2757

2758
                    # Since we set _raise_exceptions_for_missing_entries=False, we don't get an exception but a None
2759
                    # result when internet is up, the repo and revision exist, but the file does not.
2760
                    if resolved_archive_file is None and filename == _add_variant(SAFE_WEIGHTS_NAME, variant):
2761
2762
                        # Maybe the checkpoint is sharded, we try to grab the index name in this case.
                        resolved_archive_file = cached_file(
2763
2764
2765
                            pretrained_model_name_or_path,
                            _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant),
                            **cached_file_kwargs,
2766
2767
2768
                        )
                        if resolved_archive_file is not None:
                            is_sharded = True
2769
2770
2771
2772
                        elif use_safetensors:
                            raise EnvironmentError(
                                f" {_add_variant(SAFE_WEIGHTS_NAME, variant)} or {_add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)} and thus cannot be loaded with `safetensors`. Please make sure that the model has been saved with `safe_serialization=True` or do not set `use_safetensors=True`."
                            )
2773
2774
                        else:
                            # This repo has no safetensors file of any kind, we switch to PyTorch.
2775
                            filename = _add_variant(WEIGHTS_NAME, variant)
2776
                            resolved_archive_file = cached_file(
2777
                                pretrained_model_name_or_path, filename, **cached_file_kwargs
2778
                            )
2779
                    if resolved_archive_file is None and filename == _add_variant(WEIGHTS_NAME, variant):
Sylvain Gugger's avatar
Sylvain Gugger committed
2780
                        # Maybe the checkpoint is sharded, we try to grab the index name in this case.
2781
                        resolved_archive_file = cached_file(
2782
2783
2784
                            pretrained_model_name_or_path,
                            _add_variant(WEIGHTS_INDEX_NAME, variant),
                            **cached_file_kwargs,
2785
                        )
2786
2787
2788
                        if resolved_archive_file is not None:
                            is_sharded = True
                    if resolved_archive_file is None:
Sylvain Gugger's avatar
Sylvain Gugger committed
2789
2790
2791
2792
2793
                        # Otherwise, maybe there is a TF or Flax model file.  We try those to give a helpful error
                        # message.
                        has_file_kwargs = {
                            "revision": revision,
                            "proxies": proxies,
2794
                            "token": token,
Sylvain Gugger's avatar
Sylvain Gugger committed
2795
2796
2797
                        }
                        if has_file(pretrained_model_name_or_path, TF2_WEIGHTS_NAME, **has_file_kwargs):
                            raise EnvironmentError(
Sylvain Gugger's avatar
Sylvain Gugger committed
2798
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
2799
2800
                                f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file for TensorFlow weights."
                                " Use `from_tf=True` to load this model from those weights."
Sylvain Gugger's avatar
Sylvain Gugger committed
2801
2802
2803
                            )
                        elif has_file(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME, **has_file_kwargs):
                            raise EnvironmentError(
Sylvain Gugger's avatar
Sylvain Gugger committed
2804
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
                                f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file for Flax weights. Use"
                                " `from_flax=True` to load this model from those weights."
                            )
                        elif variant is not None and has_file(
                            pretrained_model_name_or_path, WEIGHTS_NAME, **has_file_kwargs
                        ):
                            raise EnvironmentError(
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
                                f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file without the variant"
                                f" {variant}. Use `variant=None` to load this model from those weights."
Sylvain Gugger's avatar
Sylvain Gugger committed
2815
2816
2817
                            )
                        else:
                            raise EnvironmentError(
2818
2819
2820
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
                                f" {_add_variant(WEIGHTS_NAME, variant)}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or"
                                f" {FLAX_WEIGHTS_NAME}."
Sylvain Gugger's avatar
Sylvain Gugger committed
2821
                            )
2822
2823
2824
2825
2826
2827
                except EnvironmentError:
                    # Raise any environment error raise by `cached_file`. It will have a helpful error message adapted
                    # to the original exception.
                    raise
                except Exception:
                    # For any other exception, we throw a generic error.
2828
                    raise EnvironmentError(
2829
2830
2831
                        f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it"
                        " from 'https://huggingface.co/models', make sure you don't have a local directory with the"
                        f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a"
2832
2833
                        f" directory containing a file named {_add_variant(WEIGHTS_NAME, variant)},"
                        f" {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or {FLAX_WEIGHTS_NAME}."
2834
                    )
2835

2836
            if is_local:
2837
                logger.info(f"loading weights file {archive_file}")
2838
                resolved_archive_file = archive_file
2839
            else:
2840
                logger.info(f"loading weights file {filename} from cache at {resolved_archive_file}")
2841
        else:
thomwolf's avatar
thomwolf committed
2842
            resolved_archive_file = None
2843

Sylvain Gugger's avatar
Sylvain Gugger committed
2844
2845
        # We'll need to download and cache each checkpoint shard if the checkpoint is sharded.
        if is_sharded:
2846
            # rsolved_archive_file becomes a list of files that point to the different checkpoint shards in this case.
Sylvain Gugger's avatar
Sylvain Gugger committed
2847
2848
2849
2850
2851
2852
2853
2854
            resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(
                pretrained_model_name_or_path,
                resolved_archive_file,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                resume_download=resume_download,
                local_files_only=local_files_only,
2855
                token=token,
Sylvain Gugger's avatar
Sylvain Gugger committed
2856
2857
                user_agent=user_agent,
                revision=revision,
2858
                subfolder=subfolder,
2859
                _commit_hash=commit_hash,
Sylvain Gugger's avatar
Sylvain Gugger committed
2860
2861
            )

2862
2863
        # load pt weights early so that we know which dtype to init the model under
        if from_pt:
2864
            if not is_sharded and state_dict is None:
Sylvain Gugger's avatar
Sylvain Gugger committed
2865
2866
                # Time to load the checkpoint
                state_dict = load_state_dict(resolved_archive_file)
2867

2868
2869
2870
            # set dtype to instantiate the model under:
            # 1. If torch_dtype is not None, we use that dtype
            # 2. If torch_dtype is "auto", we auto-detect dtype from the loaded state_dict, by checking its first
2871
            #    weights entry that is of a floating type - we assume all floating dtype weights are of the same dtype
2872
2873
            # we also may have config.torch_dtype available, but we won't rely on it till v5
            dtype_orig = None
2874

2875
2876
2877
            if torch_dtype is not None:
                if isinstance(torch_dtype, str):
                    if torch_dtype == "auto":
2878
2879
2880
                        if hasattr(config, "torch_dtype") and config.torch_dtype is not None:
                            torch_dtype = config.torch_dtype
                            logger.info(f"Will use torch_dtype={torch_dtype} as defined in model's config object")
Sylvain Gugger's avatar
Sylvain Gugger committed
2881
                        else:
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
                            if is_sharded and "dtype" in sharded_metadata:
                                torch_dtype = sharded_metadata["dtype"]
                            elif not is_sharded:
                                torch_dtype = get_state_dict_dtype(state_dict)
                            else:
                                one_state_dict = load_state_dict(resolved_archive_file[0])
                                torch_dtype = get_state_dict_dtype(one_state_dict)
                                del one_state_dict  # free CPU memory
                            logger.info(
                                "Since the `torch_dtype` attribute can't be found in model's config object, "
                                "will use torch_dtype={torch_dtype} as derived from model's weights"
                            )
2894
2895
                    else:
                        raise ValueError(
2896
                            f'`torch_dtype` can be either `torch.dtype` or `"auto"`, but received {torch_dtype}'
2897
2898
2899
                        )
                dtype_orig = cls._set_default_torch_dtype(torch_dtype)

2900
2901
            # Check if `_keep_in_fp32_modules` is not None
            use_keep_in_fp32_modules = (
2902
2903
2904
                (cls._keep_in_fp32_modules is not None)
                and is_accelerate_available()
                and (torch_dtype == torch.float16 or load_in_4bit or load_in_8bit)
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
            )
            if (
                (cls._keep_in_fp32_modules is not None)
                and not is_accelerate_available()
                and torch_dtype == torch.float16
            ):
                logger.warning(
                    "For stability purposes, it is recommended to have accelerate installed when using this model in"
                    " torch.float16, please install it with `pip install accelerate`"
                )

2916
2917
2918
            if is_sharded:
                loaded_state_dict_keys = sharded_metadata["all_checkpoint_keys"]
            else:
2919
                loaded_state_dict_keys = list(state_dict.keys())
2920
            if low_cpu_mem_usage or use_keep_in_fp32_modules:
2921
                state_dict = None
2922

2923
2924
        config.name_or_path = pretrained_model_name_or_path

2925
        # Instantiate model.
2926
2927
        init_contexts = [no_init_weights(_enable=_fast_init)]

2928
2929
2930
2931
        if is_deepspeed_zero3_enabled():
            import deepspeed

            logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
2932
            init_contexts = [deepspeed.zero.Init(config_dict_or_path=deepspeed_config())] + init_contexts
2933
        elif load_in_8bit or load_in_4bit or low_cpu_mem_usage:
2934
2935
2936
2937
2938
            init_contexts.append(init_empty_weights())

        with ContextManagers(init_contexts):
            model = cls(config, *model_args, **model_kwargs)

2939
2940
2941
2942
2943
2944
2945
        # Check first if we are `from_pt`
        if use_keep_in_fp32_modules:
            low_cpu_mem_usage = True
            keep_in_fp32_modules = model._keep_in_fp32_modules
        else:
            keep_in_fp32_modules = []

2946
2947
        if load_in_8bit or load_in_4bit:
            from .utils.bitsandbytes import get_keys_to_not_convert, replace_with_bnb_linear
2948

2949
            llm_int8_skip_modules = quantization_config.llm_int8_skip_modules
2950
            load_in_8bit_fp32_cpu_offload = quantization_config.llm_int8_enable_fp32_cpu_offload
2951
2952
2953
2954
            if load_in_8bit:
                logger.info("Detected 8-bit loading: activating 8-bit loading for this model")
            else:
                logger.info("Detected 4-bit loading: activating 4-bit loading for this model")
2955

2956
            # We keep some modules such as the lm_head in their original dtype for numerical stability reasons
2957
            if llm_int8_skip_modules is None:
2958
2959
                modules_to_not_convert = get_keys_to_not_convert(model)
            else:
2960
                modules_to_not_convert = llm_int8_skip_modules
2961
2962
2963
2964
2965
2966

            if not isinstance(modules_to_not_convert, list):
                modules_to_not_convert = [modules_to_not_convert]

            modules_to_not_convert.extend(keep_in_fp32_modules)

2967
2968
2969
2970
2971
2972
2973
            # Extend the modules to not convert to keys that are supposed to be offloaded to `cpu` or `disk`
            if isinstance(device_map, dict) and len(device_map.keys()) > 1:
                keys_on_cpu = [key for key, value in device_map.items() if value in ["disk", "cpu"]]

                if len(keys_on_cpu) > 0 and not load_in_8bit_fp32_cpu_offload:
                    raise ValueError(
                        "If you want to offload some keys to `cpu` or `disk`, you need to set "
Younes Belkada's avatar
Younes Belkada committed
2974
                        "`llm_int8_enable_fp32_cpu_offload=True`. Note that these modules will not be "
2975
2976
2977
2978
2979
                        " converted to 8-bit but kept in 32-bit."
                    )

                modules_to_not_convert.extend(keys_on_cpu)

2980
            supports_4bit = version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse("0.39.0")
2981
2982
2983
2984
2985
2986
2987
2988
2989

            if load_in_4bit and not supports_4bit:
                raise ValueError(
                    "You have a version of `bitsandbytes` that is not compatible with 4bit inference and training"
                    " make sure you have the latest version of `bitsandbytes` installed"
                )

            model = replace_with_bnb_linear(
                model, modules_to_not_convert=modules_to_not_convert, quantization_config=quantization_config
2990
            )
2991
            # training in 8-bit is only available in 0.37.0+
2992
            model._is_quantized_training_enabled = version.parse(
2993
                importlib.metadata.version("bitsandbytes")
2994
            ) >= version.parse("0.37.0")
2995

2996
2997
2998
            model.config.quantization_config = quantization_config
            model.is_8bit_serializable = is_8bit_serializable

2999
3000
3001
        if load_in_8bit and torch_dtype is None:
            logger.warning(
                "You are loading your model in 8bit but you did not specify a `torch_dtype` attribute."
3002
3003
                "All non-linear modules will be loaded in full precision."
                " If you want to load the other modules in other precision, please specify a `torch_dtype` attribute."
3004
            )
Marc Sun's avatar
Marc Sun committed
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
        if quantization_method_from_config == QuantizationMethod.GPTQ:
            model = quantizer.convert_model(model)
            model._is_quantized_training_enabled = True

        if quantization_method_from_config is not None:
            model.quantization_method = quantization_method_from_config
        elif quantization_method_from_args is not None:
            model.quantization_method = quantization_method_from_args
        if hasattr(model, "quantization_method"):
            model.is_quantized = True
3015

3016
        if isinstance(device_map, str):
3017
            special_dtypes = {}
3018
            if load_in_8bit or load_in_4bit:
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
                special_dtypes.update(
                    {
                        name: torch_dtype
                        for name, _ in model.named_parameters()
                        if any(m in name for m in modules_to_not_convert)
                    }
                )

            special_dtypes.update(
                {
                    name: torch.float32
                    for name, _ in model.named_parameters()
                    if any(m in name for m in keep_in_fp32_modules)
                }
            )

3035
3036
3037
            target_dtype = torch_dtype

            if load_in_4bit:
3038
                if version.parse(importlib.metadata.version("accelerate")) > version.parse("0.19.0"):
3039
3040
3041
3042
3043
3044
3045
                    from accelerate.utils import CustomDtype

                    target_dtype = CustomDtype.INT4
                else:
                    raise ValueError(
                        "You are using `device_map='auto'` on a 4bit loaded version of the model. To automatically compute"
                        " the appropriate device map, you should upgrade your `accelerate` library,"
3046
                        "`pip install --upgrade accelerate` or install it from source to support fp4 auto device map"
3047
3048
3049
3050
3051
                        "calculation. You may encounter unexpected behavior, or pass your own device map"
                    )
            elif load_in_8bit:
                target_dtype = torch.int8

3052
            if model._no_split_modules is None:
3053
3054
3055
3056
                raise ValueError(
                    f"{model.__class__.__name__} does not support `device_map='{device_map}'`. To implement support, the model"
                    "class needs to implement the `_no_split_modules` attribute."
                )
3057
            no_split_modules = model._no_split_modules
3058
3059
3060
3061
3062
            if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
                raise ValueError(
                    "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or "
                    "'sequential'."
                )
3063

3064
            device_map_kwargs = {"no_split_module_classes": no_split_modules}
3065
            if "special_dtypes" in inspect.signature(infer_auto_device_map).parameters:
3066
                device_map_kwargs["special_dtypes"] = special_dtypes
3067
            elif len(special_dtypes) > 0:
3068
                logger.warning(
3069
3070
3071
                    "This model has some weights that should be kept in higher precision, you need to upgrade "
                    "`accelerate` to properly deal with them (`pip install --upgrade accelerate`)."
                )
3072
            if device_map != "sequential":
3073
3074
                max_memory = get_balanced_memory(
                    model,
3075
                    dtype=target_dtype,
3076
                    low_zero=(device_map == "balanced_low_0"),
3077
                    max_memory=max_memory,
3078
                    **device_map_kwargs,
3079
                )
3080
            device_map_kwargs["max_memory"] = max_memory
3081
3082
            # Make sure tied weights are tied before creating the device map.
            model.tie_weights()
3083
            device_map = infer_auto_device_map(model, dtype=target_dtype, **device_map_kwargs)
3084

3085
            if load_in_8bit or load_in_4bit:
3086
                # The LM head / tied weights or any last module can stay on disk / CPU
3087
                device_map_without_lm_head = {
3088
                    key: device_map[key] for key in device_map.keys() if key not in modules_to_not_convert
3089
3090
                }
                if "cpu" in device_map_without_lm_head.values() or "disk" in device_map_without_lm_head.values():
3091
3092
3093
                    raise ValueError(
                        """
                        Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit
3094
3095
3096
3097
3098
                        the quantized model. If you want to dispatch the model on the CPU or the disk while keeping
                        these modules in 32-bit, you need to set `load_in_8bit_fp32_cpu_offload=True` and pass a custom
                        `device_map` to `from_pretrained`. Check
                        https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu
                        for more details.
3099
3100
                        """
                    )
3101
3102
                del device_map_without_lm_head

3103
3104
3105
3106
        elif device_map is not None:
            model.tie_weights()
            tied_params = find_tied_parameters(model)
            # check if we don't have tied param in different devices
3107
            check_tied_parameters_on_same_device(tied_params, device_map)
3108

3109
        if from_tf:
3110
            if resolved_archive_file.endswith(".index"):
3111
3112
3113
3114
3115
                # Load from a TensorFlow 1.X checkpoint - provided by original authors
                model = cls.load_tf_weights(model, config, resolved_archive_file[:-6])  # Remove the '.index'
            else:
                # Load from our TensorFlow 2.0 checkpoints
                try:
3116
                    from .modeling_tf_pytorch_utils import load_tf2_checkpoint_in_pytorch_model
3117

Yih-Dar's avatar
Yih-Dar committed
3118
3119
3120
                    model, loading_info = load_tf2_checkpoint_in_pytorch_model(
                        model, resolved_archive_file, allow_missing_keys=True, output_loading_info=True
                    )
3121
                except ImportError:
3122
                    logger.error(
Sylvain Gugger's avatar
Sylvain Gugger committed
3123
3124
3125
                        "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed."
                        " Please see https://pytorch.org/ and https://www.tensorflow.org/install/ for installation"
                        " instructions."
3126
                    )
3127
                    raise
3128
3129
3130
3131
3132
3133
3134
        elif from_flax:
            try:
                from .modeling_flax_pytorch_utils import load_flax_checkpoint_in_pytorch_model

                model = load_flax_checkpoint_in_pytorch_model(model, resolved_archive_file)
            except ImportError:
                logger.error(
Sylvain Gugger's avatar
Sylvain Gugger committed
3135
3136
3137
                    "Loading a Flax model in PyTorch, requires both PyTorch and Flax to be installed. Please see"
                    " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for"
                    " installation instructions."
3138
3139
                )
                raise
3140
        elif from_pt:
3141
3142
3143
3144
            # restore default dtype
            if dtype_orig is not None:
                torch.set_default_dtype(dtype_orig)

Sylvain Gugger's avatar
Sylvain Gugger committed
3145
3146
3147
3148
3149
3150
3151
3152
            (
                model,
                missing_keys,
                unexpected_keys,
                mismatched_keys,
                offload_index,
                error_msgs,
            ) = cls._load_pretrained_model(
3153
3154
3155
3156
3157
3158
3159
3160
3161
                model,
                state_dict,
                loaded_state_dict_keys,  # XXX: rename?
                resolved_archive_file,
                pretrained_model_name_or_path,
                ignore_mismatched_sizes=ignore_mismatched_sizes,
                sharded_metadata=sharded_metadata,
                _fast_init=_fast_init,
                low_cpu_mem_usage=low_cpu_mem_usage,
3162
3163
3164
3165
                device_map=device_map,
                offload_folder=offload_folder,
                offload_state_dict=offload_state_dict,
                dtype=torch_dtype,
Marc Sun's avatar
Marc Sun committed
3166
                is_quantized=(getattr(model, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES),
3167
                keep_in_fp32_modules=keep_in_fp32_modules,
3168
            )
3169

3170
        model.is_loaded_in_4bit = load_in_4bit
Younes Belkada's avatar
Younes Belkada committed
3171
        model.is_loaded_in_8bit = load_in_8bit
3172

3173
3174
        # make sure token embedding weights are still tied if needed
        model.tie_weights()
3175

3176
        # Set model in evaluation mode to deactivate DropOut modules by default
3177
3178
        model.eval()

3179
        # If it is a model with generation capabilities, attempt to load the generation config
3180
        if model.can_generate() and pretrained_model_name_or_path is not None:
3181
3182
3183
3184
3185
3186
3187
3188
            try:
                model.generation_config = GenerationConfig.from_pretrained(
                    pretrained_model_name_or_path,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
3189
                    token=token,
3190
3191
3192
3193
3194
3195
                    revision=revision,
                    subfolder=subfolder,
                    _from_auto=from_auto_class,
                    _from_pipeline=from_pipeline,
                    **kwargs,
                )
3196
            except OSError:
3197
3198
3199
3200
3201
                logger.info(
                    "Generation config file not found, using a generation config created from the model config."
                )
                pass

3202
3203
        # Dispatch model with hooks on all devices if necessary
        if device_map is not None:
3204
3205
3206
3207
3208
            device_map_kwargs = {
                "device_map": device_map,
                "offload_dir": offload_folder,
                "offload_index": offload_index,
            }
3209
            if "skip_keys" in inspect.signature(dispatch_model).parameters:
3210
3211
                device_map_kwargs["skip_keys"] = model._skip_keys_device_placement
            dispatch_model(model, **device_map_kwargs)
3212

Marc Sun's avatar
Marc Sun committed
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
        if quantization_method_from_args == QuantizationMethod.GPTQ:
            if quantization_config.tokenizer is None:
                quantization_config.tokenizer = pretrained_model_name_or_path
            if cls.main_input_name != "input_ids":
                raise RuntimeError("We can only quantize pure text model.")
            quantizer.quantize_model(model, quantization_config.tokenizer)
            model.config.quantization_config = GPTQConfig.from_dict(quantizer.to_dict())
            model._is_quantized_training_enabled = True
        if quantization_method_from_config == QuantizationMethod.GPTQ:
            model = quantizer.post_init_model(model)

3224
3225
3226
3227
3228
3229
3230
3231
        if has_adapter_config:
            model.load_adapter(
                adapter_model_id,
                adapter_name=adapter_name,
                revision=revision,
                token=token,
            )

thomwolf's avatar
thomwolf committed
3232
        if output_loading_info:
Yih-Dar's avatar
Yih-Dar committed
3233
3234
3235
3236
3237
3238
3239
            if loading_info is None:
                loading_info = {
                    "missing_keys": missing_keys,
                    "unexpected_keys": unexpected_keys,
                    "mismatched_keys": mismatched_keys,
                    "error_msgs": error_msgs,
                }
thomwolf's avatar
thomwolf committed
3240
3241
            return model, loading_info

3242
3243
        return model

3244
    @classmethod
Sylvain Gugger's avatar
Sylvain Gugger committed
3245
3246
3247
3248
    def _load_pretrained_model(
        cls,
        model,
        state_dict,
3249
        loaded_keys,
Sylvain Gugger's avatar
Sylvain Gugger committed
3250
3251
3252
3253
3254
        resolved_archive_file,
        pretrained_model_name_or_path,
        ignore_mismatched_sizes=False,
        sharded_metadata=None,
        _fast_init=True,
3255
        low_cpu_mem_usage=False,
3256
3257
        device_map=None,
        offload_folder=None,
3258
        offload_state_dict=None,
3259
        dtype=None,
3260
        is_quantized=False,
3261
        keep_in_fp32_modules=None,
3262
    ):
Sylvain Gugger's avatar
Sylvain Gugger committed
3263
        is_safetensors = False
3264
3265
        if is_quantized:
            from .utils.bitsandbytes import set_module_quantized_tensor_to_device
3266

Sylvain Gugger's avatar
Sylvain Gugger committed
3267
        if device_map is not None and "disk" in device_map.values():
Sylvain Gugger's avatar
Sylvain Gugger committed
3268
3269
3270
3271
3272
            archive_file = (
                resolved_archive_file[0] if isinstance(resolved_archive_file, (list, tuple)) else resolved_archive_file
            )
            is_safetensors = archive_file.endswith(".safetensors")
            if offload_folder is None and not is_safetensors:
Sylvain Gugger's avatar
Sylvain Gugger committed
3273
3274
                raise ValueError(
                    "The current `device_map` had weights offloaded to the disk. Please provide an `offload_folder`"
Sylvain Gugger's avatar
Sylvain Gugger committed
3275
3276
                    " for them. Alternatively, make sure you have `safetensors` installed if the model you are using"
                    " offers the weights in this format."
Sylvain Gugger's avatar
Sylvain Gugger committed
3277
                )
Sylvain Gugger's avatar
Sylvain Gugger committed
3278
3279
            if offload_folder is not None:
                os.makedirs(offload_folder, exist_ok=True)
3280
3281
3282
            if offload_state_dict is None:
                offload_state_dict = True

3283
        is_sharded_safetensors = is_safetensors and sharded_metadata is not None
Patrick von Platen's avatar
Patrick von Platen committed
3284
3285
3286
3287

        # tie the model weights before retrieving the state_dict
        model.tie_weights()

3288
        # Retrieve missing & unexpected_keys
3289
3290
        model_state_dict = model.state_dict()
        expected_keys = list(model_state_dict.keys())
3291
3292
        prefix = model.base_model_prefix

Sylvain Gugger's avatar
Sylvain Gugger committed
3293
3294
3295
3296
3297
3298
3299
        def _fix_key(key):
            if "beta" in key:
                return key.replace("beta", "bias")
            if "gamma" in key:
                return key.replace("gamma", "weight")
            return key

3300
        original_loaded_keys = loaded_keys
Sylvain Gugger's avatar
Sylvain Gugger committed
3301
3302
        loaded_keys = [_fix_key(key) for key in loaded_keys]

3303
3304
3305
3306
3307
3308
        if len(prefix) > 0:
            has_prefix_module = any(s.startswith(prefix) for s in loaded_keys)
            expects_prefix_module = any(s.startswith(prefix) for s in expected_keys)
        else:
            has_prefix_module = False
            expects_prefix_module = False
Patrick von Platen's avatar
Patrick von Platen committed
3309
3310
3311

        # key re-naming operations are never done on the keys
        # that are loaded, but always on the keys of the newly initialized model
3312
3313
        remove_prefix_from_model = not has_prefix_module and expects_prefix_module
        add_prefix_to_model = has_prefix_module and not expects_prefix_module
3314

3315
        if remove_prefix_from_model:
3316
3317
3318
            _prefix = f"{prefix}."
            expected_keys_not_prefixed = [s for s in expected_keys if not s.startswith(_prefix)]
            expected_keys = [s[len(_prefix) :] if s.startswith(_prefix) else s for s in expected_keys]
3319
        elif add_prefix_to_model:
3320
3321
3322
            expected_keys = [".".join([prefix, s]) for s in expected_keys]

        missing_keys = list(set(expected_keys) - set(loaded_keys))
Sylvain Gugger's avatar
Sylvain Gugger committed
3323
3324
3325
3326
3327
3328
3329
3330
3331
        unexpected_keys = set(loaded_keys) - set(expected_keys)
        # Remove nonpersistent buffers from unexpected keys: they are not in the state dict but will be in the model
        # buffers
        model_buffers = {n for n, _ in model.named_buffers()}
        if remove_prefix_from_model:
            model_buffers = {key[len(_prefix) :] if key.startswith(_prefix) else key for key in model_buffers}
        elif add_prefix_to_model:
            model_buffers = {".".join([prefix, key]) for key in model_buffers}
        unexpected_keys = list(unexpected_keys - model_buffers)
3332

3333
3334
        model.tie_weights()
        if device_map is None and not is_fsdp_enabled():
3335
3336
3337
3338
            ptrs = collections.defaultdict(list)
            for name, tensor in model.state_dict().items():
                id_tensor = id_tensor_storage(tensor)
                ptrs[id_tensor].append(name)
Sylvain Gugger's avatar
Sylvain Gugger committed
3339

3340
3341
3342
3343
3344
            # These are all the pointers of shared tensors.
            tied_params = [names for _, names in ptrs.items() if len(names) > 1]
        else:
            # id function doesn't work for meta tensor so we need this function
            tied_params = find_tied_parameters(model)
Sylvain Gugger's avatar
Sylvain Gugger committed
3345
3346

        for group in tied_params:
Sylvain Gugger's avatar
Sylvain Gugger committed
3347
3348
3349
3350
            if remove_prefix_from_model:
                group = [key[len(_prefix) :] if key.startswith(_prefix) else key for key in group]
            elif add_prefix_to_model:
                group = [".".join([prefix, key]) for key in group]
Sylvain Gugger's avatar
Sylvain Gugger committed
3351
3352
3353
            missing_in_group = [k for k in missing_keys if k in group]
            if len(missing_in_group) > 0 and len(missing_in_group) < len(group):
                missing_keys = [k for k in missing_keys if k not in missing_in_group]
3354

3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
        # Some models may have keys that are not in the state by design, removing them before needlessly warning
        # the user.
        if cls._keys_to_ignore_on_load_missing is not None:
            for pat in cls._keys_to_ignore_on_load_missing:
                missing_keys = [k for k in missing_keys if re.search(pat, k) is None]

        if cls._keys_to_ignore_on_load_unexpected is not None:
            for pat in cls._keys_to_ignore_on_load_unexpected:
                unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

3365
3366
3367
3368
        # retrieve weights on meta device and put them back on CPU.
        # This is not ideal in terms of memory, but if we don't do that not, we can't initialize them in the next step
        if low_cpu_mem_usage:
            for key in missing_keys:
Susnato Dhar's avatar
Susnato Dhar committed
3369
3370
                if key in list(model_state_dict.keys()):
                    key = key
3371
3372
                elif f"{prefix}.{key}" in list(model_state_dict.keys()):
                    key = f"{prefix}.{key}"
Susnato Dhar's avatar
Susnato Dhar committed
3373
                elif key.startswith(prefix) and ".".join(key.split(".")[1:]) in list(model_state_dict.keys()):
3374
3375
                    key = ".".join(key.split(".")[1:])
                param = model_state_dict[key]
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385

                # upcast in fp32 if any
                target_dtype = dtype
                if (
                    keep_in_fp32_modules is not None
                    and dtype == torch.float16
                    and any(module_to_keep_in_fp32 in key for module_to_keep_in_fp32 in keep_in_fp32_modules)
                ):
                    target_dtype = torch.float32

3386
                if param.device == torch.device("meta"):
3387
                    if not (is_quantized):
3388
                        set_module_tensor_to_device(model, key, "cpu", torch.empty(*param.size(), dtype=target_dtype))
3389
                    else:
3390
                        set_module_quantized_tensor_to_device(
3391
3392
                            model, key, "cpu", torch.empty(*param.size(), dtype=target_dtype)
                        )
3393
3394

        # retrieve unintialized modules and initialize before maybe overriding that with the pretrained weights.
3395
        if _fast_init:
3396
3397
3398
3399
3400
3401
3402
3403
3404
            if remove_prefix_from_model:
                _loaded_keys = [f"{prefix}.{k}" for k in loaded_keys]
            elif add_prefix_to_model:
                _loaded_keys = [k[len(prefix) + 1 :] for k in loaded_keys]
            else:
                _loaded_keys = loaded_keys
            set_initialized_submodules(model, _loaded_keys)
            # This will only initialize submodules that are not marked as initialized by the line above.
            model.apply(model._initialize_weights)
3405

3406
3407
3408
3409
3410
3411
        # Set some modules to fp32 if any
        if keep_in_fp32_modules is not None:
            for name, param in model.named_parameters():
                if any(module_to_keep_in_fp32 in name for module_to_keep_in_fp32 in keep_in_fp32_modules):
                    param = param.to(torch.float32)

3412
3413
3414
        # Make sure we are able to load base models as well as derived models (with heads)
        start_prefix = ""
        model_to_load = model
3415
        if len(cls.base_model_prefix) > 0 and not hasattr(model, cls.base_model_prefix) and has_prefix_module:
3416
            start_prefix = cls.base_model_prefix + "."
3417
        if len(cls.base_model_prefix) > 0 and hasattr(model, cls.base_model_prefix) and not has_prefix_module:
3418
            model_to_load = getattr(model, cls.base_model_prefix)
Sylvain Gugger's avatar
Sylvain Gugger committed
3419
3420
            base_model_expected_keys = list(model_to_load.state_dict().keys())
            if any(key in expected_keys_not_prefixed and key not in base_model_expected_keys for key in loaded_keys):
3421
                raise ValueError(
3422
                    "The state dictionary of the model you are trying to load is corrupted. Are you sure it was "
3423
3424
                    "properly saved?"
                )
3425
3426
            if device_map is not None:
                device_map = {k.replace(f"{cls.base_model_prefix}.", ""): v for k, v in device_map.items()}
3427

3428
3429
3430
3431
3432
3433
3434
3435
        def _find_mismatched_keys(
            state_dict,
            model_state_dict,
            loaded_keys,
            add_prefix_to_model,
            remove_prefix_from_model,
            ignore_mismatched_sizes,
        ):
Sylvain Gugger's avatar
Sylvain Gugger committed
3436
3437
3438
            mismatched_keys = []
            if ignore_mismatched_sizes:
                for checkpoint_key in loaded_keys:
3439
3440
3441
                    # If the checkpoint is sharded, we may not have the key here.
                    if checkpoint_key not in state_dict:
                        continue
Sylvain Gugger's avatar
Sylvain Gugger committed
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
                    model_key = checkpoint_key
                    if remove_prefix_from_model:
                        # The model key starts with `prefix` but `checkpoint_key` doesn't so we add it.
                        model_key = f"{prefix}.{checkpoint_key}"
                    elif add_prefix_to_model:
                        # The model key doesn't start with `prefix` but `checkpoint_key` does so we remove it.
                        model_key = ".".join(checkpoint_key.split(".")[1:])

                    if (
                        model_key in model_state_dict
                        and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
                    ):
                        mismatched_keys.append(
                            (checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
                        )
                        del state_dict[checkpoint_key]
3458
3459
            return mismatched_keys

3460
3461
3462
3463
        if resolved_archive_file is not None:
            folder = os.path.sep.join(resolved_archive_file[0].split(os.path.sep)[:-1])
        else:
            folder = None
Sylvain Gugger's avatar
Sylvain Gugger committed
3464
        if device_map is not None and is_safetensors:
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
            param_device_map = expand_device_map(device_map, original_loaded_keys)

            str_dtype = str(dtype).replace("torch.", "") if dtype is not None else "float32"
            if sharded_metadata is None:
                archive_file = (
                    resolved_archive_file[0]
                    if isinstance(resolved_archive_file, (list, tuple))
                    else resolved_archive_file
                )
                weight_map = {p: archive_file for p in original_loaded_keys}
            else:
                weight_map = {p: os.path.join(folder, f) for p, f in sharded_metadata["weight_map"].items()}
Sylvain Gugger's avatar
Sylvain Gugger committed
3477
            offload_index = {
3478
3479
                p: {"safetensors_file": f, "weight_name": p, "dtype": str_dtype}
                for p, f in weight_map.items()
Sylvain Gugger's avatar
Sylvain Gugger committed
3480
3481
3482
                if param_device_map[p] == "disk"
            }

3483
3484
3485
3486
3487
        if state_dict is not None:
            # Whole checkpoint
            mismatched_keys = _find_mismatched_keys(
                state_dict,
                model_state_dict,
3488
                original_loaded_keys,
3489
3490
3491
3492
                add_prefix_to_model,
                remove_prefix_from_model,
                ignore_mismatched_sizes,
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
3493
            error_msgs = _load_state_dict_into_model(model_to_load, state_dict, start_prefix)
Sylvain Gugger's avatar
Sylvain Gugger committed
3494
            offload_index = None
Sylvain Gugger's avatar
Sylvain Gugger committed
3495
        else:
3496
3497
            # Sharded checkpoint or whole but low_cpu_mem_usage==True

Sylvain Gugger's avatar
Sylvain Gugger committed
3498
3499
3500
3501
3502
            # This should always be a list but, just to be sure.
            if not isinstance(resolved_archive_file, list):
                resolved_archive_file = [resolved_archive_file]

            error_msgs = []
3503
            mismatched_keys = []
Sylvain Gugger's avatar
Sylvain Gugger committed
3504
3505
            if not is_safetensors:
                offload_index = {} if device_map is not None and "disk" in device_map.values() else None
3506
3507
3508
3509
3510
3511
3512
            if offload_state_dict:
                state_dict_folder = tempfile.mkdtemp()
                state_dict_index = {}
            else:
                state_dict_folder = None
                state_dict_index = None

3513
            if is_sharded_safetensors:
Sylvain Gugger's avatar
Sylvain Gugger committed
3514
3515
3516
3517
3518
                disk_only_shard_files = get_disk_only_shard_files(device_map, sharded_metadata=sharded_metadata)
                disk_only_shard_files = [os.path.join(folder, f) for f in disk_only_shard_files]
            else:
                disk_only_shard_files = []

3519
3520
            if len(resolved_archive_file) > 1:
                resolved_archive_file = logging.tqdm(resolved_archive_file, desc="Loading checkpoint shards")
Sylvain Gugger's avatar
Sylvain Gugger committed
3521
            for shard_file in resolved_archive_file:
Sylvain Gugger's avatar
Sylvain Gugger committed
3522
3523
3524
                # Skip the load for shards that only contain disk-offloaded weights when using safetensors for the offload.
                if shard_file in disk_only_shard_files:
                    continue
Sylvain Gugger's avatar
Sylvain Gugger committed
3525
                state_dict = load_state_dict(shard_file)
3526

Sylvain Gugger's avatar
Sylvain Gugger committed
3527
3528
                # Mistmatched keys contains tuples key/shape1/shape2 of weights in the checkpoint that have a shape not
                # matching the weights in the model.
3529
3530
3531
                mismatched_keys += _find_mismatched_keys(
                    state_dict,
                    model_state_dict,
3532
                    original_loaded_keys,
3533
3534
3535
3536
                    add_prefix_to_model,
                    remove_prefix_from_model,
                    ignore_mismatched_sizes,
                )
3537
3538

                if low_cpu_mem_usage:
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
                    if not is_fsdp_enabled() or is_fsdp_enabled_and_dist_rank_0():
                        new_error_msgs, offload_index, state_dict_index = _load_state_dict_into_meta_model(
                            model_to_load,
                            state_dict,
                            loaded_keys,
                            start_prefix,
                            expected_keys,
                            device_map=device_map,
                            offload_folder=offload_folder,
                            offload_index=offload_index,
                            state_dict_folder=state_dict_folder,
                            state_dict_index=state_dict_index,
                            dtype=dtype,
                            is_quantized=is_quantized,
                            is_safetensors=is_safetensors,
                            keep_in_fp32_modules=keep_in_fp32_modules,
                        )
                        error_msgs += new_error_msgs
                    else:
                        for key, param in model_to_load.state_dict().items():
                            if param.device == torch.device("meta"):
                                if not (is_quantized):
                                    set_module_tensor_to_device(
                                        model, key, "cpu", torch.empty(*param.size(), dtype=dtype)
                                    )
                                else:
                                    set_module_quantized_tensor_to_device(
                                        model, key, "cpu", torch.empty(*param.size(), dtype=dtype)
                                    )
3568
3569
                else:
                    error_msgs += _load_state_dict_into_model(model_to_load, state_dict, start_prefix)
3570

3571
3572
3573
3574
                # force memory release
                del state_dict
                gc.collect()

3575
            if offload_index is not None and len(offload_index) > 0:
Sylvain Gugger's avatar
Sylvain Gugger committed
3576
3577
3578
                if model != model_to_load:
                    # We need to add the prefix of the base model
                    prefix = cls.base_model_prefix
Sylvain Gugger's avatar
Sylvain Gugger committed
3579
3580
3581
3582
3583
3584
                    if not is_safetensors:
                        for weight_name in offload_index:
                            shutil.move(
                                os.path.join(offload_folder, f"{weight_name}.dat"),
                                os.path.join(offload_folder, f"{prefix}.{weight_name}.dat"),
                            )
Sylvain Gugger's avatar
Sylvain Gugger committed
3585
                    offload_index = {f"{prefix}.{key}": value for key, value in offload_index.items()}
Sylvain Gugger's avatar
Sylvain Gugger committed
3586
3587
3588
                if not is_safetensors:
                    save_offload_index(offload_index, offload_folder)
                    offload_index = None
3589
3590
3591

            if offload_state_dict:
                # Load back temporarily offloaded state dict
3592
                load_offloaded_weights(model_to_load, state_dict_index, state_dict_folder)
3593
3594
                shutil.rmtree(state_dict_folder)

3595
3596
        if len(error_msgs) > 0:
            error_msg = "\n\t".join(error_msgs)
3597
3598
3599
3600
            if "size mismatch" in error_msg:
                error_msg += (
                    "\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
                )
3601
3602
            raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")

3603
        if is_quantized:
3604
3605
3606
            unexpected_keys = [elem for elem in unexpected_keys if "SCB" not in elem]
            missing_keys = [elem for elem in missing_keys if "SCB" not in elem]

3607
        if len(unexpected_keys) > 0:
Sylvain Gugger's avatar
Sylvain Gugger committed
3608
            archs = [] if model.config.architectures is None else model.config.architectures
3609
            warner = logger.warning if model.__class__.__name__ in archs else logger.info
Sylvain Gugger's avatar
Sylvain Gugger committed
3610
            warner(
Sylvain Gugger's avatar
Sylvain Gugger committed
3611
3612
3613
3614
3615
3616
3617
                f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
                f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
                f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task or"
                " with another architecture (e.g. initializing a BertForSequenceClassification model from a"
                " BertForPreTraining model).\n- This IS NOT expected if you are initializing"
                f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly identical"
                " (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
3618
3619
3620
3621
3622
            )
        else:
            logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
        if len(missing_keys) > 0:
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
3623
3624
3625
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
                " TRAIN this model on a down-stream task to be able to use it for predictions and inference."
3626
            )
3627
        elif len(mismatched_keys) == 0:
3628
            logger.info(
Sylvain Gugger's avatar
Sylvain Gugger committed
3629
3630
3631
3632
                f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the checkpoint"
                f" was trained on, you can already use {model.__class__.__name__} for predictions without further"
                " training."
3633
            )
3634
3635
3636
3637
3638
3639
3640
3641
        if len(mismatched_keys) > 0:
            mismatched_warning = "\n".join(
                [
                    f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
                    for key, shape1, shape2 in mismatched_keys
                ]
            )
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
3642
3643
3644
3645
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
                f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be able"
                " to use it for predictions and inference."
3646
            )
3647

Sylvain Gugger's avatar
Sylvain Gugger committed
3648
        return model, missing_keys, unexpected_keys, mismatched_keys, offload_index, error_msgs
3649
3650

    def retrieve_modules_from_names(self, names, add_prefix=False, remove_prefix=False):
3651
        module_keys = {".".join(key.split(".")[:-1]) for key in names}
3652

Patrick von Platen's avatar
Patrick von Platen committed
3653
3654
        # torch.nn.ParameterList is a special case where two parameter keywords
        # are appended to the module name, *e.g.* bert.special_embeddings.0
3655
        module_keys = module_keys.union(
3656
            {".".join(key.split(".")[:-2]) for key in names if len(key) > 0 and key[-1].isdigit()}
3657
        )
Patrick von Platen's avatar
Patrick von Platen committed
3658

3659
3660
3661
3662
        retrieved_modules = []
        # retrieve all modules that has at least one missing weight name
        for name, module in self.named_modules():
            if remove_prefix:
3663
3664
                _prefix = f"{self.base_model_prefix}."
                name = name[len(_prefix) :] if name.startswith(_prefix) else name
3665
            elif add_prefix:
Patrick von Platen's avatar
Patrick von Platen committed
3666
                name = ".".join([self.base_model_prefix, name]) if len(name) > 0 else self.base_model_prefix
3667
3668
3669
3670
3671
3672

            if name in module_keys:
                retrieved_modules.append(module)

        return retrieved_modules

3673
    @staticmethod
3674
    def _load_pretrained_model_low_mem(model, loaded_state_dict_keys, resolved_archive_file, start_prefix=""):
3675
3676
3677
        """
        This is an experimental function that loads the model using ~1.x model size CPU memory

3678
        Before you call it do:
3679

3680
        1. save which state_dict keys are available
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
        2. drop state_dict before model is created, since the latter takes 1x model size memory

        Here then we continue:

        3. switch to the meta device all params/buffers that are going to be replaced from the loaded state_dict
        4. load state_dict 2nd time
        5. replace the params/buffers from the state_dict

        Currently, it doesn't handle missing_keys, unexpected_keys, mismatched_keys. It can't handle deepspeed.
        """

3692
3693
3694
3695
        _move_model_to_meta(model, loaded_state_dict_keys, start_prefix)
        state_dict = load_state_dict(resolved_archive_file)
        error_msgs = _load_state_dict_into_meta_model(model, state_dict, loaded_state_dict_keys, start_prefix)
        return error_msgs
3696

3697
3698
3699
3700
3701
3702
    @classmethod
    def register_for_auto_class(cls, auto_class="AutoModel"):
        """
        Register this class with a given auto class. This should only be used for custom models as the ones in the
        library are already mapped with an auto class.

3703
3704
3705
3706
3707
3708
        <Tip warning={true}>

        This API is experimental and may have some slight breaking changes in the next releases.

        </Tip>

3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
        Args:
            auto_class (`str` or `type`, *optional*, defaults to `"AutoModel"`):
                The auto class to register this new model with.
        """
        if not isinstance(auto_class, str):
            auto_class = auto_class.__name__

        import transformers.models.auto as auto_module

        if not hasattr(auto_module, auto_class):
            raise ValueError(f"{auto_class} is not a valid auto class.")

        cls._auto_class = auto_class

3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
    def to_bettertransformer(self) -> "PreTrainedModel":
        """
        Converts the model to use [PyTorch's native attention
        implementation](https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html), integrated to
        Transformers through [Optimum library](https://huggingface.co/docs/optimum/bettertransformer/overview). Only a
        subset of all Transformers models are supported.

        PyTorch's attention fastpath allows to speed up inference through kernel fusions and the use of [nested
        tensors](https://pytorch.org/docs/stable/nested.html). Detailed benchmarks can be found in [this blog
        post](https://medium.com/pytorch/bettertransformer-out-of-the-box-performance-for-huggingface-transformers-3fbe27d50ab2).

        Returns:
            [`PreTrainedModel`]: The model converted to BetterTransformer.
        """
        if not is_optimum_available():
            raise ImportError("The package `optimum` is required to use Better Transformer.")

        from optimum.version import __version__ as optimum_version

        if version.parse(optimum_version) < version.parse("1.7.0"):
            raise ImportError(
                f"Please install optimum>=1.7.0 to use Better Transformer. The version {optimum_version} was found."
            )

        from optimum.bettertransformer import BetterTransformer

        return BetterTransformer.transform(self)

    def reverse_bettertransformer(self):
        """
        Reverts the transformation from [`~PreTrainedModel.to_bettertransformer`] so that the original modeling is
        used, for example in order to save the model.

        Returns:
            [`PreTrainedModel`]: The model converted back to the original modeling.
        """
        if not is_optimum_available():
            raise ImportError("The package `optimum` is required to use Better Transformer.")

        from optimum.version import __version__ as optimum_version

        if version.parse(optimum_version) < version.parse("1.7.0"):
            raise ImportError(
                f"Please install optimum>=1.7.0 to use Better Transformer. The version {optimum_version} was found."
            )

        from optimum.bettertransformer import BetterTransformer

        return BetterTransformer.reverse(self)

3773
3774
3775
3776
    def warn_if_padding_and_no_attention_mask(self, input_ids, attention_mask):
        """
        Shows a one-time warning if the input_ids appear to contain padding and no attention mask was given.
        """
3777
3778
3779
3780
3781

        # Skip the check during tracing.
        if is_torch_fx_proxy(input_ids) or torch.jit.is_tracing():
            return

3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
        if (attention_mask is not None) or (self.config.pad_token_id is None):
            return

        # Check only the first and last input IDs to reduce overhead.
        if self.config.pad_token_id in input_ids[:, [-1, 0]]:
            warn_string = (
                "We strongly recommend passing in an `attention_mask` since your input_ids may be padded. See "
                "https://huggingface.co/docs/transformers/troubleshooting"
                "#incorrect-output-when-padding-tokens-arent-masked."
            )

            # If the pad token is equal to either BOS, EOS, or SEP, we do not know whether the user should use an
            # attention_mask or not. In this case, we should still show a warning because this is a rare case.
            if (
                (self.config.bos_token_id is not None and self.config.bos_token_id == self.config.pad_token_id)
                or (self.config.eos_token_id is not None and self.config.eos_token_id == self.config.pad_token_id)
                or (self.config.sep_token_id is not None and self.config.sep_token_id == self.config.pad_token_id)
            ):
                warn_string += (
                    f"\nYou may ignore this warning if your `pad_token_id` ({self.config.pad_token_id}) is identical "
                    f"to the `bos_token_id` ({self.config.bos_token_id}), `eos_token_id` ({self.config.eos_token_id}), "
                    f"or the `sep_token_id` ({self.config.sep_token_id}), and your input is not padded."
                )

            logger.warning_once(warn_string)

thomwolf's avatar
thomwolf committed
3808

3809
PreTrainedModel.push_to_hub = copy_func(PreTrainedModel.push_to_hub)
3810
3811
3812
3813
if PreTrainedModel.push_to_hub.__doc__ is not None:
    PreTrainedModel.push_to_hub.__doc__ = PreTrainedModel.push_to_hub.__doc__.format(
        object="model", object_class="AutoModel", object_files="model file"
    )
3814
3815


thomwolf's avatar
thomwolf committed
3816
class PoolerStartLogits(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
3817
3818
    """
    Compute SQuAD start logits from sequence hidden states.
3819

Sylvain Gugger's avatar
Sylvain Gugger committed
3820
    Args:
3821
3822
        config ([`PretrainedConfig`]):
            The config used by the model, will be used to grab the `hidden_size` of the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
3823
3824
3825
    """

    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
3826
        super().__init__()
thomwolf's avatar
thomwolf committed
3827
3828
        self.dense = nn.Linear(config.hidden_size, 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
3829
3830
3831
3832
3833
    def forward(
        self, hidden_states: torch.FloatTensor, p_mask: Optional[torch.FloatTensor] = None
    ) -> torch.FloatTensor:
        """
        Args:
3834
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
3835
                The final hidden states of the model.
3836
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
3837
3838
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
Sylvain Gugger's avatar
Sylvain Gugger committed
3839
3840

        Returns:
3841
            `torch.FloatTensor`: The start logits for SQuAD.
thomwolf's avatar
thomwolf committed
3842
        """
thomwolf's avatar
thomwolf committed
3843
3844
3845
        x = self.dense(hidden_states).squeeze(-1)

        if p_mask is not None:
Lysandre Debut's avatar
Lysandre Debut committed
3846
            if get_parameter_dtype(self) == torch.float16:
3847
3848
3849
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask
thomwolf's avatar
thomwolf committed
3850
3851
3852
3853
3854
3855

        return x


class PoolerEndLogits(nn.Module):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
3856
    Compute SQuAD end logits from sequence hidden states.
3857

Sylvain Gugger's avatar
Sylvain Gugger committed
3858
    Args:
3859
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
3860
3861
            The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps`
            to use.
Sylvain Gugger's avatar
Sylvain Gugger committed
3862
3863
3864
    """

    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
3865
        super().__init__()
thomwolf's avatar
thomwolf committed
3866
3867
3868
3869
3870
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dense_1 = nn.Linear(config.hidden_size, 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
3871
3872
3873
3874
3875
3876
3877
3878
3879
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        start_states: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        p_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
        """
        Args:
3880
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
3881
                The final hidden states of the model.
3882
            start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
3883
                The hidden states of the first tokens for the labeled span.
3884
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
3885
                The position of the first token for the labeled span.
3886
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
3887
3888
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
Sylvain Gugger's avatar
Sylvain Gugger committed
3889

3890
        <Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
3891

Stas Bekman's avatar
Stas Bekman committed
3892
3893
        One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides
        `start_states`.
3894
3895

        </Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
3896
3897

        Returns:
3898
            `torch.FloatTensor`: The end logits for SQuAD.
thomwolf's avatar
thomwolf committed
3899
        """
3900
3901
3902
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
thomwolf's avatar
thomwolf committed
3903
        if start_positions is not None:
3904
            slen, hsz = hidden_states.shape[-2:]
3905
3906
3907
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions)  # shape (bsz, 1, hsz)
            start_states = start_states.expand(-1, slen, -1)  # shape (bsz, slen, hsz)
thomwolf's avatar
thomwolf committed
3908
3909
3910
3911
3912
3913
3914

        x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1))
        x = self.activation(x)
        x = self.LayerNorm(x)
        x = self.dense_1(x).squeeze(-1)

        if p_mask is not None:
Lysandre Debut's avatar
Lysandre Debut committed
3915
            if get_parameter_dtype(self) == torch.float16:
3916
3917
3918
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask
thomwolf's avatar
thomwolf committed
3919
3920
3921
3922
3923

        return x


class PoolerAnswerClass(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
3924
3925
3926
3927
    """
    Compute SQuAD 2.0 answer class from classification and start tokens hidden states.

    Args:
3928
3929
        config ([`PretrainedConfig`]):
            The config used by the model, will be used to grab the `hidden_size` of the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
3930
    """
3931

thomwolf's avatar
thomwolf committed
3932
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
3933
        super().__init__()
thomwolf's avatar
thomwolf committed
3934
3935
3936
3937
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False)

Sylvain Gugger's avatar
Sylvain Gugger committed
3938
3939
3940
3941
3942
3943
3944
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        start_states: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        cls_index: Optional[torch.LongTensor] = None,
    ) -> torch.FloatTensor:
3945
3946
        """
        Args:
3947
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
3948
                The final hidden states of the model.
3949
            start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
3950
                The hidden states of the first tokens for the labeled span.
3951
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
3952
                The position of the first token for the labeled span.
3953
3954
3955
3956
            cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
                Position of the CLS token for each sentence in the batch. If `None`, takes the last token.

        <Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
3957

Stas Bekman's avatar
Stas Bekman committed
3958
3959
        One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides
        `start_states`.
Sylvain Gugger's avatar
Sylvain Gugger committed
3960

3961
        </Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
3962
3963

        Returns:
3964
            `torch.FloatTensor`: The SQuAD 2.0 answer class.
thomwolf's avatar
thomwolf committed
3965
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
3966
        # No dependency on end_feature so that we can obtain one single `cls_logits` for each sample.
3967
        hsz = hidden_states.shape[-1]
3968
3969
3970
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
thomwolf's avatar
thomwolf committed
3971
        if start_positions is not None:
3972
3973
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions).squeeze(-2)  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
3974
3975

        if cls_index is not None:
3976
3977
            cls_index = cls_index[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
3978
        else:
3979
            cls_token_state = hidden_states[:, -1, :]  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
3980
3981
3982
3983
3984
3985
3986
3987

        x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1))
        x = self.activation(x)
        x = self.dense_1(x).squeeze(-1)

        return x


3988
3989
3990
@dataclass
class SquadHeadOutput(ModelOutput):
    """
3991
    Base class for outputs of question answering models using a [`~modeling_utils.SQuADHead`].
3992
3993

    Args:
3994
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned if both `start_positions` and `end_positions` are provided):
Sylvain Gugger's avatar
Sylvain Gugger committed
3995
3996
            Classification loss as the sum of start token, end token (and is_impossible if provided) classification
            losses.
3997
        start_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
3998
            Log probabilities for the top config.start_n_top start token possibilities (beam-search).
3999
        start_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
4000
            Indices for the top config.start_n_top start token possibilities (beam-search).
4001
4002
        end_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Log probabilities for the top `config.start_n_top * config.end_n_top` end token possibilities
Sylvain Gugger's avatar
Sylvain Gugger committed
4003
            (beam-search).
4004
4005
4006
4007
        end_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Indices for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search).
        cls_logits (`torch.FloatTensor` of shape `(batch_size,)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Log probabilities for the `is_impossible` label of the answers.
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018

    """

    loss: Optional[torch.FloatTensor] = None
    start_top_log_probs: Optional[torch.FloatTensor] = None
    start_top_index: Optional[torch.LongTensor] = None
    end_top_log_probs: Optional[torch.FloatTensor] = None
    end_top_index: Optional[torch.LongTensor] = None
    cls_logits: Optional[torch.FloatTensor] = None


thomwolf's avatar
thomwolf committed
4019
class SQuADHead(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
4020
4021
    r"""
    A SQuAD head inspired by XLNet.
4022

Sylvain Gugger's avatar
Sylvain Gugger committed
4023
    Args:
4024
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
4025
4026
            The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps`
            to use.
thomwolf's avatar
thomwolf committed
4027
    """
4028

thomwolf's avatar
thomwolf committed
4029
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
4030
        super().__init__()
thomwolf's avatar
thomwolf committed
4031
4032
4033
4034
4035
4036
4037
        self.start_n_top = config.start_n_top
        self.end_n_top = config.end_n_top

        self.start_logits = PoolerStartLogits(config)
        self.end_logits = PoolerEndLogits(config)
        self.answer_class = PoolerAnswerClass(config)

Sylvain Gugger's avatar
Sylvain Gugger committed
4038
    @replace_return_docstrings(output_type=SquadHeadOutput, config_class=PretrainedConfig)
4039
    def forward(
4040
        self,
Sylvain Gugger's avatar
Sylvain Gugger committed
4041
4042
4043
4044
4045
4046
        hidden_states: torch.FloatTensor,
        start_positions: Optional[torch.LongTensor] = None,
        end_positions: Optional[torch.LongTensor] = None,
        cls_index: Optional[torch.LongTensor] = None,
        is_impossible: Optional[torch.LongTensor] = None,
        p_mask: Optional[torch.FloatTensor] = None,
4047
        return_dict: bool = False,
Sylvain Gugger's avatar
Sylvain Gugger committed
4048
4049
    ) -> Union[SquadHeadOutput, Tuple[torch.FloatTensor]]:
        """
Lysandre's avatar
Lysandre committed
4050
        Args:
4051
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Lysandre's avatar
Lysandre committed
4052
                Final hidden states of the model on the sequence tokens.
4053
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
4054
                Positions of the first token for the labeled span.
4055
            end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
4056
                Positions of the last token for the labeled span.
4057
4058
4059
            cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
                Position of the CLS token for each sentence in the batch. If `None`, takes the last token.
            is_impossible (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
4060
                Whether the question has a possible answer in the paragraph or not.
4061
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4062
4063
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
4064
            return_dict (`bool`, *optional*, defaults to `False`):
4065
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Sylvain Gugger's avatar
Sylvain Gugger committed
4066

Lysandre's avatar
Lysandre committed
4067
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
4068
        """
thomwolf's avatar
thomwolf committed
4069
        start_logits = self.start_logits(hidden_states, p_mask=p_mask)
thomwolf's avatar
thomwolf committed
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092

        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, let's remove the dimension added by batch splitting
            for x in (start_positions, end_positions, cls_index, is_impossible):
                if x is not None and x.dim() > 1:
                    x.squeeze_(-1)

            # during training, compute the end logits based on the ground truth of the start position
            end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)

            loss_fct = CrossEntropyLoss()
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

            if cls_index is not None and is_impossible is not None:
                # Predict answerability from the representation of CLS and START
                cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
                loss_fct_cls = nn.BCEWithLogitsLoss()
                cls_loss = loss_fct_cls(cls_logits, is_impossible)

                # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss
                total_loss += cls_loss * 0.5
4093

4094
            return SquadHeadOutput(loss=total_loss) if return_dict else (total_loss,)
thomwolf's avatar
thomwolf committed
4095
4096
4097
4098

        else:
            # during inference, compute the end logits based on beam search
            bsz, slen, hsz = hidden_states.size()
4099
            start_log_probs = nn.functional.softmax(start_logits, dim=-1)  # shape (bsz, slen)
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110

            start_top_log_probs, start_top_index = torch.topk(
                start_log_probs, self.start_n_top, dim=-1
            )  # shape (bsz, start_n_top)
            start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz)  # shape (bsz, start_n_top, hsz)
            start_states = torch.gather(hidden_states, -2, start_top_index_exp)  # shape (bsz, start_n_top, hsz)
            start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1)  # shape (bsz, slen, start_n_top, hsz)

            hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(
                start_states
            )  # shape (bsz, slen, start_n_top, hsz)
thomwolf's avatar
thomwolf committed
4111
4112
            p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
            end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
4113
            end_log_probs = nn.functional.softmax(end_logits, dim=1)  # shape (bsz, slen, start_n_top)
thomwolf's avatar
thomwolf committed
4114

4115
4116
4117
            end_top_log_probs, end_top_index = torch.topk(
                end_log_probs, self.end_n_top, dim=1
            )  # shape (bsz, end_n_top, start_n_top)
thomwolf's avatar
thomwolf committed
4118
4119
4120
4121
4122
4123
            end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
            end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)

            start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs)
            cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index)

4124
            if not return_dict:
4125
4126
4127
4128
4129
4130
4131
4132
4133
                return (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits)
            else:
                return SquadHeadOutput(
                    start_top_log_probs=start_top_log_probs,
                    start_top_index=start_top_index,
                    end_top_log_probs=end_top_log_probs,
                    end_top_index=end_top_index,
                    cls_logits=cls_logits,
                )
thomwolf's avatar
thomwolf committed
4134
4135
4136


class SequenceSummary(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
4137
4138
4139
4140
    r"""
    Compute a single vector summary of a sequence hidden states.

    Args:
4141
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
4142
4143
            The config used by the model. Relevant arguments in the config class of the model are (refer to the actual
            config class of your model for the default values it uses):
Sylvain Gugger's avatar
Sylvain Gugger committed
4144

4145
            - **summary_type** (`str`) -- The method to use to make this summary. Accepted values are:
Sylvain Gugger's avatar
Sylvain Gugger committed
4146

4147
4148
4149
4150
4151
                - `"last"` -- Take the last token hidden state (like XLNet)
                - `"first"` -- Take the first token hidden state (like Bert)
                - `"mean"` -- Take the mean of all tokens hidden states
                - `"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2)
                - `"attn"` -- Not implemented now, use multi-head attention
Sylvain Gugger's avatar
Sylvain Gugger committed
4152

4153
            - **summary_use_proj** (`bool`) -- Add a projection after the vector extraction.
Sylvain Gugger's avatar
Sylvain Gugger committed
4154
4155
4156
4157
4158
4159
            - **summary_proj_to_labels** (`bool`) -- If `True`, the projection outputs to `config.num_labels` classes
              (otherwise to `config.hidden_size`).
            - **summary_activation** (`Optional[str]`) -- Set to `"tanh"` to add a tanh activation to the output,
              another string or `None` will add no activation.
            - **summary_first_dropout** (`float`) -- Optional dropout probability before the projection and activation.
            - **summary_last_dropout** (`float`)-- Optional dropout probability after the projection and activation.
thomwolf's avatar
thomwolf committed
4160
    """
4161

4162
    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
4163
        super().__init__()
thomwolf's avatar
thomwolf committed
4164

4165
        self.summary_type = getattr(config, "summary_type", "last")
4166
        if self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
4167
4168
4169
4170
4171
            # We should use a standard multi-head attention module with absolute positional embedding for that.
            # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
            # We can probably just use the multi-head attention module of PyTorch >=1.1.0
            raise NotImplementedError

thomwolf's avatar
thomwolf committed
4172
        self.summary = Identity()
4173
4174
        if hasattr(config, "summary_use_proj") and config.summary_use_proj:
            if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0:
4175
                num_classes = config.num_labels
thomwolf's avatar
thomwolf committed
4176
4177
4178
4179
            else:
                num_classes = config.hidden_size
            self.summary = nn.Linear(config.hidden_size, num_classes)

4180
        activation_string = getattr(config, "summary_activation", None)
Lysandre's avatar
Lysandre committed
4181
        self.activation: Callable = get_activation(activation_string) if activation_string else Identity()
thomwolf's avatar
thomwolf committed
4182

thomwolf's avatar
thomwolf committed
4183
        self.first_dropout = Identity()
4184
        if hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0:
4185
4186
            self.first_dropout = nn.Dropout(config.summary_first_dropout)

thomwolf's avatar
thomwolf committed
4187
        self.last_dropout = Identity()
4188
        if hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0:
4189
            self.last_dropout = nn.Dropout(config.summary_last_dropout)
thomwolf's avatar
thomwolf committed
4190

Sylvain Gugger's avatar
Sylvain Gugger committed
4191
4192
4193
4194
4195
4196
4197
    def forward(
        self, hidden_states: torch.FloatTensor, cls_index: Optional[torch.LongTensor] = None
    ) -> torch.FloatTensor:
        """
        Compute a single vector summary of a sequence hidden states.

        Args:
4198
            hidden_states (`torch.FloatTensor` of shape `[batch_size, seq_len, hidden_size]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
4199
                The hidden states of the last layer.
4200
            cls_index (`torch.LongTensor` of shape `[batch_size]` or `[batch_size, ...]` where ... are optional leading dimensions of `hidden_states`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
4201
                Used if `summary_type == "cls_index"` and takes the last token of the sequence as classification token.
Sylvain Gugger's avatar
Sylvain Gugger committed
4202
4203

        Returns:
4204
            `torch.FloatTensor`: The summary of the sequence hidden states.
thomwolf's avatar
thomwolf committed
4205
        """
4206
        if self.summary_type == "last":
thomwolf's avatar
thomwolf committed
4207
            output = hidden_states[:, -1]
4208
        elif self.summary_type == "first":
thomwolf's avatar
thomwolf committed
4209
            output = hidden_states[:, 0]
4210
        elif self.summary_type == "mean":
thomwolf's avatar
thomwolf committed
4211
            output = hidden_states.mean(dim=1)
4212
        elif self.summary_type == "cls_index":
thomwolf's avatar
thomwolf committed
4213
            if cls_index is None:
Lysandre's avatar
Lysandre committed
4214
4215
4216
4217
4218
                cls_index = torch.full_like(
                    hidden_states[..., :1, :],
                    hidden_states.shape[-2] - 1,
                    dtype=torch.long,
                )
thomwolf's avatar
thomwolf committed
4219
            else:
thomwolf's avatar
thomwolf committed
4220
                cls_index = cls_index.unsqueeze(-1).unsqueeze(-1)
4221
                cls_index = cls_index.expand((-1,) * (cls_index.dim() - 1) + (hidden_states.size(-1),))
thomwolf's avatar
thomwolf committed
4222
            # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
4223
4224
            output = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, XX, hidden_size)
        elif self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
4225
4226
            raise NotImplementedError

4227
        output = self.first_dropout(output)
thomwolf's avatar
thomwolf committed
4228
4229
        output = self.summary(output)
        output = self.activation(output)
4230
        output = self.last_dropout(output)
thomwolf's avatar
thomwolf committed
4231
4232
4233
4234

        return output


4235
def unwrap_model(model: nn.Module) -> nn.Module:
4236
4237
4238
4239
    """
    Recursively unwraps a model from potential containers (as used in distributed training).

    Args:
4240
        model (`torch.nn.Module`): The model to unwrap.
4241
4242
4243
4244
4245
4246
    """
    # since there could be multiple levels of wrapping, unwrap recursively
    if hasattr(model, "module"):
        return unwrap_model(model.module)
    else:
        return model
Sylvain Gugger's avatar
Sylvain Gugger committed
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269


def expand_device_map(device_map, param_names):
    """
    Expand a device map to return the correspondance parameter name to device.
    """
    new_device_map = {}
    for module, device in device_map.items():
        new_device_map.update({p: device for p in param_names if p == module or p.startswith(f"{module}.")})
    return new_device_map


def get_disk_only_shard_files(device_map, sharded_metadata):
    """
    Returns the list of shard files containing only weights offloaded to disk.
    """
    files_content = collections.defaultdict(list)
    for weight_name, filename in sharded_metadata["weight_map"].items():
        while len(weight_name) > 0 and weight_name not in device_map:
            weight_name = ".".join(weight_name.split(".")[:-1])
        files_content[filename].append(device_map[weight_name])

    return [fname for fname, devices in files_content.items() if set(devices) == {"disk"}]