test_modeling_common.py 214 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
15
import collections
16
import copy
17
import gc
18
import inspect
19
import os
20
import os.path
Aymeric Augustin's avatar
Aymeric Augustin committed
21
import random
Sylvain Gugger's avatar
Sylvain Gugger committed
22
import re
23
import tempfile
24
import warnings
25
from collections import defaultdict
NielsRogge's avatar
NielsRogge committed
26
from typing import Dict, List, Tuple
thomwolf's avatar
thomwolf committed
27

28
import numpy as np
29
from packaging import version
30
from parameterized import parameterized
31
from pytest import mark
32
33

import transformers
34
35
from transformers import (
    AutoModel,
36
    AutoModelForCausalLM,
37
    AutoModelForSequenceClassification,
38
    AutoTokenizer,
39
    PretrainedConfig,
40
    PreTrainedModel,
41
42
    is_torch_available,
    logging,
43
    set_seed,
44
)
45
from transformers.models.auto import get_values
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES,
    MODEL_FOR_BACKBONE_MAPPING_NAMES,
    MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES,
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
    MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES,
    MODEL_FOR_MASKED_LM_MAPPING_NAMES,
    MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
    MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES,
    MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
    MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
amyeroberts's avatar
amyeroberts committed
64
    MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES,
65
66
    MODEL_MAPPING_NAMES,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
67
68
from transformers.testing_utils import (
    CaptureLogger,
69
    is_flaky,
70
71
    is_pt_flax_cross_test,
    is_pt_tf_cross_test,
72
    require_accelerate,
73
    require_bitsandbytes,
74
    require_flash_attn,
75
    require_read_token,
76
    require_safetensors,
Sylvain Gugger's avatar
Sylvain Gugger committed
77
    require_torch,
78
    require_torch_gpu,
79
    require_torch_multi_accelerator,
Sylvain Gugger's avatar
Sylvain Gugger committed
80
    require_torch_multi_gpu,
81
    require_torch_sdpa,
Sylvain Gugger's avatar
Sylvain Gugger committed
82
83
84
    slow,
    torch_device,
)
85
from transformers.utils import (
86
87
    CONFIG_NAME,
    GENERATION_CONFIG_NAME,
88
    SAFE_WEIGHTS_NAME,
89
    is_accelerate_available,
90
91
    is_flax_available,
    is_tf_available,
fxmarty's avatar
fxmarty committed
92
93
    is_torch_bf16_available_on_device,
    is_torch_fp16_available_on_device,
94
    is_torch_fx_available,
95
    is_torch_sdpa_available,
96
)
97
from transformers.utils.generic import ContextManagers, ModelOutput
98

Aymeric Augustin's avatar
Aymeric Augustin committed
99

100
101
102
103
if is_accelerate_available():
    from accelerate.utils import compute_module_sizes


104
if is_torch_available():
105
    import torch
106
    import torch.nn.functional as F
107
    from safetensors.torch import load_file as safe_load_file
108
    from safetensors.torch import save_file as safe_save_file
109
    from torch import nn
thomwolf's avatar
thomwolf committed
110

111
    from transformers import MODEL_MAPPING, AdaptiveEmbedding
112
    from transformers.modeling_utils import load_state_dict, no_init_weights
Sylvain Gugger's avatar
Sylvain Gugger committed
113
    from transformers.pytorch_utils import id_tensor_storage
thomwolf's avatar
thomwolf committed
114

Sylvain Gugger's avatar
Sylvain Gugger committed
115

116
117
118
if is_tf_available():
    import tensorflow as tf

119
120
if is_flax_available():
    import jax.numpy as jnp
121

122
    from tests.utils.test_modeling_flax_utils import check_models_equal
123
124
125
126
127
    from transformers.modeling_flax_pytorch_utils import (
        convert_pytorch_state_dict_to_flax,
        load_flax_weights_in_pytorch_model,
    )

128
if is_torch_fx_available():
129
    from transformers.utils.fx import _FX_SUPPORTED_MODELS_WITH_KV_CACHE, symbolic_trace
130

131

132
133
134
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
135
        if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
Lysandre Debut's avatar
Lysandre Debut committed
136
            setattr(configs_no_init, key, 1e-10)
137
138
139
        if isinstance(getattr(configs_no_init, key, None), PretrainedConfig):
            no_init_subconfig = _config_zero_init(getattr(configs_no_init, key))
            setattr(configs_no_init, key, no_init_subconfig)
140
141
    return configs_no_init

thomwolf's avatar
thomwolf committed
142

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
def _mock_init_weights(self, module):
    for name, param in module.named_parameters(recurse=False):
        # Use the first letter of the name to get a value and go from a <> -13 to z <> 12
        value = ord(name[0].lower()) - 110
        param.data.fill_(value)


def _mock_all_init_weights(self):
    # Prune heads if needed
    if self.config.pruned_heads:
        self.prune_heads(self.config.pruned_heads)

    import transformers.modeling_utils

    if transformers.modeling_utils._init_weights:
        for module in self.modules():
            module._is_hf_initialized = False
        # Initialize weights
        self.apply(self._initialize_weights)

        # Tie weights should be skipped when not initializing all weights
        # since from_pretrained(...) calls tie weights anyways
        self.tie_weights()


168
169
170
171
@require_torch
class ModelTesterMixin:
    model_tester = None
    all_model_classes = ()
172
    all_generative_model_classes = ()
173
    fx_compatible = False
Patrick von Platen's avatar
Patrick von Platen committed
174
175
176
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
177
    test_resize_position_embeddings = False
Patrick von Platen's avatar
Patrick von Platen committed
178
    test_head_masking = True
179
    test_mismatched_shapes = True
180
    test_missing_keys = True
181
    test_model_parallel = False
182
    is_encoder_decoder = False
183
    has_attentions = True
184
    model_split_percents = [0.5, 0.7, 0.9]
185

186
187
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
188
        if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
189
            inputs_dict = {
190
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
191
                if isinstance(v, torch.Tensor) and v.ndim > 1
Sylvain Gugger's avatar
Sylvain Gugger committed
192
                else v
193
194
                for k, v in inputs_dict.items()
            }
195
        elif model_class.__name__ in get_values(MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES):
196
            inputs_dict.pop("attention_mask")
197
198

        if return_labels:
199
            if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
200
                inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
201
202
203
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
                *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
204
            ]:
205
206
207
208
209
210
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
211
212
213
214
215
216
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES),
217
            ]:
218
219
220
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
221
222
223
224
225
226
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_CAUSAL_LM_MAPPING_NAMES),
                *get_values(MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES),
                *get_values(MODEL_FOR_MASKED_LM_MAPPING_NAMES),
                *get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES),
amyeroberts's avatar
amyeroberts committed
227
                *get_values(MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES),
228
229
230
231
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
232
            elif model_class.__name__ in get_values(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES):
NielsRogge's avatar
NielsRogge committed
233
234
235
236
                num_patches = self.model_tester.image_size // self.model_tester.patch_size
                inputs_dict["bool_masked_pos"] = torch.zeros(
                    (self.model_tester.batch_size, num_patches**2), dtype=torch.long, device=torch_device
                )
237
            elif model_class.__name__ in get_values(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES):
NielsRogge's avatar
NielsRogge committed
238
239
240
241
                batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape
                inputs_dict["labels"] = torch.zeros(
                    [self.model_tester.batch_size, height, width], device=torch_device
                ).long()
242

243
244
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
245
    def test_save_load(self):
246
247
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

248
249
250
251
252
253
254
255
256
257
        def check_save_load(out1, out2):
            # make sure we don't have nans
            out_2 = out2.cpu().numpy()
            out_2[np.isnan(out_2)] = 0

            out_1 = out1.cpu().numpy()
            out_1[np.isnan(out_1)] = 0
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

258
259
260
261
262
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
263
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
264

265
            with tempfile.TemporaryDirectory() as tmpdirname:
266
                model.save_pretrained(tmpdirname)
267
268
269
270
271
272
273

                # the config file (and the generation config file, if it can generate) should be saved
                self.assertTrue(os.path.exists(os.path.join(tmpdirname, CONFIG_NAME)))
                self.assertEqual(
                    model.can_generate(), os.path.exists(os.path.join(tmpdirname, GENERATION_CONFIG_NAME))
                )

274
                model = model_class.from_pretrained(tmpdirname)
275
                model.to(torch_device)
276
                with torch.no_grad():
277
                    second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
thomwolf's avatar
thomwolf committed
278

279
280
281
282
283
            if isinstance(first, tuple) and isinstance(second, tuple):
                for tensor1, tensor2 in zip(first, second):
                    check_save_load(tensor1, tensor2)
            else:
                check_save_load(first, second)
284

285
286
287
288
289
290
291
292
293
294
295
296
    def test_from_pretrained_no_checkpoint(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            state_dict = model.state_dict()

            new_model = model_class.from_pretrained(
                pretrained_model_name_or_path=None, config=config, state_dict=state_dict
            )
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.equal(p1, p2))

297
298
299
300
    def test_keep_in_fp32_modules(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            if model_class._keep_in_fp32_modules is None:
amyeroberts's avatar
amyeroberts committed
301
                self.skipTest(reason="Model class has no _keep_in_fp32_modules attribute defined")
302
303
304
305
306
307
308
309
310
311
312
313
314

            model = model_class(config)
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16)

                for name, param in model.named_parameters():
                    if any(n in model_class._keep_in_fp32_modules for n in name.split(".")):
                        self.assertTrue(param.dtype == torch.float32)
                    else:
                        self.assertTrue(param.dtype == torch.float16, name)

315
    def test_save_load_keys_to_ignore_on_save(self):
316
317
318
319
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
320
321
            _keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None)
            if _keys_to_ignore_on_save is None:
322
323
324
                continue

            # check the keys are in the original state_dict
325
            for k in _keys_to_ignore_on_save:
326
                self.assertIn(k, model.state_dict().keys(), "\n".join(model.state_dict().keys()))
327
328
329
330

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
331
332
333
                output_model_file = os.path.join(tmpdirname, SAFE_WEIGHTS_NAME)
                state_dict_saved = safe_load_file(output_model_file)

334
                for k in _keys_to_ignore_on_save:
335
                    self.assertNotIn(k, state_dict_saved.keys(), "\n".join(state_dict_saved.keys()))
336

Sylvain Gugger's avatar
Sylvain Gugger committed
337
338
                # Test we can load the state dict in the model, necessary for the checkpointing API in Trainer.
                load_result = model.load_state_dict(state_dict_saved, strict=False)
339
340
341
342
343
344
                keys_to_ignore = set(model._keys_to_ignore_on_save)

                if hasattr(model, "_tied_weights_keys"):
                    keys_to_ignore.update(set(model._tied_weights_keys))

                self.assertTrue(len(load_result.missing_keys) == 0 or set(load_result.missing_keys) == keys_to_ignore)
Sylvain Gugger's avatar
Sylvain Gugger committed
345
346
                self.assertTrue(len(load_result.unexpected_keys) == 0)

347
348
349
350
351
352
353
354
355
356
357
    def test_gradient_checkpointing_backward_compatibility(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            config.gradient_checkpointing = True
            model = model_class(config)
            self.assertTrue(model.is_gradient_checkpointing)

358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
    def test_gradient_checkpointing_enable_disable(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            # at init model should have gradient checkpointing disabled
            model = model_class(config)
            self.assertFalse(model.is_gradient_checkpointing)

            # check enable works
            model.gradient_checkpointing_enable()
            self.assertTrue(model.is_gradient_checkpointing)

373
374
375
376
377
378
379
            # Loop over all modules and check that relevant modules have gradient_checkpointing set to True
            for n, m in model.named_modules():
                if hasattr(m, "gradient_checkpointing"):
                    self.assertTrue(
                        m.gradient_checkpointing, f"Module {n} does not have gradient_checkpointing set to True"
                    )

380
381
382
383
            # check disable works
            model.gradient_checkpointing_disable()
            self.assertFalse(model.is_gradient_checkpointing)

384
385
386
387
388
389
390
            # Loop over all modules and check that relevant modules have gradient_checkpointing set to False
            for n, m in model.named_modules():
                if hasattr(m, "gradient_checkpointing"):
                    self.assertFalse(
                        m.gradient_checkpointing, f"Module {n} does not have gradient_checkpointing set to False"
                    )

391
    @is_flaky(description="low likelihood of failure, reason not yet discovered")
392
393
    def test_save_load_fast_init_from_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
394
        if config.__class__ not in MODEL_MAPPING:
amyeroberts's avatar
amyeroberts committed
395
396
            self.skipTest(reason="Model class not in MODEL_MAPPING")

397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(model_class):
                pass

            model_class_copy = CopyClass

            # make sure that all keys are expected for test
            model_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
418
419
            model_class_copy._init_weights = _mock_init_weights
            model_class_copy.init_weights = _mock_all_init_weights
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435

            model = base_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = model_class_copy.from_pretrained(tmpdirname)
                model_slow_init = model_class_copy.from_pretrained(tmpdirname, _fast_init=False)
436
                # Before we test anything
437
438

                for key in model_fast_init.state_dict().keys():
439
440
441
442
443
                    if isinstance(model_slow_init.state_dict()[key], torch.BoolTensor):
                        max_diff = (model_slow_init.state_dict()[key] ^ model_fast_init.state_dict()[key]).sum().item()
                    else:
                        max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
444

445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
    @slow
    @require_accelerate
    @mark.accelerate_tests
    def test_save_load_low_cpu_mem_usage(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        with tempfile.TemporaryDirectory() as saved_model_path:
            for model_class in self.all_model_classes:
                model_to_save = model_class(config)
                model_to_save.save_pretrained(saved_model_path)

                self._check_save_load_low_cpu_mem_usage(model_class, saved_model_path)

    @slow
    @require_accelerate
    @mark.accelerate_tests
    def test_save_load_low_cpu_mem_usage_checkpoints(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        with tempfile.TemporaryDirectory() as saved_model_path:
            for model_class in self.all_model_classes:
                model_to_save = model_class(config)
                model_to_save.config.save_pretrained(saved_model_path)
                torch.save(model_to_save.state_dict(), os.path.join(saved_model_path, "pytorch_model.bin"))

                self._check_save_load_low_cpu_mem_usage(model_class, saved_model_path)

    @slow
    @require_accelerate
    @mark.accelerate_tests
    def test_save_load_low_cpu_mem_usage_no_safetensors(self):
        with tempfile.TemporaryDirectory() as saved_model_path:
            for model_class in self.all_model_classes:
                config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
                model_to_save = model_class(config)

                model_to_save.save_pretrained(saved_model_path, safe_serialization=False)
                self._check_save_load_low_cpu_mem_usage(model_class, saved_model_path)

    def _check_save_load_low_cpu_mem_usage(self, model_class, saved_model_path):
483
484
        from accelerate.utils.modeling import named_module_tensors

485
486
487
488
489
490
491
492
493
494
495
496
497
498
        # Load the low usage and the normal models.
        model_low_usage, loading_info = model_class.from_pretrained(
            saved_model_path,
            low_cpu_mem_usage=True,
            output_loading_info=True,
        )
        model_non_low_usage = model_class.from_pretrained(saved_model_path)

        # Check that there were no missing keys.
        self.assertEqual(loading_info["missing_keys"], [])

        # The low_cpu_mem_usage=True causes the model params to be initialized with device=meta, and then
        # subsequently loaded with the correct values and onto the correct device. We check if there are any
        # remaining params that were not properly loaded.
499
        for name, tensor in named_module_tensors(model_low_usage, recurse=True):
500
            self.assertNotEqual(
501
                tensor.device,
502
                torch.device("meta"),
503
                "Tensor '" + name + "' has not been properly loaded and has device=meta.",
504
505
506
507
            )

        # Check that the parameters are equal.
        for p1, p2 in zip(model_low_usage.parameters(), model_non_low_usage.parameters()):
Arthur's avatar
Arthur committed
508
            self.assertEqual(p1.data.ne(p2.data).sum(), 0)
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525

        # Check that the state dict keys are equal.
        self.assertEqual(set(model_low_usage.state_dict().keys()), set(model_non_low_usage.state_dict().keys()))

        # Check that the shared tensors are equal.
        tensor_ptrs1 = collections.defaultdict(list)
        for name, tensor in model_low_usage.state_dict().items():
            tensor_ptrs1[id_tensor_storage(tensor)].append(name)
        tied_params1 = [names for _, names in tensor_ptrs1.items() if len(names) > 1]

        tensor_ptrs2 = collections.defaultdict(list)
        for name, tensor in model_non_low_usage.state_dict().items():
            tensor_ptrs2[id_tensor_storage(tensor)].append(name)
        tied_params2 = [names for _, names in tensor_ptrs2.items() if len(names) > 1]

        self.assertEqual(tied_params1, tied_params2)

526
527
    def test_save_load_fast_init_to_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
528
        if config.__class__ not in MODEL_MAPPING:
amyeroberts's avatar
amyeroberts committed
529
530
            self.skipTest(reason="Model class not in MODEL_MAPPING")

531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(base_class):
                pass

            base_class_copy = CopyClass

            # make sure that all keys are expected for test
            base_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
552
553
            base_class_copy._init_weights = _mock_init_weights
            base_class_copy.init_weights = _mock_all_init_weights
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

            model = model_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.config.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = base_class_copy.from_pretrained(tmpdirname)
                model_slow_init = base_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
572
573
574
575
576
577
578
579
580
                    if isinstance(model_slow_init.state_dict()[key], torch.BoolTensor):
                        max_diff = torch.max(
                            model_slow_init.state_dict()[key] ^ model_fast_init.state_dict()[key]
                        ).item()
                    else:
                        max_diff = torch.max(
                            torch.abs(model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key])
                        ).item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
581

582
583
584
    def test_torch_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        if config.__class__ not in MODEL_MAPPING:
amyeroberts's avatar
amyeroberts committed
585
586
            self.skipTest(reason="Model class not in MODEL_MAPPING")

587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(base_class):
                pass

            base_class_copy = CopyClass

            # make sure that all keys are expected for test
            base_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
            base_class_copy._init_weights = _mock_init_weights
            base_class_copy.init_weights = _mock_all_init_weights

            model = model_class(config)
            state_dict = model.state_dict()

            def check_equal(loaded):
                for key in state_dict.keys():
                    max_diff = torch.max(
                        state_dict()[key] ^ loaded[key]
                        if isinstance(state_dict[key], torch.BoolTensor)
                        else torch.abs(state_dict[key] - loaded[key])
                    ).item()
                    self.assertLessEqual(max_diff, 1e-6, msg=f"{key} not identical")

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_checkpoint_path = os.path.join(tmpdirname, "pytorch_model.bin")
                torch.save(state_dict, pt_checkpoint_path, _use_new_zipfile_serialization=True)
                check_equal(load_state_dict(pt_checkpoint_path))
                torch.save(state_dict, pt_checkpoint_path, _use_new_zipfile_serialization=False)
                check_equal(load_state_dict(pt_checkpoint_path))

Patrick von Platen's avatar
Patrick von Platen committed
631
    def test_initialization(self):
632
633
634
635
636
637
638
639
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
640
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
641
                        [0.0, 1.0],
642
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
643
                    )
thomwolf's avatar
thomwolf committed
644

Patrick von Platen's avatar
Patrick von Platen committed
645
    def test_determinism(self):
646
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
647
648
649
650
651
652
653
654
655

        def check_determinism(first, second):
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

656
657
658
659
660
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
661
662
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
Weizhen's avatar
Weizhen committed
663

664
665
666
667
668
            if isinstance(first, tuple) and isinstance(second, tuple):
                for tensor1, tensor2 in zip(first, second):
                    check_determinism(tensor1, tensor2)
            else:
                check_determinism(first, second)
669

670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
    def test_batching_equivalence(self):
        """
        Tests that the model supports batching and that the output is the nearly the same for the same input in
        different batch sizes.
        (Why "nearly the same" not "exactly the same"? Batching uses different matmul shapes, which often leads to
        different results: https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535)
        """

        def get_tensor_equivalence_function(batched_input):
            # models operating on continuous spaces have higher abs difference than LMs
            # instead, we can rely on cos distance for image/speech models, similar to `diffusers`
            if "input_ids" not in batched_input:
                return lambda tensor1, tensor2: (
                    1.0 - F.cosine_similarity(tensor1.float().flatten(), tensor2.float().flatten(), dim=0, eps=1e-38)
                )
            return lambda tensor1, tensor2: torch.max(torch.abs(tensor1 - tensor2))

        def recursive_check(batched_object, single_row_object, model_name, key):
            if isinstance(batched_object, (list, tuple)):
                for batched_object_value, single_row_object_value in zip(batched_object, single_row_object):
                    recursive_check(batched_object_value, single_row_object_value, model_name, key)
            elif isinstance(batched_object, dict):
                for batched_object_value, single_row_object_value in zip(
                    batched_object.values(), single_row_object.values()
                ):
                    recursive_check(batched_object_value, single_row_object_value, model_name, key)
696
697
            # do not compare returned loss (0-dim tensor) / codebook ids (int) / caching objects
            elif batched_object is None or not isinstance(batched_object, torch.Tensor):
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
                return
            elif batched_object.dim() == 0:
                return
            else:
                # indexing the first element does not always work
                # e.g. models that output similarity scores of size (N, M) would need to index [0, 0]
                slice_ids = [slice(0, index) for index in single_row_object.shape]
                batched_row = batched_object[slice_ids]
                self.assertFalse(
                    torch.isnan(batched_row).any(), f"Batched output has `nan` in {model_name} for key={key}"
                )
                self.assertFalse(
                    torch.isinf(batched_row).any(), f"Batched output has `inf` in {model_name} for key={key}"
                )
                self.assertFalse(
                    torch.isnan(single_row_object).any(), f"Single row output has `nan` in {model_name} for key={key}"
                )
                self.assertFalse(
                    torch.isinf(single_row_object).any(), f"Single row output has `inf` in {model_name} for key={key}"
                )
                self.assertTrue(
                    (equivalence(batched_row, single_row_object)) <= 1e-03,
                    msg=(
                        f"Batched and Single row outputs are not equal in {model_name} for key={key}. "
                        f"Difference={equivalence(batched_row, single_row_object)}."
                    ),
                )

        config, batched_input = self.model_tester.prepare_config_and_inputs_for_common()
        equivalence = get_tensor_equivalence_function(batched_input)

        for model_class in self.all_model_classes:
            config.output_hidden_states = True

            model_name = model_class.__name__
            if hasattr(self.model_tester, "prepare_config_and_inputs_for_model_class"):
                config, batched_input = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
            batched_input_prepared = self._prepare_for_class(batched_input, model_class)
            model = model_class(config).to(torch_device).eval()

            batch_size = self.model_tester.batch_size
            single_row_input = {}
            for key, value in batched_input_prepared.items():
                if isinstance(value, torch.Tensor) and value.shape[0] % batch_size == 0:
                    # e.g. musicgen has inputs of size (bs*codebooks). in most cases value.shape[0] == batch_size
                    single_batch_shape = value.shape[0] // batch_size
                    single_row_input[key] = value[:single_batch_shape]
                else:
                    single_row_input[key] = value

            with torch.no_grad():
                model_batched_output = model(**batched_input_prepared)
                model_row_output = model(**single_row_input)

            if isinstance(model_batched_output, torch.Tensor):
                model_batched_output = {"model_output": model_batched_output}
                model_row_output = {"model_output": model_row_output}

            for key in model_batched_output:
                # DETR starts from zero-init queries to decoder, leading to cos_similarity = `nan`
                if hasattr(self, "zero_init_hidden_state") and "decoder_hidden_states" in key:
                    model_batched_output[key] = model_batched_output[key][1:]
                    model_row_output[key] = model_row_output[key][1:]
                recursive_check(model_batched_output[key], model_row_output[key], model_name, key)

763
    def check_training_gradient_checkpointing(self, gradient_checkpointing_kwargs=None):
764
        if not self.model_tester.is_training:
amyeroberts's avatar
amyeroberts committed
765
            self.skipTest(reason="ModelTester is not configured to run training tests")
766
767

        for model_class in self.all_model_classes:
768
769
            if (
                model_class.__name__
770
771
772
773
                in [
                    *get_values(MODEL_MAPPING_NAMES),
                    *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES),
                ]
774
775
                or not model_class.supports_gradient_checkpointing
            ):
776
                continue
777

778
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
779
780
            config.use_cache = False
            config.return_dict = True
781
            model = model_class(config)
782

783
            model.to(torch_device)
784
            model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=gradient_checkpointing_kwargs)
785
            model.train()
786
787
788
789
790
791
792

            # unfreeze additional layers
            for p in model.parameters():
                p.requires_grad_(True)

            optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

793
794
795
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()
796
            optimizer.step()
797

798
799
800
801
802
            for k, v in model.named_parameters():
                if v.requires_grad:
                    self.assertTrue(v.grad is not None, f"{k} in {model_class.__name__} has no gradient!")

    def test_training(self):
803
        if not self.model_tester.is_training:
amyeroberts's avatar
amyeroberts committed
804
            self.skipTest(reason="ModelTester is not configured to run training tests")
805
806

        for model_class in self.all_model_classes:
807
808
809
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.return_dict = True

810
811
812
813
            if model_class.__name__ in [
                *get_values(MODEL_MAPPING_NAMES),
                *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES),
            ]:
814
                continue
815

816
817
818
819
820
821
822
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

823
824
825
826
827
828
829
830
831
832
833
834
835
    def test_training_gradient_checkpointing(self):
        # Scenario - 1 default behaviour
        self.check_training_gradient_checkpointing()

    def test_training_gradient_checkpointing_use_reentrant(self):
        # Scenario - 2 with `use_reentrant=True` - this is the default value that is used in pytorch's
        # torch.utils.checkpoint.checkpoint
        self.check_training_gradient_checkpointing(gradient_checkpointing_kwargs={"use_reentrant": True})

    def test_training_gradient_checkpointing_use_reentrant_false(self):
        # Scenario - 3 with `use_reentrant=False` pytorch suggests users to use this value for
        # future releases: https://pytorch.org/docs/stable/checkpoint.html
        self.check_training_gradient_checkpointing(gradient_checkpointing_kwargs={"use_reentrant": False})
836

Patrick von Platen's avatar
Patrick von Platen committed
837
    def test_attention_outputs(self):
838
839
840
        if not self.has_attentions:
            self.skipTest(reason="Model does not output attentions")

841
842
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True
843

844
845
846
847
848
849
850
851
852
853
854
855
        seq_len = getattr(self.model_tester, "seq_length", None)
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
        decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
856
            config.return_dict = True
857
858
859
860
861
862
863
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
864

865
866
867
868
869
870
871
872
873
874
            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
875

876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
            out_len = len(outputs)

            if self.is_encoder_decoder:
                correct_outlen = 5

                # loss is at first position
                if "labels" in inputs_dict:
                    correct_outlen += 1  # loss is added to beginning
                # Question Answering model returns start_logits and end_logits
895
896
897
                if model_class.__name__ in [
                    *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
                    *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
898
                ]:
899
900
901
902
903
904
905
906
907
908
909
910
911
912
                    correct_outlen += 1  # start_logits and end_logits instead of only 1 output
                if "past_key_values" in outputs:
                    correct_outlen += 1  # past_key_values have been returned

                self.assertEqual(out_len, correct_outlen)

                # decoder attentions
                decoder_attentions = outputs.decoder_attentions
                self.assertIsInstance(decoder_attentions, (list, tuple))
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
                )
913

914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
                # cross attentions
                cross_attentions = outputs.cross_attentions
                self.assertIsInstance(cross_attentions, (list, tuple))
                self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(cross_attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_attention_heads,
                        decoder_seq_length,
                        encoder_key_length,
                    ],
                )

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
957

958
    @slow
959
    def test_torchscript_simple(self):
960
961
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
962

963
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
964
    def test_torchscript_output_attentions(self):
965
966
967
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
968

969
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
970
    def test_torchscript_output_hidden_state(self):
971
972
973
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
974

975
976
977
978
    # This is copied from `torch/testing/_internal/jit_utils.py::clear_class_registry`
    def clear_torch_jit_class_registry(self):
        torch._C._jit_clear_class_registry()
        torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore()
979
980
981
        # torch 1.8 has no `_clear_class_state` in `torch.jit._state`
        if hasattr(torch.jit._state, "_clear_class_state"):
            torch.jit._state._clear_class_state()
982

983
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
984
        if not self.test_torchscript:
amyeroberts's avatar
amyeroberts committed
985
            self.skipTest(reason="test_torchscript is set to `False`")
986

987
988
989
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
990
            for attn_implementation in ["eager", "sdpa"]:
991
                if attn_implementation == "sdpa" and (not model_class._supports_sdpa or not is_torch_sdpa_available()):
992
                    continue
993

994
995
996
997
998
                configs_no_init._attn_implementation = attn_implementation
                model = model_class(config=configs_no_init)
                model.to(torch_device)
                model.eval()
                inputs = self._prepare_for_class(inputs_dict, model_class)
thomwolf's avatar
thomwolf committed
999

1000
                main_input_name = model_class.main_input_name
thomwolf's avatar
thomwolf committed
1001

1002
                try:
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
                    if model.config.is_encoder_decoder:
                        model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                        main_input = inputs[main_input_name]
                        attention_mask = inputs["attention_mask"]
                        decoder_input_ids = inputs["decoder_input_ids"]
                        decoder_attention_mask = inputs["decoder_attention_mask"]
                        model(main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
                        traced_model = torch.jit.trace(
                            model, (main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
                        )
                    elif "bbox" in inputs and "image" in inputs:  # LayoutLMv2 requires additional inputs
                        input_ids = inputs["input_ids"]
                        bbox = inputs["bbox"]
                        image = inputs["image"].tensor
                        model(input_ids, bbox, image)
                        traced_model = torch.jit.trace(
                            model, (input_ids, bbox, image), check_trace=False
                        )  # when traced model is checked, an error is produced due to name mangling
                    elif "bbox" in inputs:  # Bros requires additional inputs (bbox)
                        input_ids = inputs["input_ids"]
                        bbox = inputs["bbox"]
                        model(input_ids, bbox)
                        traced_model = torch.jit.trace(
                            model, (input_ids, bbox), check_trace=False
                        )  # when traced model is checked, an error is produced due to name mangling
Eduardo Pacheco's avatar
Eduardo Pacheco committed
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
                    elif (
                        "pixel_values" in inputs and "prompt_pixel_values" in inputs and "prompt_masks" in inputs
                    ):  # SegGpt requires additional inputs
                        pixel_values = inputs["pixel_values"]
                        prompt_pixel_values = inputs["prompt_pixel_values"]
                        prompt_masks = inputs["prompt_masks"]
                        model(pixel_values, prompt_pixel_values, prompt_masks)
                        traced_model = torch.jit.trace(
                            model, (pixel_values, prompt_pixel_values, prompt_masks), check_trace=False
                        )  # when traced model is checked, an error is produced due to name mangling
1038
1039
1040
1041
1042
1043
1044
1045
1046
                    else:
                        main_input = inputs[main_input_name]

                        if model.config._attn_implementation == "sdpa":
                            trace_input = {main_input_name: main_input}

                            if "attention_mask" in inputs:
                                trace_input["attention_mask"] = inputs["attention_mask"]
                            else:
amyeroberts's avatar
amyeroberts committed
1047
                                self.skipTest(reason="testing SDPA without attention_mask is not supported")
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069

                            model(main_input, attention_mask=inputs["attention_mask"])
                            # example_kwarg_inputs was introduced in torch==2.0, but it is fine here since SDPA has a requirement on torch>=2.1.
                            traced_model = torch.jit.trace(model, example_kwarg_inputs=trace_input)
                        else:
                            model(main_input)
                            traced_model = torch.jit.trace(model, (main_input,))
                except RuntimeError:
                    self.fail("Couldn't trace module.")

                with tempfile.TemporaryDirectory() as tmp_dir_name:
                    pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")

                    try:
                        torch.jit.save(traced_model, pt_file_name)
                    except Exception:
                        self.fail("Couldn't save module.")

                    try:
                        loaded_model = torch.jit.load(pt_file_name)
                    except Exception:
                        self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
1070

1071
1072
                model.to(torch_device)
                model.eval()
thomwolf's avatar
thomwolf committed
1073

1074
1075
                loaded_model.to(torch_device)
                loaded_model.eval()
thomwolf's avatar
thomwolf committed
1076

1077
1078
                model_state_dict = model.state_dict()
                loaded_model_state_dict = loaded_model.state_dict()
1079

1080
1081
1082
1083
                non_persistent_buffers = {}
                for key in loaded_model_state_dict.keys():
                    if key not in model_state_dict.keys():
                        non_persistent_buffers[key] = loaded_model_state_dict[key]
1084

1085
1086
1087
                loaded_model_state_dict = {
                    key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
                }
1088

1089
                self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
1090

1091
1092
1093
1094
1095
1096
1097
                model_buffers = list(model.buffers())
                for non_persistent_buffer in non_persistent_buffers.values():
                    found_buffer = False
                    for i, model_buffer in enumerate(model_buffers):
                        if torch.equal(non_persistent_buffer, model_buffer):
                            found_buffer = True
                            break
1098

1099
1100
                    self.assertTrue(found_buffer)
                    model_buffers.pop(i)
1101

1102
1103
1104
1105
1106
1107
                models_equal = True
                for layer_name, p1 in model_state_dict.items():
                    if layer_name in loaded_model_state_dict:
                        p2 = loaded_model_state_dict[layer_name]
                        if p1.data.ne(p2.data).sum() > 0:
                            models_equal = False
thomwolf's avatar
thomwolf committed
1108

1109
                self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
1110

1111
1112
1113
                # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
                # (Even with this call, there are still memory leak by ~0.04MB)
                self.clear_torch_jit_class_registry()
1114

1115
1116
1117
1118
1119
1120
1121
1122
    def test_torch_fx(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict)

    def test_torch_fx_output_loss(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict, output_loss=True)

1123
1124
    def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False):
        if not is_torch_fx_available() or not self.fx_compatible:
1125
1126
1127
            self.skipTest(
                f"Either torch.fx is not available, or the model type {config.model_type} is not compatible with torch.fx"
            )
1128
1129
1130
1131

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.return_dict = False

1132
        for model_class in self.all_model_classes:
1133
1134
1135
1136
1137
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss)

1138
1139
            # We may want to test several inputs (various shapes, etc.).
            inputs_to_test = [inputs]
1140

1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
            if model.config.is_encoder_decoder:
                model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                labels = inputs.get("labels", None)
                input_names = [
                    "attention_mask",
                    "decoder_attention_mask",
                    "decoder_input_ids",
                    "input_features",
                    "input_ids",
                    "input_values",
                ]
                if labels is not None:
                    input_names.append("labels")
            else:
                input_names = [
                    "attention_mask",
                    "bbox",
                    "input_features",
                    "input_ids",
                    "input_values",
1161
                    "inputs_embeds",
1162
1163
1164
1165
1166
                    "pixel_values",
                    "token_type_ids",
                    "visual_feats",
                    "visual_pos",
                ]
1167

1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
                labels = inputs.get("labels", None)
                start_positions = inputs.get("start_positions", None)
                end_positions = inputs.get("end_positions", None)
                if labels is not None:
                    input_names.append("labels")
                if start_positions is not None:
                    input_names.append("start_positions")
                if end_positions is not None:
                    input_names.append("end_positions")

                if model.config.model_type in _FX_SUPPORTED_MODELS_WITH_KV_CACHE:
                    input_names.append("past_key_values")

                    # Generally model_tester.prepare_config_and_inputs_for_common seem not to generate past key values inputs.
                    if "past_key_values" not in inputs:
                        batch_size = inputs[next(iter(inputs))].shape[0]
                        num_heads = model.config.num_attention_heads
                        head_dim = model.config.hidden_size // model.config.num_attention_heads

                        cache_shape = (batch_size, num_heads, 0, head_dim)
                        empty_pkv = tuple(
                            (
                                torch.rand(cache_shape, dtype=torch.float, device=torch_device),
                                torch.rand(cache_shape, dtype=torch.float, device=torch_device),
1192
                            )
1193
1194
                            for i in range(model.config.num_hidden_layers)
                        )
1195

1196
1197
1198
1199
1200
1201
1202
1203
1204
                        cache_length = 9
                        cache_shape = (batch_size, num_heads, cache_length, head_dim)
                        non_empty_pkv = tuple(
                            (
                                torch.rand(cache_shape, dtype=torch.float, device=torch_device),
                                torch.rand(cache_shape, dtype=torch.float, device=torch_device),
                            )
                            for i in range(model.config.num_hidden_layers)
                        )
1205

1206
                        inps = copy.deepcopy(inputs_to_test[0])
1207

1208
                        inputs_to_test[0]["past_key_values"] = empty_pkv
1209

1210
1211
                        inps["past_key_values"] = non_empty_pkv
                        inputs_to_test.append(inps)
1212

1213
1214
1215
1216
                        past_mask = torch.ones(batch_size, cache_length, device=torch_device, dtype=torch.float)
                        inputs_to_test[1]["attention_mask"] = torch.cat(
                            (past_mask, inputs_to_test[1]["attention_mask"]), dim=1
                        )
1217

1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
                forward_parameters = inspect.signature(model.forward).parameters
                if "input_ids" in forward_parameters and "inputs_embeds" in forward_parameters:
                    inps = copy.deepcopy(inputs_to_test[0])

                    embedding_size = (
                        model.config.embedding_size
                        if getattr(model.config, "embedding_size", None) is not None
                        and model.config.model_type != "megatron-bert"
                        else model.config.hidden_size
                    )

                    if (
                        model.config.model_type in MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES
                        and model.__class__.__name__
                        == MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES[model.config.model_type]
                    ):
                        batch_size, num_choices, sequence_length = inputs["input_ids"].shape
                        shape = (batch_size, num_choices, sequence_length, embedding_size)
                    elif inps["input_ids"].ndim == 2:
                        batch_size, sequence_length = inputs["input_ids"].shape
                        shape = (batch_size, sequence_length, embedding_size)
                    else:
                        self.skipTest("Unknown case")

                    del inps["input_ids"]
                    inps["inputs_embeds"] = torch.rand(shape, dtype=torch.float, device=torch_device)
                    inputs_to_test.append(inps)
1245

1246
1247
            for inps in inputs_to_test:
                filtered_inputs = {k: v for (k, v) in inps.items() if k in input_names}
1248
                input_names_to_trace = list(filtered_inputs.keys())
1249

1250
1251
1252
1253
                if model.__class__.__name__ in set(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values()) and (
                    not hasattr(model.config, "problem_type") or model.config.problem_type is None
                ):
                    model.config.problem_type = "single_label_classification"
1254

1255
1256
1257
                model.config.use_cache = "past_key_values" in input_names_to_trace

                traced_model = symbolic_trace(model, input_names_to_trace)
1258

1259
1260
1261
                with torch.no_grad():
                    traced_output = traced_model(**filtered_inputs)
                    model_output = model(**filtered_inputs)
1262

1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
                def flatten_output(output):
                    flatten = []
                    for x in output:
                        if isinstance(x, (tuple, list)):
                            flatten += flatten_output(x)
                        elif not isinstance(x, torch.Tensor):
                            continue
                        else:
                            flatten.append(x)
                    return flatten
1273

1274
1275
1276
                model_output = flatten_output(model_output)
                traced_output = flatten_output(traced_output)
                num_outputs = len(model_output)
1277
1278
1279

                for i in range(num_outputs):
                    self.assertTrue(
1280
1281
                        torch.allclose(model_output[i], traced_output[i]),
                        f"traced {i}th output doesn't match model {i}th output for {model_class}",
1282
1283
                    )

1284
1285
1286
                # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
                # (Even with this call, there are still memory leak by ~0.04MB)
                self.clear_torch_jit_class_registry()
1287

Patrick von Platen's avatar
Patrick von Platen committed
1288
1289
    def test_headmasking(self):
        if not self.test_head_masking:
amyeroberts's avatar
amyeroberts committed
1290
            self.skipTest(reason="Model does not support head masking")
1291

1292
1293
1294
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
1295

1296
        inputs_dict["output_attentions"] = True
1297
1298
1299
1300
1301
1302
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
1303

1304
1305
1306
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
Lysandre's avatar
Lysandre committed
1307
1308
1309
                self.model_tester.num_hidden_layers,
                self.model_tester.num_attention_heads,
                device=torch_device,
1310
1311
1312
1313
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
1314
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
1315
            inputs["head_mask"] = head_mask
1316
1317
1318
1319
1320
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.forward)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
1321
1322
                if "cross_attn_head_mask" in arg_names:
                    inputs["cross_attn_head_mask"] = head_mask
1323
            outputs = model(**inputs, return_dict=True)
1324
1325
1326
1327
1328
1329
1330
1331
1332

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        torch.sum(torch.isnan(t)), t.numel() / 4
                    )  # Check we don't have more than 25% nans (arbitrary)
                attentions = [
                    t.masked_fill(torch.isnan(t), 0.0) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
                if len(attentions) > 2:  # encoder-decoder models have only 2 layers in each module
                    self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
1354
                check_attentions_validity(outputs.cross_attentions)
1355
1356
            else:
                check_attentions_validity(outputs.attentions)
1357

Patrick von Platen's avatar
Patrick von Platen committed
1358
1359
    def test_head_pruning(self):
        if not self.test_pruning:
amyeroberts's avatar
amyeroberts committed
1360
            self.skipTest(reason="Pruning is not activated")
1361
1362

        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1363
1364
1365
1366
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1367

1368
1369
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1370

1371
            inputs_dict["output_attentions"] = True
1372
1373
1374
1375
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1376
1377
1378
1379
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1380
1381
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
1382
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1383

1384
            attentions = outputs[-1]
1385

1386
            self.assertEqual(attentions[0].shape[-3], 1)
1387
1388
            # TODO: To have this check, we will need at least 3 layers. Do we really need it?
            # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
1389
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
1390

Patrick von Platen's avatar
Patrick von Platen committed
1391
1392
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
amyeroberts's avatar
amyeroberts committed
1393
            self.skipTest(reason="Pruning is not activated")
LysandreJik's avatar
LysandreJik committed
1394

1395
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1396
1397
1398
1399
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1400
1401
1402

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1403

1404
            inputs_dict["output_attentions"] = True
1405
1406
1407
1408
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1409
1410
1411
1412
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1413
            model.prune_heads(heads_to_prune)
1414

1415
            with tempfile.TemporaryDirectory() as temp_dir_name:
1416
1417
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
1418
                model.to(torch_device)
1419

1420
            with torch.no_grad():
1421
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1422
1423
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
1424
1425
            # TODO: To have this check, we will need at least 3 layers. Do we really need it?
            # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
1426
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
1427

Patrick von Platen's avatar
Patrick von Platen committed
1428
1429
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
amyeroberts's avatar
amyeroberts committed
1430
            self.skipTest(reason="Pruning is not activated")
1431

1432
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1433
1434
1435
1436
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1437

1438
1439
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1440

1441
            inputs_dict["output_attentions"] = True
1442
            config.output_hidden_states = False
1443

1444
1445
1446
1447
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1448
            config.pruned_heads = heads_to_prune
1449

1450
1451
1452
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1453

1454
            with torch.no_grad():
1455
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1456
            attentions = outputs[-1]
1457

1458
            self.assertEqual(attentions[0].shape[-3], 1)
1459
1460
            # TODO: To have this check, we will need at least 3 layers. Do we really need it?
            # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
1461
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
1462

Patrick von Platen's avatar
Patrick von Platen committed
1463
1464
    def test_head_pruning_integration(self):
        if not self.test_pruning:
amyeroberts's avatar
amyeroberts committed
1465
            self.skipTest(reason="Pruning is not activated")
1466

1467
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1468
1469
1470
1471
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1472

1473
1474
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1475

1476
            inputs_dict["output_attentions"] = True
1477
            config.output_hidden_states = False
1478

1479
            heads_to_prune = {1: [1, 2]}
1480
            config.pruned_heads = heads_to_prune
1481

1482
1483
1484
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1485

1486
            with torch.no_grad():
1487
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1488
            attentions = outputs[-1]
1489

1490
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 0)
1491
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
thomwolf's avatar
thomwolf committed
1492

1493
            with tempfile.TemporaryDirectory() as temp_dir_name:
1494
1495
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
1496
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
1497

1498
            with torch.no_grad():
1499
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1500
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
1501

1502
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 0)
1503
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
thomwolf's avatar
thomwolf committed
1504

1505
            heads_to_prune = {0: [0], 1: [1, 2]}
1506
            model.prune_heads(heads_to_prune)
1507

1508
            with torch.no_grad():
1509
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1510
            attentions = outputs[-1]
1511

1512
1513
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
1514

1515
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2]})
thomwolf's avatar
thomwolf committed
1516

Patrick von Platen's avatar
Patrick von Platen committed
1517
    def test_hidden_states_output(self):
Joseph Liu's avatar
Joseph Liu committed
1518
        def check_hidden_states_output(inputs_dict, config, model_class):
1519
            model = model_class(config)
1520
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
1521
            model.eval()
Joseph Liu's avatar
Joseph Liu committed
1522

thomwolf's avatar
thomwolf committed
1523
            with torch.no_grad():
1524
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1525
1526

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
1527

Sylvain Gugger's avatar
Sylvain Gugger committed
1528
1529
1530
1531
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)
1532

Patrick von Platen's avatar
Patrick von Platen committed
1533
1534
1535
1536
1537
1538
1539
            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

1540
            self.assertListEqual(
Lysandre's avatar
Lysandre committed
1541
1542
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
1543
            )
thomwolf's avatar
thomwolf committed
1544

1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
            if config.is_encoder_decoder:
                hidden_states = outputs.decoder_hidden_states

                self.assertIsInstance(hidden_states, (list, tuple))
                self.assertEqual(len(hidden_states), expected_num_layers)
                seq_len = getattr(self.model_tester, "seq_length", None)
                decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)

                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [decoder_seq_length, self.model_tester.hidden_size],
                )

Joseph Liu's avatar
Joseph Liu committed
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

1570
1571
1572
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
1573
        config.output_attentions = self.has_attentions
1574
1575
1576
1577
1578
1579
1580
1581
1582

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)
1583

1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
        output = outputs[0]

        if config.is_encoder_decoder:
            # Seq2Seq models
            encoder_hidden_states = outputs.encoder_hidden_states[0]
            encoder_hidden_states.retain_grad()

            decoder_hidden_states = outputs.decoder_hidden_states[0]
            decoder_hidden_states.retain_grad()

1594
1595
1596
1597
1598
1599
1600
1601
1602
            if self.has_attentions:
                encoder_attentions = outputs.encoder_attentions[0]
                encoder_attentions.retain_grad()

                decoder_attentions = outputs.decoder_attentions[0]
                decoder_attentions.retain_grad()

                cross_attentions = outputs.cross_attentions[0]
                cross_attentions.retain_grad()
1603
1604
1605
1606
1607

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(encoder_hidden_states.grad)
            self.assertIsNotNone(decoder_hidden_states.grad)
1608
1609
1610
1611
1612

            if self.has_attentions:
                self.assertIsNotNone(encoder_attentions.grad)
                self.assertIsNotNone(decoder_attentions.grad)
                self.assertIsNotNone(cross_attentions.grad)
1613
1614
1615
1616
        else:
            # Encoder-/Decoder-only models
            hidden_states = outputs.hidden_states[0]
            hidden_states.retain_grad()
1617
1618
1619
1620

            if self.has_attentions:
                attentions = outputs.attentions[0]
                attentions.retain_grad()
1621
1622
1623
1624

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(hidden_states.grad)
1625
1626
1627

            if self.has_attentions:
                self.assertIsNotNone(attentions.grad)
1628

Pradhy729's avatar
Pradhy729 committed
1629
    def test_feed_forward_chunking(self):
Lysandre's avatar
Lysandre committed
1630
1631
1632
1633
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Pradhy729's avatar
Pradhy729 committed
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
        for model_class in self.all_model_classes:
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

1652
1653
    def test_resize_position_vector_embeddings(self):
        if not self.test_resize_position_embeddings:
amyeroberts's avatar
amyeroberts committed
1654
            self.skipTest(reason="Model does not have position embeddings")
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730

        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

            if self.model_tester.is_training is False:
                model.eval()

            max_position_embeddings = config.max_position_embeddings

            # Retrieve the embeddings and clone theme
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                encoder_cloned_embeddings = encoder_model_embed.weight.clone()
                decoder_cloned_embeddings = decoder_model_embed.weight.clone()
            else:
                model_embed = model.get_position_embeddings()
                cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the position embeddings with a larger max_position_embeddings increases
            # the model's postion embeddings size
            model.resize_position_embeddings(max_position_embeddings + 10)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings + 10)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] + 10)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] + 10)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the position embeddings with a smaller max_position_embeddings decreases
            # the model's max_position_embeddings
            model.resize_position_embeddings(max_position_embeddings - 5)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings - 5)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] - 5)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] - 5)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 5)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True

            if model.config.is_encoder_decoder:
                for p1, p2 in zip(encoder_cloned_embeddings, encoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
                for p1, p2 in zip(decoder_cloned_embeddings, decoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
            else:
                for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False

            self.assertTrue(models_equal)

Patrick von Platen's avatar
Patrick von Platen committed
1731
    def test_resize_tokens_embeddings(self):
Lysandre's avatar
Lysandre committed
1732
1733
1734
1735
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
1736
        if not self.test_resize_embeddings:
amyeroberts's avatar
amyeroberts committed
1737
            self.skipTest(reason="test_resize_embeddings is set to `False`")
1738
1739
1740
1741

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
1742
            model.to(torch_device)
1743

Patrick von Platen's avatar
Patrick von Platen committed
1744
1745
1746
            if self.model_tester.is_training is False:
                model.eval()

1747
            model_vocab_size = config.text_config.vocab_size if hasattr(config, "text_config") else config.vocab_size
1748
1749
1750
1751
1752
1753
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
1754
1755
1756
1757
1758
1759
            new_model_vocab_size = (
                model.config.text_config.vocab_size
                if hasattr(model.config, "text_config")
                else model.config.vocab_size
            )
            self.assertEqual(new_model_vocab_size, model_vocab_size + 10)
1760
1761
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
1762
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
1763
            model(**self._prepare_for_class(inputs_dict, model_class))
1764
1765
1766

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
1767
1768
1769
1770
1771
1772
            new_model_vocab_size = (
                model.config.text_config.vocab_size
                if hasattr(model.config, "text_config")
                else model.config.vocab_size
            )
            self.assertEqual(new_model_vocab_size, model_vocab_size - 15)
1773
1774
1775
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

1776
1777
1778
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1779
1780
1781
1782

            # make sure that decoder_input_ids are resized as well
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1783
            model(**self._prepare_for_class(inputs_dict, model_class))
1784

1785
1786
1787
1788
1789
1790
1791
1792
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

1793
1794
1795
1796
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

1797
            model_vocab_size = config.text_config.vocab_size if hasattr(config, "text_config") else config.vocab_size
1798
            model.resize_token_embeddings(model_vocab_size + 10, pad_to_multiple_of=1)
1799
1800
1801
1802
1803
1804
            new_model_vocab_size = (
                model.config.text_config.vocab_size
                if hasattr(model.config, "text_config")
                else model.config.vocab_size
            )
            self.assertTrue(new_model_vocab_size + 10, model_vocab_size)
1805
1806

            model_embed = model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=64)
1807
1808
1809
1810
1811
            new_model_vocab_size = (
                model.config.text_config.vocab_size
                if hasattr(model.config, "text_config")
                else model.config.vocab_size
            )
1812
1813
            self.assertTrue(model_embed.weight.shape[0] // 64, 0)

1814
1815
            self.assertTrue(model_embed.weight.shape[0], new_model_vocab_size)
            self.assertTrue(new_model_vocab_size, model.vocab_size)
Arthur's avatar
Arthur committed
1816

1817
1818
1819
            model_embed = model.resize_token_embeddings(model_vocab_size + 13, pad_to_multiple_of=64)
            self.assertTrue(model_embed.weight.shape[0] // 64, 0)

1820
1821
1822
1823
1824
            # Check that resizing a model to a multiple of pad_to_multiple leads to a model of exactly that size
            target_dimension = 128
            model_embed = model.resize_token_embeddings(target_dimension, pad_to_multiple_of=64)
            self.assertTrue(model_embed.weight.shape[0], target_dimension)

1825
1826
1827
1828
1829
1830
            with self.assertRaisesRegex(
                ValueError,
                "Asking to pad the embedding matrix to a multiple of `1.3`, which is not and integer. Please make sure to pass an integer",
            ):
                model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=1.3)

1831
1832
1833
1834
1835
1836
    def test_resize_embeddings_untied(self):
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
amyeroberts's avatar
amyeroberts committed
1837
            self.skipTest(reason="test_resize_embeddings is set to `False`")
1838
1839
1840
1841
1842

        original_config.tie_word_embeddings = False

        # if model cannot untied embeddings -> leave test
        if original_config.tie_word_embeddings:
amyeroberts's avatar
amyeroberts committed
1843
            self.skipTest(reason="Model cannot untied embeddings")
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config).to(torch_device)

            # if no output embeddings -> leave test
            if model.get_output_embeddings() is None:
                continue

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
1854
            model_vocab_size = config.text_config.vocab_size if hasattr(config, "text_config") else config.vocab_size
1855
            model.resize_token_embeddings(model_vocab_size + 10)
1856
1857
1858
1859
1860
1861
            new_model_vocab_size = (
                model.config.text_config.vocab_size
                if hasattr(model.config, "text_config")
                else model.config.vocab_size
            )
            self.assertEqual(new_model_vocab_size, model_vocab_size + 10)
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model.resize_token_embeddings(model_vocab_size - 15)
1872
1873
1874
1875
1876
1877
            new_model_vocab_size = (
                model.config.text_config.vocab_size
                if hasattr(model.config, "text_config")
                else model.config.vocab_size
            )
            self.assertEqual(new_model_vocab_size, model_vocab_size - 15)
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
            # Check that it actually resizes the embeddings matrix
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

1892
    def test_model_get_set_embeddings(self):
1893
1894
1895
1896
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1897
            self.assertIsInstance(model.get_input_embeddings(), (nn.Embedding, AdaptiveEmbedding))
1898
1899
1900
1901
1902

            new_input_embedding_layer = nn.Embedding(10, 10)
            model.set_input_embeddings(new_input_embedding_layer)
            self.assertEqual(model.get_input_embeddings(), new_input_embedding_layer)

1903
            x = model.get_output_embeddings()
1904
            self.assertTrue(x is None or isinstance(x, nn.Linear))
1905

1906
1907
1908
1909
1910
1911
1912
    def test_model_main_input_name(self):
        for model_class in self.all_model_classes:
            model_signature = inspect.signature(getattr(model_class, "forward"))
            # The main input is the name of the argument after `self`
            observed_main_input_name = list(model_signature.parameters.keys())[1]
            self.assertEqual(model_class.main_input_name, observed_main_input_name)

1913
    def test_correct_missing_keys(self):
1914
        if not self.test_missing_keys:
amyeroberts's avatar
amyeroberts committed
1915
            self.skipTest(reason="test_missing_keys is set to `False`")
1916
1917
1918
1919
1920
1921
1922
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
                extra_params = {k: v for k, v in model.named_parameters() if not k.startswith(base_model_prefix)}
                extra_params.update({k: v for k, v in model.named_buffers() if not k.startswith(base_model_prefix)})
                # Some models define this as None
                if model._keys_to_ignore_on_load_missing:
                    for key in model._keys_to_ignore_on_load_missing:
                        extra_params.pop(key, None)

                if not extra_params:
                    # In that case, we *are* on a head model, but every
                    # single key is not actual parameters and this is
                    # tested in `test_tied_model_weights_key_ignore` test.
                    continue

1936
1937
1938
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)
1939
                    self.assertGreater(len(loading_info["missing_keys"]), 0, model.__class__.__name__)
1940

1941
1942
    def test_tie_model_weights(self):
        if not self.test_torchscript:
amyeroberts's avatar
amyeroberts committed
1943
            self.skipTest(reason="test_torchscript is set to `False`")
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
1968
1969
            vocab_size = config.text_config.vocab_size if hasattr(config, "text_config") else config.vocab_size
            model_tied.resize_token_embeddings(vocab_size + 10)
1970
1971
1972
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

1973
1974
    @require_safetensors
    def test_can_use_safetensors(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
1975
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
        for model_class in self.all_model_classes:
            model_tied = model_class(config)
            with tempfile.TemporaryDirectory() as d:
                try:
                    model_tied.save_pretrained(d, safe_serialization=True)
                except Exception as e:
                    raise Exception(f"Class {model_class.__name__} cannot be saved using safetensors: {e}")

                model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True)
                # Checking the state dicts are correct
                reloaded_state = model_reloaded.state_dict()
                for k, v in model_tied.state_dict().items():
                    self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded")
                    torch.testing.assert_close(
                        v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}"
                    )
Sylvain Gugger's avatar
Sylvain Gugger committed
1992
1993
                # Checking there was no complain of missing weights
                self.assertEqual(infos["missing_keys"], [])
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009

                # Checking the tensor sharing are correct
                ptrs = defaultdict(list)
                for k, v in model_tied.state_dict().items():
                    ptrs[v.data_ptr()].append(k)

                shared_ptrs = {k: v for k, v in ptrs.items() if len(v) > 1}

                for _, shared_names in shared_ptrs.items():
                    reloaded_ptrs = {reloaded_state[k].data_ptr() for k in shared_names}
                    self.assertEqual(
                        len(reloaded_ptrs),
                        1,
                        f"The shared pointers are incorrect, found different pointers for keys {shared_names}",
                    )

Sylvain Gugger's avatar
Sylvain Gugger committed
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
    def test_load_save_without_tied_weights(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        config.tie_word_embeddings = False
        for model_class in self.all_model_classes:
            model = model_class(config)
            with tempfile.TemporaryDirectory() as d:
                model.save_pretrained(d)

                model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True)
                # Checking the state dicts are correct
                reloaded_state = model_reloaded.state_dict()
                for k, v in model.state_dict().items():
                    self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded")
                    torch.testing.assert_close(
                        v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}"
                    )
                # Checking there was no complain of missing weights
                self.assertEqual(infos["missing_keys"], [])

Sylvain Gugger's avatar
Sylvain Gugger committed
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
    def test_tied_weights_keys(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        config.tie_word_embeddings = True
        for model_class in self.all_model_classes:
            model_tied = model_class(config)

            ptrs = collections.defaultdict(list)
            for name, tensor in model_tied.state_dict().items():
                ptrs[id_tensor_storage(tensor)].append(name)

            # These are all the pointers of shared tensors.
            tied_params = [names for _, names in ptrs.items() if len(names) > 1]

            tied_weight_keys = model_tied._tied_weights_keys if model_tied._tied_weights_keys is not None else []
            # Detect we get a hit for each key
            for key in tied_weight_keys:
2045
2046
                is_tied_key = any(re.search(key, p) for group in tied_params for p in group)
                self.assertTrue(is_tied_key, f"{key} is not a tied weight key for {model_class}.")
Sylvain Gugger's avatar
Sylvain Gugger committed
2047
2048
2049
2050
2051
2052
2053

            # Removed tied weights found from tied params -> there should only be one left after
            for key in tied_weight_keys:
                for i in range(len(tied_params)):
                    tied_params[i] = [p for p in tied_params[i] if re.search(key, p) is None]

            tied_params = [group for group in tied_params if len(group) > 1]
Sylvain Gugger's avatar
Sylvain Gugger committed
2054
2055
2056
2057
2058
            self.assertListEqual(
                tied_params,
                [],
                f"Missing `_tied_weights_keys` for {model_class}: add all of {tied_params} except one.",
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
2059

Sylvain Gugger's avatar
Sylvain Gugger committed
2060
2061
    def test_model_weights_reload_no_missing_tied_weights(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
2062
        for model_class in self.all_model_classes:
Sylvain Gugger's avatar
Sylvain Gugger committed
2063
2064
2065
            model = model_class(config)
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.save_pretrained(tmp_dir)
2066
2067
2068

                # We are nuking ALL weights on file, so every parameter should
                # yell on load. We're going to detect if we yell too much, or too little.
2069
2070
                placeholder_dict = {"tensor": torch.tensor([1, 2])}
                safe_save_file(placeholder_dict, os.path.join(tmp_dir, "model.safetensors"), metadata={"format": "pt"})
Sylvain Gugger's avatar
Sylvain Gugger committed
2071
                model_reloaded, infos = model_class.from_pretrained(tmp_dir, output_loading_info=True)
2072
2073
2074
2075

                prefix = f"{model_reloaded.base_model_prefix}."
                params = dict(model_reloaded.named_parameters())
                params.update(dict(model_reloaded.named_buffers()))
2076
                param_names = {k[len(prefix) :] if k.startswith(prefix) else k for k in params.keys()}
2077
2078
2079
2080

                missing_keys = set(infos["missing_keys"])

                extra_missing = missing_keys - param_names
Sylvain Gugger's avatar
Sylvain Gugger committed
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
                # Remove tied weights from extra missing: they are normally not warned as missing if their tied
                # counterpart is present but here there are no weights at all so we do get the warning.
                ptrs = collections.defaultdict(list)
                for name, tensor in model_reloaded.state_dict().items():
                    ptrs[id_tensor_storage(tensor)].append(name)
                tied_params = [names for _, names in ptrs.items() if len(names) > 1]
                for group in tied_params:
                    group = {k[len(prefix) :] if k.startswith(prefix) else k for k in group}
                    # We remove the group from extra_missing if not all weights from group are in it
                    if len(group - extra_missing) > 0:
                        extra_missing = extra_missing - set(group)
2092
2093
2094
2095

                self.assertEqual(
                    extra_missing,
                    set(),
Sylvain Gugger's avatar
Sylvain Gugger committed
2096
2097
                    f"This model {model_class.__name__} might be missing some `keys_to_ignore`: {extra_missing}. "
                    f"For debugging, tied parameters are {tied_params}",
2098
2099
                )

Sylvain Gugger's avatar
Sylvain Gugger committed
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
                missed_missing = param_names - missing_keys
                # Remove nonpersistent buffers from missed_missing
                buffers = [n for n, _ in model_reloaded.named_buffers()]
                nonpersistent_buffers = {n for n in buffers if n not in model_reloaded.state_dict()}
                nonpersistent_buffers = {
                    k[len(prefix) :] if k.startswith(prefix) else k for k in nonpersistent_buffers
                }
                missed_missing = missed_missing - nonpersistent_buffers

                if model_reloaded._keys_to_ignore_on_load_missing is None:
                    expected_missing = set()
                else:
                    expected_missing = set(model_reloaded._keys_to_ignore_on_load_missing)
                self.assertEqual(
                    missed_missing,
                    expected_missing,
                    f"This model {model_class.__name__} ignores keys {missed_missing} but they look like real"
                    " parameters. If they are non persistent buffers make sure to instantiate them with"
                    " `persistent=False`",
                )
2120

2121
2122
2123
    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Sam Shleifer's avatar
Sam Shleifer committed
2124
2125
2126
2127
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

2128
2129
2130
2131
2132
2133
2134
2135
2136
        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
NielsRogge's avatar
NielsRogge committed
2137
2138
2139
2140
2141
                    elif isinstance(tuple_object, Dict):
                        for tuple_iterable_value, dict_iterable_value in zip(
                            tuple_object.values(), dict_object.values()
                        ):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
2142
2143
2144
2145
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
Sam Shleifer's avatar
Sam Shleifer committed
2146
2147
2148
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
Sylvain Gugger's avatar
Sylvain Gugger committed
2149
2150
2151
2152
2153
2154
                            msg=(
                                "Tuple and dict output are not equal. Difference:"
                                f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                                f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                                f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                            ),
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

2180
2181
2182
2183
            if self.has_attentions:
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
2184

2185
2186
2187
2188
2189
2190
2191
2192
2193
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(
                    model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
                )
2194

2195
2196
2197
2198
    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _make_attention_mask_non_null(self, inputs_dict):
        """Make sure no sequence has all zeros as attention mask"""
2199

2200
2201
2202
        for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]:
            if k in inputs_dict:
                attention_mask = inputs_dict[k]
2203

2204
2205
2206
2207
2208
2209
                # Make sure no all 0s attention masks - to avoid failure at this moment.
                # Put `1` at the beginning of sequences to make it still work when combining causal attention masks.
                # TODO: remove this line once a fix regarding large negative values for attention mask is done.
                attention_mask = torch.cat(
                    [torch.ones_like(attention_mask[:, :1], dtype=attention_mask.dtype), attention_mask[:, 1:]], dim=-1
                )
2210

2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
                # Here we make the first sequence with all 0s as attention mask.
                # Currently, this will fail for `TFWav2Vec2Model`. This is caused by the different large negative
                # values, like `1e-4`, `1e-9`, `1e-30` and `-inf` for attention mask across models/frameworks.
                # TODO: enable this block once the large negative values thing is cleaned up.
                # (see https://github.com/huggingface/transformers/issues/14859)
                # attention_mask = torch.cat(
                #     [torch.zeros_like(attention_mask[:1], dtype=attention_mask.dtype), attention_mask[1:]],
                #     dim=0
                # )

                inputs_dict[k] = attention_mask

    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _postprocessing_to_ignore_test_cases(self, tf_outputs, pt_outputs, model_class):
        """For temporarily ignoring some failed test cases (issues to be fixed)"""

2228
2229
        tf_keys = {k for k, v in tf_outputs.items() if v is not None}
        pt_keys = {k for k, v in pt_outputs.items() if v is not None}
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255

        key_differences = tf_keys.symmetric_difference(pt_keys)

        if model_class.__name__ in [
            "FlaubertWithLMHeadModel",
            "FunnelForPreTraining",
            "ElectraForPreTraining",
            "XLMWithLMHeadModel",
        ]:
            for k in key_differences:
                if k in ["loss", "losses"]:
                    tf_keys.discard(k)
                    pt_keys.discard(k)
        elif model_class.__name__.startswith("GPT2"):
            # `TFGPT2` has `past_key_values` as a tensor while `GPT2` has it as a tuple.
            tf_keys.discard("past_key_values")
            pt_keys.discard("past_key_values")

        # create new outputs from the remaining fields
        new_tf_outputs = type(tf_outputs)(**{k: tf_outputs[k] for k in tf_keys})
        new_pt_outputs = type(pt_outputs)(**{k: pt_outputs[k] for k in pt_keys})

        return new_tf_outputs, new_pt_outputs

    # Copied from tests.test_modeling_tf_common.TFModelTesterMixin.check_pt_tf_outputs
    def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
2256
        """Check the outputs from PyTorch and TensorFlow models are close enough. Checks are done in a recursive way.
2257

2258
2259
2260
2261
2262
2263
2264
2265
        Args:
            model_class: The class of the model that is currently testing. For example, `TFBertModel`,
                TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Mainly used for providing more informative
                error messages.
            name (`str`): The name of the output. For example, `output.hidden_states`, `output.attentions`, etc.
            attributes (`Tuple[str]`): The names of the output's element if the output is a tuple/list with each element
                being a named field in the output.
        """
2266

2267
2268
2269
        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")
2270

2271
2272
2273
2274
2275
2276
        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(tf_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `tf_outputs` is",
            )
2277

2278
2279
2280
            # Don't copy this block to model specific test file!
            # TODO: remove this method and this line after issues are fixed
            tf_outputs, pt_outputs = self._postprocessing_to_ignore_test_cases(tf_outputs, pt_outputs, model_class)
2281

2282
2283
            tf_keys = [k for k, v in tf_outputs.items() if v is not None]
            pt_keys = [k for k, v in pt_outputs.items() if v is not None]
2284

2285
            self.assertEqual(tf_keys, pt_keys, f"{name}: Output keys differ between TF and PyTorch")
2286

2287
            # convert to the case of `tuple`
2288
            # appending each key to the current (string) `name`
2289
2290
2291
2292
            attributes = tuple([f"{name}.{k}" for k in tf_keys])
            self.check_pt_tf_outputs(
                tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )
2293

2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(tf_outputs) in [tuple, list]:
            self.assertEqual(type(tf_outputs), type(pt_outputs), f"{name}: Output types differ between TF and PyTorch")
            self.assertEqual(len(tf_outputs), len(pt_outputs), f"{name}: Output lengths differ between TF and PyTorch")

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(tf_outputs),
2304
                    f"{name}: The tuple `attributes` should have the same length as `tf_outputs`",
2305
                )
2306
            else:
2307
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name`
2308
                attributes = tuple([f"{name}_{idx}" for idx in range(len(tf_outputs))])
2309

2310
2311
            for tf_output, pt_output, attr in zip(tf_outputs, pt_outputs, attributes):
                self.check_pt_tf_outputs(tf_output, pt_output, model_class, tol=tol, name=attr)
2312

2313
2314
2315
2316
        elif isinstance(tf_outputs, tf.Tensor):
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `tf_outputs` is"
            )
2317

2318
2319
            tf_outputs = tf_outputs.numpy()
            pt_outputs = pt_outputs.detach().to("cpu").numpy()
2320

2321
2322
2323
            self.assertEqual(
                tf_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between TF and PyTorch"
            )
2324

2325
2326
2327
2328
            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(tf_outputs):
                tf_outputs = np.array([tf_outputs])
                pt_outputs = np.array([pt_outputs])
2329

2330
2331
            tf_nans = np.isnan(tf_outputs)
            pt_nans = np.isnan(pt_outputs)
2332

2333
2334
2335
2336
            pt_outputs[tf_nans] = 0
            tf_outputs[tf_nans] = 0
            pt_outputs[pt_nans] = 0
            tf_outputs[pt_nans] = 0
2337

2338
            max_diff = np.amax(np.abs(tf_outputs - pt_outputs))
2339
            self.assertLessEqual(max_diff, tol, f"{name}: Difference between PyTorch and TF is {max_diff} (>= {tol}).")
2340
2341
        else:
            raise ValueError(
2342
                "`tf_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `tf.Tensor`. Got"
Sylvain Gugger's avatar
Sylvain Gugger committed
2343
                f" {type(tf_outputs)} instead."
2344
2345
            )

2346
2347
2348
2349
    def prepare_tf_inputs_from_pt_inputs(self, pt_inputs_dict):
        tf_inputs_dict = {}
        for key, tensor in pt_inputs_dict.items():
            # skip key that does not exist in tf
2350
            if isinstance(tensor, bool):
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
                tf_inputs_dict[key] = tensor
            elif key == "input_values":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            elif key == "pixel_values":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            elif key == "input_features":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            # other general float inputs
            elif tensor.is_floating_point():
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            else:
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.int32)
2363

2364
        return tf_inputs_dict
2365

2366
2367
    def check_pt_tf_models(self, tf_model, pt_model, pt_inputs_dict):
        tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
2368

2369
2370
2371
2372
        # send pytorch inputs to the correct device
        pt_inputs_dict = {
            k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items()
        }
2373

2374
2375
        # send pytorch model to the correct device
        pt_model.to(torch_device)
2376

2377
2378
        # Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences
        pt_model.eval()
2379

2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
        with torch.no_grad():
            pt_outputs = pt_model(**pt_inputs_dict)
        tf_outputs = tf_model(tf_inputs_dict)

        # tf models returned loss is usually a tensor rather than a scalar.
        # (see `hf_compute_loss`: it uses `tf.keras.losses.Reduction.NONE`)
        # Change it here to a scalar to match PyTorch models' loss
        tf_loss = getattr(tf_outputs, "loss", None)
        if tf_loss is not None:
            tf_outputs.loss = tf.math.reduce_mean(tf_loss)

        self.check_pt_tf_outputs(tf_outputs, pt_outputs, type(pt_model))

    @is_pt_tf_cross_test
Matt's avatar
Matt committed
2394
    def test_pt_tf_model_equivalence(self, allow_missing_keys=False):
2395
        import transformers
2396
2397

        for model_class in self.all_model_classes:
2398
2399
2400
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            tf_model_class_name = "TF" + model_class.__name__  # Add the "TF" at the beginning
2401
            if not hasattr(transformers, tf_model_class_name):
amyeroberts's avatar
amyeroberts committed
2402
                self.skipTest(reason="transformers does not have TF version of this model yet")
2403

2404
2405
2406
            # Output all for aggressive testing
            config.output_hidden_states = True
            config.output_attentions = self.has_attentions
2407

2408
2409
2410
2411
            # Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency
            # of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`.
            # TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it.
            self._make_attention_mask_non_null(inputs_dict)
2412
2413

            tf_model_class = getattr(transformers, tf_model_class_name)
2414
2415

            pt_model = model_class(config)
2416
2417
2418
2419
2420
2421
2422
2423
2424
            tf_model = tf_model_class(config)

            pt_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            pt_inputs_dict_with_labels = self._prepare_for_class(
                inputs_dict,
                model_class,
                # Not all models accept "labels" in the forward pass (yet :) )
                return_labels=True if "labels" in inspect.signature(model_class.forward).parameters.keys() else False,
            )
2425
2426
2427
2428
2429
2430
2431
2432
2433

            # make sure only tf inputs are forward that actually exist in function args
            tf_input_keys = set(inspect.signature(tf_model.call).parameters.keys())

            # remove all head masks
            tf_input_keys.discard("head_mask")
            tf_input_keys.discard("cross_attn_head_mask")
            tf_input_keys.discard("decoder_head_mask")

2434
            pt_inputs_dict = {k: v for k, v in pt_inputs_dict.items() if k in tf_input_keys}
2435
2436
2437
2438
            pt_inputs_dict_with_labels = {k: v for k, v in pt_inputs_dict_with_labels.items() if k in tf_input_keys}

            # For some models (e.g. base models), there is no label returned.
            # Set the input dict to `None` to avoid check outputs twice for the same input dicts.
2439
            if not set(pt_inputs_dict_with_labels.keys()).symmetric_difference(pt_inputs_dict.keys()):
2440
                pt_inputs_dict_with_labels = None
2441
2442

            # Check we can load pt model in tf and vice-versa with model => model functions
2443
2444
            # Here requires `tf_inputs_dict` to build `tf_model`
            tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
Matt's avatar
Matt committed
2445
2446
2447
2448
2449
2450
            tf_model = transformers.load_pytorch_model_in_tf2_model(
                tf_model, pt_model, tf_inputs=tf_inputs_dict, allow_missing_keys=allow_missing_keys
            )
            pt_model = transformers.load_tf2_model_in_pytorch_model(
                pt_model, tf_model, allow_missing_keys=allow_missing_keys
            )
2451

2452
2453
2454
2455
2456
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
            # check with `labels`
            if pt_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels)
2457
2458
2459
2460
2461

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
Matt's avatar
Matt committed
2462
2463
2464
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(
                    tf_model, pt_checkpoint_path, allow_missing_keys=allow_missing_keys
                )
2465
2466
2467

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
Matt's avatar
Matt committed
2468
2469
2470
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(
                    pt_model, tf_checkpoint_path, allow_missing_keys=allow_missing_keys
                )
2471

2472
2473
2474
2475
2476
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
            # check with `labels`
            if pt_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels)
2477
2478
2479
2480
2481

    def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
        diff = np.abs((a - b)).max()
        self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).")

2482
    def check_pt_flax_outputs(self, fx_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
2483
2484
2485
2486
2487
2488
2489
2490
2491
        """
        Args:
            model_class: The class of the model that is currently testing. For example, ..., etc.
            Currently unused, but it could make debugging easier and faster.

            names: A string, or a list of strings. These specify what fx_outputs/pt_outputs represent in the model outputs.
                Currently unused, but in the future, we could use this information to make the error message clearer
                by giving the name(s) of the output tensor(s) with large difference(s) between PT and Flax.
        """
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531

        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")

        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(fx_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `fx_outputs` is",
            )

            fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
            pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

            self.assertEqual(fx_keys, pt_keys, f"{name}: Output keys differ between Flax and PyTorch")

            # convert to the case of `tuple`
            # appending each key to the current (string) `name`
            attributes = tuple([f"{name}.{k}" for k in fx_keys])
            self.check_pt_flax_outputs(
                fx_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )

        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(fx_outputs) in [tuple, list]:
            self.assertEqual(
                type(fx_outputs), type(pt_outputs), f"{name}: Output types differ between Flax and PyTorch"
            )
            self.assertEqual(
                len(fx_outputs), len(pt_outputs), f"{name}: Output lengths differ between Flax and PyTorch"
            )

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(fx_outputs),
                    f"{name}: The tuple `attributes` should have the same length as `fx_outputs`",
                )
2532
            else:
2533
2534
2535
2536
2537
2538
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name`
                attributes = tuple([f"{name}_{idx}" for idx in range(len(fx_outputs))])

            for fx_output, pt_output, attr in zip(fx_outputs, pt_outputs, attributes):
                self.check_pt_flax_outputs(fx_output, pt_output, model_class, tol=tol, name=attr)

2539
        elif isinstance(fx_outputs, jnp.ndarray):
2540
2541
2542
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `fx_outputs` is"
            )
2543
2544
2545
2546
2547

            # Using `np.asarray` gives `ValueError: assignment destination is read-only` at the line `fx_outputs[fx_nans] = 0`.
            fx_outputs = np.array(fx_outputs)
            pt_outputs = pt_outputs.detach().to("cpu").numpy()

2548
2549
2550
2551
2552
2553
2554
2555
2556
            self.assertEqual(
                fx_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between Flax and PyTorch"
            )

            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(fx_outputs):
                fx_outputs = np.array([fx_outputs])
                pt_outputs = np.array([pt_outputs])

2557
2558
2559
2560
2561
2562
2563
2564
            fx_nans = np.isnan(fx_outputs)
            pt_nans = np.isnan(pt_outputs)

            pt_outputs[fx_nans] = 0
            fx_outputs[fx_nans] = 0
            pt_outputs[pt_nans] = 0
            fx_outputs[pt_nans] = 0

2565
2566
2567
2568
            max_diff = np.amax(np.abs(fx_outputs - pt_outputs))
            self.assertLessEqual(
                max_diff, tol, f"{name}: Difference between PyTorch and Flax is {max_diff} (>= {tol})."
            )
2569
2570
        else:
            raise ValueError(
2571
2572
                "`fx_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `jnp.ndarray`. Got"
                f" {type(fx_outputs)} instead."
2573
2574
            )

2575
2576
2577
2578
2579
2580
2581
2582
2583
    @is_pt_flax_cross_test
    def test_equivalence_pt_to_flax(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
amyeroberts's avatar
amyeroberts committed
2584
                    self.skipTest(reason="No Flax model exists for this class")
2585

2586
2587
2588
2589
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

2590
2591
                fx_model_class = getattr(transformers, fx_model_class_name)

2592
2593
2594
2595
2596
2597
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

2598
2599
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
2600

2601
2602
2603
2604
2605
2606
2607
2608
2609
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

2610
2611
2612
2613
2614
2615
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }

                # convert inputs to Flax
2616
                fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)}
2617

2618
2619
2620
                fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
                fx_model.params = fx_state

2621
2622
2623
                # send pytorch model to the correct device
                pt_model.to(torch_device)

2624
                with torch.no_grad():
2625
2626
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)
2627

2628
2629
2630
2631
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2632
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)
2633
2634
2635
2636
2637

                with tempfile.TemporaryDirectory() as tmpdirname:
                    pt_model.save_pretrained(tmpdirname)
                    fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, from_pt=True)

2638
2639
2640
2641
2642
2643
                fx_outputs_loaded = fx_model_loaded(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs_loaded.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2644
                self.check_pt_flax_outputs(fx_outputs_loaded, pt_outputs, model_class)
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654

    @is_pt_flax_cross_test
    def test_equivalence_flax_to_pt(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
amyeroberts's avatar
amyeroberts committed
2655
                    self.skipTest(reason="No Flax model exists for this class")
2656

2657
2658
2659
2660
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

2661
2662
                fx_model_class = getattr(transformers, fx_model_class_name)

2663
2664
2665
2666
2667
2668
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

2669
2670
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
2671

2672
2673
2674
2675
2676
2677
2678
2679
2680
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

2681
2682
2683
2684
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }
2685

2686
                # convert inputs to Flax
2687
                fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)}
2688

2689
2690
2691
2692
2693
2694
2695
                pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)

                # make sure weights are tied in PyTorch
                pt_model.tie_weights()

                # send pytorch model to the correct device
                pt_model.to(torch_device)
2696

2697
2698
2699
2700
2701
2702
2703
2704
                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2705
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)
2706
2707
2708

                with tempfile.TemporaryDirectory() as tmpdirname:
                    fx_model.save_pretrained(tmpdirname)
2709
2710
2711
                    pt_model_loaded = model_class.from_pretrained(
                        tmpdirname, from_flax=True, attn_implementation=fx_model.config._attn_implementation
                    )
2712

2713
2714
2715
2716
                # send pytorch model to the correct device
                pt_model_loaded.to(torch_device)
                pt_model_loaded.eval()

2717
                with torch.no_grad():
2718
                    pt_outputs_loaded = pt_model_loaded(**pt_inputs)
2719

2720
2721
2722
2723
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs_loaded.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2724
                self.check_pt_flax_outputs(fx_outputs, pt_outputs_loaded, model_class)
2725

Patrick von Platen's avatar
Patrick von Platen committed
2726
    def test_inputs_embeds(self):
2727
2728
2729
2730
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
2731
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
2732
            model.eval()
2733

2734
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
2735

2736
2737
2738
2739
2740
2741
2742
2743
2744
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

2745
2746
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
2747
                inputs["inputs_embeds"] = wte(input_ids)
2748
            else:
2749
2750
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
2751

thomwolf's avatar
thomwolf committed
2752
            with torch.no_grad():
Weizhen's avatar
Weizhen committed
2753
                model(**inputs)[0]
2754

2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
    def test_inputs_embeds_matches_input_ids(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class.__name__ not in get_values(MODEL_MAPPING_NAMES):
                continue
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            model_forward_args = inspect.signature(model.forward).parameters
            if "inputs_embeds" not in model_forward_args:
amyeroberts's avatar
amyeroberts committed
2767
                self.skipTest(reason="This model doesn't use `inputs_embeds`")
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799

            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
            pad_token_id = config.pad_token_id if config.pad_token_id is not None else 1

            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                # some models infer position ids/attn mask differently when input ids
                # by check if pad_token let's make sure no padding is in input ids
                not_pad_token_id = pad_token_id + 1 if max(0, pad_token_id - 1) == 0 else pad_token_id - 1
                input_ids[input_ids == pad_token_id] = not_pad_token_id
                del inputs["input_ids"]
                inputs_embeds = wte(input_ids)
                with torch.no_grad():
                    out_ids = model(input_ids=input_ids, **inputs)[0]
                    out_embeds = model(inputs_embeds=inputs_embeds, **inputs)[0]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                encoder_input_ids[encoder_input_ids == pad_token_id] = max(0, pad_token_id + 1)
                decoder_input_ids[decoder_input_ids == pad_token_id] = max(0, pad_token_id + 1)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)
                inputs_embeds = wte(encoder_input_ids)
                decoder_inputs_embeds = wte(decoder_input_ids)
                with torch.no_grad():
                    out_ids = model(input_ids=encoder_input_ids, decoder_input_ids=decoder_input_ids, **inputs)[0]
                    out_embeds = model(
                        inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, **inputs
                    )[0]
            self.assertTrue(torch.allclose(out_embeds, out_ids))

2800
2801
    @require_torch_multi_gpu
    def test_multi_gpu_data_parallel_forward(self):
2802
2803
2804
2805
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
2806
        blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"]
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
2821
            model = nn.DataParallel(model)
2822
            with torch.no_grad():
2823
                _ = model(**self._prepare_for_class(inputs_dict, model_class))
2824

2825
2826
2827
    @require_torch_multi_gpu
    def test_model_parallelization(self):
        if not self.test_model_parallel:
amyeroberts's avatar
amyeroberts committed
2828
            self.skipTest(reason="test_model_parallel is set to False")
2829

2830
        # a candidate for testing_utils
2831
        def get_current_gpu_memory_use():
Patrick von Platen's avatar
Patrick von Platen committed
2832
            """returns a list of cuda memory allocations per GPU in MBs"""
2833
2834
2835
2836
2837

            per_device_memory = []
            for id in range(torch.cuda.device_count()):
                with torch.cuda.device(id):
                    per_device_memory.append(torch.cuda.memory_allocated() >> 20)
2838
2839
2840
2841
2842
2843
2844
2845
2846

            return per_device_memory

        # Needs a large model to see the difference.
        config = self.model_tester.get_large_model_config()

        for model_class in self.all_parallelizable_model_classes:
            torch.cuda.empty_cache()

2847
2848
2849
            # 1. single gpu memory load + unload + memory measurements
            # Retrieve initial memory usage (can easily be ~0.6-1.5GB if cuda-kernels have been preloaded by previous tests)
            memory_at_start = get_current_gpu_memory_use()
2850

2851
2852
            # Put model on device 0 and take a memory snapshot
            model = model_class(config)
2853
2854
2855
            model.to("cuda:0")
            memory_after_model_load = get_current_gpu_memory_use()

2856
2857
2858
            # The memory use on device 0 should be higher than it was initially.
            self.assertGreater(memory_after_model_load[0], memory_at_start[0])

2859
            del model
2860
            gc.collect()
2861
2862
            torch.cuda.empty_cache()

2863
2864
2865
            # 2. MP test
            # it's essential to re-calibrate the usage before the next stage
            memory_at_start = get_current_gpu_memory_use()
2866
2867

            # Spread model layers over multiple devices
2868
            model = model_class(config)
2869
2870
2871
2872
            model.parallelize()
            memory_after_parallelization = get_current_gpu_memory_use()

            # Assert that the memory use on all devices is higher than it was when loaded only on CPU
2873
            for n in range(len(model.device_map.keys())):
2874
                self.assertGreater(memory_after_parallelization[n], memory_at_start[n])
2875

2876
            # Assert that the memory use of device 0 is lower than it was when the entire model was loaded on it
2877
2878
            self.assertLess(memory_after_parallelization[0], memory_after_model_load[0])

2879
2880
            # Assert that the memory use of device 1 is higher than it was when the entire model was loaded
            # on device 0 and device 1 wasn't used at all
2881
2882
2883
            self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1])

            del model
2884
            gc.collect()
2885
2886
2887
2888
2889
            torch.cuda.empty_cache()

    @require_torch_multi_gpu
    def test_model_parallel_equal_results(self):
        if not self.test_model_parallel:
amyeroberts's avatar
amyeroberts committed
2890
            self.skipTest(reason="test_model_parallel is set to False")
2891
2892
2893
2894
2895
2896

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)

2897
            def cast_to_device(dictionary, device):
2898
2899
2900
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
2901
                        output[k] = v.to(device)
2902
2903
2904
2905
2906
                    else:
                        output[k] = v

                return output

2907
2908
2909
2910
2911
2912
            model = model_class(config)
            output = model(**cast_to_device(inputs_dict, "cpu"))

            model.parallelize()

            parallel_output = model(**cast_to_device(inputs_dict, "cuda:0"))
2913
2914
2915
2916
2917
2918
2919
2920

            for value, parallel_value in zip(output, parallel_output):
                if isinstance(value, torch.Tensor):
                    self.assertTrue(torch.allclose(value, parallel_value.to("cpu"), atol=1e-7))
                elif isinstance(value, (Tuple, List)):
                    for value_, parallel_value_ in zip(value, parallel_value):
                        self.assertTrue(torch.allclose(value_, parallel_value_.to("cpu"), atol=1e-7))

2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
    def check_device_map_is_respected(self, model, device_map):
        for param_name, param in model.named_parameters():
            # Find device in device_map
            while len(param_name) > 0 and param_name not in device_map:
                param_name = ".".join(param_name.split(".")[:-1])
            if param_name not in device_map:
                raise ValueError("device map is incomplete, it does not contain any device for `param_name`.")

            param_device = device_map[param_name]
            if param_device in ["cpu", "disk"]:
                self.assertEqual(param.device, torch.device("meta"))
2932
2933
            elif param_device in ["mps"]:
                self.assertEqual(param.device, torch.device("mps"))
2934
            else:
2935
2936
                # when loaded with device_map, `param_device` are integer values for cuda/xpu/npu/mlu
                self.assertEqual(param.device, torch.device(f"{torch_device}:{param_device}"))
2937

Sylvain Gugger's avatar
Sylvain Gugger committed
2938
    @require_accelerate
2939
    @mark.accelerate_tests
Sylvain Gugger's avatar
Sylvain Gugger committed
2940
    @require_torch_gpu
2941
    def test_disk_offload_bin(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
2942
2943
2944
2945
2946
2947
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

2948
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2949
2950
            model = model_class(config).eval()
            model = model.to(torch_device)
2951
            torch.manual_seed(0)
2952
            base_output = model(**inputs_dict_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2953
2954
2955

            model_size = compute_module_sizes(model)[""]
            with tempfile.TemporaryDirectory() as tmp_dir:
2956
                model.cpu().save_pretrained(tmp_dir, safe_serialization=False)
Sylvain Gugger's avatar
Sylvain Gugger committed
2957
2958

                with self.assertRaises(ValueError):
Yih-Dar's avatar
Yih-Dar committed
2959
2960
                    max_size = int(self.model_split_percents[0] * model_size)
                    max_memory = {0: max_size, "cpu": max_size}
Sylvain Gugger's avatar
Sylvain Gugger committed
2961
2962
2963
                    # This errors out cause it's missing an offload folder
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)

Yih-Dar's avatar
Yih-Dar committed
2964
2965
                max_size = int(self.model_split_percents[1] * model_size)
                max_memory = {0: max_size, "cpu": max_size}
Sylvain Gugger's avatar
Sylvain Gugger committed
2966
2967
2968
2969
2970
                new_model = model_class.from_pretrained(
                    tmp_dir, device_map="auto", max_memory=max_memory, offload_folder=tmp_dir
                )

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)
2971
                torch.manual_seed(0)
2972
                new_output = new_model(**inputs_dict_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2973

2974
2975
2976
2977
                if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple):
                    self.assertTrue(torch.allclose(a, b, atol=1e-5) for a, b in zip(base_output[0], new_output[0]))
                else:
                    self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
Sylvain Gugger's avatar
Sylvain Gugger committed
2978

2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
    @require_accelerate
    @mark.accelerate_tests
    @require_torch_gpu
    def test_disk_offload_safetensors(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config).eval()
            model = model.to(torch_device)
            torch.manual_seed(0)
            base_output = model(**inputs_dict_class)

            model_size = compute_module_sizes(model)[""]
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                max_size = int(self.model_split_percents[1] * model_size)
                max_memory = {0: max_size, "cpu": max_size}

                # This doesn't error out as it's in safetensors and doesn't need an offload folder
                new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)
                torch.manual_seed(0)
                new_output = new_model(**inputs_dict_class)

3009
3010
3011
3012
                if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple):
                    self.assertTrue(torch.allclose(a, b, atol=1e-5) for a, b in zip(base_output[0], new_output[0]))
                else:
                    self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
3013

3014
    @require_accelerate
3015
    @mark.accelerate_tests
3016
3017
3018
3019
3020
3021
3022
3023
    @require_torch_gpu
    def test_cpu_offload(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

3024
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
3025
3026
            model = model_class(config).eval()
            model = model.to(torch_device)
3027
3028

            torch.manual_seed(0)
3029
            base_output = model(**inputs_dict_class)
3030
3031
3032

            model_size = compute_module_sizes(model)[""]
            # We test several splits of sizes to make sure it works.
Yih-Dar's avatar
Yih-Dar committed
3033
            max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                for max_size in max_gpu_sizes:
                    max_memory = {0: max_size, "cpu": model_size * 2}
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                    # Making sure part of the model will actually end up offloaded
                    self.assertSetEqual(set(new_model.hf_device_map.values()), {0, "cpu"})

                    self.check_device_map_is_respected(new_model, new_model.hf_device_map)
3044
3045

                    torch.manual_seed(0)
3046
                    new_output = new_model(**inputs_dict_class)
3047

3048
3049
3050
3051
                    if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple):
                        self.assertTrue(torch.allclose(a, b, atol=1e-5) for a, b in zip(base_output[0], new_output[0]))
                    else:
                        self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
3052
3053

    @require_accelerate
3054
    @mark.accelerate_tests
3055
    @require_torch_multi_accelerator
3056
3057
3058
3059
3060
3061
3062
    def test_model_parallelism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

3063
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
3064
3065
            model = model_class(config).eval()
            model = model.to(torch_device)
3066
3067

            torch.manual_seed(0)
3068
            base_output = model(**inputs_dict_class)
3069
3070
3071

            model_size = compute_module_sizes(model)[""]
            # We test several splits of sizes to make sure it works.
3072
            max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
3073
3074
3075
3076
3077
3078
3079
3080
3081
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                for max_size in max_gpu_sizes:
                    max_memory = {0: max_size, 1: model_size * 2, "cpu": model_size * 2}
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                    # Making sure part of the model will actually end up offloaded
                    self.assertSetEqual(set(new_model.hf_device_map.values()), {0, 1})
                    self.check_device_map_is_respected(new_model, new_model.hf_device_map)
3082
3083

                    torch.manual_seed(0)
3084
                    new_output = new_model(**inputs_dict_class)
3085

3086
3087
3088
3089
                    if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple):
                        self.assertTrue(torch.allclose(a, b, atol=1e-5) for a, b in zip(base_output[0], new_output[0]))
                    else:
                        self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
3090

3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
    def test_problem_types(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        problem_types = [
            {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
            {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
            {"title": "regression", "num_labels": 1, "dtype": torch.float},
        ]

        for model_class in self.all_model_classes:
3101
3102
3103
            if model_class.__name__ not in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
3104
            ]:
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
                continue

            for problem_type in problem_types:
                with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):
                    config.problem_type = problem_type["title"]
                    config.num_labels = problem_type["num_labels"]

                    model = model_class(config)
                    model.to(torch_device)
                    model.train()

                    inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)

                    if problem_type["num_labels"] > 1:
                        inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])

                    inputs["labels"] = inputs["labels"].to(problem_type["dtype"])

3123
3124
3125
3126
3127
3128
                    # This tests that we do not trigger the warning form PyTorch "Using a target size that is different
                    # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
                    # they have the same size." which is a symptom something in wrong for the regression problem.
                    # See https://github.com/huggingface/transformers/issues/11780
                    with warnings.catch_warnings(record=True) as warning_list:
                        loss = model(**inputs).loss
3129
3130
3131
3132
3133
                    for w in warning_list:
                        if "Using a target size that is different to the input size" in str(w.message):
                            raise ValueError(
                                f"Something is going wrong in the regression problem: intercepted {w.message}"
                            )
3134

3135
3136
                    loss.backward()

3137
    def test_load_with_mismatched_shapes(self):
3138
        if not self.test_mismatched_shapes:
amyeroberts's avatar
amyeroberts committed
3139
            self.skipTest(reason="test_missmatched_shapes is set to False")
3140
3141
3142
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
3143
            if model_class.__name__ not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES):
3144
3145
3146
3147
3148
3149
3150
3151
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(config)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
3152
                    with self.assertRaises(RuntimeError):
3153
                        new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
3154
3155
                    with self.assertRaises(RuntimeError):
                        new_model_without_prefix = AutoModel.from_pretrained(tmp_dir, vocab_size=10)
3156
3157

                    logger = logging.get_logger("transformers.modeling_utils")
3158

3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
                    with CaptureLogger(logger) as cl:
                        new_model = AutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    new_model.to(torch_device)
                    inputs = self._prepare_for_class(inputs_dict, model_class)
                    logits = new_model(**inputs).logits
                    self.assertEqual(logits.shape[1], 42)

3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
                    with CaptureLogger(logger) as cl:
                        new_model_without_prefix = AutoModel.from_pretrained(
                            tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    input_ids = ids_tensor((2, 8), 10)
                    new_model_without_prefix.to(torch_device)
                    if self.is_encoder_decoder:
                        new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
                    else:
                        new_model_without_prefix(input_ids)

3181
3182
    def test_mismatched_shapes_have_properly_initialized_weights(self):
        if not self.test_mismatched_shapes:
amyeroberts's avatar
amyeroberts committed
3183
            self.skipTest(reason="test_missmatched_shapes is set to False")
3184
3185
3186
3187
3188
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)

        for model_class in self.all_model_classes:
Yih-Dar's avatar
Yih-Dar committed
3189
3190
3191
3192
3193
3194
3195
3196
3197
            mappings = [
                MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
                MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
                MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
                MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
            ]
            is_classication_model = any(model_class.__name__ in get_values(mapping) for mapping in mappings)

            if not is_classication_model:
3198
3199
                continue

Yih-Dar's avatar
Yih-Dar committed
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
            # TODO: ydshieh
            is_special_classes = model_class.__name__ in [
                "wav2vec2.masked_spec_embed",
                "Wav2Vec2ForSequenceClassification",
                "CLIPForImageClassification",
                "RegNetForImageClassification",
                "ResNetForImageClassification",
                "UniSpeechSatForSequenceClassification",
                "Wav2Vec2BertForSequenceClassification",
                "PvtV2ForImageClassification",
                "Wav2Vec2ConformerForSequenceClassification",
                "WavLMForSequenceClassification",
                "SwiftFormerForImageClassification",
                "SEWForSequenceClassification",
                "BitForImageClassification",
                "SEWDForSequenceClassification",
                "SiglipForImageClassification",
                "HubertForSequenceClassification",
                "Swinv2ForImageClassification",
                "Data2VecAudioForSequenceClassification",
                "UniSpeechForSequenceClassification",
                "PvtForImageClassification",
            ]
            special_param_names = [
                r"^bit\.",
                r"^classifier\.weight",
                r"^classifier\.bias",
                r"^classifier\..+\.weight",
                r"^classifier\..+\.bias",
                r"^data2vec_audio\.",
                r"^dist_head\.",
                r"^head\.",
                r"^hubert\.",
                r"^pvt\.",
                r"^pvt_v2\.",
                r"^regnet\.",
                r"^resnet\.",
                r"^sew\.",
                r"^sew_d\.",
                r"^swiftformer\.",
                r"^swinv2\.",
                r"^transformers\.models\.swiftformer\.",
                r"^unispeech\.",
                r"^unispeech_sat\.",
                r"^vision_model\.",
                r"^wav2vec2\.",
                r"^wav2vec2_bert\.",
                r"^wav2vec2_conformer\.",
                r"^wavlm\.",
            ]

3251
3252
3253
3254
3255
3256
3257
            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(configs_no_init)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
                    with self.assertRaises(RuntimeError):
Yih-Dar's avatar
Yih-Dar committed
3258
                        new_model = model_class.from_pretrained(tmp_dir, num_labels=42)
3259
3260
3261
3262

                    logger = logging.get_logger("transformers.modeling_utils")

                    with CaptureLogger(logger) as cl:
Yih-Dar's avatar
Yih-Dar committed
3263
                        new_model = model_class.from_pretrained(tmp_dir, num_labels=42, ignore_mismatched_sizes=True)
3264
3265
3266
3267
                    self.assertIn("the shapes did not match", cl.out)

                    for name, param in new_model.named_parameters():
                        if param.requires_grad:
Yih-Dar's avatar
Yih-Dar committed
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
                            param_mean = ((param.data.mean() * 1e9).round() / 1e9).item()
                            if not (
                                is_special_classes
                                and any(len(re.findall(target, name)) > 0 for target in special_param_names)
                            ):
                                self.assertIn(
                                    param_mean,
                                    [0.0, 1.0],
                                    msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                                )
                            else:
                                # Here we allow the parameters' mean to be in the range [-5.0, 5.0] instead of being
                                # either `0.0` or `1.0`, because their initializations are not using
                                # `config.initializer_factor` (or something similar). The purpose of this test is simply
                                # to make sure they are properly initialized (to avoid very large value or even `nan`).
                                self.assertGreaterEqual(
                                    param_mean,
                                    -5.0,
                                    msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                                )
                                self.assertLessEqual(
                                    param_mean,
                                    5.0,
                                    msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                                )
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361

    def test_matched_shapes_have_loaded_weights_when_some_mismatched_shapes_exist(self):
        # 1. Create a dummy class. Should have buffers as well? To make sure we test __init__
        class MyClass(PreTrainedModel):
            config_class = PretrainedConfig

            def __init__(self, config=None):
                super().__init__(config if config is not None else PretrainedConfig())
                self.linear = nn.Linear(10, config.num_labels, bias=True)
                self.embedding = nn.Embedding(10, 10)
                self.std = 1

            def _init_weights(self, module):
                if isinstance(module, nn.Linear):
                    module.weight.data = nn.init.kaiming_uniform_(module.weight.data, np.sqrt(5))
                    if module.bias is not None:
                        module.bias.data = module.bias.data.normal_(mean=0.0, std=self.std)

        # Used to make sure the weights with matched shape are loaded correctly
        config = PretrainedConfig()
        config.num_labels = 3
        model = MyClass(config=config)

        # Used to make sure the weights with mismatched shape are properly initialized
        set_seed(0)
        config = PretrainedConfig()
        config.num_labels = 4
        # not to init. the weights during the creation: to match the logic in `from_pretrained`, so we can keep the
        # same sequence of random ops in the execution path to allow us to compare `target_model` and `new_model` below
        # for `linear` part.
        with ContextManagers([no_init_weights(True)]):
            target_model = MyClass(config=config)
        target_model.apply(target_model._initialize_weights)

        with tempfile.TemporaryDirectory() as tmpdirname:
            state_dict = model.state_dict()
            del state_dict["linear.weight"]

            model.config.save_pretrained(tmpdirname)
            torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

            set_seed(0)
            new_model = MyClass.from_pretrained(tmpdirname, num_labels=4, ignore_mismatched_sizes=True)

            for key in new_model.state_dict().keys():
                # check weight values for weights with matched shapes are identical
                # (i.e. correctly loaded from the checkpoint)
                if key not in ["linear.weight", "linear.bias"]:
                    max_diff = torch.max(torch.abs(model.state_dict()[key] - new_model.state_dict()[key]))
                    self.assertLessEqual(
                        max_diff.item(),
                        1e-6,
                        msg=f"the weight values for `{key}` in `new_model` and `model` are  not identical",
                    )
                else:
                    # check we have some mismatched shapes
                    self.assertNotEqual(
                        model.state_dict()[key].shape,
                        new_model.state_dict()[key].shape,
                        msg=f"the weight shapes for {key} in `model` and `new_model` should differ",
                    )
                    # check the weights with mismatched shape are properly initialized
                    max_diff = torch.max(torch.abs(new_model.state_dict()[key] - target_model.state_dict()[key]))
                    self.assertLessEqual(
                        max_diff.item(),
                        1e-6,
                        msg=f"the weight values for `{key}` in `new_model` and `target_model` are not identical",
                    )

3362
3363
3364
3365
3366
3367
3368
3369
3370
    def test_model_is_small(self):
        # Just a consistency check to make sure we are not running tests on 80M parameter models.
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            num_params = model.num_parameters()
            assert (
                num_params < 1000000
3371
            ), f"{model_class} is too big for the common tests ({num_params})! It should have 1M max."
3372

3373
3374
3375
3376
3377
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_conversion(self):
amyeroberts's avatar
amyeroberts committed
3378
3379
3380
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

3381
3382
3383
3384
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class._supports_flash_attn_2:
3385
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3386
3387
3388
3389
3390
3391

            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(
3392
                    tmpdirname, torch_dtype=torch.float16, attn_implementation="flash_attention_2"
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
                ).to(torch_device)

                for _, module in model.named_modules():
                    if "FlashAttention" in module.__class__.__name__:
                        return

                self.assertTrue(False, "FlashAttention2 modules not found in model")

    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
3405
    @is_flaky()
Yoach Lacombe's avatar
Yoach Lacombe committed
3406
    def test_flash_attn_2_inference_equivalence(self):
amyeroberts's avatar
amyeroberts committed
3407
3408
3409
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

3410
3411
        for model_class in self.all_model_classes:
            if not model_class._supports_flash_attn_2:
3412
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3413

3414
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
3415
3416
3417
3418
3419
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model_fa = model_class.from_pretrained(
3420
                    tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
3421
3422
3423
                )
                model_fa.to(torch_device)

Yoach Lacombe's avatar
Yoach Lacombe committed
3424
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.bfloat16)
3425
3426
                model.to(torch_device)

3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
                dummy_input = inputs_dict[model.main_input_name][:1]
                if dummy_input.dtype in [torch.float32, torch.float16]:
                    dummy_input = dummy_input.to(torch.bfloat16)

                dummy_attention_mask = inputs_dict.get("attention_mask", None)

                if dummy_attention_mask is not None:
                    dummy_attention_mask = dummy_attention_mask[:1]
                    dummy_attention_mask[:, 1:] = 1
                    dummy_attention_mask[:, :1] = 0
3437

3438
3439
3440
3441
3442
3443
3444
3445
                if model.config.is_encoder_decoder:
                    decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[:1]

                    outputs = model(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
                    outputs_fa = model_fa(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
                else:
                    outputs = model(dummy_input, output_hidden_states=True)
                    outputs_fa = model_fa(dummy_input, output_hidden_states=True)
3446

3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
                logits = (
                    outputs.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs.decoder_hidden_states[-1]
                )
                logits_fa = (
                    outputs_fa.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs_fa.decoder_hidden_states[-1]
                )
3457

3458
                assert torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2)
3459

3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
                if model.config.is_encoder_decoder:
                    other_inputs = {
                        "decoder_input_ids": decoder_input_ids,
                        "decoder_attention_mask": dummy_attention_mask,
                        "output_hidden_states": True,
                    }
                    if dummy_attention_mask is not None:
                        other_inputs["attention_mask"] = dummy_attention_mask

                    outputs = model(dummy_input, **other_inputs)
                    outputs_fa = model_fa(dummy_input, **other_inputs)
                else:
                    other_inputs = {
                        "output_hidden_states": True,
                    }
                    if dummy_attention_mask is not None:
                        other_inputs["attention_mask"] = dummy_attention_mask

                    outputs = model(dummy_input, **other_inputs)
                    outputs_fa = model_fa(dummy_input, **other_inputs)

                logits = (
                    outputs.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs.decoder_hidden_states[-1]
                )
                logits_fa = (
                    outputs_fa.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs_fa.decoder_hidden_states[-1]
                )
3491

3492
                assert torch.allclose(logits_fa[1:], logits[1:], atol=4e-2, rtol=4e-2)
3493

3494
3495
                # check with inference + dropout
                model.train()
3496
                _ = model_fa(dummy_input, **other_inputs)
3497

3498
3499
3500
3501
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
3502
    @is_flaky()
Yoach Lacombe's avatar
Yoach Lacombe committed
3503
    def test_flash_attn_2_inference_equivalence_right_padding(self):
amyeroberts's avatar
amyeroberts committed
3504
3505
3506
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

3507
3508
        for model_class in self.all_model_classes:
            if not model_class._supports_flash_attn_2:
3509
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3510

3511
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
3512
3513
3514
3515
3516
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model_fa = model_class.from_pretrained(
3517
                    tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
3518
3519
3520
                )
                model_fa.to(torch_device)

Yoach Lacombe's avatar
Yoach Lacombe committed
3521
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.bfloat16)
3522
3523
                model.to(torch_device)

3524
3525
3526
3527
3528
                dummy_input = inputs_dict[model.main_input_name][:1]
                if dummy_input.dtype in [torch.float32, torch.float16]:
                    dummy_input = dummy_input.to(torch.bfloat16)

                dummy_attention_mask = inputs_dict.get("attention_mask", None)
3529

3530
3531
3532
3533
                if dummy_attention_mask is not None:
                    dummy_attention_mask = dummy_attention_mask[:1]
                    dummy_attention_mask[:, :-1] = 1
                    dummy_attention_mask[:, -1:] = 0
3534

3535
3536
                if model.config.is_encoder_decoder:
                    decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[:1]
3537

3538
3539
3540
3541
3542
                    outputs = model(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
                    outputs_fa = model_fa(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
                else:
                    outputs = model(dummy_input, output_hidden_states=True)
                    outputs_fa = model_fa(dummy_input, output_hidden_states=True)
3543

3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
                logits = (
                    outputs.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs.decoder_hidden_states[-1]
                )
                logits_fa = (
                    outputs_fa.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs_fa.decoder_hidden_states[-1]
                )
3554

3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
                assert torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2)

                if model.config.is_encoder_decoder:
                    other_inputs = {
                        "decoder_input_ids": decoder_input_ids,
                        "decoder_attention_mask": dummy_attention_mask,
                        "output_hidden_states": True,
                    }
                    if dummy_attention_mask is not None:
                        other_inputs["attention_mask"] = dummy_attention_mask

                    outputs = model(dummy_input, **other_inputs)
                    outputs_fa = model_fa(dummy_input, **other_inputs)
                else:
                    other_inputs = {
                        "output_hidden_states": True,
                    }
                    if dummy_attention_mask is not None:
                        other_inputs["attention_mask"] = dummy_attention_mask

                    outputs = model(dummy_input, **other_inputs)
                    outputs_fa = model_fa(dummy_input, **other_inputs)

                logits = (
                    outputs.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs.decoder_hidden_states[-1]
                )
                logits_fa = (
                    outputs_fa.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs_fa.decoder_hidden_states[-1]
                )

                assert torch.allclose(logits_fa[:-1], logits[:-1], atol=4e-2, rtol=4e-2)
3590
3591
3592
3593
3594

    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
3595
    @is_flaky()
3596
    def test_flash_attn_2_generate_left_padding(self):
amyeroberts's avatar
amyeroberts committed
3597
3598
3599
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

3600
3601
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
3602
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3603

3604
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
3605
3606
3607
3608
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
3609
3610
3611
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True).to(
                    torch_device
                )
3612

3613
3614
3615
3616
3617
3618
3619
3620
                dummy_input = inputs_dict[model.main_input_name]
                if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                    dummy_input = dummy_input.to(torch.float16)

                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
                # make sure we do left padding
                dummy_attention_mask[:, :-1] = 0
                dummy_attention_mask[:, -1:] = 1
3621
3622
3623
3624
3625
3626

                out = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

                model = model_class.from_pretrained(
3627
3628
3629
3630
                    tmpdirname,
                    torch_dtype=torch.float16,
                    attn_implementation="flash_attention_2",
                    low_cpu_mem_usage=True,
3631
3632
3633
3634
3635
3636
                ).to(torch_device)

                out_fa = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

3637
                self.assertTrue(torch.allclose(out, out_fa))
3638
3639
3640
3641

    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
3642
    @is_flaky()
3643
3644
    @slow
    def test_flash_attn_2_generate_padding_right(self):
amyeroberts's avatar
amyeroberts committed
3645
3646
3647
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

3648
3649
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
3650
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3651

3652
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
3653
3654
3655
3656
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
3657
3658
3659
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True).to(
                    torch_device
                )
3660

3661
3662
3663
3664
3665
                dummy_input = inputs_dict[model.main_input_name]
                if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                    dummy_input = dummy_input.to(torch.float16)

                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
3666
                # make sure we do right padding
3667
3668
                dummy_attention_mask[:, :-1] = 1
                dummy_attention_mask[:, -1:] = 0
3669
3670
3671
3672
3673
3674

                out = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

                model = model_class.from_pretrained(
3675
3676
3677
3678
                    tmpdirname,
                    torch_dtype=torch.float16,
                    attn_implementation="flash_attention_2",
                    low_cpu_mem_usage=True,
3679
3680
3681
3682
3683
3684
                ).to(torch_device)

                out_fa = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

3685
                self.assertTrue(torch.allclose(out, out_fa))
3686

3687
3688
3689
3690
    @parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
    @require_torch_sdpa
    @slow
    def test_eager_matches_sdpa_inference(self, torch_dtype: str):
amyeroberts's avatar
amyeroberts committed
3691
3692
3693
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

3694
3695
3696
        if not self.all_model_classes[0]._supports_sdpa:
            self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA")

fxmarty's avatar
fxmarty committed
3697
3698
3699
3700
3701
3702
3703
        if torch_dtype == "float16" and not is_torch_fp16_available_on_device(torch_device):
            self.skipTest(f"float16 not supported on {torch_device} (on the specific device currently used)")

        if torch_dtype == "bfloat16" and not is_torch_bf16_available_on_device(torch_device):
            self.skipTest(
                f"bfloat16 not supported on {torch_device} (on the specific device currently used, e.g. Nvidia T4 GPU)"
            )
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719

        # Not sure whether it's fine to put torch.XXX in a decorator if torch is not available so hacking it here instead.
        if torch_dtype == "float16":
            torch_dtype = torch.float16
        elif torch_dtype == "bfloat16":
            torch_dtype = torch.bfloat16
        elif torch_dtype == "float32":
            torch_dtype = torch.float32

        atols = {
            ("cpu", False, torch.float32): 1e-6,
            ("cpu", False, torch.bfloat16): 1e-2,
            ("cpu", True, torch.float32): 1e-6,
            ("cpu", True, torch.bfloat16): 1e-2,
            ("cuda", False, torch.float32): 1e-6,
            ("cuda", False, torch.bfloat16): 1e-2,
fxmarty's avatar
fxmarty committed
3720
            ("cuda", False, torch.float16): 5e-3,
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
            ("cuda", True, torch.float32): 1e-6,
            ("cuda", True, torch.bfloat16): 1e-2,
            ("cuda", True, torch.float16): 5e-3,
        }
        rtols = {
            ("cpu", False, torch.float32): 1e-4,
            ("cpu", False, torch.bfloat16): 1e-2,
            ("cpu", True, torch.float32): 1e-4,
            ("cpu", True, torch.bfloat16): 1e-2,
            ("cuda", False, torch.float32): 1e-4,
            ("cuda", False, torch.bfloat16): 1e-2,
fxmarty's avatar
fxmarty committed
3732
            ("cuda", False, torch.float16): 5e-3,
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
            ("cuda", True, torch.float32): 1e-4,
            ("cuda", True, torch.bfloat16): 3e-2,
            ("cuda", True, torch.float16): 5e-3,
        }

        def get_mean_reldiff(failcase, x, ref, atol, rtol):
            return f"{failcase}: mean relative difference: {((x - ref).abs() / (ref.abs() + 1e-12)).mean():.3e}, torch atol = {atol}, torch rtol = {rtol}"

        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            model = model_class(config)
3744
3745
3746
3747
3748
            # FIXME: we deactivate boolean mask for models using "use_mask_token" in their constructors.
            # These models support masking only in the case `use_mask_token=True`. Otherwise they cannot consume an input mask.
            # This means that the class needs to be instantiated much later, after `use_mask` is set, which means a significant refactor of the code.
            # However masking there is not done at any layers that matters (i.e self-attention), therefore we can safely deactivate it.
            deactivate_mask = "use_mask_token" in inspect.signature(model_class).parameters
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768

            is_encoder_decoder = model.config.is_encoder_decoder

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model_sdpa = model_class.from_pretrained(tmpdirname, torch_dtype=torch_dtype)
                model_sdpa = model_sdpa.eval().to(torch_device)

                self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")

                model_eager = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch_dtype,
                    attn_implementation="eager",
                )
                model_eager = model_eager.eval().to(torch_device)

                self.assertTrue(model_eager.config._attn_implementation == "eager")

                for name, submodule in model_eager.named_modules():
3769
3770
                    class_name = submodule.__class__.__name__
                    if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
3771
3772
3773
3774
                        raise ValueError("The eager model should not have SDPA attention layers")

                has_sdpa = False
                for name, submodule in model_sdpa.named_modules():
3775
3776
                    class_name = submodule.__class__.__name__
                    if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
3777
3778
3779
3780
3781
                        has_sdpa = True
                        break
                if not has_sdpa and model_sdpa.config.model_type != "falcon":
                    raise ValueError("The SDPA model should have SDPA attention layers")

3782
                # We use these for loops instead of parameterized.expand just for the interest of avoiding loading/saving 16 times the model,
3783
3784
3785
3786
                # but it would be nicer to have an efficient way to use parameterized.expand
                fail_cases = []
                for padding_side in ["left", "right"]:
                    for use_mask in [False, True]:
3787
3788
3789
3790
3791
3792
                        for output_attentions in [True, False]:
                            can_output_attn = "output_attentions" in inspect.signature(model_sdpa.forward).parameters
                            if not (self.has_attentions and can_output_attn) and output_attentions:
                                continue
                            for batch_size in [1, 5]:
                                dummy_input = inputs_dict[model.main_input_name]
3793
3794

                                if dummy_input.dtype in [torch.float32, torch.bfloat16, torch.float16]:
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
                                    dummy_input = dummy_input.to(torch_dtype)

                                dummy_input = dummy_input[:batch_size]
                                if dummy_input.shape[0] != batch_size:
                                    if dummy_input.dtype in [torch.float32, torch.bfloat16, torch.float16]:
                                        extension = torch.rand(
                                            batch_size - dummy_input.shape[0],
                                            *dummy_input.shape[1:],
                                            dtype=torch_dtype,
                                            device=torch_device,
                                        )
                                        dummy_input = torch.cat((dummy_input, extension), dim=0).to(torch_device)
3807
                                    else:
3808
3809
3810
3811
3812
3813
3814
                                        extension = torch.randint(
                                            high=5,
                                            size=(batch_size - dummy_input.shape[0], *dummy_input.shape[1:]),
                                            dtype=dummy_input.dtype,
                                            device=torch_device,
                                        )
                                        dummy_input = torch.cat((dummy_input, extension), dim=0).to(torch_device)
3815

3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
                                if not use_mask:
                                    dummy_attention_mask = None
                                else:
                                    dummy_attention_mask = inputs_dict.get("attention_mask", None)
                                    if dummy_attention_mask is None:
                                        if is_encoder_decoder:
                                            seqlen = inputs_dict.get("decoder_input_ids", dummy_input).shape[-1]
                                        else:
                                            seqlen = dummy_input.shape[-1]
                                        dummy_attention_mask = (
                                            torch.ones(batch_size, seqlen).to(torch.int64).to(torch_device)
                                        )

                                    dummy_attention_mask = dummy_attention_mask[:batch_size]
                                    if dummy_attention_mask.shape[0] != batch_size:
3831
                                        extension = torch.ones(
3832
3833
3834
                                            batch_size - dummy_attention_mask.shape[0],
                                            *dummy_attention_mask.shape[1:],
                                            dtype=dummy_attention_mask.dtype,
3835
3836
                                            device=torch_device,
                                        )
3837
3838
                                        dummy_attention_mask = torch.cat((dummy_attention_mask, extension), dim=0)
                                        dummy_attention_mask = dummy_attention_mask.to(torch_device)
3839

3840
                                    dummy_attention_mask[:] = 1
3841
                                    if padding_side == "left":
3842
3843
3844
3845
3846
                                        dummy_attention_mask[-1, :-1] = 1
                                        dummy_attention_mask[-1, -4:] = 0
                                    elif padding_side == "right":
                                        dummy_attention_mask[-1, 1:] = 1
                                        dummy_attention_mask[-1, :3] = 0
3847

3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
                                for enable_kernels in [False, True]:
                                    failcase = f"padding_side={padding_side}, use_mask={use_mask}, batch_size={batch_size}, enable_kernels={enable_kernels}"
                                    if is_encoder_decoder:
                                        decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[
                                            :batch_size
                                        ]
                                        if decoder_input_ids.shape[0] != batch_size:
                                            extension = torch.ones(
                                                batch_size - decoder_input_ids.shape[0],
                                                *decoder_input_ids.shape[1:],
                                                dtype=decoder_input_ids.dtype,
                                                device=torch_device,
3860
                                            )
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
                                            decoder_input_ids = torch.cat((decoder_input_ids, extension), dim=0)
                                            decoder_input_ids = decoder_input_ids.to(torch_device)

                                        # TODO: never an `attention_mask` arg here?
                                        processed_inputs = {
                                            model.main_input_name: dummy_input,
                                            "decoder_input_ids": decoder_input_ids,
                                            "decoder_attention_mask": dummy_attention_mask,
                                            "output_hidden_states": True,
                                        }
                                    else:
                                        processed_inputs = {
                                            model.main_input_name: dummy_input,
                                            "output_hidden_states": True,
                                        }

                                        # Otherwise fails for e.g. WhisperEncoderModel
                                        if "attention_mask" in inspect.signature(model_eager.forward).parameters:
                                            processed_inputs["attention_mask"] = dummy_attention_mask

                                        if (
                                            self.has_attentions
                                            and "output_attentions" in inspect.signature(model_sdpa.forward).parameters
                                        ):
                                            processed_inputs["output_attentions"] = output_attentions
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
                                    if not deactivate_mask and (
                                        "bool_masked_pos" in inspect.signature(model_eager.forward).parameters
                                    ):
                                        dummy_mask = torch.ones((self.model_tester.num_masks,))

                                        # In case of additional token (like class) we define a custom `mask_length`
                                        if hasattr(self.model_tester, "mask_length"):
                                            mask_length = self.model_tester.mask_length - dummy_mask.size(0)
                                        else:
                                            mask_length = self.model_tester.seq_length - dummy_mask.size(0)
                                        dummy_mask = torch.cat([dummy_mask, torch.zeros(mask_length)])
                                        dummy_bool_masked_pos = dummy_mask.expand(batch_size, -1).bool()
                                        processed_inputs["bool_masked_pos"] = dummy_bool_masked_pos.to(torch_device)

                                    if "noise" in inspect.signature(model_eager.forward).parameters:
                                        np.random.seed(2)
                                        num_patches = int(
                                            (self.model_tester.image_size // self.model_tester.patch_size) ** 2
                                        )
                                        noise = np.random.uniform(size=(batch_size, num_patches))
                                        processed_inputs["noise"] = torch.from_numpy(noise)
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928

                                    # TODO: test gradients as well (& for FA2 as well!)
                                    with torch.no_grad():
                                        with torch.backends.cuda.sdp_kernel(
                                            enable_flash=enable_kernels,
                                            enable_math=True,
                                            enable_mem_efficient=enable_kernels,
                                        ):
                                            prepared_inputs = self._prepare_for_class(processed_inputs, model_class)
                                            outputs_eager = model_eager(**prepared_inputs)
                                            outputs_sdpa = model_sdpa(**prepared_inputs)

                                    logits_eager = (
                                        outputs_eager.hidden_states[-1]
                                        if not is_encoder_decoder
                                        else outputs_eager.decoder_hidden_states[-1]
                                    )
                                    logits_sdpa = (
                                        outputs_sdpa.hidden_states[-1]
                                        if not is_encoder_decoder
                                        else outputs_sdpa.decoder_hidden_states[-1]
                                    )
3929

3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
                                    if torch_device in ["cpu", "cuda"]:
                                        atol = atols[torch_device, enable_kernels, torch_dtype]
                                        rtol = rtols[torch_device, enable_kernels, torch_dtype]
                                    else:
                                        atol = 1e-7
                                        rtol = 1e-4

                                    # Masked tokens output slightly deviates - we don't mind that.
                                    if use_mask:
                                        if padding_side == "left":
                                            sub_sdpa = logits_sdpa[:-1]
                                            sub_eager = logits_eager[:-1]
                                            if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                                fail_cases.append(
                                                    get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
                                                )

                                            sub_sdpa = logits_sdpa[-1, :-4]
                                            sub_eager = logits_eager[-1, :-4]
                                            if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                                fail_cases.append(
                                                    get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
                                                )

                                            # Testing the padding tokens is not really meaningful but anyway
                                            # sub_sdpa = logits_sdpa[-1, -4:]
                                            # sub_eager = logits_eager[-1, -4:]
                                            # if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                            #     fail_cases.append(get_mean_reldiff(failcase, sub_sdpa, sub_eager, 4e-2, 4e-2))
                                        elif padding_side == "right":
                                            sub_sdpa = logits_sdpa[:-1]
                                            sub_eager = logits_eager[:-1]
                                            if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                                fail_cases.append(
                                                    get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
                                                )

                                            sub_sdpa = logits_sdpa[-1, 3:]
                                            sub_eager = logits_eager[-1, 3:]
                                            if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                                fail_cases.append(
                                                    get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
                                                )

                                            # Testing the padding tokens is not really meaningful but anyway
                                            # sub_sdpa = logits_sdpa[-1, :3]
                                            # sub_eager = logits_eager[-1, :3]
                                            # if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                            #     fail_cases.append(get_mean_reldiff(failcase, sub_sdpa, sub_eager, 4e-2, 4e-2))
3979

3980
3981
                                    else:
                                        if not torch.allclose(logits_sdpa, logits_eager, atol=atol, rtol=rtol):
3982
                                            fail_cases.append(
3983
                                                get_mean_reldiff(failcase, logits_sdpa, logits_eager, atol, rtol)
3984
3985
3986
3987
                                            )

                self.assertTrue(len(fail_cases) == 0, "\n".join(fail_cases))

3988
3989
3990
3991
    @require_torch_sdpa
    @require_torch_gpu
    @slow
    def test_sdpa_can_dispatch_on_flash(self):
amyeroberts's avatar
amyeroberts committed
3992
3993
3994
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

3995
3996
3997
3998
        compute_capability = torch.cuda.get_device_capability()
        major, _ = compute_capability

        if not torch.version.cuda or major < 8:
amyeroberts's avatar
amyeroberts committed
3999
            self.skipTest(reason="This test requires an NVIDIA GPU with compute capability >= 8.0")
4000
4001
4002
4003
4004
4005

        for model_class in self.all_model_classes:
            if not model_class._supports_sdpa:
                self.skipTest(f"{model_class.__name__} does not support SDPA")

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
4006
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
Raushan Turganbay's avatar
Raushan Turganbay committed
4007
            if config.model_type in ["llava", "llava_next", "vipllava", "video_llava"]:
amyeroberts's avatar
amyeroberts committed
4008
4009
4010
                self.skipTest(
                    reason="Llava-like models currently (transformers==4.39.1) requires an attention_mask input"
                )
Pablo Montalvo's avatar
Pablo Montalvo committed
4011
4012
4013
4014
            if config.model_type in ["paligemma"]:
                self.skipTest(
                    "PaliGemma-like models currently (transformers==4.41.0) requires an attention_mask input"
                )
4015
            if config.model_type in ["idefics"]:
amyeroberts's avatar
amyeroberts committed
4016
                self.skipTest(reason="Idefics currently (transformers==4.39.1) requires an image_attention_mask input")
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, attn_implementation="sdpa")
                model.to(torch_device)

                inputs_dict.pop("attention_mask", None)
                inputs_dict.pop("decoder_attention_mask", None)

                for name, inp in inputs_dict.items():
                    if isinstance(inp, torch.Tensor) and inp.dtype in [torch.float32, torch.float16]:
                        inputs_dict[name] = inp.to(torch.float16)

                with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
                    _ = model(**inputs_dict)

4034
4035
4036
4037
    @require_torch_sdpa
    @require_torch_gpu
    @slow
    def test_sdpa_can_compile_dynamic(self):
amyeroberts's avatar
amyeroberts committed
4038
4039
4040
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

4041
4042
4043
4044
        compute_capability = torch.cuda.get_device_capability()
        major, _ = compute_capability

        if not torch.version.cuda or major < 8:
amyeroberts's avatar
amyeroberts committed
4045
            self.skipTest(reason="This test requires an NVIDIA GPU with compute capability >= 8.0")
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077

        for model_class in self.all_model_classes:
            if not model_class._supports_sdpa:
                self.skipTest(f"{model_class.__name__} does not support SDPA")

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            if config.model_type in ["dbrx"]:
                self.skipTest(
                    "DBRX (transformers==4.40) requires a modification to support dynamic shapes with compile."
                )
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, attn_implementation="sdpa")
                model.to(torch_device)

                # For PyTorch 2.1 - 2.3.0 set `dynamic=True`. In the future setting `dynamic=None` and using `torch._dynamo.mark_dynamic()`
                # on input tensors will be required. `mark_dynamic` currently raises inconsistent shape errors.
                model = torch.compile(model, dynamic=True)

                inputs_dict.pop("attention_mask", None)
                inputs_dict.pop("decoder_attention_mask", None)
                for name, inp in inputs_dict.items():
                    if isinstance(inp, torch.Tensor) and inp.dtype in [torch.float32, torch.float16]:
                        inputs_dict[name] = inp.to(torch.float16)

                # use no_grad to save some memory
                with torch.no_grad():
                    _ = model(**inputs_dict)

4078
4079
4080
    @require_torch_sdpa
    @slow
    def test_eager_matches_sdpa_generate(self):
amyeroberts's avatar
amyeroberts committed
4081
4082
4083
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
        max_new_tokens = 30

        if len(self.all_generative_model_classes) == 0:
            self.skipTest(f"{self.__class__.__name__} tests a model that does support generate: skipping this test")

        for model_class in self.all_generative_model_classes:
            if not model_class._supports_sdpa:
                self.skipTest(f"{model_class.__name__} does not support SDPA")

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            dummy_input = inputs_dict[model_class.main_input_name]
            if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                dummy_input = dummy_input.to(torch.float16)

            # make sure that all models have enough positions for generation
            if hasattr(config, "max_position_embeddings"):
                config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1

            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))

                model_sdpa = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch.float16,
                    low_cpu_mem_usage=True,
                ).to(torch_device)

                self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")

                model_eager = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch.float16,
                    low_cpu_mem_usage=True,
                    attn_implementation="eager",
                ).to(torch_device)

                self.assertTrue(model_eager.config._attn_implementation == "eager")

                for name, submodule in model_eager.named_modules():
4128
4129
                    class_name = submodule.__class__.__name__
                    if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
4130
4131
4132
4133
                        raise ValueError("The eager model should not have SDPA attention layers")

                has_sdpa = False
                for name, submodule in model_sdpa.named_modules():
4134
4135
                    class_name = submodule.__class__.__name__
                    if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
                        has_sdpa = True
                        break
                if not has_sdpa:
                    raise ValueError("The SDPA model should have SDPA attention layers")

                # Just test that a large cache works as expected
                res_eager = model_eager.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False
                )

                res_sdpa = model_sdpa.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False
                )

                self.assertTrue(torch.allclose(res_eager, res_sdpa))

4152
4153
    @require_torch_sdpa
    def test_sdpa_matches_eager_sliding_window(self):
amyeroberts's avatar
amyeroberts committed
4154
4155
4156
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
        WINDOW_ATTENTION_MODELS = ["mistral", "mixtral", "qwen2", "qwen_moe", "starcoder2"]

        if len(self.all_generative_model_classes) == 0:
            self.skipTest(f"No generative model classes for {self.__class__.__name__}")

        for model_class in self.all_generative_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            if config.model_type not in WINDOW_ATTENTION_MODELS:
                self.skipTest(f"{config.model_type} does not use window attention")

            config.sliding_window = 2

            dummy_input = inputs_dict[model_class.main_input_name]
            attention_mask = inputs_dict["attention_mask"]

            self.assertTrue(dummy_input.ndim == 2)
            self.assertTrue(dummy_input.shape[1] > 6)

            with tempfile.TemporaryDirectory() as tmpdir:
                with torch.device(torch_device):
                    model_eager = AutoModelForCausalLM.from_config(
                        config, attn_implementation="eager", torch_dtype=torch.float32
                    )

                model_eager.save_pretrained(tmpdir)

                with torch.device(torch_device):
                    model_sdpa = AutoModelForCausalLM.from_pretrained(
                        tmpdir, attn_implementation="sdpa", torch_dtype=torch.float32
                    )

                model_eager = model_eager.eval()
                model_sdpa = model_sdpa.eval()

                with torch.no_grad():
                    with torch.backends.cuda.sdp_kernel(
                        enable_flash=False,
                        enable_math=True,
                        enable_mem_efficient=False,
                    ):
                        res_eager = model_eager(**inputs_dict, return_dict=False)[0]
                        res_sdpa = model_sdpa(**inputs_dict, return_dict=False)[0]

                # Only non-padding tokens are expected to match.
                self.assertTrue(
4203
                    torch.allclose(res_eager[attention_mask == 1], res_sdpa[attention_mask == 1], rtol=1e-4, atol=1e-4)
4204
4205
                )

4206
4207
4208
4209
4210
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_generate_use_cache(self):
amyeroberts's avatar
amyeroberts committed
4211
4212
4213
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

4214
4215
        max_new_tokens = 30

4216
4217
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
4218
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
4219

4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            dummy_input = inputs_dict[model_class.main_input_name]
            if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                dummy_input = dummy_input.to(torch.float16)

            # make sure that all models have enough positions for generation
            if hasattr(config, "max_position_embeddings"):
                config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1

4230
4231
4232
4233
4234
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

4235
                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
4236
4237

                model = model_class.from_pretrained(
4238
4239
                    tmpdirname,
                    torch_dtype=torch.float16,
4240
                    attn_implementation="flash_attention_2",
4241
                    low_cpu_mem_usage=True,
4242
4243
4244
4245
                ).to(torch_device)

                # Just test that a large cache works as expected
                _ = model.generate(
4246
4247
4248
4249
4250
                    dummy_input,
                    attention_mask=dummy_attention_mask,
                    max_new_tokens=max_new_tokens,
                    do_sample=False,
                    use_cache=True,
4251
4252
                )

4253
4254
4255
4256
4257
4258
    @require_flash_attn
    @require_torch_gpu
    @require_bitsandbytes
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_fp32_ln(self):
amyeroberts's avatar
amyeroberts committed
4259
4260
4261
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

4262
4263
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
4264
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
4265
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
4266
4267
4268
4269
            model = model_class(config)
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

4270
4271
                dummy_input = inputs_dict[model.main_input_name]
                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
4272
                batch_size = dummy_attention_mask.shape[0]
4273

4274
4275
4276
4277
4278
                is_padding_right = dummy_attention_mask[:, -1].sum().item() != batch_size

                # To avoid errors with padding_side=="right"
                if is_padding_right:
                    dummy_attention_mask = torch.ones_like(dummy_input)
4279
4280
4281
4282

                model = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch.float16,
4283
                    attn_implementation="flash_attention_2",
4284
4285
4286
4287
4288
4289
4290
4291
4292
                    low_cpu_mem_usage=True,
                    load_in_4bit=True,
                )

                for _, param in model.named_parameters():
                    # upcast only layer norms
                    if (param.dtype == torch.float16) or (param.dtype == torch.bfloat16):
                        param.data = param.data.to(torch.float32)

4293
                if model.config.is_encoder_decoder:
4294
4295
4296
                    dummy_decoder_input_ids = inputs_dict["decoder_input_ids"]
                    dummy_decoder_attention_mask = inputs_dict["decoder_attention_mask"]

4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
                    _ = model(dummy_input, decoder_input_ids=dummy_decoder_input_ids)
                    # with attention mask
                    _ = model(
                        dummy_input,
                        attention_mask=dummy_attention_mask,
                        decoder_input_ids=dummy_decoder_input_ids,
                        decoder_attention_mask=dummy_decoder_attention_mask,
                    )
                else:
                    _ = model(dummy_input)
                    # with attention mask
                    _ = model(dummy_input, attention_mask=dummy_attention_mask)
4309

4310
4311
4312
4313
4314
4315
4316
    @is_pt_tf_cross_test
    def test_tf_from_pt_safetensors(self):
        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            tf_model_class_name = "TF" + model_class.__name__  # Add the "TF" at the beginning
            if not hasattr(transformers, tf_model_class_name):
amyeroberts's avatar
amyeroberts committed
4317
                self.skipTest(reason="transformers does not have this model in TF version yet")
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340

            tf_model_class = getattr(transformers, tf_model_class_name)

            pt_model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_model.save_pretrained(tmpdirname, safe_serialization=True)
                tf_model_1 = tf_model_class.from_pretrained(tmpdirname, from_pt=True)

                pt_model.save_pretrained(tmpdirname, safe_serialization=False)
                tf_model_2 = tf_model_class.from_pretrained(tmpdirname, from_pt=True)

                # Check models are equal
                for p1, p2 in zip(tf_model_1.weights, tf_model_2.weights):
                    self.assertTrue(np.allclose(p1.numpy(), p2.numpy()))

    @is_pt_flax_cross_test
    def test_flax_from_pt_safetensors(self):
        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            flax_model_class_name = "Flax" + model_class.__name__  # Add the "Flax at the beginning
            if not hasattr(transformers, flax_model_class_name):
amyeroberts's avatar
amyeroberts committed
4341
                self.skipTest(reason="transformers does not have this model in Flax version yet")
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356

            flax_model_class = getattr(transformers, flax_model_class_name)

            pt_model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_model.save_pretrained(tmpdirname, safe_serialization=True)
                flax_model_1 = flax_model_class.from_pretrained(tmpdirname, from_pt=True)

                pt_model.save_pretrained(tmpdirname, safe_serialization=False)
                flax_model_2 = flax_model_class.from_pretrained(tmpdirname, from_pt=True)

                # Check models are equal
                self.assertTrue(check_models_equal(flax_model_1, flax_model_2))

4357
4358
4359
4360
4361
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_from_config(self):
amyeroberts's avatar
amyeroberts committed
4362
4363
4364
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

4365
4366
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
4367
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
4368
4369
4370
4371

            config, _ = self.model_tester.prepare_config_and_inputs_for_common()
            # TODO: to change it in the future with other relevant auto classes
            fa2_model = AutoModelForCausalLM.from_config(
4372
                config, attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
            ).to(torch_device)

            dummy_input = torch.LongTensor([[0, 2, 3, 4], [0, 2, 3, 4]]).to(torch_device)
            dummy_attention_mask = torch.LongTensor([[1, 1, 1, 1], [0, 1, 1, 1]]).to(torch_device)

            fa2_correctly_converted = False

            for _, module in fa2_model.named_modules():
                if "FlashAttention" in module.__class__.__name__:
                    fa2_correctly_converted = True
                    break

            self.assertTrue(fa2_correctly_converted)

            _ = fa2_model(input_ids=dummy_input, attention_mask=dummy_attention_mask)

            with tempfile.TemporaryDirectory() as tmpdirname:
                fa2_model.save_pretrained(tmpdirname)

                model_from_pretrained = AutoModelForCausalLM.from_pretrained(tmpdirname)

4394
                self.assertTrue(model_from_pretrained.config._attn_implementation != "flash_attention_2")
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404

                fa2_correctly_converted = False

                for _, module in model_from_pretrained.named_modules():
                    if "FlashAttention" in module.__class__.__name__:
                        fa2_correctly_converted = True
                        break

                self.assertFalse(fa2_correctly_converted)

4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
    def _get_custom_4d_mask_test_data(self):
        # Sequence in which all but the last token is the same
        input_ids = torch.tensor(
            [[10, 11, 12, 13], [10, 11, 12, 14], [10, 11, 12, 15]], device=torch_device, dtype=torch.int64
        )
        position_ids = torch.tensor([[0, 1, 2, 3]] * 3, device=torch_device, dtype=torch.int64)

        # Combining common prefix with the unique ending tokens:
        input_ids_shared_prefix = torch.cat([input_ids[0][:-1], input_ids[:, -1]]).unsqueeze(0)

        # Creating a 4D mask where each of the last 3 tokens do not attend to each other.
        mask_shared_prefix = torch.tensor(
            [
                [
                    [
                        [1, 0, 0, 0, 0, 0],
                        [1, 1, 0, 0, 0, 0],
                        [1, 1, 1, 0, 0, 0],
                        [1, 1, 1, 1, 0, 0],
                        [1, 1, 1, 0, 1, 0],
                        [1, 1, 1, 0, 0, 1],
                    ]
                ]
            ],
        )
        # inverting the attention mask
        mask_dtype = torch.float32
        min_dtype = torch.finfo(mask_dtype).min
        mask_shared_prefix = (mask_shared_prefix.eq(0.0)).to(dtype=mask_dtype, device=torch_device) * min_dtype

        # Creating a position_ids tensor. note the repeating figures in the end.
        position_ids_shared_prefix = torch.tensor([[0, 1, 2, 3, 3, 3]], device=torch_device, dtype=torch.int64)

        return input_ids, position_ids, input_ids_shared_prefix, mask_shared_prefix, position_ids_shared_prefix

    def test_custom_4d_attention_mask(self):
amyeroberts's avatar
amyeroberts committed
4441
4442
4443
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

4444
        if len(self.all_generative_model_classes) == 0:
amyeroberts's avatar
amyeroberts committed
4445
4446
4447
            self.skipTest(
                reason="Model architecture has no generative classes, and thus not necessarily supporting 4D masks"
            )
4448
4449

        for model_class in self.all_generative_model_classes:
4450
            if not model_class._supports_static_cache:
4451
4452
                self.skipTest(f"{model_class.__name__} is not guaranteed to work with custom 4D attention masks")
            config, _ = self.model_tester.prepare_config_and_inputs_for_common()
4453
4454
            if getattr(config, "sliding_window", 0) > 0:
                self.skipTest(f"{model_class.__name__} with sliding window attention is not supported by this test")
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
            model = model_class(config).to(device=torch_device, dtype=torch.float32)

            (
                input_ids,
                position_ids,
                input_ids_shared_prefix,
                mask_shared_prefix,
                position_ids_shared_prefix,
            ) = self._get_custom_4d_mask_test_data()

            logits = model.forward(input_ids, position_ids=position_ids).logits
            # logits.shape == torch.Size([3, 4, ...])

            logits_shared_prefix = model(
                input_ids_shared_prefix,
                attention_mask=mask_shared_prefix,
                position_ids=position_ids_shared_prefix,
            )[0]
            # logits_shared_prefix.shape == torch.Size([1, 6, ...])

            out_last_tokens = logits[:, -1, :]  # last tokens in each batch line
            out_shared_prefix_last_tokens = logits_shared_prefix[0, -3:, :]  # last three tokens

            # comparing greedily-chosen tokens:
            assert torch.equal(out_last_tokens.max(axis=1).indices, out_shared_prefix_last_tokens.max(axis=1).indices)

            # comparing softmax-normalized logits:
            normalized_0 = F.softmax(out_last_tokens)
            normalized_1 = F.softmax(out_shared_prefix_last_tokens)
            torch.testing.assert_close(normalized_0, normalized_1, rtol=1e-3, atol=1e-4)

4486
4487
4488
4489
4490
4491
    # For now, Let's focus only on GPU for `torch.compile`
    @slow
    @require_torch_gpu
    @require_read_token
    def test_torch_compile(self):
        if version.parse(torch.__version__) < version.parse("2.3"):
amyeroberts's avatar
amyeroberts committed
4492
            self.skipTest(reason="This test requires torch >= 2.3 to run.")
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517

        if not hasattr(self, "_torch_compile_test_ckpt"):
            self.skipTest(f"{self.__class__.__name__} doesn't have the attribute `_torch_compile_test_ckpt`.")
        ckpt = self._torch_compile_test_ckpt

        os.environ["TOKENIZERS_PARALLELISM"] = "false"

        batch_size = 1
        n_iter = 3

        tokenizer = AutoTokenizer.from_pretrained(ckpt)
        model = AutoModelForCausalLM.from_pretrained(ckpt, torch_dtype=torch.float16).to(torch_device)

        model.generation_config.max_new_tokens = 4
        model.generation_config.max_new_tokens = 4

        model.generation_config.cache_implementation = "static"
        model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)

        input_text = "Why dogs are cute?"
        input_ids = tokenizer([input_text] * batch_size, return_tensors="pt").to(torch_device)

        for i in range(n_iter):
            _ = model.generate(**input_ids, do_sample=False)

4518

4519
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
4520
4521


thomwolf's avatar
thomwolf committed
4522
def ids_tensor(shape, vocab_size, rng=None, name=None):
4523
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
4524
    if rng is None:
4525
        rng = global_rng
thomwolf's avatar
thomwolf committed
4526

thomwolf's avatar
thomwolf committed
4527
4528
4529
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
4530

thomwolf's avatar
thomwolf committed
4531
4532
4533
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
4534

4535
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
4536
4537


4538
4539
4540
def random_attention_mask(shape, rng=None, name=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
    # make sure that at least one token is attended to for each batch
4541
4542
    # we choose the 1st token so this property of `at least one being non-zero` still holds after applying causal mask
    attn_mask[:, 0] = 1
4543
4544
4545
    return attn_mask


4546
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
4547
    """Creates a random float32 tensor"""
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

4559
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()