modeling_utils.py 140 KB
Newer Older
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

17
import gc
Sylvain Gugger's avatar
Sylvain Gugger committed
18
import json
19
import os
20
import re
Sylvain Gugger's avatar
Sylvain Gugger committed
21
22
import shutil
import tempfile
23
import warnings
24
from contextlib import contextmanager
25
from dataclasses import dataclass
26
from functools import partial
Sylvain Gugger's avatar
Sylvain Gugger committed
27
from pathlib import Path
28
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
29
30

import torch
31
from torch import Tensor, device, nn
32
from torch.nn import CrossEntropyLoss
33

34
35
from requests import HTTPError

36
from .activations import get_activation
37
from .configuration_utils import PretrainedConfig
38
from .deepspeed import deepspeed_config, is_deepspeed_zero3_enabled
39
from .dynamic_module_utils import custom_object_save
40
from .generation_utils import GenerationMixin
41
42
43
44
45
46
47
48
from .pytorch_utils import (  # noqa: F401
    Conv1D,
    apply_chunking_to_forward,
    find_pruneable_heads_and_indices,
    prune_conv1d_layer,
    prune_layer,
    prune_linear_layer,
)
49
from .utils import (
Aymeric Augustin's avatar
Aymeric Augustin committed
50
    DUMMY_INPUTS,
51
    FLAX_WEIGHTS_NAME,
52
    HUGGINGFACE_CO_RESOLVE_ENDPOINT,
53
54
    TF2_WEIGHTS_NAME,
    TF_WEIGHTS_NAME,
Sylvain Gugger's avatar
Sylvain Gugger committed
55
    WEIGHTS_INDEX_NAME,
56
    WEIGHTS_NAME,
57
    ContextManagers,
58
    EntryNotFoundError,
59
    ModelOutput,
Sylvain Gugger's avatar
Sylvain Gugger committed
60
    PushToHubMixin,
61
62
    RepositoryNotFoundError,
    RevisionNotFoundError,
63
    cached_path,
64
    has_file,
65
    hf_bucket_url,
66
    is_accelerate_available,
67
    is_offline_mode,
68
    is_remote_url,
69
    logging,
Sylvain Gugger's avatar
Sylvain Gugger committed
70
    replace_return_docstrings,
71
)
72
from .utils.versions import require_version_core
73

Aymeric Augustin's avatar
Aymeric Augustin committed
74

75
76
77
78
79
80
81
82
83
if is_accelerate_available():
    from accelerate import dispatch_model, infer_auto_device_map, init_empty_weights
    from accelerate.utils import (
        load_offloaded_weights,
        offload_weight,
        save_offload_index,
        set_module_tensor_to_device,
    )

Lysandre Debut's avatar
Lysandre Debut committed
84
logger = logging.get_logger(__name__)
85

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

_init_weights = True


@contextmanager
def no_init_weights(_enable=True):
    """
    Context manager to globally disable weight initialization to speed up loading large models.

    TODO(Patrick): Delete safety argument `_enable=True` at next major version. .
    """
    global _init_weights
    if _enable:
        _init_weights = False
    try:
        yield
    finally:
        _init_weights = True


thomwolf's avatar
thomwolf committed
106
107
108
109
110
try:
    from torch.nn import Identity
except ImportError:
    # Older PyTorch compatibility
    class Identity(nn.Module):
Lysandre's avatar
Lysandre committed
111
        r"""A placeholder identity operator that is argument-insensitive."""
112

thomwolf's avatar
thomwolf committed
113
        def __init__(self, *args, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
114
            super().__init__()
thomwolf's avatar
thomwolf committed
115
116
117
118

        def forward(self, input):
            return input

119

Lysandre Debut's avatar
Lysandre Debut committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
def get_parameter_device(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    try:
        return next(parameter.parameters()).device
    except StopIteration:
        # For nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].device


def get_parameter_dtype(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    try:
        return next(parameter.parameters()).dtype
    except StopIteration:
        # For nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].dtype


Sylvain Gugger's avatar
Sylvain Gugger committed
150
151
152
153
154
155
156
157
158
159
def convert_file_size_to_int(size: Union[int, str]):
    """
    Converts a size expressed as a string with digits an unit (like `"5MB"`) to an integer (in bytes).

    Args:
        size (`int` or `str`): The size to convert. Will be directly returned if an `int`.

    Example:

    ```py
160
    >>> convert_file_size_to_int("1MiB")
Sylvain Gugger's avatar
Sylvain Gugger committed
161
162
163
164
165
166
167
168
169
170
171
172
    1048576
    ```
    """
    if isinstance(size, int):
        return size
    if size.upper().endswith("GIB"):
        return int(size[:-3]) * (2**30)
    if size.upper().endswith("MIB"):
        return int(size[:-3]) * (2**20)
    if size.upper().endswith("KIB"):
        return int(size[:-3]) * (2**10)
    if size.upper().endswith("GB"):
173
174
        int_size = int(size[:-2]) * (10**9)
        return int_size // 8 if size.endswith("b") else int_size
Sylvain Gugger's avatar
Sylvain Gugger committed
175
    if size.upper().endswith("MB"):
176
177
        int_size = int(size[:-2]) * (10**6)
        return int_size // 8 if size.endswith("b") else int_size
Sylvain Gugger's avatar
Sylvain Gugger committed
178
    if size.upper().endswith("KB"):
179
180
        int_size = int(size[:-2]) * (10**3)
        return int_size // 8 if size.endswith("b") else int_size
Sylvain Gugger's avatar
Sylvain Gugger committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
    raise ValueError("`size` is not in a valid format. Use an integer followed by the unit, e.g., '5GB'.")


def dtype_byte_size(dtype):
    """
    Returns the size (in bytes) occupied by one parameter of type `dtype`.

    Example:

    ```py
    >>> dtype_byte_size(torch.float32)
    4
    ```
    """
    if dtype == torch.bool:
        return 1 / 8
    bit_search = re.search("[^\d](\d+)$", str(dtype))
    if bit_search is None:
        raise ValueError(f"`dtype` is not a valid dtype: {dtype}.")
    bit_size = int(bit_search.groups()[0])
    return bit_size // 8


def shard_checkpoint(state_dict: Dict[str, torch.Tensor], max_shard_size: Union[int, str] = "10GB"):
    """
    Splits a model state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a
    given size.

    The sub-checkpoints are determined by iterating through the `state_dict` in the order of its keys, so there is no
    optimization made to make each sub-checkpoint as close as possible to the maximum size passed. For example, if the
    limit is 10GB and we have weights of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as [6GB], [6+2GB],
    [6+2+2GB] and not [6+2+2GB], [6+2GB], [6GB].

    <Tip warning={true}>

    If one of the model's weight is bigger that `max_sahrd_size`, it will end up in its own sub-checkpoint which will
    have a size greater than `max_shard_size`.

    </Tip>

    Args:
        state_dict (`Dict[str, torch.Tensor]`): The state dictionary of a model to save.
        max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
            The maximum size of each sub-checkpoint. If expressed as a string, needs to be digits followed by a unit
            (like `"5MB"`).
    """
    max_shard_size = convert_file_size_to_int(max_shard_size)

    sharded_state_dicts = []
    current_block = {}
    current_block_size = 0
    total_size = 0

    for key, weight in state_dict.items():
        weight_size = weight.numel() * dtype_byte_size(weight.dtype)

        # If this weight is going to tip up over the maximal size, we split.
        if current_block_size + weight_size > max_shard_size:
            sharded_state_dicts.append(current_block)
            current_block = {}
            current_block_size = 0

        current_block[key] = weight
        current_block_size += weight_size
        total_size += weight_size

    # Add the last block
    sharded_state_dicts.append(current_block)

    # If we only have one shard, we return it
    if len(sharded_state_dicts) == 1:
        return {WEIGHTS_NAME: sharded_state_dicts[0]}, None

    # Otherwise, let's build the index
    weight_map = {}
    shards = {}
    for idx, shard in enumerate(sharded_state_dicts):
        shard_file = WEIGHTS_NAME.replace(".bin", f"-{idx+1:05d}-of-{len(sharded_state_dicts):05d}.bin")
        shards[shard_file] = shard
        for key in shard.keys():
            weight_map[key] = shard_file

    # Add the metadata
    metadata = {"total_size": total_size}
    index = {"metadata": metadata, "weight_map": weight_map}
    return shards, index


def get_checkpoint_shard_files(
    pretrained_model_name_or_path,
    index_filename,
    cache_dir=None,
    force_download=False,
    proxies=None,
    resume_download=False,
    local_files_only=False,
    use_auth_token=None,
    user_agent=None,
    revision=None,
    mirror=None,
):
    """
    For a given model:

    - download and cache all the shards of a sharded checkpoint if `pretrained_model_name_or_path` is a model ID on the
      Hub
    - returns the list of paths to all the shards, as well as some metadata.

    For the description of each arg, see [`PreTrainedModel.from_pretrained`]. `index_filename` is the full path to the
    index (downloaded and cached if `pretrained_model_name_or_path` is a model ID on the Hub).
    """
    with open(index_filename, "r") as f:
        index = json.loads(f.read())

    shard_filenames = sorted(list(set(index["weight_map"].values())))
    sharded_metadata = index["metadata"]
    sharded_metadata["all_checkpoint_keys"] = list(index["weight_map"].keys())

    # First, let's deal with local folder.
    if os.path.isdir(pretrained_model_name_or_path):
        shard_filenames = [os.path.join(pretrained_model_name_or_path, f) for f in shard_filenames]
        return shard_filenames, sharded_metadata

    # At this stage pretrained_model_name_or_path is a model identifier on the Hub
    cached_filenames = []
    for shard_filename in shard_filenames:
        shard_url = hf_bucket_url(
            pretrained_model_name_or_path, filename=shard_filename, revision=revision, mirror=mirror
        )

        try:
            # Load from URL
            cached_filename = cached_path(
                shard_url,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                resume_download=resume_download,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                user_agent=user_agent,
            )
        # We have already dealt with RepositoryNotFoundError and RevisionNotFoundError when getting the index, so
        # we don't have to catch them here.
        except EntryNotFoundError:
            raise EnvironmentError(
                f"{pretrained_model_name_or_path} does not appear to have a file named {shard_filename} which is "
                "required according to the checkpoint index."
            )
        except HTTPError:
            raise EnvironmentError(
Sylvain Gugger's avatar
Sylvain Gugger committed
332
333
                f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load {shard_filename}. You should try"
                " again after checking your internet connection."
Sylvain Gugger's avatar
Sylvain Gugger committed
334
335
336
337
338
339
340
            )

        cached_filenames.append(cached_filename)

    return cached_filenames, sharded_metadata


341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
def load_sharded_checkpoint(model, folder, strict=True):
    """
    This is the same as
    [`torch.nn.Module.load_state_dict`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html?highlight=load_state_dict#torch.nn.Module.load_state_dict)
    but for a sharded checkpoint.

    This load is performed efficiently: each checkpoint shard is loaded one by one in RAM and deleted after being
    loaded in the model.

    Args:
        model (`torch.nn.Module`): The model in which to load the checkpoint.
        folder (`str` or `os.PathLike`): A path to a folder containing the sharded checkpoint.
        strict (`bool`, *optional`, defaults to `True`):
            Whether to strictly enforce that the keys in the model state dict match the keys in the sharded checkpoint.

    Returns:
        `NamedTuple`: A named tuple with `missing_keys` and `unexpected_keys` fields
            - `missing_keys` is a list of str containing the missing keys
            - `unexpected_keys` is a list of str containing the unexpected keys
    """
    # Load the index
    index_file = os.path.join(folder, WEIGHTS_INDEX_NAME)
    if not os.path.isfile(index_file):
        raise ValueError(f"Can't find a checkpoint index ({WEIGHTS_INDEX_NAME}) in {folder}.")

    with open(index_file, "r", encoding="utf-8") as f:
        index = json.load(f)

    shard_files = list(set(index["weight_map"].values()))

    # If strict=True, error before loading any of the state dicts.
    loaded_keys = index["weight_map"].keys()
    model_keys = model.state_dict().keys()
    missing_keys = [key for key in model_keys if key not in loaded_keys]
    unexpected_keys = [key for key in loaded_keys if key not in model_keys]
    if strict and (len(missing_keys) > 0 or len(unexpected_keys) > 0):
        error_message = f"Error(s) in loading state_dict for {model.__class__.__name__}"
        if len(missing_keys) > 0:
            str_missing_keys = ",".join([f'"{k}"' for k in missing_keys])
            error_message += f"\nMissing key(s): {str_missing_keys}."
        if len(unexpected_keys) > 0:
            str_unexpected_keys = ",".join([f'"{k}"' for k in unexpected_keys])
            error_message += f"\nMissing key(s): {str_unexpected_keys}."
        raise RuntimeError(error_message)

    for shard_file in shard_files:
        state_dict = torch.load(os.path.join(folder, shard_file))
        model.load_state_dict(state_dict, strict=False)

        # Make sure memory is fred before we load the next state dict.
        del state_dict
        gc.collect()

    # Return the same thing as PyTorch load_state_dict function.
    return torch.nn.modules.module._IncompatibleKeys(missing_keys, unexpected_keys)


Sylvain Gugger's avatar
Sylvain Gugger committed
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
def load_state_dict(checkpoint_file: Union[str, os.PathLike]):
    """
    Reads a PyTorch checkpoint file, returning properly formatted errors if they arise.
    """
    try:
        return torch.load(checkpoint_file, map_location="cpu")
    except Exception as e:
        try:
            with open(checkpoint_file) as f:
                if f.read().startswith("version"):
                    raise OSError(
                        "You seem to have cloned a repository without having git-lfs installed. Please install "
                        "git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
                        "you cloned."
                    )
                else:
                    raise ValueError(
                        f"Unable to locate the file {checkpoint_file} which is necessary to load this pretrained "
                        "model. Make sure you have saved the model properly."
                    ) from e
        except (UnicodeDecodeError, ValueError):
            raise OSError(
                f"Unable to load weights from pytorch checkpoint file for '{checkpoint_file}' "
                f"at '{checkpoint_file}'. "
                "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True."
            )


def _load_state_dict_into_model(model_to_load, state_dict, start_prefix):
    # Convert old format to new format if needed from a PyTorch state_dict
    old_keys = []
    new_keys = []
    for key in state_dict.keys():
        new_key = None
        if "gamma" in key:
            new_key = key.replace("gamma", "weight")
        if "beta" in key:
            new_key = key.replace("beta", "bias")
        if new_key:
            old_keys.append(key)
            new_keys.append(new_key)
    for old_key, new_key in zip(old_keys, new_keys):
        state_dict[new_key] = state_dict.pop(old_key)

    # copy state_dict so _load_from_state_dict can modify it
    metadata = getattr(state_dict, "_metadata", None)
    state_dict = state_dict.copy()
    if metadata is not None:
        state_dict._metadata = metadata

    error_msgs = []

    # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
    # so we need to apply the function recursively.
    def load(module: nn.Module, prefix=""):
        local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
        args = (state_dict, prefix, local_metadata, True, [], [], error_msgs)
        if is_deepspeed_zero3_enabled():
            import deepspeed

            # because zero3 puts placeholders in model params, this context
            # manager gathers (unpartitions) the params of the current layer, then loads from
            # the state dict and then re-partitions them again
            with deepspeed.zero.GatheredParameters(list(module.parameters(recurse=False)), modifier_rank=0):
                if torch.distributed.get_rank() == 0:
                    module._load_from_state_dict(*args)
        else:
            module._load_from_state_dict(*args)

        for name, child in module._modules.items():
            if child is not None:
                load(child, prefix + name + ".")

    load(model_to_load, prefix=start_prefix)

    return error_msgs


476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
def find_submodule_and_param_name(model, long_key, start_prefix):
    """
    A helper util to find the last sub-module and the param/buffer name. If `start_prefix` is supplied it'll be removed
    from the start of the key
    """

    if len(start_prefix) > 0 and long_key.startswith(start_prefix):
        long_key = ".".join(long_key.split(".")[1:])

    split_key = long_key.split(".")
    submodule = model
    while len(split_key) > 1:
        if hasattr(submodule, split_key[0]):
            submodule = getattr(submodule, split_key[0])
            del split_key[0]
        else:
            submodule = None
            break
    if submodule == model:
        submodule = None
    return submodule, split_key[0]


def _move_model_to_meta(model, loaded_state_dict_keys, start_prefix):
    """
    Moves `loaded_state_dict_keys` in model to meta device which frees up the memory taken by those params.

    `start_prefix` is used for models which insert their name into model keys, e.g. `bert` in
    `bert.pooler.dense.weight`

    """

    # meta device was added in pt=1.9
    require_version_core("torch>=1.9")

    # dematerialize param storage for keys that are going to be replaced by state_dict, by
    # putting those on the meta device
    for k in loaded_state_dict_keys:
        submodule, param_name = find_submodule_and_param_name(model, k, start_prefix)
        if submodule is not None:
            # selectively switch to the meta device only those params/buffers that will
            # be next replaced from state_dict. This a complex way to do p.to_("meta")
            # since we have no in-place to_ for tensors.
            new_val = getattr(submodule, param_name)
            if isinstance(new_val, torch.nn.Parameter):
                # isinstance returns False for Params on meta device, so switch after the check
                new_val = torch.nn.Parameter(new_val.to("meta"))
            else:
                new_val = new_val.to("meta")
            setattr(submodule, param_name, new_val)


528
529
530
531
532
533
534
535
536
537
538
539
540
def _load_state_dict_into_meta_model(
    model,
    state_dict,
    loaded_state_dict_keys,  # left for now but could be removed, see below
    start_prefix,
    expected_keys,
    device_map=None,
    offload_folder=None,
    offload_index=None,
    state_dict_folder=None,
    state_dict_index=None,
    dtype=None,
):
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
    """
    This is somewhat similar to `_load_state_dict_into_model`, but deals with a model that has some or all of its
    params on a `meta` device. It replaces the model params with the data from the `state_dict`, while moving the
    params back to the normal device, but only for `loaded_state_dict_keys`.

    `start_prefix` is used for models which insert their name into model keys, e.g. `bert` in
    `bert.pooler.dense.weight`

    """

    # XXX: remaining features to implement to be fully compatible with _load_state_dict_into_model
    # - deepspeed zero 3 support
    # - need to copy metadata if any - see _load_state_dict_into_model
    # - handling error_msgs - mimicking the error handling in module._load_from_state_dict()
    # - Is there a situation where some keys aren't in `loaded_state_dict_keys` and in which case
    #   they won't get loaded.

    error_msgs = []

560
561
562
563
564
565
566
567
568
569
570
571
572
    old_keys = []
    new_keys = []
    for key in state_dict.keys():
        new_key = None
        if "gamma" in key:
            new_key = key.replace("gamma", "weight")
        if "beta" in key:
            new_key = key.replace("beta", "bias")
        if new_key:
            old_keys.append(key)
            new_keys.append(new_key)
    for old_key, new_key in zip(old_keys, new_keys):
        state_dict[new_key] = state_dict.pop(old_key)
573

574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
    for param_name, param in state_dict.items():
        # First part of the test is always true as load_state_dict_keys always contains state_dict keys.
        if param_name not in loaded_state_dict_keys or param_name not in expected_keys:
            continue

        if param_name.startswith(start_prefix):
            param_name = param_name[len(start_prefix) :]

        module_name = param_name
        # We convert floating dtypes to the `dtype` passed.
        if dtype is not None and not str(param.dtype).startswith("torch.int"):
            param = param.to(dtype)

        if device_map is None:
            param_device = "cpu"
        else:
            # find next higher level module that is defined in device_map:
            # bert.lm_head.weight -> bert.lm_head -> bert -> ''
            while len(module_name) > 0 and module_name not in device_map:
                module_name = ".".join(module_name.split(".")[:-1])
            if module_name == "" and "" not in device_map:
                # TODO: group all errors and raise at the end.
                raise ValueError(f"{param_name} doesn't have any device set.")
            param_device = device_map[module_name]

        if param_device == "disk":
            offload_index = offload_weight(param, param_name, offload_folder, offload_index)
        elif param_device == "cpu" and state_dict_index is not None:
            state_dict_index = offload_weight(param, param_name, state_dict_folder, state_dict_index)
Sylvain Gugger's avatar
Sylvain Gugger committed
603
604
        else:
            set_module_tensor_to_device(model, param_name, param_device, value=param)
605
606

    return error_msgs, offload_index, state_dict_index
607
608


609
class ModuleUtilsMixin:
Julien Chaumond's avatar
Julien Chaumond committed
610
    """
611
    A few utilities for `torch.nn.Modules`, to be used as a mixin.
Julien Chaumond's avatar
Julien Chaumond committed
612
613
    """

614
615
616
617
    @staticmethod
    def _hook_rss_memory_pre_forward(module, *args, **kwargs):
        try:
            import psutil
Sylvain Gugger's avatar
Sylvain Gugger committed
618
        except ImportError:
619
620
621
622
623
624
625
626
627
628
629
            raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")

        process = psutil.Process(os.getpid())
        mem = process.memory_info()
        module.mem_rss_pre_forward = mem.rss
        return None

    @staticmethod
    def _hook_rss_memory_post_forward(module, *args, **kwargs):
        try:
            import psutil
Sylvain Gugger's avatar
Sylvain Gugger committed
630
        except ImportError:
631
632
633
634
635
636
637
638
639
640
            raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")

        process = psutil.Process(os.getpid())
        mem = process.memory_info()
        module.mem_rss_post_forward = mem.rss
        mem_rss_diff = module.mem_rss_post_forward - module.mem_rss_pre_forward
        module.mem_rss_diff = mem_rss_diff + (module.mem_rss_diff if hasattr(module, "mem_rss_diff") else 0)
        return None

    def add_memory_hooks(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
641
642
643
        """
        Add a memory hook before and after each sub-module forward pass to record increase in memory consumption.

Sylvain Gugger's avatar
Sylvain Gugger committed
644
645
        Increase in memory consumption is stored in a `mem_rss_diff` attribute for each module and can be reset to zero
        with `model.reset_memory_hooks_state()`.
646
647
648
649
650
651
652
        """
        for module in self.modules():
            module.register_forward_pre_hook(self._hook_rss_memory_pre_forward)
            module.register_forward_hook(self._hook_rss_memory_post_forward)
        self.reset_memory_hooks_state()

    def reset_memory_hooks_state(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
653
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
654
        Reset the `mem_rss_diff` attribute of each module (see [`~modeling_utils.ModuleUtilsMixin.add_memory_hooks`]).
Sylvain Gugger's avatar
Sylvain Gugger committed
655
        """
656
657
658
659
660
        for module in self.modules():
            module.mem_rss_diff = 0
            module.mem_rss_post_forward = 0
            module.mem_rss_pre_forward = 0

661
    @property
662
    def device(self) -> device:
663
        """
664
        `torch.device`: The device on which the module is (assuming that all the module parameters are on the same
665
        device).
666
        """
Lysandre Debut's avatar
Lysandre Debut committed
667
        return get_parameter_device(self)
668

669
    @property
670
    def dtype(self) -> torch.dtype:
671
        """
672
        `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
673
        """
Lysandre Debut's avatar
Lysandre Debut committed
674
        return get_parameter_dtype(self)
675
676

    def invert_attention_mask(self, encoder_attention_mask: Tensor) -> Tensor:
Sylvain Gugger's avatar
Sylvain Gugger committed
677
678
679
680
        """
        Invert an attention mask (e.g., switches 0. and 1.).

        Args:
681
            encoder_attention_mask (`torch.Tensor`): An attention mask.
Sylvain Gugger's avatar
Sylvain Gugger committed
682
683

        Returns:
684
            `torch.Tensor`: The inverted attention mask.
Sylvain Gugger's avatar
Sylvain Gugger committed
685
        """
686
687
688
689
690
691
692
693
694
695
        if encoder_attention_mask.dim() == 3:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
        if encoder_attention_mask.dim() == 2:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
        # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
        # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
        # /transformer/transformer_layers.py#L270
        # encoder_extended_attention_mask = (encoder_extended_attention_mask ==
        # encoder_extended_attention_mask.transpose(-1, -2))
        encoder_extended_attention_mask = encoder_extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
696
697
698

        if self.dtype == torch.float16:
            encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -1e4
699
        elif self.dtype in [torch.bfloat16, torch.float32]:
700
701
702
            encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -1e9
        else:
            raise ValueError(
703
                f"{self.dtype} not recognized. `dtype` should be set to either `torch.float32` or `torch.float16`"
704
705
            )

706
707
        return encoder_extended_attention_mask

708
    @staticmethod
709
710
711
712
713
714
715
    def create_extended_attention_mask_for_decoder(input_shape, attention_mask, device=None):
        if device is not None:
            warnings.warn(
                "The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
            )
        else:
            device = attention_mask.device
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
        batch_size, seq_length = input_shape
        seq_ids = torch.arange(seq_length, device=device)
        causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
        # in case past_key_values are used we need to add a prefix ones mask to the causal mask
        # causal and attention masks must have same type with pytorch version < 1.3
        causal_mask = causal_mask.to(attention_mask.dtype)

        if causal_mask.shape[1] < attention_mask.shape[1]:
            prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
            causal_mask = torch.cat(
                [
                    torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype),
                    causal_mask,
                ],
                axis=-1,
            )

        extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
        return extended_attention_mask

736
737
738
    def get_extended_attention_mask(
        self, attention_mask: Tensor, input_shape: Tuple[int], device: device = None
    ) -> Tensor:
Sylvain Gugger's avatar
Sylvain Gugger committed
739
740
        """
        Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
741
742

        Arguments:
743
            attention_mask (`torch.Tensor`):
Sylvain Gugger's avatar
Sylvain Gugger committed
744
                Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
745
            input_shape (`Tuple[int]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
746
                The shape of the input to the model.
747
748

        Returns:
749
            `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
750
        """
751
752
753
754
755
756
        if not (attention_mask.dim() == 2 and self.config.is_decoder):
            # show warning only if it won't be shown in `create_extended_attention_mask_for_decoder`
            if device is not None:
                warnings.warn(
                    "The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
                )
757
758
759
760
761
762
763
764
765
        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        if attention_mask.dim() == 3:
            extended_attention_mask = attention_mask[:, None, :, :]
        elif attention_mask.dim() == 2:
            # Provided a padding mask of dimensions [batch_size, seq_length]
            # - if the model is a decoder, apply a causal mask in addition to the padding mask
            # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
            if self.config.is_decoder:
766
                extended_attention_mask = ModuleUtilsMixin.create_extended_attention_mask_for_decoder(
767
768
                    input_shape, attention_mask, device
                )
769
770
771
772
            else:
                extended_attention_mask = attention_mask[:, None, None, :]
        else:
            raise ValueError(
773
                f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})"
774
775
776
777
778
779
780
781
782
783
784
            )

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
        return extended_attention_mask

Sylvain Gugger's avatar
Sylvain Gugger committed
785
786
787
    def get_head_mask(
        self, head_mask: Optional[Tensor], num_hidden_layers: int, is_attention_chunked: bool = False
    ) -> Tensor:
788
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
789
790
791
        Prepare the head mask if needed.

        Args:
792
            head_mask (`torch.Tensor` with shape `[num_heads]` or `[num_hidden_layers x num_heads]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
793
                The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard).
794
            num_hidden_layers (`int`):
Sylvain Gugger's avatar
Sylvain Gugger committed
795
                The number of hidden layers in the model.
796
            is_attention_chunked: (`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
797
798
                Whether or not the attentions scores are computed by chunks or not.

799
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
800
801
            `torch.Tensor` with shape `[num_hidden_layers x batch x num_heads x seq_length x seq_length]` or list with
            `[None]` for each layer.
802
803
804
        """
        if head_mask is not None:
            head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
805
806
            if is_attention_chunked is True:
                head_mask = head_mask.unsqueeze(-1)
807
808
809
810
811
812
813
814
815
816
817
818
819
        else:
            head_mask = [None] * num_hidden_layers

        return head_mask

    def _convert_head_mask_to_5d(self, head_mask, num_hidden_layers):
        """-> [num_hidden_layers x batch x num_heads x seq_length x seq_length]"""
        if head_mask.dim() == 1:
            head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
            head_mask = head_mask.expand(num_hidden_layers, -1, -1, -1, -1)
        elif head_mask.dim() == 2:
            head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
        assert head_mask.dim() == 5, f"head_mask.dim != 5, instead {head_mask.dim()}"
820
        head_mask = head_mask.to(dtype=self.dtype)  # switch to float if need + fp16 compatibility
821
822
        return head_mask

823
824
825
826
827
    def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int:
        """
        Get number of (optionally, trainable or non-embeddings) parameters in the module.

        Args:
828
            only_trainable (`bool`, *optional*, defaults to `False`):
829
830
                Whether or not to return only the number of trainable parameters

831
            exclude_embeddings (`bool`, *optional*, defaults to `False`):
832
833
834
                Whether or not to return only the number of non-embeddings parameters

        Returns:
835
            `int`: The number of parameters.
836
837
        """

838
839
840
841
842
843
844
845
846
847
        if exclude_embeddings:
            embedding_param_names = [
                f"{name}.weight" for name, module_type in self.named_modules() if isinstance(module_type, nn.Embedding)
            ]
            non_embedding_parameters = [
                parameter for name, parameter in self.named_parameters() if name not in embedding_param_names
            ]
            return sum(p.numel() for p in non_embedding_parameters if p.requires_grad or not only_trainable)
        else:
            return sum(p.numel() for p in self.parameters() if p.requires_grad or not only_trainable)
848
849
850
851
852
853

    def estimate_tokens(self, input_dict: Dict[str, Union[torch.Tensor, Any]]) -> int:
        """
        Helper function to estimate the total number of tokens from the model inputs.

        Args:
854
            inputs (`dict`): The model inputs.
855
856

        Returns:
857
            `int`: The total number of tokens.
858
        """
859
860
        if not hasattr(self, "warnings_issued"):
            self.warnings_issued = {}
861
862
        if self.main_input_name in input_dict:
            return input_dict[self.main_input_name].numel()
863
        elif "estimate_tokens" not in self.warnings_issued:
864
            logger.warning(
865
866
                "Could not estimate the number of tokens of the input, floating-point operations will not be computed"
            )
867
868
            self.warnings_issued["estimate_tokens"] = True
        return 0
869
870
871
872
873
874
875

    def floating_point_ops(
        self, input_dict: Dict[str, Union[torch.Tensor, Any]], exclude_embeddings: bool = True
    ) -> int:
        """
        Get number of (optionally, non-embeddings) floating-point operations for the forward and backward passes of a
        batch with this transformer model. Default approximation neglects the quadratic dependency on the number of
Sylvain Gugger's avatar
Sylvain Gugger committed
876
877
        tokens (valid if `12 * d_model << sequence_length`) as laid out in [this
        paper](https://arxiv.org/pdf/2001.08361.pdf) section 2.1. Should be overridden for transformers with parameter
Sylvain Gugger's avatar
Sylvain Gugger committed
878
        re-use e.g. Albert or Universal Transformers, or if doing long-range modeling with very high sequence lengths.
879
880

        Args:
881
            batch_size (`int`):
882
883
                The batch size for the forward pass.

884
            sequence_length (`int`):
885
886
                The number of tokens in each line of the batch.

887
            exclude_embeddings (`bool`, *optional*, defaults to `True`):
888
889
890
                Whether or not to count embedding and softmax operations.

        Returns:
891
            `int`: The number of floating-point operations.
892
893
894
895
        """

        return 6 * self.estimate_tokens(input_dict) * self.num_parameters(exclude_embeddings=exclude_embeddings)

Julien Chaumond's avatar
Julien Chaumond committed
896

Sylvain Gugger's avatar
Sylvain Gugger committed
897
class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMixin):
898
899
    r"""
    Base class for all models.
900

Sylvain Gugger's avatar
Sylvain Gugger committed
901
902
    [`PreTrainedModel`] takes care of storing the configuration of the models and handles methods for loading,
    downloading and saving models as well as a few methods common to all models to:
903

904
905
        - resize the input embeddings,
        - prune heads in the self-attention heads.
906

907
    Class attributes (overridden by derived classes):
Sylvain Gugger's avatar
Sylvain Gugger committed
908

Sylvain Gugger's avatar
Sylvain Gugger committed
909
910
911
912
        - **config_class** ([`PretrainedConfig`]) -- A subclass of [`PretrainedConfig`] to use as configuration class
          for this model architecture.
        - **load_tf_weights** (`Callable`) -- A python *method* for loading a TensorFlow checkpoint in a PyTorch model,
          taking as arguments:
913

Sylvain Gugger's avatar
Sylvain Gugger committed
914
915
            - **model** ([`PreTrainedModel`]) -- An instance of the model on which to load the TensorFlow checkpoint.
            - **config** ([`PreTrainedConfig`]) -- An instance of the configuration associated to the model.
916
            - **path** (`str`) -- A path to the TensorFlow checkpoint.
917

Sylvain Gugger's avatar
Sylvain Gugger committed
918
919
        - **base_model_prefix** (`str`) -- A string indicating the attribute associated to the base model in derived
          classes of the same architecture adding modules on top of the base model.
920
        - **is_parallelizable** (`bool`) -- A flag indicating whether this model supports model parallelization.
Sylvain Gugger's avatar
Sylvain Gugger committed
921
922
        - **main_input_name** (`str`) -- The name of the principal input to the model (often `input_ids` for NLP
          models, `pixel_values` for vision models and `input_values` for speech models).
923
    """
924
    config_class = None
925
    base_model_prefix = ""
926
    main_input_name = "input_ids"
927
    _auto_class = None
928
    _no_split_modules = None
929

930
931
    # a list of `re` patterns of `state_dict` keys that should be removed from the list of missing
    # keys we find (keys inside the model but not in the checkpoint) and avoid unnecessary warnings.
932
    _keys_to_ignore_on_load_missing = None
933
934
935
    # a list of `re` patterns of `state_dict` keys that should be removed from the list of
    # unexpected keys we find (keys inside the checkpoint but not the model) and avoid unnecessary
    # warnings.
936
    _keys_to_ignore_on_load_unexpected = None
937
938
    # a list of `state_dict` keys to ignore when saving the model (useful for keys that aren't
    # trained, but which are either deterministic or tied variables)
939
    _keys_to_ignore_on_save = None
940

941
    is_parallelizable = False
942
    supports_gradient_checkpointing = False
943

944
    @property
945
    def dummy_inputs(self) -> Dict[str, torch.Tensor]:
946
        """
947
        `Dict[str, torch.Tensor]`: Dummy inputs to do a forward pass in the network.
948
        """
949
        return {"input_ids": torch.tensor(DUMMY_INPUTS)}
950

951
952
953
954
955
956
957
    @property
    def framework(self) -> str:
        """
        :str: Identifies that this is a PyTorch model.
        """
        return "pt"

958
    def __init__(self, config: PretrainedConfig, *inputs, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
959
        super().__init__()
960
961
        if not isinstance(config, PretrainedConfig):
            raise ValueError(
962
963
964
                f"Parameter config in `{self.__class__.__name__}(config)` should be an instance of class "
                "`PretrainedConfig`. To create a model from a pretrained model use "
                f"`model = {self.__class__.__name__}.from_pretrained(PRETRAINED_MODEL_NAME)`"
965
            )
966
        # Save config and origin of the pretrained weights if given in model
967
        self.config = config
968
        self.name_or_path = config.name_or_path
969
        self.warnings_issued = {}
970
971
972
973
974
975
976
977
978
979
980
981
982
983

    def post_init(self):
        """
        A method executed at the end of each Transformer model initialization, to execute code that needs the model's
        modules properly initialized (such as weight initialization).
        """
        self.init_weights()
        self._backward_compatibility_gradient_checkpointing()

    def _backward_compatibility_gradient_checkpointing(self):
        if self.supports_gradient_checkpointing and getattr(self.config, "gradient_checkpointing", False):
            self.gradient_checkpointing_enable()
            # Remove the attribute now that is has been consumed, so it's no saved in the config.
            delattr(self.config, "gradient_checkpointing")
984

985
986
987
988
989
990
    @classmethod
    def _from_config(cls, config, **kwargs):
        """
        All context managers that the model should be initialized under go here.

        Args:
991
992
            torch_dtype (`torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model under this dtype.
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
        """
        torch_dtype = kwargs.pop("torch_dtype", None)

        # override default dtype if needed
        dtype_orig = None
        if torch_dtype is not None:
            dtype_orig = cls._set_default_torch_dtype(torch_dtype)

        if is_deepspeed_zero3_enabled():
            import deepspeed

            logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
            # this immediately partitions the model across all gpus, to avoid the overhead in time
            # and memory copying it on CPU or each GPU first
1007
            with deepspeed.zero.Init(config_dict_or_path=deepspeed_config()):
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
                model = cls(config, **kwargs)
        else:
            model = cls(config, **kwargs)

        # restore default dtype if it was modified
        if dtype_orig is not None:
            torch.set_default_dtype(dtype_orig)

        return model

    @classmethod
    def _set_default_torch_dtype(cls, dtype: torch.dtype) -> torch.dtype:
        """
        Change the default dtype and return the previous one. This is needed when wanting to instantiate the model
        under specific dtype.

        Args:
1025
            dtype (`torch.dtype`):
1026
1027
1028
                a floating dtype to set to.

        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
1029
1030
            `torch.dtype`: the original `dtype` that can be used to restore `torch.set_default_dtype(dtype)` if it was
            modified. If it wasn't, returns `None`.
1031

1032
1033
        Note `set_default_dtype` currently only works with floating-point types and asserts if for example,
        `torch.int64` is passed. So if a non-float `dtype` is passed this functions will throw an exception.
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
        """
        if not dtype.is_floating_point:
            raise ValueError(
                f"Can't instantiate {cls.__name__} model under dtype={dtype} since it is not a floating point dtype"
            )

        logger.info(f"Instantiating {cls.__name__} model under default dtype {dtype}.")
        dtype_orig = torch.get_default_dtype()
        torch.set_default_dtype(dtype)
        return dtype_orig

1045
    @property
1046
1047
    def base_model(self) -> nn.Module:
        """
1048
        `torch.nn.Module`: The main body of the model.
1049
        """
1050
        return getattr(self, self.base_model_prefix, self)
thomwolf's avatar
thomwolf committed
1051

1052
    def get_input_embeddings(self) -> nn.Module:
1053
1054
1055
1056
        """
        Returns the model's input embeddings.

        Returns:
1057
            `nn.Module`: A torch module mapping vocabulary to hidden states.
thomwolf's avatar
thomwolf committed
1058
        """
1059
        base_model = getattr(self, self.base_model_prefix, self)
thomwolf's avatar
thomwolf committed
1060
1061
1062
1063
        if base_model is not self:
            return base_model.get_input_embeddings()
        else:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
1064

1065
    def set_input_embeddings(self, value: nn.Module):
1066
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1067
        Set model's input embeddings.
1068
1069

        Args:
1070
            value (`nn.Module`): A module mapping vocabulary to hidden states.
thomwolf's avatar
thomwolf committed
1071
1072
1073
1074
1075
1076
        """
        base_model = getattr(self, self.base_model_prefix, self)
        if base_model is not self:
            base_model.set_input_embeddings(value)
        else:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
1077

1078
    def get_output_embeddings(self) -> nn.Module:
1079
1080
1081
1082
        """
        Returns the model's output embeddings.

        Returns:
1083
            `nn.Module`: A torch module mapping hidden states to vocabulary.
thomwolf's avatar
thomwolf committed
1084
        """
1085
        return None  # Overwrite for models with output embeddings
thomwolf's avatar
thomwolf committed
1086

1087
1088
1089
1090
    def _init_weights(self, module):
        """
        Initialize the weights. This method should be overridden by derived class.
        """
1091
        raise NotImplementedError(f"Make sure `_init_weights` is implemented for {self.__class__}")
1092

1093
    def tie_weights(self):
1094
1095
        """
        Tie the weights between the input embeddings and the output embeddings.
1096

Sylvain Gugger's avatar
Sylvain Gugger committed
1097
1098
        If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the
        weights instead.
thomwolf's avatar
thomwolf committed
1099
        """
1100
1101
1102
1103
        if getattr(self.config, "tie_word_embeddings", True):
            output_embeddings = self.get_output_embeddings()
            if output_embeddings is not None:
                self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings())
thomwolf's avatar
thomwolf committed
1104

1105
        if getattr(self.config, "is_encoder_decoder", False) and getattr(self.config, "tie_encoder_decoder", False):
Weizhen's avatar
Weizhen committed
1106
1107
            if hasattr(self, self.base_model_prefix):
                self = getattr(self, self.base_model_prefix)
1108
1109
            self._tie_encoder_decoder_weights(self.encoder, self.decoder, self.base_model_prefix)

Sylvain Gugger's avatar
Sylvain Gugger committed
1110
1111
1112
1113
        for module in self.modules():
            if hasattr(module, "_tie_weights"):
                module._tie_weights()

1114
1115
1116
    @staticmethod
    def _tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str):
        uninitialized_encoder_weights: List[str] = []
Weizhen's avatar
Weizhen committed
1117
1118
        if decoder.__class__ != encoder.__class__:
            logger.info(
Sylvain Gugger's avatar
Sylvain Gugger committed
1119
1120
                f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder"
                " weights are correctly initialized."
Weizhen's avatar
Weizhen committed
1121
            )
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131

        def tie_encoder_to_decoder_recursively(
            decoder_pointer: nn.Module,
            encoder_pointer: nn.Module,
            module_name: str,
            uninitialized_encoder_weights: List[str],
            depth=0,
        ):
            assert isinstance(decoder_pointer, nn.Module) and isinstance(
                encoder_pointer, nn.Module
1132
            ), f"{decoder_pointer} and {encoder_pointer} have to be of type nn.Module"
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
            if hasattr(decoder_pointer, "weight"):
                assert hasattr(encoder_pointer, "weight")
                encoder_pointer.weight = decoder_pointer.weight
                if hasattr(decoder_pointer, "bias"):
                    assert hasattr(encoder_pointer, "bias")
                    encoder_pointer.bias = decoder_pointer.bias
                return

            encoder_modules = encoder_pointer._modules
            decoder_modules = decoder_pointer._modules
            if len(decoder_modules) > 0:
                assert (
                    len(encoder_modules) > 0
                ), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"

                all_encoder_weights = set([module_name + "/" + sub_name for sub_name in encoder_modules.keys()])
                encoder_layer_pos = 0
                for name, module in decoder_modules.items():
                    if name.isdigit():
                        encoder_name = str(int(name) + encoder_layer_pos)
                        decoder_name = name
Weizhen's avatar
Weizhen committed
1154
1155
1156
                        if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len(
                            encoder_modules
                        ) != len(decoder_modules):
1157
1158
                            # this can happen if the name corresponds to the position in a list module list of layers
                            # in this case the decoder has added a cross-attention that the encoder does not have
1159
                            # thus skip this step and subtract one layer pos from encoder
1160
1161
1162
1163
1164
1165
                            encoder_layer_pos -= 1
                            continue
                    elif name not in encoder_modules:
                        continue
                    elif depth > 500:
                        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1166
1167
                            "Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is"
                            " a circular dependency between two or more `nn.Modules` of your model."
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
                        )
                    else:
                        decoder_name = encoder_name = name
                    tie_encoder_to_decoder_recursively(
                        decoder_modules[decoder_name],
                        encoder_modules[encoder_name],
                        module_name + "/" + name,
                        uninitialized_encoder_weights,
                        depth=depth + 1,
                    )
                    all_encoder_weights.remove(module_name + "/" + encoder_name)

                uninitialized_encoder_weights += list(all_encoder_weights)

        # tie weights recursively
        tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights)
        if len(uninitialized_encoder_weights) > 0:
            logger.warning(
                f"The following encoder weights were not tied to the decoder {uninitialized_encoder_weights}"
            )

1189
    def _tie_or_clone_weights(self, output_embeddings, input_embeddings):
Lysandre's avatar
Lysandre committed
1190
        """Tie or clone module weights depending of whether we are using TorchScript or not"""
thomwolf's avatar
thomwolf committed
1191
        if self.config.torchscript:
1192
            output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone())
thomwolf's avatar
thomwolf committed
1193
        else:
1194
            output_embeddings.weight = input_embeddings.weight
thomwolf's avatar
thomwolf committed
1195

Sam Shleifer's avatar
Sam Shleifer committed
1196
        if getattr(output_embeddings, "bias", None) is not None:
1197
            output_embeddings.bias.data = nn.functional.pad(
1198
                output_embeddings.bias.data,
Lysandre's avatar
Lysandre committed
1199
1200
1201
1202
                (
                    0,
                    output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0],
                ),
1203
1204
                "constant",
                0,
1205
            )
1206
        if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"):
1207
            output_embeddings.out_features = input_embeddings.num_embeddings
1208

1209
    def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding:
1210
        """
1211
        Resizes input token embeddings matrix of the model if `new_num_tokens != config.vocab_size`.
1212

1213
        Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
thomwolf's avatar
thomwolf committed
1214

1215
        Arguments:
1216
            new_num_tokens (`int`, *optional*):
1217
                The number of new tokens in the embedding matrix. Increasing the size will add newly initialized
Sylvain Gugger's avatar
Sylvain Gugger committed
1218
1219
                vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
                returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything.
1220
1221

        Return:
1222
            `torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model.
thomwolf's avatar
thomwolf committed
1223
        """
1224
        model_embeds = self._resize_token_embeddings(new_num_tokens)
thomwolf's avatar
thomwolf committed
1225
1226
        if new_num_tokens is None:
            return model_embeds
thomwolf's avatar
thomwolf committed
1227
1228
1229

        # Update base model and current model config
        self.config.vocab_size = new_num_tokens
1230
        self.vocab_size = new_num_tokens
thomwolf's avatar
thomwolf committed
1231
1232

        # Tie weights again if needed
1233
        self.tie_weights()
thomwolf's avatar
thomwolf committed
1234

thomwolf's avatar
thomwolf committed
1235
1236
        return model_embeds

1237
    def _resize_token_embeddings(self, new_num_tokens):
thomwolf's avatar
thomwolf committed
1238
1239
1240
        old_embeddings = self.get_input_embeddings()
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)
        self.set_input_embeddings(new_embeddings)
1241
1242
1243
1244
1245
1246
1247

        # if word embeddings are not tied, make sure that lm head is resized as well
        if self.get_output_embeddings() is not None and not self.config.tie_word_embeddings:
            old_lm_head = self.get_output_embeddings()
            new_lm_head = self._get_resized_lm_head(old_lm_head, new_num_tokens)
            self.set_output_embeddings(new_lm_head)

thomwolf's avatar
thomwolf committed
1248
        return self.get_input_embeddings()
1249

1250
    def _get_resized_embeddings(
1251
1252
        self, old_embeddings: nn.Embedding, new_num_tokens: Optional[int] = None
    ) -> nn.Embedding:
1253
1254
1255
        """
        Build a resized Embedding Module from a provided token Embedding Module. Increasing the size will add newly
        initialized vectors at the end. Reducing the size will remove vectors from the end
1256
1257

        Args:
1258
            old_embeddings (`torch.nn.Embedding`):
1259
                Old embeddings to be resized.
1260
            new_num_tokens (`int`, *optional*):
1261
                New number of tokens in the embedding matrix.
1262
1263

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
1264
1265
                vectors from the end. If not provided or `None`, just returns a pointer to the input tokens
                ``torch.nn.Embedding``` module of the model without doing anything.
1266
1267

        Return:
1268
1269
            `torch.nn.Embedding`: Pointer to the resized Embedding Module or the old Embedding Module if
            `new_num_tokens` is `None`
1270
1271
1272
1273
        """
        if new_num_tokens is None:
            return old_embeddings

1274
1275
1276
1277
1278
1279
1280
1281
        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_embeddings.weight, modifier_rank=None):
                old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
        else:
            old_num_tokens, old_embedding_dim = old_embeddings.weight.size()

1282
1283
1284
        if old_num_tokens == new_num_tokens:
            return old_embeddings

1285
1286
        if not isinstance(old_embeddings, nn.Embedding):
            raise TypeError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1287
1288
1289
                f"Old embeddings are of type {type(old_embeddings)}, which is not an instance of {nn.Embedding}. You"
                " should either use a different resize function or make sure that `old_embeddings` are an instance of"
                f" {nn.Embedding}."
1290
1291
            )

1292
        # Build new embeddings
1293
        new_embeddings = nn.Embedding(new_num_tokens, old_embedding_dim)
1294
        new_embeddings.to(old_embeddings.weight.device, dtype=old_embeddings.weight.dtype)
1295
1296
1297
1298

        # initialize all new embeddings (in particular added tokens)
        self._init_weights(new_embeddings)

1299
        # Copy token embeddings from the previous weights
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310

        # numbers of tokens to copy
        n = min(old_num_tokens, new_num_tokens)
        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_embeddings.weight, modifier_rank=0):
                if torch.distributed.get_rank() == 0:
                    new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :]
        else:
            new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :]
1311
1312
1313

        return new_embeddings

1314
    def _get_resized_lm_head(
1315
1316
        self, old_lm_head: nn.Linear, new_num_tokens: Optional[int] = None, transposed: Optional[bool] = False
    ) -> nn.Linear:
1317
1318
1319
1320
1321
        """
        Build a resized Linear Module from a provided old Linear Module. Increasing the size will add newly initialized
        vectors at the end. Reducing the size will remove vectors from the end

        Args:
1322
            old_lm_head (`torch.nn.Linear`):
1323
                Old lm head liner layer to be resized.
1324
            new_num_tokens (`int`, *optional*):
1325
1326
1327
                New number of tokens in the linear matrix.

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
1328
                vectors from the end. If not provided or `None`, just returns a pointer to the input tokens
Sylvain Gugger's avatar
Sylvain Gugger committed
1329
1330
1331
                ``torch.nn.Linear``` module of the model without doing anything. transposed (`bool`, *optional*,
                defaults to `False`): Whether `old_lm_head` is transposed or not. If True `old_lm_head.size()` is
                `lm_head_dim, vocab_size` else `vocab_size, lm_head_dim`.
1332
1333

        Return:
Sylvain Gugger's avatar
Sylvain Gugger committed
1334
1335
            `torch.nn.Linear`: Pointer to the resized Linear Module or the old Linear Module if `new_num_tokens` is
            `None`
1336
1337
1338
1339
        """
        if new_num_tokens is None:
            return old_lm_head

1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_lm_head.weight, modifier_rank=None):
                old_num_tokens, old_lm_head_dim = (
                    old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
                )
        else:
            old_num_tokens, old_lm_head_dim = (
                old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
            )
1351
1352
1353
1354
1355
1356

        if old_num_tokens == new_num_tokens:
            return old_lm_head

        if not isinstance(old_lm_head, nn.Linear):
            raise TypeError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1357
1358
1359
                f"Old language model head is of type {type(old_lm_head)}, which is not an instance of {nn.Linear}. You"
                " should either use a different resize function or make sure that `old_lm_head` are an instance of"
                f" {nn.Linear}."
1360
1361
1362
1363
1364
            )

        # Build new lm head
        new_lm_head_shape = (old_lm_head_dim, new_num_tokens) if not transposed else (new_num_tokens, old_lm_head_dim)
        has_new_lm_head_bias = old_lm_head.bias is not None
1365
        new_lm_head = nn.Linear(*new_lm_head_shape, bias=has_new_lm_head_bias)
1366
        new_lm_head = new_lm_head.to(old_lm_head.weight.device, dtype=old_lm_head.weight.dtype)
1367
1368
1369
1370
1371
1372

        # initialize new lm head (in particular added tokens)
        self._init_weights(new_lm_head)

        num_tokens_to_copy = min(old_num_tokens, new_num_tokens)

1373
1374
1375
1376
        # XXX: put the long block of code in a wrapper
        if is_deepspeed_zero3_enabled():
            import deepspeed

1377
1378
            params = [old_lm_head.weight, old_lm_head.bias, new_lm_head.weight, new_lm_head.bias]
            with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
                if torch.distributed.get_rank() == 0:
                    # Copy old lm head weights to new lm head
                    if not transposed:
                        new_lm_head.weight.data[:num_tokens_to_copy, :] = old_lm_head.weight.data[
                            :num_tokens_to_copy, :
                        ]
                    else:
                        new_lm_head.weight.data[:, :num_tokens_to_copy] = old_lm_head.weight.data[
                            :, :num_tokens_to_copy
                        ]

                    # Copy bias weights to new lm head
                    if has_new_lm_head_bias:
                        new_lm_head.bias.data[:num_tokens_to_copy] = old_lm_head.bias.data[:num_tokens_to_copy]
1393
        else:
1394
1395
1396
1397
1398
            # Copy old lm head weights to new lm head
            if not transposed:
                new_lm_head.weight.data[:num_tokens_to_copy, :] = old_lm_head.weight.data[:num_tokens_to_copy, :]
            else:
                new_lm_head.weight.data[:, :num_tokens_to_copy] = old_lm_head.weight.data[:, :num_tokens_to_copy]
1399

1400
1401
1402
            # Copy bias weights to new lm head
            if has_new_lm_head_bias:
                new_lm_head.bias.data[:num_tokens_to_copy] = old_lm_head.bias.data[:num_tokens_to_copy]
1403
1404
1405

        return new_lm_head

1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
    def resize_position_embeddings(self, new_num_position_embeddings: int):
        raise NotImplementedError(
            f"`resize_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should "
            f"overwrite this method in the class {self.__class__} in `modeling_{self.__class__.__module__}.py`"
        )

    def get_position_embeddings(self) -> Union[nn.Embedding, Tuple[nn.Embedding]]:
        raise NotImplementedError(
            f"`get_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should "
            f"overwrite this method in the class {self.__class__} in `modeling_{self.__class__.__module__}.py`"
        )

1418
    def init_weights(self):
1419
        """
1420
        If needed prunes and maybe initializes weights.
1421
        """
1422
1423
1424
1425
        # Prune heads if needed
        if self.config.pruned_heads:
            self.prune_heads(self.config.pruned_heads)

1426
1427
1428
1429
1430
1431
1432
        if _init_weights:
            # Initialize weights
            self.apply(self._init_weights)

            # Tie weights should be skipped when not initializing all weights
            # since from_pretrained(...) calls tie weights anyways
            self.tie_weights()
1433

1434
1435
1436
    def prune_heads(self, heads_to_prune: Dict[int, List[int]]):
        """
        Prunes heads of the base model.
1437

1438
        Arguments:
1439
            heads_to_prune (`Dict[int, List[int]]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1440
1441
1442
                Dictionary with keys being selected layer indices (`int`) and associated values being the list of heads
                to prune in said layer (list of `int`). For instance {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on
                layer 1 and heads 2 and 3 on layer 2.
thomwolf's avatar
thomwolf committed
1443
        """
1444
        # save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads
1445
        for layer, heads in heads_to_prune.items():
1446
1447
1448
            union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads)
            self.config.pruned_heads[layer] = list(union_heads)  # Unfortunately we have to store it as list for JSON

1449
        self.base_model._prune_heads(heads_to_prune)
thomwolf's avatar
thomwolf committed
1450

1451
    def gradient_checkpointing_enable(self):
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
        """
        Activates gradient checkpointing for the current model.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        if not self.supports_gradient_checkpointing:
            raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
        self.apply(partial(self._set_gradient_checkpointing, value=True))

1462
    def gradient_checkpointing_disable(self):
1463
1464
1465
1466
1467
1468
1469
1470
1471
        """
        Deactivates gradient checkpointing for the current model.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        if self.supports_gradient_checkpointing:
            self.apply(partial(self._set_gradient_checkpointing, value=False))

1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
    @property
    def is_gradient_checkpointing(self) -> bool:
        """
        Whether gradient checkpointing is activated for this model or not.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules())

1482
1483
1484
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
1485
        is_main_process: bool = True,
1486
1487
        state_dict: Optional[dict] = None,
        save_function: Callable = torch.save,
Sylvain Gugger's avatar
Sylvain Gugger committed
1488
        push_to_hub: bool = False,
Sylvain Gugger's avatar
Sylvain Gugger committed
1489
        max_shard_size: Union[int, str] = "10GB",
Sylvain Gugger's avatar
Sylvain Gugger committed
1490
        **kwargs,
1491
    ):
1492
1493
        """
        Save a model and its configuration file to a directory, so that it can be re-loaded using the
1494
        `[`~PreTrainedModel.from_pretrained`]` class method.
1495

1496
        Arguments:
1497
            save_directory (`str` or `os.PathLike`):
1498
                Directory to which to save. Will be created if it doesn't exist.
1499
1500
1501
1502
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful when in distributed training like
                TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on
                the main process to avoid race conditions.
1503
            state_dict (nested dictionary of `torch.Tensor`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1504
1505
1506
                The state dictionary of the model to save. Will default to `self.state_dict()`, but can be used to only
                save parts of the model or if special precautions need to be taken when recovering the state dictionary
                of a model (like when using model parallelism).
1507
            save_function (`Callable`):
1508
                The function to use to save the state dictionary. Useful on distributed training like TPUs when one
1509
1510
                need to replace `torch.save` by another method.
            push_to_hub (`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1511
                Whether or not to push your model to the Hugging Face model hub after saving it.
1512

1513
                <Tip warning={true}>
1514

Sylvain Gugger's avatar
Sylvain Gugger committed
1515
1516
1517
                Using `push_to_hub=True` will synchronize the repository you are pushing to with `save_directory`,
                which requires `save_directory` to be a local clone of the repo you are pushing to if it's an existing
                folder. Pass along `temp_dir=True` to use a temporary directory instead.
1518
1519

                </Tip>
1520

Sylvain Gugger's avatar
Sylvain Gugger committed
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
            max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
                The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size
                lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`).

                <Tip warning={true}>

                If a single weight of the model is bigger than `max_shard_size`, it will be in its own checkpoint shard
                which will be bigger than `max_shard_size`.

                </Tip>

Sylvain Gugger's avatar
Sylvain Gugger committed
1532
            kwargs:
1533
                Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
1534
        """
1535
1536
1537
1538
1539
1540
        if "save_config" in kwargs:
            warnings.warn(
                "`save_config` is deprecated and will be removed in v5 of Transformers. Use `is_main_process` instead."
            )
            is_main_process = kwargs.pop("save_config")

1541
        if os.path.isfile(save_directory):
1542
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
1543
            return
1544
1545
1546
1547
1548

        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
            repo = self._create_or_get_repo(save_directory, **kwargs)

1549
        os.makedirs(save_directory, exist_ok=True)
1550

Julien Chaumond's avatar
Julien Chaumond committed
1551
        # Only save the model itself if we are using distributed training
1552
        model_to_save = unwrap_model(self)
1553

1554
1555
1556
1557
1558
        # save the string version of dtype to the config, e.g. convert torch.float32 => "float32"
        # we currently don't use this setting automatically, but may start to use with v5
        dtype = get_parameter_dtype(model_to_save)
        model_to_save.config.torch_dtype = str(dtype).split(".")[1]

Julien Chaumond's avatar
Julien Chaumond committed
1559
1560
1561
        # Attach architecture to the config
        model_to_save.config.architectures = [model_to_save.__class__.__name__]

1562
1563
1564
1565
1566
        # If we have a custom model, we copy the file defining it in the folder and set the attributes so it can be
        # loaded from the Hub.
        if self._auto_class is not None:
            custom_object_save(self, save_directory, config=self.config)

1567
        # Save the config
1568
        if is_main_process:
1569
1570
1571
1572
1573
            model_to_save.config.save_pretrained(save_directory)

        # Save the model
        if state_dict is None:
            state_dict = model_to_save.state_dict()
1574
1575

        # Handle the case where some state_dict keys shouldn't be saved
1576
        if self._keys_to_ignore_on_save is not None:
1577
            for ignore_key in self._keys_to_ignore_on_save:
1578
1579
                if ignore_key in state_dict.keys():
                    del state_dict[ignore_key]
1580

Sylvain Gugger's avatar
Sylvain Gugger committed
1581
1582
1583
1584
1585
1586
        # Shard the model if it is too big.
        shards, index = shard_checkpoint(state_dict, max_shard_size=max_shard_size)

        # Clean the folder from a previous save
        for filename in os.listdir(save_directory):
            full_filename = os.path.join(save_directory, filename)
1587
1588
1589
1590
1591
1592
1593
1594
            # If we have a shard file that is not going to be replaced, we delete it, but only from the main process
            # in distributed settings to avoid race conditions.
            if (
                filename.startswith(WEIGHTS_NAME[:-4])
                and os.path.isfile(full_filename)
                and filename not in shards.keys()
                and is_main_process
            ):
Sylvain Gugger's avatar
Sylvain Gugger committed
1595
                os.remove(full_filename)
1596

Sylvain Gugger's avatar
Sylvain Gugger committed
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
        # Save the model
        for shard_file, shard in shards.items():
            save_function(shard, os.path.join(save_directory, shard_file))

        if index is None:
            logger.info(f"Model weights saved in {os.path.join(save_directory, WEIGHTS_NAME)}")
        else:
            save_index_file = os.path.join(save_directory, WEIGHTS_INDEX_NAME)
            # Save the index as well
            with open(save_index_file, "w", encoding="utf-8") as f:
                content = json.dumps(index, indent=2, sort_keys=True) + "\n"
                f.write(content)
            logger.info(
                f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be "
                f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the "
                f"index located at {save_index_file}."
            )
1614

Sylvain Gugger's avatar
Sylvain Gugger committed
1615
        if push_to_hub:
1616
            url = self._push_to_hub(repo, commit_message=commit_message)
Sylvain Gugger's avatar
Sylvain Gugger committed
1617
1618
            logger.info(f"Model pushed to the hub in this commit: {url}")

1619
    @classmethod
1620
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
1621
1622
        r"""
        Instantiate a pretrained pytorch model from a pre-trained model configuration.
1623

Sylvain Gugger's avatar
Sylvain Gugger committed
1624
1625
        The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
        the model, you should first set it back in training mode with `model.train()`.
1626

1627
        The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
1628
1629
        pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
        task.
1630

1631
        The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
1632
        weights are discarded.
1633

1634
        Parameters:
1635
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
1636
1637
                Can be either:

1638
                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
Sylvain Gugger's avatar
Sylvain Gugger committed
1639
1640
                      Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a
                      user or organization name, like `dbmdz/bert-base-german-cased`.
1641
1642
1643
                    - A path to a *directory* containing model weights saved using
                      [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
                    - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
Sylvain Gugger's avatar
Sylvain Gugger committed
1644
1645
1646
                      this case, `from_tf` should be set to `True` and a configuration object should be provided as
                      `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
                      PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
1647
                    - A path or url to a model folder containing a *flax checkpoint file* in *.msgpack* format (e.g,
Sylvain Gugger's avatar
Sylvain Gugger committed
1648
1649
                      `./flax_model/` containing `flax_model.msgpack`). In this case, `from_flax` should be set to
                      `True`.
1650
1651
1652
1653
1654
                    - `None` if you are both providing the configuration and state dictionary (resp. with keyword
                      arguments `config` and `state_dict`).
            model_args (sequence of positional arguments, *optional*):
                All remaining positional arguments will be passed to the underlying model's `__init__` method.
            config (`Union[PretrainedConfig, str, os.PathLike]`, *optional*):
1655
1656
                Can be either:

1657
1658
                    - an instance of a class derived from [`PretrainedConfig`],
                    - a string or path valid as input to [`~PretrainedConfig.from_pretrained`].
1659

1660
                Configuration for the model to use instead of an automatically loaded configuration. Configuration can
1661
1662
                be automatically loaded when:

1663
                    - The model is a model provided by the library (loaded with the *model id* string of a pretrained
1664
                      model).
Sylvain Gugger's avatar
Sylvain Gugger committed
1665
1666
                    - The model was saved using [`~PreTrainedModel.save_pretrained`] and is reloaded by supplying the
                      save directory.
1667
1668
1669
                    - The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a
                      configuration JSON file named *config.json* is found in the directory.
            state_dict (`Dict[str, torch.Tensor]`, *optional*):
1670
1671
1672
                A state dictionary to use instead of a state dictionary loaded from saved weights file.

                This option can be used if you want to create a model from a pretrained configuration but load your own
Sylvain Gugger's avatar
Sylvain Gugger committed
1673
                weights. In this case though, you should check if using [`~PreTrainedModel.save_pretrained`] and
1674
1675
                [`~PreTrainedModel.from_pretrained`] is not a simpler option.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
1676
1677
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
1678
            from_tf (`bool`, *optional*, defaults to `False`):
1679
                Load the model weights from a TensorFlow checkpoint save file (see docstring of
1680
1681
                `pretrained_model_name_or_path` argument).
            from_flax (`bool`, *optional*, defaults to `False`):
1682
                Load the model weights from a Flax checkpoint save file (see docstring of
1683
1684
                `pretrained_model_name_or_path` argument).
            ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`):
1685
1686
1687
                Whether or not to raise an error if some of the weights from the checkpoint do not have the same size
                as the weights of the model (if for instance, you are instantiating a model with 10 labels from a
                checkpoint with 3 labels).
1688
            force_download (`bool`, *optional*, defaults to `False`):
1689
1690
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
1691
            resume_download (`bool`, *optional*, defaults to `False`):
1692
1693
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
1694
            proxies (`Dict[str, str]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1695
1696
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
1697
            output_loading_info(`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1698
                Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
1699
            local_files_only(`bool`, *optional*, defaults to `False`):
Stas Bekman's avatar
Stas Bekman committed
1700
                Whether or not to only look at local files (i.e., do not try to download the model).
1701
            use_auth_token (`str` or *bool*, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1702
1703
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `transformers-cli login` (stored in `~/.huggingface`).
1704
            revision (`str`, *optional*, defaults to `"main"`):
Julien Chaumond's avatar
Julien Chaumond committed
1705
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
1706
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
Julien Chaumond's avatar
Julien Chaumond committed
1707
                identifier allowed by git.
1708
            mirror (`str`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1709
1710
1711
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information.
1712
            _fast_init(`bool`, *optional*, defaults to `True`):
1713
1714
                Whether or not to disable fast initialization.

1715
1716
                <Tip warning={true}>

Sylvain Gugger's avatar
Sylvain Gugger committed
1717
1718
1719
                One should only disable *_fast_init* to ensure backwards compatibility with `transformers.__version__ <
                4.6.0` for seeded model initialization. This argument will be removed at the next major version. See
                [pull request 11471](https://github.com/huggingface/transformers/pull/11471) for more information.
1720

1721
                </Tip>
1722

1723
1724
1725
            > Parameters for big model inference

            low_cpu_mem_usage(`bool`, *optional*):
1726
1727
1728
1729
1730
                Tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                This is an experimental feature and a subject to change at any moment.
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model under this dtype. If `"auto"` is passed the dtype
                will be automatically derived from the model's weights.
1731
1732
1733
1734
1735
1736
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
                A map that specifies where each submodule should go. It doesn't need to be refined to each
                parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the
                same device.

                To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`.
1737
1738
1739
            max_memory (`Dict`, *optional*):
                A dictionary device identifier to maximum memory. Will default to the maximum memory available for each
                GPU and the available CPU RAM if unset.
1740
1741
1742
1743
1744
1745
            offload_folder (`str` or `os.PathLike`, *optional*):
                If the `device_map` contains any value `"disk"`, the folder where we will offload weights.
            offload_state_dict (`bool`, *optional*, defaults to `False`):
                If `True`, will temporarily offload the CPU state dict to the hard drive to avoid getting out of CPU
                RAM if the weight of the CPU state dict + the biggest shard of the checkpoint does not fit.

1746
            kwargs (remaining dictionary of keyword arguments, *optional*):
1747
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
1748
                `output_attentions=True`). Behaves differently depending on whether a `config` is provided or
1749
1750
                automatically loaded:

1751
1752
                    - If a configuration is provided with `config`, `**kwargs` will be directly passed to the
                      underlying model's `__init__` method (we assume all relevant updates to the configuration have
1753
                      already been done)
1754
                    - If a configuration is not provided, `kwargs` will be first passed to the configuration class
Sylvain Gugger's avatar
Sylvain Gugger committed
1755
1756
1757
1758
                      initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that
                      corresponds to a configuration attribute will be used to override said attribute with the
                      supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute
                      will be passed to the underlying model's `__init__` function.
1759
1760
1761
1762
1763
1764
1765
1766
1767

        <Tip>

        Passing `use_auth_token=True`` is required when you want to use a private model.

        </Tip>

        <Tip>

Sylvain Gugger's avatar
Sylvain Gugger committed
1768
1769
        Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to
        use this method in a firewalled environment.
1770
1771
1772
1773
1774
1775
1776

        </Tip>

        Examples:

        ```python
        >>> from transformers import BertConfig, BertModel
Sylvain Gugger's avatar
Sylvain Gugger committed
1777

1778
        >>> # Download model and configuration from huggingface.co and cache.
Sylvain Gugger's avatar
Sylvain Gugger committed
1779
        >>> model = BertModel.from_pretrained("bert-base-uncased")
1780
        >>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable).
Sylvain Gugger's avatar
Sylvain Gugger committed
1781
        >>> model = BertModel.from_pretrained("./test/saved_model/")
1782
        >>> # Update configuration during loading.
Sylvain Gugger's avatar
Sylvain Gugger committed
1783
        >>> model = BertModel.from_pretrained("bert-base-uncased", output_attentions=True)
1784
1785
        >>> assert model.config.output_attentions == True
        >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable).
Sylvain Gugger's avatar
Sylvain Gugger committed
1786
1787
        >>> config = BertConfig.from_json_file("./tf_model/my_tf_model_config.json")
        >>> model = BertModel.from_pretrained("./tf_model/my_tf_checkpoint.ckpt.index", from_tf=True, config=config)
1788
        >>> # Loading from a Flax checkpoint file instead of a PyTorch model (slower)
Sylvain Gugger's avatar
Sylvain Gugger committed
1789
        >>> model = BertModel.from_pretrained("bert-base-uncased", from_flax=True)
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
        ```

        * `low_cpu_mem_usage` algorithm:

        This is an experimental function that loads the model using ~1x model size CPU memory

        Here is how it works:

        1. save which state_dict keys we have
        2. drop state_dict before the model is created, since the latter takes 1x model size CPU memory
        3. after the model has been instantiated switch to the meta device all params/buffers that
        are going to be replaced from the loaded state_dict
        4. load state_dict 2nd time
        5. replace the params/buffers from the state_dict

        Currently, it can't handle deepspeed ZeRO stage 3 and ignores loading errors

        """
1808
1809
1810
1811
        config = kwargs.pop("config", None)
        state_dict = kwargs.pop("state_dict", None)
        cache_dir = kwargs.pop("cache_dir", None)
        from_tf = kwargs.pop("from_tf", False)
1812
        from_flax = kwargs.pop("from_flax", False)
1813
        ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
1814
1815
1816
1817
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        output_loading_info = kwargs.pop("output_loading_info", False)
1818
        local_files_only = kwargs.pop("local_files_only", False)
1819
        use_auth_token = kwargs.pop("use_auth_token", None)
Julien Chaumond's avatar
Julien Chaumond committed
1820
        revision = kwargs.pop("revision", None)
1821
        mirror = kwargs.pop("mirror", None)
1822
1823
        from_pipeline = kwargs.pop("_from_pipeline", None)
        from_auto_class = kwargs.pop("_from_auto", False)
1824
        _fast_init = kwargs.pop("_fast_init", True)
1825
        torch_dtype = kwargs.pop("torch_dtype", None)
1826
1827
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", None)
        device_map = kwargs.pop("device_map", None)
1828
        max_memory = kwargs.pop("max_memory", None)
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
        offload_folder = kwargs.pop("offload_folder", None)
        offload_state_dict = kwargs.pop("offload_state_dict", False)

        if device_map is not None:
            if low_cpu_mem_usage is None:
                low_cpu_mem_usage = True
            elif not low_cpu_mem_usage:
                raise ValueError("Passing along a `device_map` requires `low_cpu_mem_usage=True`")

        if low_cpu_mem_usage:
            # low_cpu_mem_usage requires PyTorch >= 1.9 to have the meta device.
            require_version_core("torch>=1.9")

            if is_deepspeed_zero3_enabled():
                raise ValueError(
                    "DeepSpeed Zero-3 is not compatible with `low_cpu_mem_usage=True` or with passing a `device_map`."
                )
            elif not is_accelerate_available():
                raise ImportError(
                    "Using `low_cpu_mem_usage=True` or a `device_map` requires Accelerate: `pip install accelerate`"
                )
1850
1851

        from_pt = not (from_tf | from_flax)
1852
1853
1854
1855

        user_agent = {"file_type": "model", "framework": "pytorch", "from_auto_class": from_auto_class}
        if from_pipeline is not None:
            user_agent["using_pipeline"] = from_pipeline
thomwolf's avatar
thomwolf committed
1856

1857
1858
1859
1860
        if is_offline_mode() and not local_files_only:
            logger.info("Offline mode: forcing local_files_only=True")
            local_files_only = True

1861
1862
1863
        # Load config if we don't provide a configuration
        if not isinstance(config, PretrainedConfig):
            config_path = config if config is not None else pretrained_model_name_or_path
1864
            config, model_kwargs = cls.config_class.from_pretrained(
1865
1866
1867
                config_path,
                cache_dir=cache_dir,
                return_unused_kwargs=True,
1868
                force_download=force_download,
1869
                resume_download=resume_download,
1870
                proxies=proxies,
1871
                local_files_only=local_files_only,
1872
                use_auth_token=use_auth_token,
Julien Chaumond's avatar
Julien Chaumond committed
1873
                revision=revision,
1874
1875
                _from_auto=from_auto_class,
                _from_pipeline=from_pipeline,
1876
                **kwargs,
1877
1878
1879
            )
        else:
            model_kwargs = kwargs
1880

Sylvain Gugger's avatar
Sylvain Gugger committed
1881
1882
1883
1884
        # This variable will flag if we're loading a sharded checkpoint. In this case the archive file is just the
        # index of the files.
        is_sharded = False
        sharded_metadata = None
thomwolf's avatar
thomwolf committed
1885
        # Load model
thomwolf's avatar
thomwolf committed
1886
        if pretrained_model_name_or_path is not None:
1887
            pretrained_model_name_or_path = str(pretrained_model_name_or_path)
1888
            if os.path.isdir(pretrained_model_name_or_path):
thomwolf's avatar
thomwolf committed
1889
                if from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")):
1890
                    # Load from a TF 1.0 checkpoint in priority if from_tf
thomwolf's avatar
thomwolf committed
1891
                    archive_file = os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")
thomwolf's avatar
thomwolf committed
1892
                elif from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)):
1893
                    # Load from a TF 2.0 checkpoint in priority if from_tf
thomwolf's avatar
thomwolf committed
1894
                    archive_file = os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)
1895
1896
1897
                elif from_flax and os.path.isfile(os.path.join(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME)):
                    # Load from a Flax checkpoint in priority if from_flax
                    archive_file = os.path.join(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME)
thomwolf's avatar
thomwolf committed
1898
1899
                elif os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)):
                    # Load from a PyTorch checkpoint
thomwolf's avatar
thomwolf committed
1900
                    archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
Sylvain Gugger's avatar
Sylvain Gugger committed
1901
1902
1903
1904
                elif os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_INDEX_NAME)):
                    # Load from a sharded PyTorch checkpoint
                    archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_INDEX_NAME)
                    is_sharded = True
1905
1906
1907
1908
1909
1910
1911
1912
1913
                # At this stage we don't have a weight file so we will raise an error.
                elif os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")
                ) or os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)):
                    raise EnvironmentError(
                        f"Error no file named {WEIGHTS_NAME} found in directory {pretrained_model_name_or_path} but "
                        "there is a file for TensorFlow weights. Use `from_tf=True` to load this model from those "
                        "weights."
                    )
Nathan Dahlberg's avatar
Nathan Dahlberg committed
1914
                elif os.path.isfile(os.path.join(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME)):
1915
1916
1917
1918
1919
                    raise EnvironmentError(
                        f"Error no file named {WEIGHTS_NAME} found in directory {pretrained_model_name_or_path} but "
                        "there is a file for Flax weights. Use `from_flax=True` to load this model from those "
                        "weights."
                    )
thomwolf's avatar
thomwolf committed
1920
                else:
1921
                    raise EnvironmentError(
1922
1923
                        f"Error no file named {WEIGHTS_NAME}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME + '.index'} or "
                        f"{FLAX_WEIGHTS_NAME} found in directory {pretrained_model_name_or_path}."
1924
                    )
1925
            elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
1926
                archive_file = pretrained_model_name_or_path
1927
            elif os.path.isfile(pretrained_model_name_or_path + ".index"):
1928
1929
1930
1931
1932
                if not from_tf:
                    raise ValueError(
                        f"We found a TensorFlow checkpoint at {pretrained_model_name_or_path + '.index'}, please set "
                        "from_tf to True to load from this checkpoint."
                    )
1933
                archive_file = pretrained_model_name_or_path + ".index"
1934
            else:
1935
1936
1937
1938
1939
1940
1941
1942
                # set correct filename
                if from_tf:
                    filename = TF2_WEIGHTS_NAME
                elif from_flax:
                    filename = FLAX_WEIGHTS_NAME
                else:
                    filename = WEIGHTS_NAME

thomwolf's avatar
thomwolf committed
1943
                archive_file = hf_bucket_url(
1944
                    pretrained_model_name_or_path, filename=filename, revision=revision, mirror=mirror
thomwolf's avatar
thomwolf committed
1945
                )
1946

thomwolf's avatar
thomwolf committed
1947
            try:
1948
                # Load from URL or cache if already cached
1949
1950
1951
1952
1953
1954
                resolved_archive_file = cached_path(
                    archive_file,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    resume_download=resume_download,
1955
                    local_files_only=local_files_only,
1956
                    use_auth_token=use_auth_token,
1957
                    user_agent=user_agent,
1958
                )
1959

1960
            except RepositoryNotFoundError:
1961
1962
1963
1964
1965
1966
                raise EnvironmentError(
                    f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier "
                    "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a "
                    "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli "
                    "login` and pass `use_auth_token=True`."
                )
1967
            except RevisionNotFoundError:
1968
1969
1970
1971
1972
                raise EnvironmentError(
                    f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for "
                    "this model name. Check the model page at "
                    f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions."
                )
1973
            except EntryNotFoundError:
1974
                if filename == WEIGHTS_NAME:
Sylvain Gugger's avatar
Sylvain Gugger committed
1975
1976
1977
1978
1979
1980
1981
                    try:
                        # Maybe the checkpoint is sharded, we try to grab the index name in this case.
                        archive_file = hf_bucket_url(
                            pretrained_model_name_or_path,
                            filename=WEIGHTS_INDEX_NAME,
                            revision=revision,
                            mirror=mirror,
1982
                        )
Sylvain Gugger's avatar
Sylvain Gugger committed
1983
1984
1985
1986
1987
1988
1989
1990
1991
                        resolved_archive_file = cached_path(
                            archive_file,
                            cache_dir=cache_dir,
                            force_download=force_download,
                            proxies=proxies,
                            resume_download=resume_download,
                            local_files_only=local_files_only,
                            use_auth_token=use_auth_token,
                            user_agent=user_agent,
1992
                        )
Sylvain Gugger's avatar
Sylvain Gugger committed
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
                        is_sharded = True
                    except EntryNotFoundError:
                        # Otherwise, maybe there is a TF or Flax model file.  We try those to give a helpful error
                        # message.
                        has_file_kwargs = {
                            "revision": revision,
                            "mirror": mirror,
                            "proxies": proxies,
                            "use_auth_token": use_auth_token,
                        }
                        if has_file(pretrained_model_name_or_path, TF2_WEIGHTS_NAME, **has_file_kwargs):
                            raise EnvironmentError(
Sylvain Gugger's avatar
Sylvain Gugger committed
2005
2006
2007
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
                                f" {WEIGHTS_NAME} but there is a file for TensorFlow weights. Use `from_tf=True` to"
                                " load this model from those weights."
Sylvain Gugger's avatar
Sylvain Gugger committed
2008
2009
2010
                            )
                        elif has_file(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME, **has_file_kwargs):
                            raise EnvironmentError(
Sylvain Gugger's avatar
Sylvain Gugger committed
2011
2012
2013
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
                                f" {WEIGHTS_NAME} but there is a file for Flax weights. Use `from_flax=True` to load"
                                " this model from those weights."
Sylvain Gugger's avatar
Sylvain Gugger committed
2014
2015
2016
                            )
                        else:
                            raise EnvironmentError(
Sylvain Gugger's avatar
Sylvain Gugger committed
2017
2018
                                f"{pretrained_model_name_or_path} does not appear to have a file named {WEIGHTS_NAME},"
                                f" {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or {FLAX_WEIGHTS_NAME}."
Sylvain Gugger's avatar
Sylvain Gugger committed
2019
                            )
2020
2021
2022
2023
                else:
                    raise EnvironmentError(
                        f"{pretrained_model_name_or_path} does not appear to have a file named {filename}."
                    )
2024
            except HTTPError as err:
2025
                raise EnvironmentError(
2026
2027
2028
2029
2030
                    f"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n"
                    f"{err}"
                )
            except ValueError:
                raise EnvironmentError(
Sylvain Gugger's avatar
Sylvain Gugger committed
2031
2032
2033
2034
2035
                    f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it"
                    f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a"
                    f" directory containing a file named {WEIGHTS_NAME}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or"
                    f" {FLAX_WEIGHTS_NAME}.\nCheckout your internet connection or see how to run the library in"
                    " offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'."
2036
                )
2037
            except EnvironmentError:
2038
2039
2040
2041
2042
2043
                raise EnvironmentError(
                    f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from "
                    "'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
                    f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
                    f"containing a file named {WEIGHTS_NAME}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or "
                    f"{FLAX_WEIGHTS_NAME}."
2044
                )
2045

thomwolf's avatar
thomwolf committed
2046
            if resolved_archive_file == archive_file:
2047
                logger.info(f"loading weights file {archive_file}")
2048
            else:
2049
                logger.info(f"loading weights file {archive_file} from cache at {resolved_archive_file}")
2050
        else:
thomwolf's avatar
thomwolf committed
2051
            resolved_archive_file = None
2052

Sylvain Gugger's avatar
Sylvain Gugger committed
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
        # We'll need to download and cache each checkpoint shard if the checkpoint is sharded.
        if is_sharded:
            # resolved_archive_file becomes a list of files that point to the different checkpoint shards in this case.
            resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(
                pretrained_model_name_or_path,
                resolved_archive_file,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                resume_download=resume_download,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                user_agent=user_agent,
                revision=revision,
                mirror=mirror,
            )

2070
2071
        # load pt weights early so that we know which dtype to init the model under
        if from_pt:
2072
            if not is_sharded and state_dict is None:
Sylvain Gugger's avatar
Sylvain Gugger committed
2073
2074
                # Time to load the checkpoint
                state_dict = load_state_dict(resolved_archive_file)
2075

2076
2077
2078
2079
2080
2081
2082
2083
2084
            # set dtype to instantiate the model under:
            # 1. If torch_dtype is not None, we use that dtype
            # 2. If torch_dtype is "auto", we auto-detect dtype from the loaded state_dict, by checking its first
            #    weights entry - we assume all weights are of the same dtype
            # we also may have config.torch_dtype available, but we won't rely on it till v5
            dtype_orig = None
            if torch_dtype is not None:
                if isinstance(torch_dtype, str):
                    if torch_dtype == "auto":
Sylvain Gugger's avatar
Sylvain Gugger committed
2085
2086
2087
2088
2089
2090
2091
2092
                        if is_sharded and "dtype" in sharded_metadata:
                            torch_dtype = sharded_metadata["dtype"]
                        elif not is_sharded:
                            torch_dtype = next(iter(state_dict.values())).dtype
                        else:
                            one_state_dict = load_state_dict(resolved_archive_file)
                            torch_dtype = next(iter(one_state_dict.values())).dtype
                            del one_state_dict  # free CPU memory
2093
2094
2095
2096
2097
2098
                    else:
                        raise ValueError(
                            f"`torch_dtype` can be either a `torch.dtype` or `auto`, but received {torch_dtype}"
                        )
                dtype_orig = cls._set_default_torch_dtype(torch_dtype)

2099
2100
2101
2102
            if is_sharded:
                loaded_state_dict_keys = sharded_metadata["all_checkpoint_keys"]
            else:
                loaded_state_dict_keys = [k for k in state_dict.keys()]
2103
            if low_cpu_mem_usage:
2104
                state_dict = None
2105

2106
2107
        config.name_or_path = pretrained_model_name_or_path

2108
        # Instantiate model.
2109
2110
        init_contexts = [no_init_weights(_enable=_fast_init)]

2111
2112
2113
2114
        if is_deepspeed_zero3_enabled():
            import deepspeed

            logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
            init_contexts = [deepspeed.zero.Init(config_dict_or_path=deepspeed_config())] + init_contexts
        elif low_cpu_mem_usage:
            init_contexts.append(init_empty_weights())

        with ContextManagers(init_contexts):
            model = cls(config, *model_args, **model_kwargs)

        if device_map == "auto":
            if model._no_split_modules is None:
                raise ValueError(f"{model.__class__.__name__} does not support `device_map='auto'` yet.")
            no_split_modules = model._no_split_modules
2126
2127
            # Make sure tied weights are tied before creating the device map.
            model.tie_weights()
2128
2129
2130
            device_map = infer_auto_device_map(
                model, no_split_module_classes=no_split_modules, dtype=torch_dtype, max_memory=max_memory
            )
2131
2132

        if from_tf:
2133
            if resolved_archive_file.endswith(".index"):
2134
2135
2136
2137
2138
                # Load from a TensorFlow 1.X checkpoint - provided by original authors
                model = cls.load_tf_weights(model, config, resolved_archive_file[:-6])  # Remove the '.index'
            else:
                # Load from our TensorFlow 2.0 checkpoints
                try:
2139
                    from .modeling_tf_pytorch_utils import load_tf2_checkpoint_in_pytorch_model
2140

2141
                    model = load_tf2_checkpoint_in_pytorch_model(model, resolved_archive_file, allow_missing_keys=True)
2142
                except ImportError:
2143
                    logger.error(
Sylvain Gugger's avatar
Sylvain Gugger committed
2144
2145
2146
                        "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed."
                        " Please see https://pytorch.org/ and https://www.tensorflow.org/install/ for installation"
                        " instructions."
2147
                    )
2148
                    raise
2149
2150
2151
2152
2153
2154
2155
        elif from_flax:
            try:
                from .modeling_flax_pytorch_utils import load_flax_checkpoint_in_pytorch_model

                model = load_flax_checkpoint_in_pytorch_model(model, resolved_archive_file)
            except ImportError:
                logger.error(
Sylvain Gugger's avatar
Sylvain Gugger committed
2156
2157
2158
                    "Loading a Flax model in PyTorch, requires both PyTorch and Flax to be installed. Please see"
                    " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for"
                    " installation instructions."
2159
2160
                )
                raise
2161
        elif from_pt:
2162

2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
            # restore default dtype
            if dtype_orig is not None:
                torch.set_default_dtype(dtype_orig)

            model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model(
                model,
                state_dict,
                loaded_state_dict_keys,  # XXX: rename?
                resolved_archive_file,
                pretrained_model_name_or_path,
                ignore_mismatched_sizes=ignore_mismatched_sizes,
                sharded_metadata=sharded_metadata,
                _fast_init=_fast_init,
                low_cpu_mem_usage=low_cpu_mem_usage,
2177
2178
2179
2180
                device_map=device_map,
                offload_folder=offload_folder,
                offload_state_dict=offload_state_dict,
                dtype=torch_dtype,
2181
            )
2182

2183
2184
        # make sure token embedding weights are still tied if needed
        model.tie_weights()
2185

2186
        # Set model in evaluation mode to deactivate DropOut modules by default
2187
2188
        model.eval()

2189
2190
2191
2192
        # Dispatch model with hooks on all devices if necessary
        if device_map is not None:
            dispatch_model(model, device_map=device_map, offload_dir=offload_folder)

thomwolf's avatar
thomwolf committed
2193
        if output_loading_info:
2194
2195
2196
            loading_info = {
                "missing_keys": missing_keys,
                "unexpected_keys": unexpected_keys,
2197
                "mismatched_keys": mismatched_keys,
2198
2199
                "error_msgs": error_msgs,
            }
thomwolf's avatar
thomwolf committed
2200
2201
            return model, loading_info

2202
2203
        return model

2204
    @classmethod
Sylvain Gugger's avatar
Sylvain Gugger committed
2205
2206
2207
2208
    def _load_pretrained_model(
        cls,
        model,
        state_dict,
2209
        loaded_keys,
Sylvain Gugger's avatar
Sylvain Gugger committed
2210
2211
2212
2213
2214
        resolved_archive_file,
        pretrained_model_name_or_path,
        ignore_mismatched_sizes=False,
        sharded_metadata=None,
        _fast_init=True,
2215
        low_cpu_mem_usage=False,
2216
2217
2218
2219
        device_map=None,
        offload_folder=None,
        offload_state_dict=False,
        dtype=None,
2220
    ):
Sylvain Gugger's avatar
Sylvain Gugger committed
2221
2222
2223
2224
2225
        if device_map is not None and "disk" in device_map.values() and offload_folder is None:
            raise ValueError(
                "The current `device_map` had weights offloaded to the disk. Please provide an `offload_folder` for"
                " them."
            )
2226
        # Retrieve missing & unexpected_keys
2227
2228
        model_state_dict = model.state_dict()
        expected_keys = list(model_state_dict.keys())
2229
2230
        prefix = model.base_model_prefix

Sylvain Gugger's avatar
Sylvain Gugger committed
2231
2232
2233
2234
2235
2236
2237
        def _fix_key(key):
            if "beta" in key:
                return key.replace("beta", "bias")
            if "gamma" in key:
                return key.replace("gamma", "weight")
            return key

2238
        original_loaded_keys = loaded_keys
Sylvain Gugger's avatar
Sylvain Gugger committed
2239
2240
        loaded_keys = [_fix_key(key) for key in loaded_keys]

2241
2242
2243
2244
2245
2246
        if len(prefix) > 0:
            has_prefix_module = any(s.startswith(prefix) for s in loaded_keys)
            expects_prefix_module = any(s.startswith(prefix) for s in expected_keys)
        else:
            has_prefix_module = False
            expects_prefix_module = False
Patrick von Platen's avatar
Patrick von Platen committed
2247
2248
2249

        # key re-naming operations are never done on the keys
        # that are loaded, but always on the keys of the newly initialized model
2250
2251
        remove_prefix_from_model = not has_prefix_module and expects_prefix_module
        add_prefix_to_model = has_prefix_module and not expects_prefix_module
2252

2253
        if remove_prefix_from_model:
2254
            expected_keys_not_prefixed = [s for s in expected_keys if not s.startswith(prefix)]
2255
            expected_keys = [".".join(s.split(".")[1:]) if s.startswith(prefix) else s for s in expected_keys]
2256
        elif add_prefix_to_model:
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
            expected_keys = [".".join([prefix, s]) for s in expected_keys]

        missing_keys = list(set(expected_keys) - set(loaded_keys))
        unexpected_keys = list(set(loaded_keys) - set(expected_keys))

        # Some models may have keys that are not in the state by design, removing them before needlessly warning
        # the user.
        if cls._keys_to_ignore_on_load_missing is not None:
            for pat in cls._keys_to_ignore_on_load_missing:
                missing_keys = [k for k in missing_keys if re.search(pat, k) is None]

        if cls._keys_to_ignore_on_load_unexpected is not None:
            for pat in cls._keys_to_ignore_on_load_unexpected:
                unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
        # retrieve weights on meta device and put them back on CPU.
        # This is not ideal in terms of memory, but if we don't do that not, we can't initialize them in the next step
        if low_cpu_mem_usage:
            for key in missing_keys:
                if key.startswith(prefix):
                    key = ".".join(key.split(".")[1:])
                param = model_state_dict[key]
                if param.device == torch.device("meta"):
                    set_module_tensor_to_device(model, key, "cpu", torch.empty(*param.size()))

        # retrieve unintialized modules and initialize before maybe overriding that with the pretrained weights.
2283
        if _fast_init:
2284
            uninitialized_modules = model.retrieve_modules_from_names(
2285
                missing_keys, add_prefix=add_prefix_to_model, remove_prefix=remove_prefix_from_model
2286
            )
2287
            for module in uninitialized_modules:
2288
2289
                model._init_weights(module)

2290
2291
2292
        # Make sure we are able to load base models as well as derived models (with heads)
        start_prefix = ""
        model_to_load = model
2293
        if len(cls.base_model_prefix) > 0 and not hasattr(model, cls.base_model_prefix) and has_prefix_module:
2294
            start_prefix = cls.base_model_prefix + "."
2295
        if len(cls.base_model_prefix) > 0 and hasattr(model, cls.base_model_prefix) and not has_prefix_module:
2296
            model_to_load = getattr(model, cls.base_model_prefix)
2297
2298
            if any(key in expected_keys_not_prefixed for key in loaded_keys):
                raise ValueError(
2299
                    "The state dictionary of the model you are trying to load is corrupted. Are you sure it was "
2300
2301
                    "properly saved?"
                )
2302
2303
            if device_map is not None:
                device_map = {k.replace(f"{cls.base_model_prefix}.", ""): v for k, v in device_map.items()}
2304

2305
2306
2307
2308
2309
2310
2311
2312
        def _find_mismatched_keys(
            state_dict,
            model_state_dict,
            loaded_keys,
            add_prefix_to_model,
            remove_prefix_from_model,
            ignore_mismatched_sizes,
        ):
Sylvain Gugger's avatar
Sylvain Gugger committed
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
            mismatched_keys = []
            if ignore_mismatched_sizes:
                for checkpoint_key in loaded_keys:
                    model_key = checkpoint_key
                    if remove_prefix_from_model:
                        # The model key starts with `prefix` but `checkpoint_key` doesn't so we add it.
                        model_key = f"{prefix}.{checkpoint_key}"
                    elif add_prefix_to_model:
                        # The model key doesn't start with `prefix` but `checkpoint_key` does so we remove it.
                        model_key = ".".join(checkpoint_key.split(".")[1:])

                    if (
                        model_key in model_state_dict
                        and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
                    ):
                        mismatched_keys.append(
                            (checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
                        )
                        del state_dict[checkpoint_key]
2332
2333
2334
2335
2336
2337
2338
            return mismatched_keys

        if state_dict is not None:
            # Whole checkpoint
            mismatched_keys = _find_mismatched_keys(
                state_dict,
                model_state_dict,
2339
                original_loaded_keys,
2340
2341
2342
2343
                add_prefix_to_model,
                remove_prefix_from_model,
                ignore_mismatched_sizes,
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
2344
2345
            error_msgs = _load_state_dict_into_model(model_to_load, state_dict, start_prefix)
        else:
2346
2347
            # Sharded checkpoint or whole but low_cpu_mem_usage==True

Sylvain Gugger's avatar
Sylvain Gugger committed
2348
2349
2350
2351
2352
            # This should always be a list but, just to be sure.
            if not isinstance(resolved_archive_file, list):
                resolved_archive_file = [resolved_archive_file]

            error_msgs = []
2353
            mismatched_keys = []
2354
2355
2356
2357
2358
2359
2360
2361
            offload_index = {} if device_map is not None and "disk" in device_map.values() else None
            if offload_state_dict:
                state_dict_folder = tempfile.mkdtemp()
                state_dict_index = {}
            else:
                state_dict_folder = None
                state_dict_index = None

Sylvain Gugger's avatar
Sylvain Gugger committed
2362
2363
            for shard_file in resolved_archive_file:
                state_dict = load_state_dict(shard_file)
2364

Sylvain Gugger's avatar
Sylvain Gugger committed
2365
2366
                # Mistmatched keys contains tuples key/shape1/shape2 of weights in the checkpoint that have a shape not
                # matching the weights in the model.
2367
2368
2369
                mismatched_keys += _find_mismatched_keys(
                    state_dict,
                    model_state_dict,
2370
                    original_loaded_keys,
2371
2372
2373
2374
                    add_prefix_to_model,
                    remove_prefix_from_model,
                    ignore_mismatched_sizes,
                )
2375
2376

                if low_cpu_mem_usage:
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
                    new_error_msgs, offload_index, state_dict_index = _load_state_dict_into_meta_model(
                        model_to_load,
                        state_dict,
                        loaded_keys,
                        start_prefix,
                        expected_keys,
                        device_map=device_map,
                        offload_folder=offload_folder,
                        offload_index=offload_index,
                        state_dict_folder=state_dict_folder,
                        state_dict_index=state_dict_index,
                        dtype=dtype,
2389
                    )
2390
                    error_msgs += new_error_msgs
2391
2392
                else:
                    error_msgs += _load_state_dict_into_model(model_to_load, state_dict, start_prefix)
2393

2394
2395
2396
2397
                # force memory release
                del state_dict
                gc.collect()

2398
2399
            if offload_index is not None and len(offload_index) > 0:
                save_offload_index(offload_index, offload_folder)
2400
2401
2402
2403
2404
2405

            if offload_state_dict:
                # Load back temporarily offloaded state dict
                load_offloaded_weights(model, state_dict_index, state_dict_folder)
                shutil.rmtree(state_dict_folder)

2406
2407
        if len(error_msgs) > 0:
            error_msg = "\n\t".join(error_msgs)
2408
2409
2410
2411
            if "size mismatch" in error_msg:
                error_msg += (
                    "\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
                )
2412
2413
            raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")

2414
2415
        if len(unexpected_keys) > 0:
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
2416
2417
2418
2419
2420
2421
2422
                f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
                f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
                f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task or"
                " with another architecture (e.g. initializing a BertForSequenceClassification model from a"
                " BertForPreTraining model).\n- This IS NOT expected if you are initializing"
                f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly identical"
                " (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
2423
2424
2425
2426
2427
            )
        else:
            logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
        if len(missing_keys) > 0:
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
2428
2429
2430
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
                " TRAIN this model on a down-stream task to be able to use it for predictions and inference."
2431
            )
2432
        elif len(mismatched_keys) == 0:
2433
            logger.info(
Sylvain Gugger's avatar
Sylvain Gugger committed
2434
2435
2436
2437
                f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the checkpoint"
                f" was trained on, you can already use {model.__class__.__name__} for predictions without further"
                " training."
2438
            )
2439
2440
2441
2442
2443
2444
2445
2446
        if len(mismatched_keys) > 0:
            mismatched_warning = "\n".join(
                [
                    f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
                    for key, shape1, shape2 in mismatched_keys
                ]
            )
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
2447
2448
2449
2450
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
                f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be able"
                " to use it for predictions and inference."
2451
            )
2452

2453
        return model, missing_keys, unexpected_keys, mismatched_keys, error_msgs
2454
2455
2456
2457

    def retrieve_modules_from_names(self, names, add_prefix=False, remove_prefix=False):
        module_keys = set([".".join(key.split(".")[:-1]) for key in names])

Patrick von Platen's avatar
Patrick von Platen committed
2458
2459
2460
2461
        # torch.nn.ParameterList is a special case where two parameter keywords
        # are appended to the module name, *e.g.* bert.special_embeddings.0
        module_keys = module_keys.union(set([".".join(key.split(".")[:-2]) for key in names if key[-1].isdigit()]))

2462
2463
2464
2465
2466
2467
        retrieved_modules = []
        # retrieve all modules that has at least one missing weight name
        for name, module in self.named_modules():
            if remove_prefix:
                name = ".".join(name.split(".")[1:]) if name.startswith(self.base_model_prefix) else name
            elif add_prefix:
Patrick von Platen's avatar
Patrick von Platen committed
2468
                name = ".".join([self.base_model_prefix, name]) if len(name) > 0 else self.base_model_prefix
2469
2470
2471
2472
2473
2474

            if name in module_keys:
                retrieved_modules.append(module)

        return retrieved_modules

2475
    @staticmethod
2476
    def _load_pretrained_model_low_mem(model, loaded_state_dict_keys, resolved_archive_file, start_prefix=""):
2477
2478
2479
        """
        This is an experimental function that loads the model using ~1.x model size CPU memory

2480
        Before you call it do:
2481

2482
        1. save which state_dict keys are available
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
        2. drop state_dict before model is created, since the latter takes 1x model size memory

        Here then we continue:

        3. switch to the meta device all params/buffers that are going to be replaced from the loaded state_dict
        4. load state_dict 2nd time
        5. replace the params/buffers from the state_dict

        Currently, it doesn't handle missing_keys, unexpected_keys, mismatched_keys. It can't handle deepspeed.
        """

2494
2495
2496
2497
        _move_model_to_meta(model, loaded_state_dict_keys, start_prefix)
        state_dict = load_state_dict(resolved_archive_file)
        error_msgs = _load_state_dict_into_meta_model(model, state_dict, loaded_state_dict_keys, start_prefix)
        return error_msgs
2498

2499
2500
2501
2502
2503
2504
    @classmethod
    def register_for_auto_class(cls, auto_class="AutoModel"):
        """
        Register this class with a given auto class. This should only be used for custom models as the ones in the
        library are already mapped with an auto class.

2505
2506
2507
2508
2509
2510
        <Tip warning={true}>

        This API is experimental and may have some slight breaking changes in the next releases.

        </Tip>

2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
        Args:
            auto_class (`str` or `type`, *optional*, defaults to `"AutoModel"`):
                The auto class to register this new model with.
        """
        if not isinstance(auto_class, str):
            auto_class = auto_class.__name__

        import transformers.models.auto as auto_module

        if not hasattr(auto_module, auto_class):
            raise ValueError(f"{auto_class} is not a valid auto class.")

        cls._auto_class = auto_class

Sylvain Gugger's avatar
Sylvain Gugger committed
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
    def push_to_hub(
        self,
        repo_path_or_name: Optional[str] = None,
        repo_url: Optional[str] = None,
        use_temp_dir: bool = False,
        commit_message: str = "add model",
        organization: Optional[str] = None,
        private: Optional[bool] = None,
        use_auth_token: Optional[Union[bool, str]] = None,
        max_shard_size: Union[int, str] = "10GB",
        **model_card_kwargs
    ) -> str:
        """
        Upload the model files to the 🤗 Model Hub while synchronizing a local clone of the repo in `repo_path_or_name`.
thomwolf's avatar
thomwolf committed
2539

Sylvain Gugger's avatar
Sylvain Gugger committed
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
        Parameters:
            repo_path_or_name (`str`, *optional*):
                Can either be a repository name for your model in the Hub or a path to a local folder (in which case
                the repository will have the name of that local folder). If not specified, will default to the name
                given by `repo_url` and a local directory with that name will be created.
            repo_url (`str`, *optional*):
                Specify this in case you want to push to an existing repository in the hub. If unspecified, a new
                repository will be created in your namespace (unless you specify an `organization`) with `repo_name`.
            use_temp_dir (`bool`, *optional*, defaults to `False`):
                Whether or not to clone the distant repo in a temporary directory or in `repo_path_or_name` inside the
                current working directory. This will slow things down if you are making changes in an existing repo
                since you will need to clone the repo before every push.
            commit_message (`str`, *optional*, defaults to `"add model"`):
                Message to commit while pushing.
            organization (`str`, *optional*):
                Organization in which you want to push your {object} (you must be a member of this organization).
            private (`bool`, *optional*):
                Whether or not the repository created should be private (requires a paying subscription).
            use_auth_token (`bool` or `str`, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `transformers-cli login` (stored in `~/.huggingface`). Will default to `True` if
                `repo_url` is not specified.
            max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
                The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size
                lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`).

                <Tip warning={true}>

                If a single weight of the model is bigger than `max_shard_size`, it will be in its own checkpoint shard
                which will be bigger than `max_shard_size`.

                </Tip>

        Returns:
            `str`: The url of the commit of your {object} in the given repository.

        Examples:

        ```python
        from transformers import AutoModel

        model = AutoModel.from_pretrained("bert-base-cased")

        # Push the model to your namespace with the name "my-finetuned-bert" and have a local clone in the
        # *my-finetuned-bert* folder.
        model.push_to_hub("my-finetuned-bert")

        # Push the model to your namespace with the name "my-finetuned-bert" with no local clone.
        model.push_to_hub("my-finetuned-bert", use_temp_dir=True)

        # Push the model to an organization with the name "my-finetuned-bert" and have a local clone in the
        # *my-finetuned-bert* folder.
        model.push_to_hub("my-finetuned-bert", organization="huggingface")

        # Make a change to an existing repo that has been cloned locally in *my-finetuned-bert*.
        model.push_to_hub("my-finetuned-bert", repo_url="https://huggingface.co/sgugger/my-finetuned-bert")
        ```
        """
        if use_temp_dir:
            # Make sure we use the right `repo_name` for the `repo_url` before replacing it.
            if repo_url is None:
                if use_auth_token is None:
                    use_auth_token = True
                repo_name = Path(repo_path_or_name).name
                repo_url = self._get_repo_url_from_name(
                    repo_name, organization=organization, private=private, use_auth_token=use_auth_token
                )
            repo_path_or_name = tempfile.mkdtemp()

        # Create or clone the repo. If the repo is already cloned, this just retrieves the path to the repo.
        repo = self._create_or_get_repo(
            repo_path_or_name=repo_path_or_name,
            repo_url=repo_url,
            organization=organization,
            private=private,
            use_auth_token=use_auth_token,
        )
        # Save the files in the cloned repo
        self.save_pretrained(repo_path_or_name, max_shard_size=max_shard_size)

        # Commit and push!
        url = self._push_to_hub(repo, commit_message=commit_message)

        # Clean up! Clean up! Everybody everywhere!
        if use_temp_dir:
            shutil.rmtree(repo_path_or_name)

        return url
2628
2629


thomwolf's avatar
thomwolf committed
2630
class PoolerStartLogits(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
2631
2632
    """
    Compute SQuAD start logits from sequence hidden states.
2633

Sylvain Gugger's avatar
Sylvain Gugger committed
2634
    Args:
2635
2636
        config ([`PretrainedConfig`]):
            The config used by the model, will be used to grab the `hidden_size` of the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
2637
2638
2639
    """

    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
2640
        super().__init__()
thomwolf's avatar
thomwolf committed
2641
2642
        self.dense = nn.Linear(config.hidden_size, 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
2643
2644
2645
2646
2647
    def forward(
        self, hidden_states: torch.FloatTensor, p_mask: Optional[torch.FloatTensor] = None
    ) -> torch.FloatTensor:
        """
        Args:
2648
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2649
                The final hidden states of the model.
2650
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2651
2652
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
Sylvain Gugger's avatar
Sylvain Gugger committed
2653
2654

        Returns:
2655
            `torch.FloatTensor`: The start logits for SQuAD.
thomwolf's avatar
thomwolf committed
2656
        """
thomwolf's avatar
thomwolf committed
2657
2658
2659
        x = self.dense(hidden_states).squeeze(-1)

        if p_mask is not None:
Lysandre Debut's avatar
Lysandre Debut committed
2660
            if get_parameter_dtype(self) == torch.float16:
2661
2662
2663
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask
thomwolf's avatar
thomwolf committed
2664
2665
2666
2667
2668
2669

        return x


class PoolerEndLogits(nn.Module):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
2670
    Compute SQuAD end logits from sequence hidden states.
2671

Sylvain Gugger's avatar
Sylvain Gugger committed
2672
    Args:
2673
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
2674
2675
            The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps`
            to use.
Sylvain Gugger's avatar
Sylvain Gugger committed
2676
2677
2678
    """

    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
2679
        super().__init__()
thomwolf's avatar
thomwolf committed
2680
2681
2682
2683
2684
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dense_1 = nn.Linear(config.hidden_size, 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
2685
2686
2687
2688
2689
2690
2691
2692
2693
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        start_states: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        p_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
        """
        Args:
2694
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2695
                The final hidden states of the model.
2696
            start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2697
                The hidden states of the first tokens for the labeled span.
2698
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2699
                The position of the first token for the labeled span.
2700
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2701
2702
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
Sylvain Gugger's avatar
Sylvain Gugger committed
2703

2704
        <Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
2705

Stas Bekman's avatar
Stas Bekman committed
2706
2707
        One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides
        `start_states`.
2708
2709

        </Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
2710
2711

        Returns:
2712
            `torch.FloatTensor`: The end logits for SQuAD.
thomwolf's avatar
thomwolf committed
2713
        """
2714
2715
2716
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
thomwolf's avatar
thomwolf committed
2717
        if start_positions is not None:
2718
            slen, hsz = hidden_states.shape[-2:]
2719
2720
2721
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions)  # shape (bsz, 1, hsz)
            start_states = start_states.expand(-1, slen, -1)  # shape (bsz, slen, hsz)
thomwolf's avatar
thomwolf committed
2722
2723
2724
2725
2726
2727
2728

        x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1))
        x = self.activation(x)
        x = self.LayerNorm(x)
        x = self.dense_1(x).squeeze(-1)

        if p_mask is not None:
Lysandre Debut's avatar
Lysandre Debut committed
2729
            if get_parameter_dtype(self) == torch.float16:
2730
2731
2732
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask
thomwolf's avatar
thomwolf committed
2733
2734
2735
2736
2737

        return x


class PoolerAnswerClass(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
2738
2739
2740
2741
    """
    Compute SQuAD 2.0 answer class from classification and start tokens hidden states.

    Args:
2742
2743
        config ([`PretrainedConfig`]):
            The config used by the model, will be used to grab the `hidden_size` of the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
2744
    """
2745

thomwolf's avatar
thomwolf committed
2746
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
2747
        super().__init__()
thomwolf's avatar
thomwolf committed
2748
2749
2750
2751
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False)

Sylvain Gugger's avatar
Sylvain Gugger committed
2752
2753
2754
2755
2756
2757
2758
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        start_states: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        cls_index: Optional[torch.LongTensor] = None,
    ) -> torch.FloatTensor:
2759
2760
        """
        Args:
2761
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2762
                The final hidden states of the model.
2763
            start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2764
                The hidden states of the first tokens for the labeled span.
2765
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2766
                The position of the first token for the labeled span.
2767
2768
2769
2770
            cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
                Position of the CLS token for each sentence in the batch. If `None`, takes the last token.

        <Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
2771

Stas Bekman's avatar
Stas Bekman committed
2772
2773
        One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides
        `start_states`.
Sylvain Gugger's avatar
Sylvain Gugger committed
2774

2775
        </Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
2776
2777

        Returns:
2778
            `torch.FloatTensor`: The SQuAD 2.0 answer class.
thomwolf's avatar
thomwolf committed
2779
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
2780
        # No dependency on end_feature so that we can obtain one single `cls_logits` for each sample.
2781
        hsz = hidden_states.shape[-1]
2782
2783
2784
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
thomwolf's avatar
thomwolf committed
2785
        if start_positions is not None:
2786
2787
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions).squeeze(-2)  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
2788
2789

        if cls_index is not None:
2790
2791
            cls_index = cls_index[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
2792
        else:
2793
            cls_token_state = hidden_states[:, -1, :]  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
2794
2795
2796
2797
2798
2799
2800
2801

        x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1))
        x = self.activation(x)
        x = self.dense_1(x).squeeze(-1)

        return x


2802
2803
2804
@dataclass
class SquadHeadOutput(ModelOutput):
    """
2805
    Base class for outputs of question answering models using a [`~modeling_utils.SQuADHead`].
2806
2807

    Args:
2808
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned if both `start_positions` and `end_positions` are provided):
Sylvain Gugger's avatar
Sylvain Gugger committed
2809
2810
            Classification loss as the sum of start token, end token (and is_impossible if provided) classification
            losses.
2811
        start_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
2812
            Log probabilities for the top config.start_n_top start token possibilities (beam-search).
2813
        start_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
2814
            Indices for the top config.start_n_top start token possibilities (beam-search).
2815
2816
        end_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Log probabilities for the top `config.start_n_top * config.end_n_top` end token possibilities
Sylvain Gugger's avatar
Sylvain Gugger committed
2817
            (beam-search).
2818
2819
2820
2821
        end_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Indices for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search).
        cls_logits (`torch.FloatTensor` of shape `(batch_size,)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Log probabilities for the `is_impossible` label of the answers.
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832

    """

    loss: Optional[torch.FloatTensor] = None
    start_top_log_probs: Optional[torch.FloatTensor] = None
    start_top_index: Optional[torch.LongTensor] = None
    end_top_log_probs: Optional[torch.FloatTensor] = None
    end_top_index: Optional[torch.LongTensor] = None
    cls_logits: Optional[torch.FloatTensor] = None


thomwolf's avatar
thomwolf committed
2833
class SQuADHead(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
2834
2835
    r"""
    A SQuAD head inspired by XLNet.
2836

Sylvain Gugger's avatar
Sylvain Gugger committed
2837
    Args:
2838
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
2839
2840
            The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps`
            to use.
thomwolf's avatar
thomwolf committed
2841
    """
2842

thomwolf's avatar
thomwolf committed
2843
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
2844
        super().__init__()
thomwolf's avatar
thomwolf committed
2845
2846
2847
2848
2849
2850
2851
        self.start_n_top = config.start_n_top
        self.end_n_top = config.end_n_top

        self.start_logits = PoolerStartLogits(config)
        self.end_logits = PoolerEndLogits(config)
        self.answer_class = PoolerAnswerClass(config)

Sylvain Gugger's avatar
Sylvain Gugger committed
2852
    @replace_return_docstrings(output_type=SquadHeadOutput, config_class=PretrainedConfig)
2853
    def forward(
2854
        self,
Sylvain Gugger's avatar
Sylvain Gugger committed
2855
2856
2857
2858
2859
2860
        hidden_states: torch.FloatTensor,
        start_positions: Optional[torch.LongTensor] = None,
        end_positions: Optional[torch.LongTensor] = None,
        cls_index: Optional[torch.LongTensor] = None,
        is_impossible: Optional[torch.LongTensor] = None,
        p_mask: Optional[torch.FloatTensor] = None,
2861
        return_dict: bool = False,
Sylvain Gugger's avatar
Sylvain Gugger committed
2862
2863
    ) -> Union[SquadHeadOutput, Tuple[torch.FloatTensor]]:
        """
Lysandre's avatar
Lysandre committed
2864
        Args:
2865
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Lysandre's avatar
Lysandre committed
2866
                Final hidden states of the model on the sequence tokens.
2867
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
2868
                Positions of the first token for the labeled span.
2869
            end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
2870
                Positions of the last token for the labeled span.
2871
2872
2873
            cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
                Position of the CLS token for each sentence in the batch. If `None`, takes the last token.
            is_impossible (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
2874
                Whether the question has a possible answer in the paragraph or not.
2875
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2876
2877
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
2878
            return_dict (`bool`, *optional*, defaults to `False`):
2879
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Sylvain Gugger's avatar
Sylvain Gugger committed
2880

Lysandre's avatar
Lysandre committed
2881
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
2882
        """
thomwolf's avatar
thomwolf committed
2883
        start_logits = self.start_logits(hidden_states, p_mask=p_mask)
thomwolf's avatar
thomwolf committed
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906

        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, let's remove the dimension added by batch splitting
            for x in (start_positions, end_positions, cls_index, is_impossible):
                if x is not None and x.dim() > 1:
                    x.squeeze_(-1)

            # during training, compute the end logits based on the ground truth of the start position
            end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)

            loss_fct = CrossEntropyLoss()
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

            if cls_index is not None and is_impossible is not None:
                # Predict answerability from the representation of CLS and START
                cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
                loss_fct_cls = nn.BCEWithLogitsLoss()
                cls_loss = loss_fct_cls(cls_logits, is_impossible)

                # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss
                total_loss += cls_loss * 0.5
2907

2908
            return SquadHeadOutput(loss=total_loss) if return_dict else (total_loss,)
thomwolf's avatar
thomwolf committed
2909
2910
2911
2912

        else:
            # during inference, compute the end logits based on beam search
            bsz, slen, hsz = hidden_states.size()
2913
            start_log_probs = nn.functional.softmax(start_logits, dim=-1)  # shape (bsz, slen)
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924

            start_top_log_probs, start_top_index = torch.topk(
                start_log_probs, self.start_n_top, dim=-1
            )  # shape (bsz, start_n_top)
            start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz)  # shape (bsz, start_n_top, hsz)
            start_states = torch.gather(hidden_states, -2, start_top_index_exp)  # shape (bsz, start_n_top, hsz)
            start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1)  # shape (bsz, slen, start_n_top, hsz)

            hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(
                start_states
            )  # shape (bsz, slen, start_n_top, hsz)
thomwolf's avatar
thomwolf committed
2925
2926
            p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
            end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
2927
            end_log_probs = nn.functional.softmax(end_logits, dim=1)  # shape (bsz, slen, start_n_top)
thomwolf's avatar
thomwolf committed
2928

2929
2930
2931
            end_top_log_probs, end_top_index = torch.topk(
                end_log_probs, self.end_n_top, dim=1
            )  # shape (bsz, end_n_top, start_n_top)
thomwolf's avatar
thomwolf committed
2932
2933
2934
2935
2936
2937
            end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
            end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)

            start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs)
            cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index)

2938
            if not return_dict:
2939
2940
2941
2942
2943
2944
2945
2946
2947
                return (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits)
            else:
                return SquadHeadOutput(
                    start_top_log_probs=start_top_log_probs,
                    start_top_index=start_top_index,
                    end_top_log_probs=end_top_log_probs,
                    end_top_index=end_top_index,
                    cls_logits=cls_logits,
                )
thomwolf's avatar
thomwolf committed
2948
2949
2950


class SequenceSummary(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
2951
2952
2953
2954
    r"""
    Compute a single vector summary of a sequence hidden states.

    Args:
2955
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
2956
2957
            The config used by the model. Relevant arguments in the config class of the model are (refer to the actual
            config class of your model for the default values it uses):
Sylvain Gugger's avatar
Sylvain Gugger committed
2958

2959
            - **summary_type** (`str`) -- The method to use to make this summary. Accepted values are:
Sylvain Gugger's avatar
Sylvain Gugger committed
2960

2961
2962
2963
2964
2965
                - `"last"` -- Take the last token hidden state (like XLNet)
                - `"first"` -- Take the first token hidden state (like Bert)
                - `"mean"` -- Take the mean of all tokens hidden states
                - `"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2)
                - `"attn"` -- Not implemented now, use multi-head attention
Sylvain Gugger's avatar
Sylvain Gugger committed
2966

2967
            - **summary_use_proj** (`bool`) -- Add a projection after the vector extraction.
Sylvain Gugger's avatar
Sylvain Gugger committed
2968
2969
2970
2971
2972
2973
            - **summary_proj_to_labels** (`bool`) -- If `True`, the projection outputs to `config.num_labels` classes
              (otherwise to `config.hidden_size`).
            - **summary_activation** (`Optional[str]`) -- Set to `"tanh"` to add a tanh activation to the output,
              another string or `None` will add no activation.
            - **summary_first_dropout** (`float`) -- Optional dropout probability before the projection and activation.
            - **summary_last_dropout** (`float`)-- Optional dropout probability after the projection and activation.
thomwolf's avatar
thomwolf committed
2974
    """
2975

2976
    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
2977
        super().__init__()
thomwolf's avatar
thomwolf committed
2978

2979
        self.summary_type = getattr(config, "summary_type", "last")
2980
        if self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
2981
2982
2983
2984
2985
            # We should use a standard multi-head attention module with absolute positional embedding for that.
            # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
            # We can probably just use the multi-head attention module of PyTorch >=1.1.0
            raise NotImplementedError

thomwolf's avatar
thomwolf committed
2986
        self.summary = Identity()
2987
2988
        if hasattr(config, "summary_use_proj") and config.summary_use_proj:
            if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0:
2989
                num_classes = config.num_labels
thomwolf's avatar
thomwolf committed
2990
2991
2992
2993
            else:
                num_classes = config.hidden_size
            self.summary = nn.Linear(config.hidden_size, num_classes)

2994
        activation_string = getattr(config, "summary_activation", None)
Lysandre's avatar
Lysandre committed
2995
        self.activation: Callable = get_activation(activation_string) if activation_string else Identity()
thomwolf's avatar
thomwolf committed
2996

thomwolf's avatar
thomwolf committed
2997
        self.first_dropout = Identity()
2998
        if hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0:
2999
3000
            self.first_dropout = nn.Dropout(config.summary_first_dropout)

thomwolf's avatar
thomwolf committed
3001
        self.last_dropout = Identity()
3002
        if hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0:
3003
            self.last_dropout = nn.Dropout(config.summary_last_dropout)
thomwolf's avatar
thomwolf committed
3004

Sylvain Gugger's avatar
Sylvain Gugger committed
3005
3006
3007
3008
3009
3010
3011
    def forward(
        self, hidden_states: torch.FloatTensor, cls_index: Optional[torch.LongTensor] = None
    ) -> torch.FloatTensor:
        """
        Compute a single vector summary of a sequence hidden states.

        Args:
3012
            hidden_states (`torch.FloatTensor` of shape `[batch_size, seq_len, hidden_size]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
3013
                The hidden states of the last layer.
3014
            cls_index (`torch.LongTensor` of shape `[batch_size]` or `[batch_size, ...]` where ... are optional leading dimensions of `hidden_states`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
3015
                Used if `summary_type == "cls_index"` and takes the last token of the sequence as classification token.
Sylvain Gugger's avatar
Sylvain Gugger committed
3016
3017

        Returns:
3018
            `torch.FloatTensor`: The summary of the sequence hidden states.
thomwolf's avatar
thomwolf committed
3019
        """
3020
        if self.summary_type == "last":
thomwolf's avatar
thomwolf committed
3021
            output = hidden_states[:, -1]
3022
        elif self.summary_type == "first":
thomwolf's avatar
thomwolf committed
3023
            output = hidden_states[:, 0]
3024
        elif self.summary_type == "mean":
thomwolf's avatar
thomwolf committed
3025
            output = hidden_states.mean(dim=1)
3026
        elif self.summary_type == "cls_index":
thomwolf's avatar
thomwolf committed
3027
            if cls_index is None:
Lysandre's avatar
Lysandre committed
3028
3029
3030
3031
3032
                cls_index = torch.full_like(
                    hidden_states[..., :1, :],
                    hidden_states.shape[-2] - 1,
                    dtype=torch.long,
                )
thomwolf's avatar
thomwolf committed
3033
            else:
thomwolf's avatar
thomwolf committed
3034
                cls_index = cls_index.unsqueeze(-1).unsqueeze(-1)
3035
                cls_index = cls_index.expand((-1,) * (cls_index.dim() - 1) + (hidden_states.size(-1),))
thomwolf's avatar
thomwolf committed
3036
            # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
3037
3038
            output = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, XX, hidden_size)
        elif self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
3039
3040
            raise NotImplementedError

3041
        output = self.first_dropout(output)
thomwolf's avatar
thomwolf committed
3042
3043
        output = self.summary(output)
        output = self.activation(output)
3044
        output = self.last_dropout(output)
thomwolf's avatar
thomwolf committed
3045
3046
3047
3048

        return output


3049
def unwrap_model(model: nn.Module) -> nn.Module:
3050
3051
3052
3053
    """
    Recursively unwraps a model from potential containers (as used in distributed training).

    Args:
3054
        model (`torch.nn.Module`): The model to unwrap.
3055
3056
3057
3058
3059
3060
    """
    # since there could be multiple levels of wrapping, unwrap recursively
    if hasattr(model, "module"):
        return unwrap_model(model.module)
    else:
        return model