test_modeling_common.py 208 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
15
import collections
16
import copy
17
import gc
18
import inspect
19
import os
20
import os.path
Aymeric Augustin's avatar
Aymeric Augustin committed
21
import random
Sylvain Gugger's avatar
Sylvain Gugger committed
22
import re
23
import tempfile
24
import unittest
25
import warnings
26
from collections import defaultdict
NielsRogge's avatar
NielsRogge committed
27
from typing import Dict, List, Tuple
thomwolf's avatar
thomwolf committed
28

29
import numpy as np
30
from parameterized import parameterized
31
from pytest import mark
32
33

import transformers
34
35
from transformers import (
    AutoModel,
36
    AutoModelForCausalLM,
37
38
    AutoModelForSequenceClassification,
    PretrainedConfig,
39
    PreTrainedModel,
40
41
    is_torch_available,
    logging,
42
    set_seed,
43
)
44
from transformers.models.auto import get_values
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES,
    MODEL_FOR_BACKBONE_MAPPING_NAMES,
    MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES,
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
    MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES,
    MODEL_FOR_MASKED_LM_MAPPING_NAMES,
    MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
    MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES,
    MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
    MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
amyeroberts's avatar
amyeroberts committed
63
    MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES,
64
65
    MODEL_MAPPING_NAMES,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
66
67
from transformers.testing_utils import (
    CaptureLogger,
68
    is_flaky,
69
70
    is_pt_flax_cross_test,
    is_pt_tf_cross_test,
71
    require_accelerate,
72
    require_bitsandbytes,
73
    require_flash_attn,
74
    require_safetensors,
Sylvain Gugger's avatar
Sylvain Gugger committed
75
    require_torch,
76
    require_torch_gpu,
Sylvain Gugger's avatar
Sylvain Gugger committed
77
    require_torch_multi_gpu,
78
    require_torch_sdpa,
Sylvain Gugger's avatar
Sylvain Gugger committed
79
80
81
    slow,
    torch_device,
)
82
from transformers.utils import (
83
84
    CONFIG_NAME,
    GENERATION_CONFIG_NAME,
85
    SAFE_WEIGHTS_NAME,
86
    is_accelerate_available,
87
88
    is_flax_available,
    is_tf_available,
fxmarty's avatar
fxmarty committed
89
90
    is_torch_bf16_available_on_device,
    is_torch_fp16_available_on_device,
91
    is_torch_fx_available,
92
    is_torch_sdpa_available,
93
)
94
from transformers.utils.generic import ContextManagers, ModelOutput
95

Aymeric Augustin's avatar
Aymeric Augustin committed
96

97
98
99
100
if is_accelerate_available():
    from accelerate.utils import compute_module_sizes


101
if is_torch_available():
102
    import torch
103
    import torch.nn.functional as F
104
    from safetensors.torch import load_file as safe_load_file
105
    from safetensors.torch import save_file as safe_save_file
106
    from torch import nn
thomwolf's avatar
thomwolf committed
107

108
    from transformers import MODEL_MAPPING, AdaptiveEmbedding
109
    from transformers.modeling_utils import load_state_dict, no_init_weights
Sylvain Gugger's avatar
Sylvain Gugger committed
110
    from transformers.pytorch_utils import id_tensor_storage
thomwolf's avatar
thomwolf committed
111

Sylvain Gugger's avatar
Sylvain Gugger committed
112

113
114
115
if is_tf_available():
    import tensorflow as tf

116
117
if is_flax_available():
    import jax.numpy as jnp
118

119
    from tests.test_modeling_flax_utils import check_models_equal
120
121
122
123
124
    from transformers.modeling_flax_pytorch_utils import (
        convert_pytorch_state_dict_to_flax,
        load_flax_weights_in_pytorch_model,
    )

125
if is_torch_fx_available():
126
    from transformers.utils.fx import _FX_SUPPORTED_MODELS_WITH_KV_CACHE, symbolic_trace
127

128

129
130
131
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
132
        if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
Lysandre Debut's avatar
Lysandre Debut committed
133
            setattr(configs_no_init, key, 1e-10)
134
135
136
        if isinstance(getattr(configs_no_init, key, None), PretrainedConfig):
            no_init_subconfig = _config_zero_init(getattr(configs_no_init, key))
            setattr(configs_no_init, key, no_init_subconfig)
137
138
    return configs_no_init

thomwolf's avatar
thomwolf committed
139

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
def _mock_init_weights(self, module):
    for name, param in module.named_parameters(recurse=False):
        # Use the first letter of the name to get a value and go from a <> -13 to z <> 12
        value = ord(name[0].lower()) - 110
        param.data.fill_(value)


def _mock_all_init_weights(self):
    # Prune heads if needed
    if self.config.pruned_heads:
        self.prune_heads(self.config.pruned_heads)

    import transformers.modeling_utils

    if transformers.modeling_utils._init_weights:
        for module in self.modules():
            module._is_hf_initialized = False
        # Initialize weights
        self.apply(self._initialize_weights)

        # Tie weights should be skipped when not initializing all weights
        # since from_pretrained(...) calls tie weights anyways
        self.tie_weights()


165
166
167
168
@require_torch
class ModelTesterMixin:
    model_tester = None
    all_model_classes = ()
169
    all_generative_model_classes = ()
170
    fx_compatible = False
Patrick von Platen's avatar
Patrick von Platen committed
171
172
173
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
174
    test_resize_position_embeddings = False
Patrick von Platen's avatar
Patrick von Platen committed
175
    test_head_masking = True
176
    test_mismatched_shapes = True
177
    test_missing_keys = True
178
    test_model_parallel = False
179
    is_encoder_decoder = False
180
    has_attentions = True
181
    model_split_percents = [0.5, 0.7, 0.9]
182

183
184
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
185
        if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
186
            inputs_dict = {
187
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
188
                if isinstance(v, torch.Tensor) and v.ndim > 1
Sylvain Gugger's avatar
Sylvain Gugger committed
189
                else v
190
191
                for k, v in inputs_dict.items()
            }
192
        elif model_class.__name__ in get_values(MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES):
193
            inputs_dict.pop("attention_mask")
194
195

        if return_labels:
196
            if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
197
                inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
198
199
200
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
                *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
201
            ]:
202
203
204
205
206
207
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
208
209
210
211
212
213
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES),
214
            ]:
215
216
217
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
218
219
220
221
222
223
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_CAUSAL_LM_MAPPING_NAMES),
                *get_values(MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES),
                *get_values(MODEL_FOR_MASKED_LM_MAPPING_NAMES),
                *get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES),
amyeroberts's avatar
amyeroberts committed
224
                *get_values(MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES),
225
226
227
228
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
229
            elif model_class.__name__ in get_values(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES):
NielsRogge's avatar
NielsRogge committed
230
231
232
233
                num_patches = self.model_tester.image_size // self.model_tester.patch_size
                inputs_dict["bool_masked_pos"] = torch.zeros(
                    (self.model_tester.batch_size, num_patches**2), dtype=torch.long, device=torch_device
                )
234
            elif model_class.__name__ in get_values(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES):
NielsRogge's avatar
NielsRogge committed
235
236
237
238
                batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape
                inputs_dict["labels"] = torch.zeros(
                    [self.model_tester.batch_size, height, width], device=torch_device
                ).long()
239

240
241
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
242
    def test_save_load(self):
243
244
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

245
246
247
248
249
250
251
252
253
254
        def check_save_load(out1, out2):
            # make sure we don't have nans
            out_2 = out2.cpu().numpy()
            out_2[np.isnan(out_2)] = 0

            out_1 = out1.cpu().numpy()
            out_1[np.isnan(out_1)] = 0
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

255
256
257
258
259
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
260
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
261

262
            with tempfile.TemporaryDirectory() as tmpdirname:
263
                model.save_pretrained(tmpdirname)
264
265
266
267
268
269
270

                # the config file (and the generation config file, if it can generate) should be saved
                self.assertTrue(os.path.exists(os.path.join(tmpdirname, CONFIG_NAME)))
                self.assertEqual(
                    model.can_generate(), os.path.exists(os.path.join(tmpdirname, GENERATION_CONFIG_NAME))
                )

271
                model = model_class.from_pretrained(tmpdirname)
272
                model.to(torch_device)
273
                with torch.no_grad():
274
                    second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
thomwolf's avatar
thomwolf committed
275

276
277
278
279
280
            if isinstance(first, tuple) and isinstance(second, tuple):
                for tensor1, tensor2 in zip(first, second):
                    check_save_load(tensor1, tensor2)
            else:
                check_save_load(first, second)
281

282
283
284
285
286
287
288
289
290
291
292
293
    def test_from_pretrained_no_checkpoint(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            state_dict = model.state_dict()

            new_model = model_class.from_pretrained(
                pretrained_model_name_or_path=None, config=config, state_dict=state_dict
            )
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.equal(p1, p2))

294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
    def test_keep_in_fp32_modules(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            if model_class._keep_in_fp32_modules is None:
                return

            model = model_class(config)
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16)

                for name, param in model.named_parameters():
                    if any(n in model_class._keep_in_fp32_modules for n in name.split(".")):
                        self.assertTrue(param.dtype == torch.float32)
                    else:
                        self.assertTrue(param.dtype == torch.float16, name)

312
    def test_save_load_keys_to_ignore_on_save(self):
313
314
315
316
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
317
318
            _keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None)
            if _keys_to_ignore_on_save is None:
319
320
321
                continue

            # check the keys are in the original state_dict
322
            for k in _keys_to_ignore_on_save:
323
                self.assertIn(k, model.state_dict().keys(), "\n".join(model.state_dict().keys()))
324
325
326
327

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
328
329
330
                output_model_file = os.path.join(tmpdirname, SAFE_WEIGHTS_NAME)
                state_dict_saved = safe_load_file(output_model_file)

331
                for k in _keys_to_ignore_on_save:
332
                    self.assertNotIn(k, state_dict_saved.keys(), "\n".join(state_dict_saved.keys()))
333

Sylvain Gugger's avatar
Sylvain Gugger committed
334
335
                # Test we can load the state dict in the model, necessary for the checkpointing API in Trainer.
                load_result = model.load_state_dict(state_dict_saved, strict=False)
336
337
338
339
340
341
                keys_to_ignore = set(model._keys_to_ignore_on_save)

                if hasattr(model, "_tied_weights_keys"):
                    keys_to_ignore.update(set(model._tied_weights_keys))

                self.assertTrue(len(load_result.missing_keys) == 0 or set(load_result.missing_keys) == keys_to_ignore)
Sylvain Gugger's avatar
Sylvain Gugger committed
342
343
                self.assertTrue(len(load_result.unexpected_keys) == 0)

344
345
346
347
348
349
350
351
352
353
354
    def test_gradient_checkpointing_backward_compatibility(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            config.gradient_checkpointing = True
            model = model_class(config)
            self.assertTrue(model.is_gradient_checkpointing)

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
    def test_gradient_checkpointing_enable_disable(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            # at init model should have gradient checkpointing disabled
            model = model_class(config)
            self.assertFalse(model.is_gradient_checkpointing)

            # check enable works
            model.gradient_checkpointing_enable()
            self.assertTrue(model.is_gradient_checkpointing)

370
371
372
373
374
375
376
            # Loop over all modules and check that relevant modules have gradient_checkpointing set to True
            for n, m in model.named_modules():
                if hasattr(m, "gradient_checkpointing"):
                    self.assertTrue(
                        m.gradient_checkpointing, f"Module {n} does not have gradient_checkpointing set to True"
                    )

377
378
379
380
            # check disable works
            model.gradient_checkpointing_disable()
            self.assertFalse(model.is_gradient_checkpointing)

381
382
383
384
385
386
387
            # Loop over all modules and check that relevant modules have gradient_checkpointing set to False
            for n, m in model.named_modules():
                if hasattr(m, "gradient_checkpointing"):
                    self.assertFalse(
                        m.gradient_checkpointing, f"Module {n} does not have gradient_checkpointing set to False"
                    )

388
    @is_flaky(description="low likelihood of failure, reason not yet discovered")
389
390
    def test_save_load_fast_init_from_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
391
392
        if config.__class__ not in MODEL_MAPPING:
            return
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(model_class):
                pass

            model_class_copy = CopyClass

            # make sure that all keys are expected for test
            model_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
414
415
            model_class_copy._init_weights = _mock_init_weights
            model_class_copy.init_weights = _mock_all_init_weights
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

            model = base_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = model_class_copy.from_pretrained(tmpdirname)
                model_slow_init = model_class_copy.from_pretrained(tmpdirname, _fast_init=False)
432
                # Before we test anything
433
434

                for key in model_fast_init.state_dict().keys():
435
436
437
438
439
                    if isinstance(model_slow_init.state_dict()[key], torch.BoolTensor):
                        max_diff = (model_slow_init.state_dict()[key] ^ model_fast_init.state_dict()[key]).sum().item()
                    else:
                        max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
440

441
442
443
    @slow
    @require_accelerate
    @mark.accelerate_tests
444
    @unittest.skip("Need to fix since we have a device mismatch")
445
446
447
448
449
450
451
452
453
454
455
456
    def test_save_load_low_cpu_mem_usage(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        with tempfile.TemporaryDirectory() as saved_model_path:
            for model_class in self.all_model_classes:
                model_to_save = model_class(config)
                model_to_save.save_pretrained(saved_model_path)

                self._check_save_load_low_cpu_mem_usage(model_class, saved_model_path)

    @slow
    @require_accelerate
    @mark.accelerate_tests
457
    @unittest.skip("Need to fix since we have a device mismatch")
458
459
460
461
462
463
464
465
466
467
468
469
470
    def test_save_load_low_cpu_mem_usage_checkpoints(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        with tempfile.TemporaryDirectory() as saved_model_path:
            for model_class in self.all_model_classes:
                model_to_save = model_class(config)
                model_to_save.config.save_pretrained(saved_model_path)
                torch.save(model_to_save.state_dict(), os.path.join(saved_model_path, "pytorch_model.bin"))

                self._check_save_load_low_cpu_mem_usage(model_class, saved_model_path)

    @slow
    @require_accelerate
    @mark.accelerate_tests
471
    @unittest.skip("Need to fix since we have a device mismatch")
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
    def test_save_load_low_cpu_mem_usage_no_safetensors(self):
        with tempfile.TemporaryDirectory() as saved_model_path:
            for model_class in self.all_model_classes:
                config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
                model_to_save = model_class(config)

                model_to_save.save_pretrained(saved_model_path, safe_serialization=False)
                self._check_save_load_low_cpu_mem_usage(model_class, saved_model_path)

    def _check_save_load_low_cpu_mem_usage(self, model_class, saved_model_path):
        # Load the low usage and the normal models.
        model_low_usage, loading_info = model_class.from_pretrained(
            saved_model_path,
            low_cpu_mem_usage=True,
            output_loading_info=True,
        )
        model_non_low_usage = model_class.from_pretrained(saved_model_path)

        # Check that there were no missing keys.
        self.assertEqual(loading_info["missing_keys"], [])

        # The low_cpu_mem_usage=True causes the model params to be initialized with device=meta, and then
        # subsequently loaded with the correct values and onto the correct device. We check if there are any
        # remaining params that were not properly loaded.
        for name, param in model_low_usage.named_parameters():
            self.assertNotEqual(
                param.device,
                torch.device("meta"),
                "Parameter '" + name + "' has not been properly loaded and has device=meta.",
            )

        # Tests moving the model to a device other than meta.
        model_low_usage.to(torch_device)

        # Check that the parameters are equal.
        for p1, p2 in zip(model_low_usage.parameters(), model_non_low_usage.parameters()):
            self.assertEquals(p1.data.ne(p2.data).sum(), 0)

        # Check that the state dict keys are equal.
        self.assertEqual(set(model_low_usage.state_dict().keys()), set(model_non_low_usage.state_dict().keys()))

        # Check that the shared tensors are equal.
        tensor_ptrs1 = collections.defaultdict(list)
        for name, tensor in model_low_usage.state_dict().items():
            tensor_ptrs1[id_tensor_storage(tensor)].append(name)
        tied_params1 = [names for _, names in tensor_ptrs1.items() if len(names) > 1]

        tensor_ptrs2 = collections.defaultdict(list)
        for name, tensor in model_non_low_usage.state_dict().items():
            tensor_ptrs2[id_tensor_storage(tensor)].append(name)
        tied_params2 = [names for _, names in tensor_ptrs2.items() if len(names) > 1]

        self.assertEqual(tied_params1, tied_params2)

526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
    def test_fast_init_context_manager(self):
        # 1. Create a dummy class. Should have buffers as well? To make sure we test __init__
        class MyClass(PreTrainedModel):
            config_class = PretrainedConfig

            def __init__(self, config=None):
                super().__init__(config if config is not None else PretrainedConfig())
                self.linear = nn.Linear(10, 10, bias=True)
                self.embedding = nn.Embedding(10, 10)
                self.std = 1

            def _init_weights(self, module):
                if isinstance(module, nn.Linear):
                    module.weight.data = nn.init.kaiming_uniform_(module.weight.data, np.sqrt(5))
                    if module.bias is not None:
                        module.bias.data.normal_(mean=0.0, std=self.std)

        # 2. Make sure a linear layer's reset params is properly skipped:
        with ContextManagers([no_init_weights(True)]):
            no_init_instance = MyClass()

        set_seed(0)
        expected_bias = torch.tensor(
            ([0.2975, 0.2131, -0.1379, -0.0796, -0.3012, -0.0057, -0.2381, -0.2439, -0.0174, 0.0475])
        )
        init_instance = MyClass()
552
        torch.testing.assert_close(init_instance.linear.bias, expected_bias, rtol=1e-3, atol=1e-4)
553
554

        set_seed(0)
555
        torch.testing.assert_close(
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
            init_instance.linear.weight, nn.init.kaiming_uniform_(no_init_instance.linear.weight, np.sqrt(5))
        )

        # 3. Make sure weights that are not present use init_weight_ and get expected values
        with tempfile.TemporaryDirectory() as tmpdirname:
            state_dict = init_instance.state_dict()
            del state_dict["linear.weight"]

            init_instance.config.save_pretrained(tmpdirname)
            torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))
            set_seed(0)
            model_fast_init = MyClass.from_pretrained(tmpdirname)

            set_seed(0)
            model_slow_init = MyClass.from_pretrained(tmpdirname, _fast_init=False)

            for key in model_fast_init.state_dict().keys():
                max_diff = torch.max(torch.abs(model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]))
                self.assertLessEqual(max_diff.item(), 1e-3, msg=f"{key} not identical")

576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
    def test_fast_init_tied_embeddings(self):
        class MyClass(PreTrainedModel):
            config_class = PretrainedConfig
            _tied_weights_keys = ["output_embeddings.weight"]

            def __init__(self, config=None):
                super().__init__(config if config is not None else PretrainedConfig())
                self.input_embeddings = nn.Embedding(10, 10)
                self.output_embeddings = nn.Linear(10, 10, bias=False)
                self.tie_weights()

            def get_output_embeddings(self):
                return self.output_embeddings

            def set_output_embeddings(self, output_embeddings):
                self.output_embeddings = output_embeddings

            def get_input_embeddings(self):
                return self.input_embeddings

            def set_input_embeddings(self, input_embeddings):
                self.input_embeddings = input_embeddings

            def _init_weights(self, module):
                if module is self.output_embeddings:
                    raise ValueError("unnecessarily initialized tied output embedding!")

        model = MyClass()

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname)
            # throws if it initializes the tied output_embeddings
            MyClass.from_pretrained(tmpdirname)

610
611
    def test_save_load_fast_init_to_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
612
613
        if config.__class__ not in MODEL_MAPPING:
            return
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(base_class):
                pass

            base_class_copy = CopyClass

            # make sure that all keys are expected for test
            base_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
635
636
            base_class_copy._init_weights = _mock_init_weights
            base_class_copy.init_weights = _mock_all_init_weights
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654

            model = model_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.config.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = base_class_copy.from_pretrained(tmpdirname)
                model_slow_init = base_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
655
656
657
658
659
660
661
662
663
                    if isinstance(model_slow_init.state_dict()[key], torch.BoolTensor):
                        max_diff = torch.max(
                            model_slow_init.state_dict()[key] ^ model_fast_init.state_dict()[key]
                        ).item()
                    else:
                        max_diff = torch.max(
                            torch.abs(model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key])
                        ).item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
664

665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
    def test_torch_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        if config.__class__ not in MODEL_MAPPING:
            return
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(base_class):
                pass

            base_class_copy = CopyClass

            # make sure that all keys are expected for test
            base_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
            base_class_copy._init_weights = _mock_init_weights
            base_class_copy.init_weights = _mock_all_init_weights

            model = model_class(config)
            state_dict = model.state_dict()

            def check_equal(loaded):
                for key in state_dict.keys():
                    max_diff = torch.max(
                        state_dict()[key] ^ loaded[key]
                        if isinstance(state_dict[key], torch.BoolTensor)
                        else torch.abs(state_dict[key] - loaded[key])
                    ).item()
                    self.assertLessEqual(max_diff, 1e-6, msg=f"{key} not identical")

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_checkpoint_path = os.path.join(tmpdirname, "pytorch_model.bin")
                torch.save(state_dict, pt_checkpoint_path, _use_new_zipfile_serialization=True)
                check_equal(load_state_dict(pt_checkpoint_path))
                torch.save(state_dict, pt_checkpoint_path, _use_new_zipfile_serialization=False)
                check_equal(load_state_dict(pt_checkpoint_path))

Patrick von Platen's avatar
Patrick von Platen committed
713
    def test_initialization(self):
714
715
716
717
718
719
720
721
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
722
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
723
                        [0.0, 1.0],
724
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
725
                    )
thomwolf's avatar
thomwolf committed
726

Patrick von Platen's avatar
Patrick von Platen committed
727
    def test_determinism(self):
728
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
729
730
731
732
733
734
735
736
737

        def check_determinism(first, second):
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

738
739
740
741
742
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
743
744
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
Weizhen's avatar
Weizhen committed
745

746
747
748
749
750
            if isinstance(first, tuple) and isinstance(second, tuple):
                for tensor1, tensor2 in zip(first, second):
                    check_determinism(tensor1, tensor2)
            else:
                check_determinism(first, second)
751

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
                    "input_ids",
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
768
                expected_arg_names.extend(
769
770
                    ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"]
                    if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names
771
772
773
                    else ["encoder_outputs"]
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
774
775
776
777
778
779
            elif model_class.__name__ in [*get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES)] and self.has_attentions:
                expected_arg_names = ["pixel_values", "output_hidden_states", "output_attentions", "return_dict"]
                self.assertListEqual(arg_names, expected_arg_names)
            elif model_class.__name__ in [*get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES)] and not self.has_attentions:
                expected_arg_names = ["pixel_values", "output_hidden_states", "return_dict"]
                self.assertListEqual(arg_names, expected_arg_names)
780
            else:
781
                expected_arg_names = [model.main_input_name]
782
783
                self.assertListEqual(arg_names[:1], expected_arg_names)

784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
    def test_batching_equivalence(self):
        """
        Tests that the model supports batching and that the output is the nearly the same for the same input in
        different batch sizes.
        (Why "nearly the same" not "exactly the same"? Batching uses different matmul shapes, which often leads to
        different results: https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535)
        """

        def get_tensor_equivalence_function(batched_input):
            # models operating on continuous spaces have higher abs difference than LMs
            # instead, we can rely on cos distance for image/speech models, similar to `diffusers`
            if "input_ids" not in batched_input:
                return lambda tensor1, tensor2: (
                    1.0 - F.cosine_similarity(tensor1.float().flatten(), tensor2.float().flatten(), dim=0, eps=1e-38)
                )
            return lambda tensor1, tensor2: torch.max(torch.abs(tensor1 - tensor2))

        def recursive_check(batched_object, single_row_object, model_name, key):
            if isinstance(batched_object, (list, tuple)):
                for batched_object_value, single_row_object_value in zip(batched_object, single_row_object):
                    recursive_check(batched_object_value, single_row_object_value, model_name, key)
            elif isinstance(batched_object, dict):
                for batched_object_value, single_row_object_value in zip(
                    batched_object.values(), single_row_object.values()
                ):
                    recursive_check(batched_object_value, single_row_object_value, model_name, key)
810
811
            # do not compare returned loss (0-dim tensor) / codebook ids (int) / caching objects
            elif batched_object is None or not isinstance(batched_object, torch.Tensor):
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
                return
            elif batched_object.dim() == 0:
                return
            else:
                # indexing the first element does not always work
                # e.g. models that output similarity scores of size (N, M) would need to index [0, 0]
                slice_ids = [slice(0, index) for index in single_row_object.shape]
                batched_row = batched_object[slice_ids]
                self.assertFalse(
                    torch.isnan(batched_row).any(), f"Batched output has `nan` in {model_name} for key={key}"
                )
                self.assertFalse(
                    torch.isinf(batched_row).any(), f"Batched output has `inf` in {model_name} for key={key}"
                )
                self.assertFalse(
                    torch.isnan(single_row_object).any(), f"Single row output has `nan` in {model_name} for key={key}"
                )
                self.assertFalse(
                    torch.isinf(single_row_object).any(), f"Single row output has `inf` in {model_name} for key={key}"
                )
                self.assertTrue(
                    (equivalence(batched_row, single_row_object)) <= 1e-03,
                    msg=(
                        f"Batched and Single row outputs are not equal in {model_name} for key={key}. "
                        f"Difference={equivalence(batched_row, single_row_object)}."
                    ),
                )

        config, batched_input = self.model_tester.prepare_config_and_inputs_for_common()
        equivalence = get_tensor_equivalence_function(batched_input)

        for model_class in self.all_model_classes:
            config.output_hidden_states = True

            model_name = model_class.__name__
            if hasattr(self.model_tester, "prepare_config_and_inputs_for_model_class"):
                config, batched_input = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
            batched_input_prepared = self._prepare_for_class(batched_input, model_class)
            model = model_class(config).to(torch_device).eval()

            batch_size = self.model_tester.batch_size
            single_row_input = {}
            for key, value in batched_input_prepared.items():
                if isinstance(value, torch.Tensor) and value.shape[0] % batch_size == 0:
                    # e.g. musicgen has inputs of size (bs*codebooks). in most cases value.shape[0] == batch_size
                    single_batch_shape = value.shape[0] // batch_size
                    single_row_input[key] = value[:single_batch_shape]
                else:
                    single_row_input[key] = value

            with torch.no_grad():
                model_batched_output = model(**batched_input_prepared)
                model_row_output = model(**single_row_input)

            if isinstance(model_batched_output, torch.Tensor):
                model_batched_output = {"model_output": model_batched_output}
                model_row_output = {"model_output": model_row_output}

            for key in model_batched_output:
                # DETR starts from zero-init queries to decoder, leading to cos_similarity = `nan`
                if hasattr(self, "zero_init_hidden_state") and "decoder_hidden_states" in key:
                    model_batched_output[key] = model_batched_output[key][1:]
                    model_row_output[key] = model_row_output[key][1:]
                recursive_check(model_batched_output[key], model_row_output[key], model_name, key)

877
    def check_training_gradient_checkpointing(self, gradient_checkpointing_kwargs=None):
878
879
880
881
        if not self.model_tester.is_training:
            return

        for model_class in self.all_model_classes:
882
883
            if (
                model_class.__name__
884
885
886
887
                in [
                    *get_values(MODEL_MAPPING_NAMES),
                    *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES),
                ]
888
889
                or not model_class.supports_gradient_checkpointing
            ):
890
                continue
891

892
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
893
894
            config.use_cache = False
            config.return_dict = True
895
            model = model_class(config)
896

897
            model.to(torch_device)
898
            model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=gradient_checkpointing_kwargs)
899
            model.train()
900
901
902
903
904
905
906

            # unfreeze additional layers
            for p in model.parameters():
                p.requires_grad_(True)

            optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

907
908
909
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()
910
            optimizer.step()
911

912
913
914
915
916
            for k, v in model.named_parameters():
                if v.requires_grad:
                    self.assertTrue(v.grad is not None, f"{k} in {model_class.__name__} has no gradient!")

    def test_training(self):
917
        if not self.model_tester.is_training:
918
919
920
            return

        for model_class in self.all_model_classes:
921
922
923
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.return_dict = True

924
925
926
927
            if model_class.__name__ in [
                *get_values(MODEL_MAPPING_NAMES),
                *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES),
            ]:
928
                continue
929

930
931
932
933
934
935
936
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

937
938
939
940
941
942
943
944
945
946
947
948
949
    def test_training_gradient_checkpointing(self):
        # Scenario - 1 default behaviour
        self.check_training_gradient_checkpointing()

    def test_training_gradient_checkpointing_use_reentrant(self):
        # Scenario - 2 with `use_reentrant=True` - this is the default value that is used in pytorch's
        # torch.utils.checkpoint.checkpoint
        self.check_training_gradient_checkpointing(gradient_checkpointing_kwargs={"use_reentrant": True})

    def test_training_gradient_checkpointing_use_reentrant_false(self):
        # Scenario - 3 with `use_reentrant=False` pytorch suggests users to use this value for
        # future releases: https://pytorch.org/docs/stable/checkpoint.html
        self.check_training_gradient_checkpointing(gradient_checkpointing_kwargs={"use_reentrant": False})
950

Patrick von Platen's avatar
Patrick von Platen committed
951
    def test_attention_outputs(self):
952
953
954
        if not self.has_attentions:
            self.skipTest(reason="Model does not output attentions")

955
956
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True
957

958
959
960
961
962
963
964
965
966
967
968
969
        seq_len = getattr(self.model_tester, "seq_length", None)
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
        decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
970
            config.return_dict = True
971
972
973
974
975
976
977
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
978

979
980
981
982
983
984
985
986
987
988
            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
989

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
            out_len = len(outputs)

            if self.is_encoder_decoder:
                correct_outlen = 5

                # loss is at first position
                if "labels" in inputs_dict:
                    correct_outlen += 1  # loss is added to beginning
                # Question Answering model returns start_logits and end_logits
1009
1010
1011
                if model_class.__name__ in [
                    *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
                    *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
1012
                ]:
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
                    correct_outlen += 1  # start_logits and end_logits instead of only 1 output
                if "past_key_values" in outputs:
                    correct_outlen += 1  # past_key_values have been returned

                self.assertEqual(out_len, correct_outlen)

                # decoder attentions
                decoder_attentions = outputs.decoder_attentions
                self.assertIsInstance(decoder_attentions, (list, tuple))
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
                )
1027

1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
                # cross attentions
                cross_attentions = outputs.cross_attentions
                self.assertIsInstance(cross_attentions, (list, tuple))
                self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(cross_attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_attention_heads,
                        decoder_seq_length,
                        encoder_key_length,
                    ],
                )

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
1071

1072
    @slow
1073
    def test_torchscript_simple(self):
1074
1075
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
1076

1077
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
1078
    def test_torchscript_output_attentions(self):
1079
1080
1081
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
1082

1083
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
1084
    def test_torchscript_output_hidden_state(self):
1085
1086
1087
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
1088

1089
1090
1091
1092
    # This is copied from `torch/testing/_internal/jit_utils.py::clear_class_registry`
    def clear_torch_jit_class_registry(self):
        torch._C._jit_clear_class_registry()
        torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore()
1093
1094
1095
        # torch 1.8 has no `_clear_class_state` in `torch.jit._state`
        if hasattr(torch.jit._state, "_clear_class_state"):
            torch.jit._state._clear_class_state()
1096

1097
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
1098
        if not self.test_torchscript:
1099
            return
1100

1101
1102
1103
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
1104
            for attn_implementation in ["eager", "sdpa"]:
1105
                if attn_implementation == "sdpa" and (not model_class._supports_sdpa or not is_torch_sdpa_available()):
1106
                    continue
1107

1108
1109
1110
1111
1112
                configs_no_init._attn_implementation = attn_implementation
                model = model_class(config=configs_no_init)
                model.to(torch_device)
                model.eval()
                inputs = self._prepare_for_class(inputs_dict, model_class)
thomwolf's avatar
thomwolf committed
1113

1114
                main_input_name = model_class.main_input_name
thomwolf's avatar
thomwolf committed
1115

1116
                try:
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
                    if model.config.is_encoder_decoder:
                        model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                        main_input = inputs[main_input_name]
                        attention_mask = inputs["attention_mask"]
                        decoder_input_ids = inputs["decoder_input_ids"]
                        decoder_attention_mask = inputs["decoder_attention_mask"]
                        model(main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
                        traced_model = torch.jit.trace(
                            model, (main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
                        )
                    elif "bbox" in inputs and "image" in inputs:  # LayoutLMv2 requires additional inputs
                        input_ids = inputs["input_ids"]
                        bbox = inputs["bbox"]
                        image = inputs["image"].tensor
                        model(input_ids, bbox, image)
                        traced_model = torch.jit.trace(
                            model, (input_ids, bbox, image), check_trace=False
                        )  # when traced model is checked, an error is produced due to name mangling
                    elif "bbox" in inputs:  # Bros requires additional inputs (bbox)
                        input_ids = inputs["input_ids"]
                        bbox = inputs["bbox"]
                        model(input_ids, bbox)
                        traced_model = torch.jit.trace(
                            model, (input_ids, bbox), check_trace=False
                        )  # when traced model is checked, an error is produced due to name mangling
Eduardo Pacheco's avatar
Eduardo Pacheco committed
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
                    elif (
                        "pixel_values" in inputs and "prompt_pixel_values" in inputs and "prompt_masks" in inputs
                    ):  # SegGpt requires additional inputs
                        pixel_values = inputs["pixel_values"]
                        prompt_pixel_values = inputs["prompt_pixel_values"]
                        prompt_masks = inputs["prompt_masks"]
                        model(pixel_values, prompt_pixel_values, prompt_masks)
                        traced_model = torch.jit.trace(
                            model, (pixel_values, prompt_pixel_values, prompt_masks), check_trace=False
                        )  # when traced model is checked, an error is produced due to name mangling
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
                    else:
                        main_input = inputs[main_input_name]

                        if model.config._attn_implementation == "sdpa":
                            trace_input = {main_input_name: main_input}

                            if "attention_mask" in inputs:
                                trace_input["attention_mask"] = inputs["attention_mask"]
                            else:
                                self.skipTest("testing SDPA without attention_mask is not supported")

                            model(main_input, attention_mask=inputs["attention_mask"])
                            # example_kwarg_inputs was introduced in torch==2.0, but it is fine here since SDPA has a requirement on torch>=2.1.
                            traced_model = torch.jit.trace(model, example_kwarg_inputs=trace_input)
                        else:
                            model(main_input)
                            traced_model = torch.jit.trace(model, (main_input,))
                except RuntimeError:
                    self.fail("Couldn't trace module.")

                with tempfile.TemporaryDirectory() as tmp_dir_name:
                    pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")

                    try:
                        torch.jit.save(traced_model, pt_file_name)
                    except Exception:
                        self.fail("Couldn't save module.")

                    try:
                        loaded_model = torch.jit.load(pt_file_name)
                    except Exception:
                        self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
1184

1185
1186
                model.to(torch_device)
                model.eval()
thomwolf's avatar
thomwolf committed
1187

1188
1189
                loaded_model.to(torch_device)
                loaded_model.eval()
thomwolf's avatar
thomwolf committed
1190

1191
1192
                model_state_dict = model.state_dict()
                loaded_model_state_dict = loaded_model.state_dict()
1193

1194
1195
1196
1197
                non_persistent_buffers = {}
                for key in loaded_model_state_dict.keys():
                    if key not in model_state_dict.keys():
                        non_persistent_buffers[key] = loaded_model_state_dict[key]
1198

1199
1200
1201
                loaded_model_state_dict = {
                    key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
                }
1202

1203
                self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
1204

1205
1206
1207
1208
1209
1210
1211
                model_buffers = list(model.buffers())
                for non_persistent_buffer in non_persistent_buffers.values():
                    found_buffer = False
                    for i, model_buffer in enumerate(model_buffers):
                        if torch.equal(non_persistent_buffer, model_buffer):
                            found_buffer = True
                            break
1212

1213
1214
                    self.assertTrue(found_buffer)
                    model_buffers.pop(i)
1215

1216
1217
1218
1219
1220
1221
                models_equal = True
                for layer_name, p1 in model_state_dict.items():
                    if layer_name in loaded_model_state_dict:
                        p2 = loaded_model_state_dict[layer_name]
                        if p1.data.ne(p2.data).sum() > 0:
                            models_equal = False
thomwolf's avatar
thomwolf committed
1222

1223
                self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
1224

1225
1226
1227
                # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
                # (Even with this call, there are still memory leak by ~0.04MB)
                self.clear_torch_jit_class_registry()
1228

1229
1230
1231
1232
1233
1234
1235
1236
    def test_torch_fx(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict)

    def test_torch_fx_output_loss(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict, output_loss=True)

1237
1238
    def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False):
        if not is_torch_fx_available() or not self.fx_compatible:
1239
1240
1241
            self.skipTest(
                f"Either torch.fx is not available, or the model type {config.model_type} is not compatible with torch.fx"
            )
1242
1243
1244
1245

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.return_dict = False

1246
        for model_class in self.all_model_classes:
1247
1248
1249
1250
1251
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss)

1252
1253
            # We may want to test several inputs (various shapes, etc.).
            inputs_to_test = [inputs]
1254

1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
            if model.config.is_encoder_decoder:
                model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                labels = inputs.get("labels", None)
                input_names = [
                    "attention_mask",
                    "decoder_attention_mask",
                    "decoder_input_ids",
                    "input_features",
                    "input_ids",
                    "input_values",
                ]
                if labels is not None:
                    input_names.append("labels")
            else:
                input_names = [
                    "attention_mask",
                    "bbox",
                    "input_features",
                    "input_ids",
                    "input_values",
                    "pixel_values",
                    "token_type_ids",
                    "visual_feats",
                    "visual_pos",
                ]
1280

1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
                labels = inputs.get("labels", None)
                start_positions = inputs.get("start_positions", None)
                end_positions = inputs.get("end_positions", None)
                if labels is not None:
                    input_names.append("labels")
                if start_positions is not None:
                    input_names.append("start_positions")
                if end_positions is not None:
                    input_names.append("end_positions")

                if model.config.model_type in _FX_SUPPORTED_MODELS_WITH_KV_CACHE:
                    input_names.append("past_key_values")

                    # Generally model_tester.prepare_config_and_inputs_for_common seem not to generate past key values inputs.
                    if "past_key_values" not in inputs:
                        batch_size = inputs[next(iter(inputs))].shape[0]
                        num_heads = model.config.num_attention_heads
                        head_dim = model.config.hidden_size // model.config.num_attention_heads

                        cache_shape = (batch_size, num_heads, 0, head_dim)
                        empty_pkv = tuple(
                            (
                                torch.rand(cache_shape, dtype=torch.float, device=torch_device),
                                torch.rand(cache_shape, dtype=torch.float, device=torch_device),
1305
                            )
1306
1307
                            for i in range(model.config.num_hidden_layers)
                        )
1308

1309
1310
1311
1312
1313
1314
1315
1316
1317
                        cache_length = 9
                        cache_shape = (batch_size, num_heads, cache_length, head_dim)
                        non_empty_pkv = tuple(
                            (
                                torch.rand(cache_shape, dtype=torch.float, device=torch_device),
                                torch.rand(cache_shape, dtype=torch.float, device=torch_device),
                            )
                            for i in range(model.config.num_hidden_layers)
                        )
1318

1319
                        inps = copy.deepcopy(inputs_to_test[0])
1320

1321
                        inputs_to_test[0]["past_key_values"] = empty_pkv
1322

1323
1324
                        inps["past_key_values"] = non_empty_pkv
                        inputs_to_test.append(inps)
1325

1326
1327
1328
1329
                        past_mask = torch.ones(batch_size, cache_length, device=torch_device, dtype=torch.float)
                        inputs_to_test[1]["attention_mask"] = torch.cat(
                            (past_mask, inputs_to_test[1]["attention_mask"]), dim=1
                        )
1330

1331
1332
1333
            for inps in inputs_to_test:
                filtered_inputs = {k: v for (k, v) in inps.items() if k in input_names}
                input_names = list(filtered_inputs.keys())
1334

1335
1336
1337
1338
                if model.__class__.__name__ in set(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values()) and (
                    not hasattr(model.config, "problem_type") or model.config.problem_type is None
                ):
                    model.config.problem_type = "single_label_classification"
1339

1340
                traced_model = symbolic_trace(model, input_names)
1341

1342
1343
1344
                with torch.no_grad():
                    traced_output = traced_model(**filtered_inputs)
                    model_output = model(**filtered_inputs)
1345

1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
                def flatten_output(output):
                    flatten = []
                    for x in output:
                        if isinstance(x, (tuple, list)):
                            flatten += flatten_output(x)
                        elif not isinstance(x, torch.Tensor):
                            continue
                        else:
                            flatten.append(x)
                    return flatten
1356

1357
1358
1359
                model_output = flatten_output(model_output)
                traced_output = flatten_output(traced_output)
                num_outputs = len(model_output)
1360
1361
1362

                for i in range(num_outputs):
                    self.assertTrue(
1363
1364
                        torch.allclose(model_output[i], traced_output[i]),
                        f"traced {i}th output doesn't match model {i}th output for {model_class}",
1365
1366
                    )

1367
1368
1369
                # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
                # (Even with this call, there are still memory leak by ~0.04MB)
                self.clear_torch_jit_class_registry()
1370

Patrick von Platen's avatar
Patrick von Platen committed
1371
1372
    def test_headmasking(self):
        if not self.test_head_masking:
1373
            return
1374

1375
1376
1377
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
1378

1379
        inputs_dict["output_attentions"] = True
1380
1381
1382
1383
1384
1385
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
1386

1387
1388
1389
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
Lysandre's avatar
Lysandre committed
1390
1391
1392
                self.model_tester.num_hidden_layers,
                self.model_tester.num_attention_heads,
                device=torch_device,
1393
1394
1395
1396
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
1397
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
1398
            inputs["head_mask"] = head_mask
1399
1400
1401
1402
1403
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.forward)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
1404
1405
                if "cross_attn_head_mask" in arg_names:
                    inputs["cross_attn_head_mask"] = head_mask
1406
            outputs = model(**inputs, return_dict=True)
1407
1408
1409
1410
1411
1412
1413
1414
1415

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        torch.sum(torch.isnan(t)), t.numel() / 4
                    )  # Check we don't have more than 25% nans (arbitrary)
                attentions = [
                    t.masked_fill(torch.isnan(t), 0.0) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
                if len(attentions) > 2:  # encoder-decoder models have only 2 layers in each module
                    self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
1437
                check_attentions_validity(outputs.cross_attentions)
1438
1439
            else:
                check_attentions_validity(outputs.attentions)
1440

Patrick von Platen's avatar
Patrick von Platen committed
1441
1442
    def test_head_pruning(self):
        if not self.test_pruning:
1443
1444
1445
            return

        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1446
1447
1448
1449
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1450

1451
1452
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1453

1454
            inputs_dict["output_attentions"] = True
1455
1456
1457
1458
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1459
1460
1461
1462
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1463
1464
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
1465
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1466

1467
            attentions = outputs[-1]
1468

1469
            self.assertEqual(attentions[0].shape[-3], 1)
1470
1471
            # TODO: To have this check, we will need at least 3 layers. Do we really need it?
            # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
1472
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
1473

Patrick von Platen's avatar
Patrick von Platen committed
1474
1475
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
1476
            return
LysandreJik's avatar
LysandreJik committed
1477

1478
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1479
1480
1481
1482
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1483
1484
1485

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1486

1487
            inputs_dict["output_attentions"] = True
1488
1489
1490
1491
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1492
1493
1494
1495
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1496
            model.prune_heads(heads_to_prune)
1497

1498
            with tempfile.TemporaryDirectory() as temp_dir_name:
1499
1500
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
1501
                model.to(torch_device)
1502

1503
            with torch.no_grad():
1504
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1505
1506
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
1507
1508
            # TODO: To have this check, we will need at least 3 layers. Do we really need it?
            # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
1509
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
1510

Patrick von Platen's avatar
Patrick von Platen committed
1511
1512
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
1513
            return
1514

1515
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1516
1517
1518
1519
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1520

1521
1522
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1523

1524
            inputs_dict["output_attentions"] = True
1525
            config.output_hidden_states = False
1526

1527
1528
1529
1530
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1531
            config.pruned_heads = heads_to_prune
1532

1533
1534
1535
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1536

1537
            with torch.no_grad():
1538
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1539
            attentions = outputs[-1]
1540

1541
            self.assertEqual(attentions[0].shape[-3], 1)
1542
1543
            # TODO: To have this check, we will need at least 3 layers. Do we really need it?
            # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
1544
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
1545

Patrick von Platen's avatar
Patrick von Platen committed
1546
1547
    def test_head_pruning_integration(self):
        if not self.test_pruning:
1548
            return
1549

1550
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1551
1552
1553
1554
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1555

1556
1557
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1558

1559
            inputs_dict["output_attentions"] = True
1560
            config.output_hidden_states = False
1561

1562
            heads_to_prune = {1: [1, 2]}
1563
            config.pruned_heads = heads_to_prune
1564

1565
1566
1567
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1568

1569
            with torch.no_grad():
1570
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1571
            attentions = outputs[-1]
1572

1573
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 0)
1574
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
thomwolf's avatar
thomwolf committed
1575

1576
            with tempfile.TemporaryDirectory() as temp_dir_name:
1577
1578
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
1579
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
1580

1581
            with torch.no_grad():
1582
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1583
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
1584

1585
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 0)
1586
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
thomwolf's avatar
thomwolf committed
1587

1588
            heads_to_prune = {0: [0], 1: [1, 2]}
1589
            model.prune_heads(heads_to_prune)
1590

1591
            with torch.no_grad():
1592
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1593
            attentions = outputs[-1]
1594

1595
1596
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
1597

1598
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2]})
thomwolf's avatar
thomwolf committed
1599

Patrick von Platen's avatar
Patrick von Platen committed
1600
    def test_hidden_states_output(self):
Joseph Liu's avatar
Joseph Liu committed
1601
        def check_hidden_states_output(inputs_dict, config, model_class):
1602
            model = model_class(config)
1603
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
1604
            model.eval()
Joseph Liu's avatar
Joseph Liu committed
1605

thomwolf's avatar
thomwolf committed
1606
            with torch.no_grad():
1607
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1608
1609

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
1610

Sylvain Gugger's avatar
Sylvain Gugger committed
1611
1612
1613
1614
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)
1615

Patrick von Platen's avatar
Patrick von Platen committed
1616
1617
1618
1619
1620
1621
1622
            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

1623
            self.assertListEqual(
Lysandre's avatar
Lysandre committed
1624
1625
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
1626
            )
thomwolf's avatar
thomwolf committed
1627

1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
            if config.is_encoder_decoder:
                hidden_states = outputs.decoder_hidden_states

                self.assertIsInstance(hidden_states, (list, tuple))
                self.assertEqual(len(hidden_states), expected_num_layers)
                seq_len = getattr(self.model_tester, "seq_length", None)
                decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)

                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [decoder_seq_length, self.model_tester.hidden_size],
                )

Joseph Liu's avatar
Joseph Liu committed
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

1653
1654
1655
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
1656
        config.output_attentions = self.has_attentions
1657
1658
1659
1660
1661
1662
1663
1664
1665

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)
1666

1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
        output = outputs[0]

        if config.is_encoder_decoder:
            # Seq2Seq models
            encoder_hidden_states = outputs.encoder_hidden_states[0]
            encoder_hidden_states.retain_grad()

            decoder_hidden_states = outputs.decoder_hidden_states[0]
            decoder_hidden_states.retain_grad()

1677
1678
1679
1680
1681
1682
1683
1684
1685
            if self.has_attentions:
                encoder_attentions = outputs.encoder_attentions[0]
                encoder_attentions.retain_grad()

                decoder_attentions = outputs.decoder_attentions[0]
                decoder_attentions.retain_grad()

                cross_attentions = outputs.cross_attentions[0]
                cross_attentions.retain_grad()
1686
1687
1688
1689
1690

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(encoder_hidden_states.grad)
            self.assertIsNotNone(decoder_hidden_states.grad)
1691
1692
1693
1694
1695

            if self.has_attentions:
                self.assertIsNotNone(encoder_attentions.grad)
                self.assertIsNotNone(decoder_attentions.grad)
                self.assertIsNotNone(cross_attentions.grad)
1696
1697
1698
1699
        else:
            # Encoder-/Decoder-only models
            hidden_states = outputs.hidden_states[0]
            hidden_states.retain_grad()
1700
1701
1702
1703

            if self.has_attentions:
                attentions = outputs.attentions[0]
                attentions.retain_grad()
1704
1705
1706
1707

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(hidden_states.grad)
1708
1709
1710

            if self.has_attentions:
                self.assertIsNotNone(attentions.grad)
1711

Pradhy729's avatar
Pradhy729 committed
1712
    def test_feed_forward_chunking(self):
Lysandre's avatar
Lysandre committed
1713
1714
1715
1716
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Pradhy729's avatar
Pradhy729 committed
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
        for model_class in self.all_model_classes:
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
    def test_resize_position_vector_embeddings(self):
        if not self.test_resize_position_embeddings:
            return

        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

            if self.model_tester.is_training is False:
                model.eval()

            max_position_embeddings = config.max_position_embeddings

            # Retrieve the embeddings and clone theme
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                encoder_cloned_embeddings = encoder_model_embed.weight.clone()
                decoder_cloned_embeddings = decoder_model_embed.weight.clone()
            else:
                model_embed = model.get_position_embeddings()
                cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the position embeddings with a larger max_position_embeddings increases
            # the model's postion embeddings size
            model.resize_position_embeddings(max_position_embeddings + 10)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings + 10)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] + 10)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] + 10)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the position embeddings with a smaller max_position_embeddings decreases
            # the model's max_position_embeddings
            model.resize_position_embeddings(max_position_embeddings - 5)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings - 5)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] - 5)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] - 5)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 5)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True

            if model.config.is_encoder_decoder:
                for p1, p2 in zip(encoder_cloned_embeddings, encoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
                for p1, p2 in zip(decoder_cloned_embeddings, decoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
            else:
                for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False

            self.assertTrue(models_equal)

Patrick von Platen's avatar
Patrick von Platen committed
1814
    def test_resize_tokens_embeddings(self):
Lysandre's avatar
Lysandre committed
1815
1816
1817
1818
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
1819
        if not self.test_resize_embeddings:
1820
1821
1822
1823
1824
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
1825
            model.to(torch_device)
1826

Patrick von Platen's avatar
Patrick von Platen committed
1827
1828
1829
            if self.model_tester.is_training is False:
                model.eval()

1830
            model_vocab_size = config.text_config.vocab_size if hasattr(config, "text_config") else config.vocab_size
1831
1832
1833
1834
1835
1836
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
1837
1838
1839
1840
1841
1842
            new_model_vocab_size = (
                model.config.text_config.vocab_size
                if hasattr(model.config, "text_config")
                else model.config.vocab_size
            )
            self.assertEqual(new_model_vocab_size, model_vocab_size + 10)
1843
1844
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
1845
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
1846
            model(**self._prepare_for_class(inputs_dict, model_class))
1847
1848
1849

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
1850
1851
1852
1853
1854
1855
            new_model_vocab_size = (
                model.config.text_config.vocab_size
                if hasattr(model.config, "text_config")
                else model.config.vocab_size
            )
            self.assertEqual(new_model_vocab_size, model_vocab_size - 15)
1856
1857
1858
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

1859
1860
1861
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1862
1863
1864
1865

            # make sure that decoder_input_ids are resized as well
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1866
            model(**self._prepare_for_class(inputs_dict, model_class))
1867

1868
1869
1870
1871
1872
1873
1874
1875
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

1876
1877
1878
1879
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

1880
            model_vocab_size = config.text_config.vocab_size if hasattr(config, "text_config") else config.vocab_size
1881
            model.resize_token_embeddings(model_vocab_size + 10, pad_to_multiple_of=1)
1882
1883
1884
1885
1886
1887
            new_model_vocab_size = (
                model.config.text_config.vocab_size
                if hasattr(model.config, "text_config")
                else model.config.vocab_size
            )
            self.assertTrue(new_model_vocab_size + 10, model_vocab_size)
1888
1889

            model_embed = model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=64)
1890
1891
1892
1893
1894
            new_model_vocab_size = (
                model.config.text_config.vocab_size
                if hasattr(model.config, "text_config")
                else model.config.vocab_size
            )
1895
1896
            self.assertTrue(model_embed.weight.shape[0] // 64, 0)

1897
1898
            self.assertTrue(model_embed.weight.shape[0], new_model_vocab_size)
            self.assertTrue(new_model_vocab_size, model.vocab_size)
Arthur's avatar
Arthur committed
1899

1900
1901
1902
            model_embed = model.resize_token_embeddings(model_vocab_size + 13, pad_to_multiple_of=64)
            self.assertTrue(model_embed.weight.shape[0] // 64, 0)

1903
1904
1905
1906
1907
            # Check that resizing a model to a multiple of pad_to_multiple leads to a model of exactly that size
            target_dimension = 128
            model_embed = model.resize_token_embeddings(target_dimension, pad_to_multiple_of=64)
            self.assertTrue(model_embed.weight.shape[0], target_dimension)

1908
1909
1910
1911
1912
1913
            with self.assertRaisesRegex(
                ValueError,
                "Asking to pad the embedding matrix to a multiple of `1.3`, which is not and integer. Please make sure to pass an integer",
            ):
                model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=1.3)

1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
    def test_resize_embeddings_untied(self):
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        original_config.tie_word_embeddings = False

        # if model cannot untied embeddings -> leave test
        if original_config.tie_word_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config).to(torch_device)

            # if no output embeddings -> leave test
            if model.get_output_embeddings() is None:
                continue

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
1937
            model_vocab_size = config.text_config.vocab_size if hasattr(config, "text_config") else config.vocab_size
1938
            model.resize_token_embeddings(model_vocab_size + 10)
1939
1940
1941
1942
1943
1944
            new_model_vocab_size = (
                model.config.text_config.vocab_size
                if hasattr(model.config, "text_config")
                else model.config.vocab_size
            )
            self.assertEqual(new_model_vocab_size, model_vocab_size + 10)
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model.resize_token_embeddings(model_vocab_size - 15)
1955
1956
1957
1958
1959
1960
            new_model_vocab_size = (
                model.config.text_config.vocab_size
                if hasattr(model.config, "text_config")
                else model.config.vocab_size
            )
            self.assertEqual(new_model_vocab_size, model_vocab_size - 15)
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
            # Check that it actually resizes the embeddings matrix
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

Patrick von Platen's avatar
Patrick von Platen committed
1975
    def test_model_common_attributes(self):
1976
1977
1978
1979
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1980
1981
            self.assertIsInstance(model.get_input_embeddings(), (nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(nn.Embedding(10, 10))
1982
            x = model.get_output_embeddings()
1983
            self.assertTrue(x is None or isinstance(x, nn.Linear))
1984

1985
1986
1987
1988
1989
1990
1991
    def test_model_main_input_name(self):
        for model_class in self.all_model_classes:
            model_signature = inspect.signature(getattr(model_class, "forward"))
            # The main input is the name of the argument after `self`
            observed_main_input_name = list(model_signature.parameters.keys())[1]
            self.assertEqual(model_class.main_input_name, observed_main_input_name)

1992
    def test_correct_missing_keys(self):
1993
1994
        if not self.test_missing_keys:
            return
1995
1996
1997
1998
1999
2000
2001
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
                extra_params = {k: v for k, v in model.named_parameters() if not k.startswith(base_model_prefix)}
                extra_params.update({k: v for k, v in model.named_buffers() if not k.startswith(base_model_prefix)})
                # Some models define this as None
                if model._keys_to_ignore_on_load_missing:
                    for key in model._keys_to_ignore_on_load_missing:
                        extra_params.pop(key, None)

                if not extra_params:
                    # In that case, we *are* on a head model, but every
                    # single key is not actual parameters and this is
                    # tested in `test_tied_model_weights_key_ignore` test.
                    continue

2015
2016
2017
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)
2018
                    self.assertGreater(len(loading_info["missing_keys"]), 0, model.__class__.__name__)
2019

2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
2047
2048
            vocab_size = config.text_config.vocab_size if hasattr(config, "text_config") else config.vocab_size
            model_tied.resize_token_embeddings(vocab_size + 10)
2049
2050
2051
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

2052
2053
    @require_safetensors
    def test_can_use_safetensors(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
2054
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
        for model_class in self.all_model_classes:
            model_tied = model_class(config)
            with tempfile.TemporaryDirectory() as d:
                try:
                    model_tied.save_pretrained(d, safe_serialization=True)
                except Exception as e:
                    raise Exception(f"Class {model_class.__name__} cannot be saved using safetensors: {e}")

                model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True)
                # Checking the state dicts are correct
                reloaded_state = model_reloaded.state_dict()
                for k, v in model_tied.state_dict().items():
                    self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded")
                    torch.testing.assert_close(
                        v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}"
                    )
Sylvain Gugger's avatar
Sylvain Gugger committed
2071
2072
                # Checking there was no complain of missing weights
                self.assertEqual(infos["missing_keys"], [])
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088

                # Checking the tensor sharing are correct
                ptrs = defaultdict(list)
                for k, v in model_tied.state_dict().items():
                    ptrs[v.data_ptr()].append(k)

                shared_ptrs = {k: v for k, v in ptrs.items() if len(v) > 1}

                for _, shared_names in shared_ptrs.items():
                    reloaded_ptrs = {reloaded_state[k].data_ptr() for k in shared_names}
                    self.assertEqual(
                        len(reloaded_ptrs),
                        1,
                        f"The shared pointers are incorrect, found different pointers for keys {shared_names}",
                    )

Sylvain Gugger's avatar
Sylvain Gugger committed
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
    def test_load_save_without_tied_weights(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        config.tie_word_embeddings = False
        for model_class in self.all_model_classes:
            model = model_class(config)
            with tempfile.TemporaryDirectory() as d:
                model.save_pretrained(d)

                model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True)
                # Checking the state dicts are correct
                reloaded_state = model_reloaded.state_dict()
                for k, v in model.state_dict().items():
                    self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded")
                    torch.testing.assert_close(
                        v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}"
                    )
                # Checking there was no complain of missing weights
                self.assertEqual(infos["missing_keys"], [])

Sylvain Gugger's avatar
Sylvain Gugger committed
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
    def test_tied_weights_keys(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        config.tie_word_embeddings = True
        for model_class in self.all_model_classes:
            model_tied = model_class(config)

            ptrs = collections.defaultdict(list)
            for name, tensor in model_tied.state_dict().items():
                ptrs[id_tensor_storage(tensor)].append(name)

            # These are all the pointers of shared tensors.
            tied_params = [names for _, names in ptrs.items() if len(names) > 1]

            tied_weight_keys = model_tied._tied_weights_keys if model_tied._tied_weights_keys is not None else []
            # Detect we get a hit for each key
            for key in tied_weight_keys:
2124
2125
                is_tied_key = any(re.search(key, p) for group in tied_params for p in group)
                self.assertTrue(is_tied_key, f"{key} is not a tied weight key for {model_class}.")
Sylvain Gugger's avatar
Sylvain Gugger committed
2126
2127
2128
2129
2130
2131
2132

            # Removed tied weights found from tied params -> there should only be one left after
            for key in tied_weight_keys:
                for i in range(len(tied_params)):
                    tied_params[i] = [p for p in tied_params[i] if re.search(key, p) is None]

            tied_params = [group for group in tied_params if len(group) > 1]
Sylvain Gugger's avatar
Sylvain Gugger committed
2133
2134
2135
2136
2137
            self.assertListEqual(
                tied_params,
                [],
                f"Missing `_tied_weights_keys` for {model_class}: add all of {tied_params} except one.",
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
2138

Sylvain Gugger's avatar
Sylvain Gugger committed
2139
2140
    def test_model_weights_reload_no_missing_tied_weights(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
2141
        for model_class in self.all_model_classes:
Sylvain Gugger's avatar
Sylvain Gugger committed
2142
2143
2144
            model = model_class(config)
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.save_pretrained(tmp_dir)
2145
2146
2147

                # We are nuking ALL weights on file, so every parameter should
                # yell on load. We're going to detect if we yell too much, or too little.
2148
2149
                placeholder_dict = {"tensor": torch.tensor([1, 2])}
                safe_save_file(placeholder_dict, os.path.join(tmp_dir, "model.safetensors"), metadata={"format": "pt"})
Sylvain Gugger's avatar
Sylvain Gugger committed
2150
                model_reloaded, infos = model_class.from_pretrained(tmp_dir, output_loading_info=True)
2151
2152
2153
2154

                prefix = f"{model_reloaded.base_model_prefix}."
                params = dict(model_reloaded.named_parameters())
                params.update(dict(model_reloaded.named_buffers()))
2155
                param_names = {k[len(prefix) :] if k.startswith(prefix) else k for k in params.keys()}
2156
2157
2158
2159

                missing_keys = set(infos["missing_keys"])

                extra_missing = missing_keys - param_names
Sylvain Gugger's avatar
Sylvain Gugger committed
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
                # Remove tied weights from extra missing: they are normally not warned as missing if their tied
                # counterpart is present but here there are no weights at all so we do get the warning.
                ptrs = collections.defaultdict(list)
                for name, tensor in model_reloaded.state_dict().items():
                    ptrs[id_tensor_storage(tensor)].append(name)
                tied_params = [names for _, names in ptrs.items() if len(names) > 1]
                for group in tied_params:
                    group = {k[len(prefix) :] if k.startswith(prefix) else k for k in group}
                    # We remove the group from extra_missing if not all weights from group are in it
                    if len(group - extra_missing) > 0:
                        extra_missing = extra_missing - set(group)
2171
2172
2173
2174

                self.assertEqual(
                    extra_missing,
                    set(),
Sylvain Gugger's avatar
Sylvain Gugger committed
2175
2176
                    f"This model {model_class.__name__} might be missing some `keys_to_ignore`: {extra_missing}. "
                    f"For debugging, tied parameters are {tied_params}",
2177
2178
                )

Sylvain Gugger's avatar
Sylvain Gugger committed
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
                missed_missing = param_names - missing_keys
                # Remove nonpersistent buffers from missed_missing
                buffers = [n for n, _ in model_reloaded.named_buffers()]
                nonpersistent_buffers = {n for n in buffers if n not in model_reloaded.state_dict()}
                nonpersistent_buffers = {
                    k[len(prefix) :] if k.startswith(prefix) else k for k in nonpersistent_buffers
                }
                missed_missing = missed_missing - nonpersistent_buffers

                if model_reloaded._keys_to_ignore_on_load_missing is None:
                    expected_missing = set()
                else:
                    expected_missing = set(model_reloaded._keys_to_ignore_on_load_missing)
                self.assertEqual(
                    missed_missing,
                    expected_missing,
                    f"This model {model_class.__name__} ignores keys {missed_missing} but they look like real"
                    " parameters. If they are non persistent buffers make sure to instantiate them with"
                    " `persistent=False`",
                )
2199

2200
2201
2202
    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Sam Shleifer's avatar
Sam Shleifer committed
2203
2204
2205
2206
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

2207
2208
2209
2210
2211
2212
2213
2214
2215
        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
NielsRogge's avatar
NielsRogge committed
2216
2217
2218
2219
2220
                    elif isinstance(tuple_object, Dict):
                        for tuple_iterable_value, dict_iterable_value in zip(
                            tuple_object.values(), dict_object.values()
                        ):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
2221
2222
2223
2224
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
Sam Shleifer's avatar
Sam Shleifer committed
2225
2226
2227
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
Sylvain Gugger's avatar
Sylvain Gugger committed
2228
2229
2230
2231
2232
2233
                            msg=(
                                "Tuple and dict output are not equal. Difference:"
                                f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                                f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                                f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                            ),
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

2259
2260
2261
2262
            if self.has_attentions:
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
2263

2264
2265
2266
2267
2268
2269
2270
2271
2272
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(
                    model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
                )
2273

2274
2275
2276
2277
    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _make_attention_mask_non_null(self, inputs_dict):
        """Make sure no sequence has all zeros as attention mask"""
2278

2279
2280
2281
        for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]:
            if k in inputs_dict:
                attention_mask = inputs_dict[k]
2282

2283
2284
2285
2286
2287
2288
                # Make sure no all 0s attention masks - to avoid failure at this moment.
                # Put `1` at the beginning of sequences to make it still work when combining causal attention masks.
                # TODO: remove this line once a fix regarding large negative values for attention mask is done.
                attention_mask = torch.cat(
                    [torch.ones_like(attention_mask[:, :1], dtype=attention_mask.dtype), attention_mask[:, 1:]], dim=-1
                )
2289

2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
                # Here we make the first sequence with all 0s as attention mask.
                # Currently, this will fail for `TFWav2Vec2Model`. This is caused by the different large negative
                # values, like `1e-4`, `1e-9`, `1e-30` and `-inf` for attention mask across models/frameworks.
                # TODO: enable this block once the large negative values thing is cleaned up.
                # (see https://github.com/huggingface/transformers/issues/14859)
                # attention_mask = torch.cat(
                #     [torch.zeros_like(attention_mask[:1], dtype=attention_mask.dtype), attention_mask[1:]],
                #     dim=0
                # )

                inputs_dict[k] = attention_mask

    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _postprocessing_to_ignore_test_cases(self, tf_outputs, pt_outputs, model_class):
        """For temporarily ignoring some failed test cases (issues to be fixed)"""

2307
2308
        tf_keys = {k for k, v in tf_outputs.items() if v is not None}
        pt_keys = {k for k, v in pt_outputs.items() if v is not None}
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334

        key_differences = tf_keys.symmetric_difference(pt_keys)

        if model_class.__name__ in [
            "FlaubertWithLMHeadModel",
            "FunnelForPreTraining",
            "ElectraForPreTraining",
            "XLMWithLMHeadModel",
        ]:
            for k in key_differences:
                if k in ["loss", "losses"]:
                    tf_keys.discard(k)
                    pt_keys.discard(k)
        elif model_class.__name__.startswith("GPT2"):
            # `TFGPT2` has `past_key_values` as a tensor while `GPT2` has it as a tuple.
            tf_keys.discard("past_key_values")
            pt_keys.discard("past_key_values")

        # create new outputs from the remaining fields
        new_tf_outputs = type(tf_outputs)(**{k: tf_outputs[k] for k in tf_keys})
        new_pt_outputs = type(pt_outputs)(**{k: pt_outputs[k] for k in pt_keys})

        return new_tf_outputs, new_pt_outputs

    # Copied from tests.test_modeling_tf_common.TFModelTesterMixin.check_pt_tf_outputs
    def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
2335
        """Check the outputs from PyTorch and TensorFlow models are close enough. Checks are done in a recursive way.
2336

2337
2338
2339
2340
2341
2342
2343
2344
        Args:
            model_class: The class of the model that is currently testing. For example, `TFBertModel`,
                TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Mainly used for providing more informative
                error messages.
            name (`str`): The name of the output. For example, `output.hidden_states`, `output.attentions`, etc.
            attributes (`Tuple[str]`): The names of the output's element if the output is a tuple/list with each element
                being a named field in the output.
        """
2345

2346
2347
2348
        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")
2349

2350
2351
2352
2353
2354
2355
        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(tf_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `tf_outputs` is",
            )
2356

2357
2358
2359
            # Don't copy this block to model specific test file!
            # TODO: remove this method and this line after issues are fixed
            tf_outputs, pt_outputs = self._postprocessing_to_ignore_test_cases(tf_outputs, pt_outputs, model_class)
2360

2361
2362
            tf_keys = [k for k, v in tf_outputs.items() if v is not None]
            pt_keys = [k for k, v in pt_outputs.items() if v is not None]
2363

2364
            self.assertEqual(tf_keys, pt_keys, f"{name}: Output keys differ between TF and PyTorch")
2365

2366
            # convert to the case of `tuple`
2367
            # appending each key to the current (string) `name`
2368
2369
2370
2371
            attributes = tuple([f"{name}.{k}" for k in tf_keys])
            self.check_pt_tf_outputs(
                tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )
2372

2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(tf_outputs) in [tuple, list]:
            self.assertEqual(type(tf_outputs), type(pt_outputs), f"{name}: Output types differ between TF and PyTorch")
            self.assertEqual(len(tf_outputs), len(pt_outputs), f"{name}: Output lengths differ between TF and PyTorch")

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(tf_outputs),
2383
                    f"{name}: The tuple `attributes` should have the same length as `tf_outputs`",
2384
                )
2385
            else:
2386
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name`
2387
                attributes = tuple([f"{name}_{idx}" for idx in range(len(tf_outputs))])
2388

2389
2390
            for tf_output, pt_output, attr in zip(tf_outputs, pt_outputs, attributes):
                self.check_pt_tf_outputs(tf_output, pt_output, model_class, tol=tol, name=attr)
2391

2392
2393
2394
2395
        elif isinstance(tf_outputs, tf.Tensor):
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `tf_outputs` is"
            )
2396

2397
2398
            tf_outputs = tf_outputs.numpy()
            pt_outputs = pt_outputs.detach().to("cpu").numpy()
2399

2400
2401
2402
            self.assertEqual(
                tf_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between TF and PyTorch"
            )
2403

2404
2405
2406
2407
            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(tf_outputs):
                tf_outputs = np.array([tf_outputs])
                pt_outputs = np.array([pt_outputs])
2408

2409
2410
            tf_nans = np.isnan(tf_outputs)
            pt_nans = np.isnan(pt_outputs)
2411

2412
2413
2414
2415
            pt_outputs[tf_nans] = 0
            tf_outputs[tf_nans] = 0
            pt_outputs[pt_nans] = 0
            tf_outputs[pt_nans] = 0
2416

2417
            max_diff = np.amax(np.abs(tf_outputs - pt_outputs))
2418
            self.assertLessEqual(max_diff, tol, f"{name}: Difference between PyTorch and TF is {max_diff} (>= {tol}).")
2419
2420
        else:
            raise ValueError(
2421
                "`tf_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `tf.Tensor`. Got"
Sylvain Gugger's avatar
Sylvain Gugger committed
2422
                f" {type(tf_outputs)} instead."
2423
2424
            )

2425
2426
2427
2428
    def prepare_tf_inputs_from_pt_inputs(self, pt_inputs_dict):
        tf_inputs_dict = {}
        for key, tensor in pt_inputs_dict.items():
            # skip key that does not exist in tf
2429
            if isinstance(tensor, bool):
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
                tf_inputs_dict[key] = tensor
            elif key == "input_values":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            elif key == "pixel_values":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            elif key == "input_features":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            # other general float inputs
            elif tensor.is_floating_point():
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            else:
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.int32)
2442

2443
        return tf_inputs_dict
2444

2445
2446
    def check_pt_tf_models(self, tf_model, pt_model, pt_inputs_dict):
        tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
2447

2448
2449
2450
2451
        # send pytorch inputs to the correct device
        pt_inputs_dict = {
            k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items()
        }
2452

2453
2454
        # send pytorch model to the correct device
        pt_model.to(torch_device)
2455

2456
2457
        # Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences
        pt_model.eval()
2458

2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
        with torch.no_grad():
            pt_outputs = pt_model(**pt_inputs_dict)
        tf_outputs = tf_model(tf_inputs_dict)

        # tf models returned loss is usually a tensor rather than a scalar.
        # (see `hf_compute_loss`: it uses `tf.keras.losses.Reduction.NONE`)
        # Change it here to a scalar to match PyTorch models' loss
        tf_loss = getattr(tf_outputs, "loss", None)
        if tf_loss is not None:
            tf_outputs.loss = tf.math.reduce_mean(tf_loss)

        self.check_pt_tf_outputs(tf_outputs, pt_outputs, type(pt_model))

    @is_pt_tf_cross_test
Matt's avatar
Matt committed
2473
    def test_pt_tf_model_equivalence(self, allow_missing_keys=False):
2474
        import transformers
2475
2476

        for model_class in self.all_model_classes:
2477
2478
2479
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            tf_model_class_name = "TF" + model_class.__name__  # Add the "TF" at the beginning
2480
            if not hasattr(transformers, tf_model_class_name):
2481
                # transformers does not have this model in TF version yet
2482
2483
                return

2484
2485
2486
            # Output all for aggressive testing
            config.output_hidden_states = True
            config.output_attentions = self.has_attentions
2487

2488
2489
2490
2491
            # Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency
            # of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`.
            # TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it.
            self._make_attention_mask_non_null(inputs_dict)
2492
2493

            tf_model_class = getattr(transformers, tf_model_class_name)
2494
2495

            pt_model = model_class(config)
2496
2497
2498
2499
2500
2501
2502
2503
2504
            tf_model = tf_model_class(config)

            pt_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            pt_inputs_dict_with_labels = self._prepare_for_class(
                inputs_dict,
                model_class,
                # Not all models accept "labels" in the forward pass (yet :) )
                return_labels=True if "labels" in inspect.signature(model_class.forward).parameters.keys() else False,
            )
2505
2506
2507
2508
2509
2510
2511
2512
2513

            # make sure only tf inputs are forward that actually exist in function args
            tf_input_keys = set(inspect.signature(tf_model.call).parameters.keys())

            # remove all head masks
            tf_input_keys.discard("head_mask")
            tf_input_keys.discard("cross_attn_head_mask")
            tf_input_keys.discard("decoder_head_mask")

2514
            pt_inputs_dict = {k: v for k, v in pt_inputs_dict.items() if k in tf_input_keys}
2515
2516
2517
2518
            pt_inputs_dict_with_labels = {k: v for k, v in pt_inputs_dict_with_labels.items() if k in tf_input_keys}

            # For some models (e.g. base models), there is no label returned.
            # Set the input dict to `None` to avoid check outputs twice for the same input dicts.
2519
            if not set(pt_inputs_dict_with_labels.keys()).symmetric_difference(pt_inputs_dict.keys()):
2520
                pt_inputs_dict_with_labels = None
2521
2522

            # Check we can load pt model in tf and vice-versa with model => model functions
2523
2524
            # Here requires `tf_inputs_dict` to build `tf_model`
            tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
Matt's avatar
Matt committed
2525
2526
2527
2528
2529
2530
            tf_model = transformers.load_pytorch_model_in_tf2_model(
                tf_model, pt_model, tf_inputs=tf_inputs_dict, allow_missing_keys=allow_missing_keys
            )
            pt_model = transformers.load_tf2_model_in_pytorch_model(
                pt_model, tf_model, allow_missing_keys=allow_missing_keys
            )
2531

2532
2533
2534
2535
2536
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
            # check with `labels`
            if pt_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels)
2537
2538
2539
2540
2541

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
Matt's avatar
Matt committed
2542
2543
2544
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(
                    tf_model, pt_checkpoint_path, allow_missing_keys=allow_missing_keys
                )
2545
2546
2547

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
Matt's avatar
Matt committed
2548
2549
2550
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(
                    pt_model, tf_checkpoint_path, allow_missing_keys=allow_missing_keys
                )
2551

2552
2553
2554
2555
2556
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
            # check with `labels`
            if pt_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels)
2557
2558
2559
2560
2561

    def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
        diff = np.abs((a - b)).max()
        self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).")

2562
    def check_pt_flax_outputs(self, fx_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
2563
2564
2565
2566
2567
2568
2569
2570
2571
        """
        Args:
            model_class: The class of the model that is currently testing. For example, ..., etc.
            Currently unused, but it could make debugging easier and faster.

            names: A string, or a list of strings. These specify what fx_outputs/pt_outputs represent in the model outputs.
                Currently unused, but in the future, we could use this information to make the error message clearer
                by giving the name(s) of the output tensor(s) with large difference(s) between PT and Flax.
        """
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611

        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")

        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(fx_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `fx_outputs` is",
            )

            fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
            pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

            self.assertEqual(fx_keys, pt_keys, f"{name}: Output keys differ between Flax and PyTorch")

            # convert to the case of `tuple`
            # appending each key to the current (string) `name`
            attributes = tuple([f"{name}.{k}" for k in fx_keys])
            self.check_pt_flax_outputs(
                fx_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )

        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(fx_outputs) in [tuple, list]:
            self.assertEqual(
                type(fx_outputs), type(pt_outputs), f"{name}: Output types differ between Flax and PyTorch"
            )
            self.assertEqual(
                len(fx_outputs), len(pt_outputs), f"{name}: Output lengths differ between Flax and PyTorch"
            )

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(fx_outputs),
                    f"{name}: The tuple `attributes` should have the same length as `fx_outputs`",
                )
2612
            else:
2613
2614
2615
2616
2617
2618
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name`
                attributes = tuple([f"{name}_{idx}" for idx in range(len(fx_outputs))])

            for fx_output, pt_output, attr in zip(fx_outputs, pt_outputs, attributes):
                self.check_pt_flax_outputs(fx_output, pt_output, model_class, tol=tol, name=attr)

2619
        elif isinstance(fx_outputs, jnp.ndarray):
2620
2621
2622
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `fx_outputs` is"
            )
2623
2624
2625
2626
2627

            # Using `np.asarray` gives `ValueError: assignment destination is read-only` at the line `fx_outputs[fx_nans] = 0`.
            fx_outputs = np.array(fx_outputs)
            pt_outputs = pt_outputs.detach().to("cpu").numpy()

2628
2629
2630
2631
2632
2633
2634
2635
2636
            self.assertEqual(
                fx_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between Flax and PyTorch"
            )

            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(fx_outputs):
                fx_outputs = np.array([fx_outputs])
                pt_outputs = np.array([pt_outputs])

2637
2638
2639
2640
2641
2642
2643
2644
            fx_nans = np.isnan(fx_outputs)
            pt_nans = np.isnan(pt_outputs)

            pt_outputs[fx_nans] = 0
            fx_outputs[fx_nans] = 0
            pt_outputs[pt_nans] = 0
            fx_outputs[pt_nans] = 0

2645
2646
2647
2648
            max_diff = np.amax(np.abs(fx_outputs - pt_outputs))
            self.assertLessEqual(
                max_diff, tol, f"{name}: Difference between PyTorch and Flax is {max_diff} (>= {tol})."
            )
2649
2650
        else:
            raise ValueError(
2651
2652
                "`fx_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `jnp.ndarray`. Got"
                f" {type(fx_outputs)} instead."
2653
2654
            )

2655
2656
2657
2658
2659
2660
2661
2662
2663
    @is_pt_flax_cross_test
    def test_equivalence_pt_to_flax(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
2664
                    # no flax model exists for this class
2665
2666
                    return

2667
2668
2669
2670
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

2671
2672
                fx_model_class = getattr(transformers, fx_model_class_name)

2673
2674
2675
2676
2677
2678
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

2679
2680
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
2681

2682
2683
2684
2685
2686
2687
2688
2689
2690
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

2691
2692
2693
2694
2695
2696
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }

                # convert inputs to Flax
2697
                fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)}
2698

2699
2700
2701
                fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
                fx_model.params = fx_state

2702
2703
2704
                # send pytorch model to the correct device
                pt_model.to(torch_device)

2705
                with torch.no_grad():
2706
2707
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)
2708

2709
2710
2711
2712
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2713
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)
2714
2715
2716
2717
2718

                with tempfile.TemporaryDirectory() as tmpdirname:
                    pt_model.save_pretrained(tmpdirname)
                    fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, from_pt=True)

2719
2720
2721
2722
2723
2724
                fx_outputs_loaded = fx_model_loaded(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs_loaded.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2725
                self.check_pt_flax_outputs(fx_outputs_loaded, pt_outputs, model_class)
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738

    @is_pt_flax_cross_test
    def test_equivalence_flax_to_pt(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
                    # no flax model exists for this class
                    return

2739
2740
2741
2742
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

2743
2744
                fx_model_class = getattr(transformers, fx_model_class_name)

2745
2746
2747
2748
2749
2750
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

2751
2752
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
2753

2754
2755
2756
2757
2758
2759
2760
2761
2762
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

2763
2764
2765
2766
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }
2767

2768
                # convert inputs to Flax
2769
                fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)}
2770

2771
2772
2773
2774
2775
2776
2777
                pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)

                # make sure weights are tied in PyTorch
                pt_model.tie_weights()

                # send pytorch model to the correct device
                pt_model.to(torch_device)
2778

2779
2780
2781
2782
2783
2784
2785
2786
                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2787
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)
2788
2789
2790

                with tempfile.TemporaryDirectory() as tmpdirname:
                    fx_model.save_pretrained(tmpdirname)
2791
2792
2793
                    pt_model_loaded = model_class.from_pretrained(
                        tmpdirname, from_flax=True, attn_implementation=fx_model.config._attn_implementation
                    )
2794

2795
2796
2797
2798
                # send pytorch model to the correct device
                pt_model_loaded.to(torch_device)
                pt_model_loaded.eval()

2799
                with torch.no_grad():
2800
                    pt_outputs_loaded = pt_model_loaded(**pt_inputs)
2801

2802
2803
2804
2805
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs_loaded.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2806
                self.check_pt_flax_outputs(fx_outputs, pt_outputs_loaded, model_class)
2807

Patrick von Platen's avatar
Patrick von Platen committed
2808
    def test_inputs_embeds(self):
2809
2810
2811
2812
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
2813
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
2814
            model.eval()
2815

2816
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
2817

2818
2819
2820
2821
2822
2823
2824
2825
2826
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

2827
2828
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
2829
                inputs["inputs_embeds"] = wte(input_ids)
2830
            else:
2831
2832
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
2833

thomwolf's avatar
thomwolf committed
2834
            with torch.no_grad():
Weizhen's avatar
Weizhen committed
2835
                model(**inputs)[0]
2836

2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
    def test_inputs_embeds_matches_input_ids(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class.__name__ not in get_values(MODEL_MAPPING_NAMES):
                continue
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            model_forward_args = inspect.signature(model.forward).parameters
            if "inputs_embeds" not in model_forward_args:
                self.skipTest("This model doesn't use `inputs_embeds`")

            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
            pad_token_id = config.pad_token_id if config.pad_token_id is not None else 1

            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                # some models infer position ids/attn mask differently when input ids
                # by check if pad_token let's make sure no padding is in input ids
                not_pad_token_id = pad_token_id + 1 if max(0, pad_token_id - 1) == 0 else pad_token_id - 1
                input_ids[input_ids == pad_token_id] = not_pad_token_id
                del inputs["input_ids"]
                inputs_embeds = wte(input_ids)
                with torch.no_grad():
                    out_ids = model(input_ids=input_ids, **inputs)[0]
                    out_embeds = model(inputs_embeds=inputs_embeds, **inputs)[0]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                encoder_input_ids[encoder_input_ids == pad_token_id] = max(0, pad_token_id + 1)
                decoder_input_ids[decoder_input_ids == pad_token_id] = max(0, pad_token_id + 1)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)
                inputs_embeds = wte(encoder_input_ids)
                decoder_inputs_embeds = wte(decoder_input_ids)
                with torch.no_grad():
                    out_ids = model(input_ids=encoder_input_ids, decoder_input_ids=decoder_input_ids, **inputs)[0]
                    out_embeds = model(
                        inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, **inputs
                    )[0]
            self.assertTrue(torch.allclose(out_embeds, out_ids))

2882
2883
    @require_torch_multi_gpu
    def test_multi_gpu_data_parallel_forward(self):
2884
2885
2886
2887
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
2888
        blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"]
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
2903
            model = nn.DataParallel(model)
2904
            with torch.no_grad():
2905
                _ = model(**self._prepare_for_class(inputs_dict, model_class))
2906

2907
2908
2909
    @require_torch_multi_gpu
    def test_model_parallelization(self):
        if not self.test_model_parallel:
2910
            return
2911

2912
        # a candidate for testing_utils
2913
        def get_current_gpu_memory_use():
Patrick von Platen's avatar
Patrick von Platen committed
2914
            """returns a list of cuda memory allocations per GPU in MBs"""
2915
2916
2917
2918
2919

            per_device_memory = []
            for id in range(torch.cuda.device_count()):
                with torch.cuda.device(id):
                    per_device_memory.append(torch.cuda.memory_allocated() >> 20)
2920
2921
2922
2923
2924
2925
2926
2927
2928

            return per_device_memory

        # Needs a large model to see the difference.
        config = self.model_tester.get_large_model_config()

        for model_class in self.all_parallelizable_model_classes:
            torch.cuda.empty_cache()

2929
2930
2931
            # 1. single gpu memory load + unload + memory measurements
            # Retrieve initial memory usage (can easily be ~0.6-1.5GB if cuda-kernels have been preloaded by previous tests)
            memory_at_start = get_current_gpu_memory_use()
2932

2933
2934
            # Put model on device 0 and take a memory snapshot
            model = model_class(config)
2935
2936
2937
            model.to("cuda:0")
            memory_after_model_load = get_current_gpu_memory_use()

2938
2939
2940
            # The memory use on device 0 should be higher than it was initially.
            self.assertGreater(memory_after_model_load[0], memory_at_start[0])

2941
            del model
2942
            gc.collect()
2943
2944
            torch.cuda.empty_cache()

2945
2946
2947
            # 2. MP test
            # it's essential to re-calibrate the usage before the next stage
            memory_at_start = get_current_gpu_memory_use()
2948
2949

            # Spread model layers over multiple devices
2950
            model = model_class(config)
2951
2952
2953
2954
            model.parallelize()
            memory_after_parallelization = get_current_gpu_memory_use()

            # Assert that the memory use on all devices is higher than it was when loaded only on CPU
2955
            for n in range(len(model.device_map.keys())):
2956
                self.assertGreater(memory_after_parallelization[n], memory_at_start[n])
2957

2958
            # Assert that the memory use of device 0 is lower than it was when the entire model was loaded on it
2959
2960
            self.assertLess(memory_after_parallelization[0], memory_after_model_load[0])

2961
2962
            # Assert that the memory use of device 1 is higher than it was when the entire model was loaded
            # on device 0 and device 1 wasn't used at all
2963
2964
2965
            self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1])

            del model
2966
            gc.collect()
2967
2968
2969
2970
2971
            torch.cuda.empty_cache()

    @require_torch_multi_gpu
    def test_model_parallel_equal_results(self):
        if not self.test_model_parallel:
2972
            return
2973
2974
2975
2976
2977
2978

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)

2979
            def cast_to_device(dictionary, device):
2980
2981
2982
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
2983
                        output[k] = v.to(device)
2984
2985
2986
2987
2988
                    else:
                        output[k] = v

                return output

2989
2990
2991
2992
2993
2994
            model = model_class(config)
            output = model(**cast_to_device(inputs_dict, "cpu"))

            model.parallelize()

            parallel_output = model(**cast_to_device(inputs_dict, "cuda:0"))
2995
2996
2997
2998
2999
3000
3001
3002

            for value, parallel_value in zip(output, parallel_output):
                if isinstance(value, torch.Tensor):
                    self.assertTrue(torch.allclose(value, parallel_value.to("cpu"), atol=1e-7))
                elif isinstance(value, (Tuple, List)):
                    for value_, parallel_value_ in zip(value, parallel_value):
                        self.assertTrue(torch.allclose(value_, parallel_value_.to("cpu"), atol=1e-7))

3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
    def check_device_map_is_respected(self, model, device_map):
        for param_name, param in model.named_parameters():
            # Find device in device_map
            while len(param_name) > 0 and param_name not in device_map:
                param_name = ".".join(param_name.split(".")[:-1])
            if param_name not in device_map:
                raise ValueError("device map is incomplete, it does not contain any device for `param_name`.")

            param_device = device_map[param_name]
            if param_device in ["cpu", "disk"]:
                self.assertEqual(param.device, torch.device("meta"))
            else:
                self.assertEqual(param.device, torch.device(param_device))

Sylvain Gugger's avatar
Sylvain Gugger committed
3017
    @require_accelerate
3018
    @mark.accelerate_tests
Sylvain Gugger's avatar
Sylvain Gugger committed
3019
    @require_torch_gpu
3020
    def test_disk_offload_bin(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
3021
3022
3023
3024
3025
3026
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

3027
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
3028
3029
            model = model_class(config).eval()
            model = model.to(torch_device)
3030
            torch.manual_seed(0)
3031
            base_output = model(**inputs_dict_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
3032
3033
3034

            model_size = compute_module_sizes(model)[""]
            with tempfile.TemporaryDirectory() as tmp_dir:
3035
                model.cpu().save_pretrained(tmp_dir, safe_serialization=False)
Sylvain Gugger's avatar
Sylvain Gugger committed
3036
3037

                with self.assertRaises(ValueError):
Yih-Dar's avatar
Yih-Dar committed
3038
3039
                    max_size = int(self.model_split_percents[0] * model_size)
                    max_memory = {0: max_size, "cpu": max_size}
Sylvain Gugger's avatar
Sylvain Gugger committed
3040
3041
3042
                    # This errors out cause it's missing an offload folder
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)

Yih-Dar's avatar
Yih-Dar committed
3043
3044
                max_size = int(self.model_split_percents[1] * model_size)
                max_memory = {0: max_size, "cpu": max_size}
Sylvain Gugger's avatar
Sylvain Gugger committed
3045
3046
3047
3048
3049
                new_model = model_class.from_pretrained(
                    tmp_dir, device_map="auto", max_memory=max_memory, offload_folder=tmp_dir
                )

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)
3050
                torch.manual_seed(0)
3051
                new_output = new_model(**inputs_dict_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
3052

3053
3054
3055
3056
                if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple):
                    self.assertTrue(torch.allclose(a, b, atol=1e-5) for a, b in zip(base_output[0], new_output[0]))
                else:
                    self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
Sylvain Gugger's avatar
Sylvain Gugger committed
3057

3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
    @require_accelerate
    @mark.accelerate_tests
    @require_torch_gpu
    def test_disk_offload_safetensors(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config).eval()
            model = model.to(torch_device)
            torch.manual_seed(0)
            base_output = model(**inputs_dict_class)

            model_size = compute_module_sizes(model)[""]
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                max_size = int(self.model_split_percents[1] * model_size)
                max_memory = {0: max_size, "cpu": max_size}

                # This doesn't error out as it's in safetensors and doesn't need an offload folder
                new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)
                torch.manual_seed(0)
                new_output = new_model(**inputs_dict_class)

3088
3089
3090
3091
                if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple):
                    self.assertTrue(torch.allclose(a, b, atol=1e-5) for a, b in zip(base_output[0], new_output[0]))
                else:
                    self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
3092

3093
    @require_accelerate
3094
    @mark.accelerate_tests
3095
3096
3097
3098
3099
3100
3101
3102
    @require_torch_gpu
    def test_cpu_offload(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

3103
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
3104
3105
            model = model_class(config).eval()
            model = model.to(torch_device)
3106
3107

            torch.manual_seed(0)
3108
            base_output = model(**inputs_dict_class)
3109
3110
3111

            model_size = compute_module_sizes(model)[""]
            # We test several splits of sizes to make sure it works.
Yih-Dar's avatar
Yih-Dar committed
3112
            max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                for max_size in max_gpu_sizes:
                    max_memory = {0: max_size, "cpu": model_size * 2}
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                    # Making sure part of the model will actually end up offloaded
                    self.assertSetEqual(set(new_model.hf_device_map.values()), {0, "cpu"})

                    self.check_device_map_is_respected(new_model, new_model.hf_device_map)
3123
3124

                    torch.manual_seed(0)
3125
                    new_output = new_model(**inputs_dict_class)
3126

3127
3128
3129
3130
                    if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple):
                        self.assertTrue(torch.allclose(a, b, atol=1e-5) for a, b in zip(base_output[0], new_output[0]))
                    else:
                        self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
3131
3132

    @require_accelerate
3133
    @mark.accelerate_tests
3134
3135
3136
3137
3138
3139
3140
3141
    @require_torch_multi_gpu
    def test_model_parallelism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

3142
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
3143
3144
            model = model_class(config).eval()
            model = model.to(torch_device)
3145
3146

            torch.manual_seed(0)
3147
            base_output = model(**inputs_dict_class)
3148
3149
3150

            model_size = compute_module_sizes(model)[""]
            # We test several splits of sizes to make sure it works.
3151
            max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                for max_size in max_gpu_sizes:
                    max_memory = {0: max_size, 1: model_size * 2, "cpu": model_size * 2}
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                    # Making sure part of the model will actually end up offloaded
                    self.assertSetEqual(set(new_model.hf_device_map.values()), {0, 1})

                    self.check_device_map_is_respected(new_model, new_model.hf_device_map)
3162
3163

                    torch.manual_seed(0)
3164
                    new_output = new_model(**inputs_dict_class)
3165

3166
3167
3168
3169
                    if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple):
                        self.assertTrue(torch.allclose(a, b, atol=1e-5) for a, b in zip(base_output[0], new_output[0]))
                    else:
                        self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
3170

3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
    def test_problem_types(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        problem_types = [
            {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
            {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
            {"title": "regression", "num_labels": 1, "dtype": torch.float},
        ]

        for model_class in self.all_model_classes:
3181
3182
3183
            if model_class.__name__ not in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
3184
            ]:
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
                continue

            for problem_type in problem_types:
                with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):
                    config.problem_type = problem_type["title"]
                    config.num_labels = problem_type["num_labels"]

                    model = model_class(config)
                    model.to(torch_device)
                    model.train()

                    inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)

                    if problem_type["num_labels"] > 1:
                        inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])

                    inputs["labels"] = inputs["labels"].to(problem_type["dtype"])

3203
3204
3205
3206
3207
3208
                    # This tests that we do not trigger the warning form PyTorch "Using a target size that is different
                    # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
                    # they have the same size." which is a symptom something in wrong for the regression problem.
                    # See https://github.com/huggingface/transformers/issues/11780
                    with warnings.catch_warnings(record=True) as warning_list:
                        loss = model(**inputs).loss
3209
3210
3211
3212
3213
                    for w in warning_list:
                        if "Using a target size that is different to the input size" in str(w.message):
                            raise ValueError(
                                f"Something is going wrong in the regression problem: intercepted {w.message}"
                            )
3214

3215
3216
                    loss.backward()

3217
    def test_load_with_mismatched_shapes(self):
3218
3219
        if not self.test_mismatched_shapes:
            return
3220
3221
3222
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
3223
            if model_class.__name__ not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES):
3224
3225
3226
3227
3228
3229
3230
3231
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(config)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
3232
                    with self.assertRaises(RuntimeError):
3233
                        new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
3234
3235
                    with self.assertRaises(RuntimeError):
                        new_model_without_prefix = AutoModel.from_pretrained(tmp_dir, vocab_size=10)
3236
3237

                    logger = logging.get_logger("transformers.modeling_utils")
3238

3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
                    with CaptureLogger(logger) as cl:
                        new_model = AutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    new_model.to(torch_device)
                    inputs = self._prepare_for_class(inputs_dict, model_class)
                    logits = new_model(**inputs).logits
                    self.assertEqual(logits.shape[1], 42)

3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
                    with CaptureLogger(logger) as cl:
                        new_model_without_prefix = AutoModel.from_pretrained(
                            tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    input_ids = ids_tensor((2, 8), 10)
                    new_model_without_prefix.to(torch_device)
                    if self.is_encoder_decoder:
                        new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
                    else:
                        new_model_without_prefix(input_ids)

3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
    def test_mismatched_shapes_have_properly_initialized_weights(self):
        if not self.test_mismatched_shapes:
            return
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)

        for model_class in self.all_model_classes:
            if model_class.__name__ not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES):
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(configs_no_init)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
                    with self.assertRaises(RuntimeError):
                        new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)

                    logger = logging.get_logger("transformers.modeling_utils")

                    with CaptureLogger(logger) as cl:
                        new_model = AutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)

                    for name, param in new_model.named_parameters():
                        if param.requires_grad:
                            self.assertIn(
                                ((param.data.mean() * 1e9).round() / 1e9).item(),
                                [0.0, 1.0],
                                msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                            )

    def test_matched_shapes_have_loaded_weights_when_some_mismatched_shapes_exist(self):
        # 1. Create a dummy class. Should have buffers as well? To make sure we test __init__
        class MyClass(PreTrainedModel):
            config_class = PretrainedConfig

            def __init__(self, config=None):
                super().__init__(config if config is not None else PretrainedConfig())
                self.linear = nn.Linear(10, config.num_labels, bias=True)
                self.embedding = nn.Embedding(10, 10)
                self.std = 1

            def _init_weights(self, module):
                if isinstance(module, nn.Linear):
                    module.weight.data = nn.init.kaiming_uniform_(module.weight.data, np.sqrt(5))
                    if module.bias is not None:
                        module.bias.data = module.bias.data.normal_(mean=0.0, std=self.std)

        # Used to make sure the weights with matched shape are loaded correctly
        config = PretrainedConfig()
        config.num_labels = 3
        model = MyClass(config=config)

        # Used to make sure the weights with mismatched shape are properly initialized
        set_seed(0)
        config = PretrainedConfig()
        config.num_labels = 4
        # not to init. the weights during the creation: to match the logic in `from_pretrained`, so we can keep the
        # same sequence of random ops in the execution path to allow us to compare `target_model` and `new_model` below
        # for `linear` part.
        with ContextManagers([no_init_weights(True)]):
            target_model = MyClass(config=config)
        target_model.apply(target_model._initialize_weights)

        with tempfile.TemporaryDirectory() as tmpdirname:
            state_dict = model.state_dict()
            del state_dict["linear.weight"]

            model.config.save_pretrained(tmpdirname)
            torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

            set_seed(0)
            new_model = MyClass.from_pretrained(tmpdirname, num_labels=4, ignore_mismatched_sizes=True)

            for key in new_model.state_dict().keys():
                # check weight values for weights with matched shapes are identical
                # (i.e. correctly loaded from the checkpoint)
                if key not in ["linear.weight", "linear.bias"]:
                    max_diff = torch.max(torch.abs(model.state_dict()[key] - new_model.state_dict()[key]))
                    self.assertLessEqual(
                        max_diff.item(),
                        1e-6,
                        msg=f"the weight values for `{key}` in `new_model` and `model` are  not identical",
                    )
                else:
                    # check we have some mismatched shapes
                    self.assertNotEqual(
                        model.state_dict()[key].shape,
                        new_model.state_dict()[key].shape,
                        msg=f"the weight shapes for {key} in `model` and `new_model` should differ",
                    )
                    # check the weights with mismatched shape are properly initialized
                    max_diff = torch.max(torch.abs(new_model.state_dict()[key] - target_model.state_dict()[key]))
                    self.assertLessEqual(
                        max_diff.item(),
                        1e-6,
                        msg=f"the weight values for `{key}` in `new_model` and `target_model` are not identical",
                    )

3365
3366
3367
3368
3369
3370
3371
3372
3373
    def test_model_is_small(self):
        # Just a consistency check to make sure we are not running tests on 80M parameter models.
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            num_params = model.num_parameters()
            assert (
                num_params < 1000000
3374
            ), f"{model_class} is too big for the common tests ({num_params})! It should have 1M max."
3375

3376
3377
3378
3379
3380
3381
3382
3383
3384
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_conversion(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class._supports_flash_attn_2:
3385
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3386
3387
3388
3389
3390
3391

            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(
3392
                    tmpdirname, torch_dtype=torch.float16, attn_implementation="flash_attention_2"
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
                ).to(torch_device)

                for _, module in model.named_modules():
                    if "FlashAttention" in module.__class__.__name__:
                        return

                self.assertTrue(False, "FlashAttention2 modules not found in model")

    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
3405
    @is_flaky
Yoach Lacombe's avatar
Yoach Lacombe committed
3406
    def test_flash_attn_2_inference_equivalence(self):
3407
3408
        for model_class in self.all_model_classes:
            if not model_class._supports_flash_attn_2:
3409
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3410

3411
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
3412
3413
3414
3415
3416
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model_fa = model_class.from_pretrained(
3417
                    tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
3418
3419
3420
                )
                model_fa.to(torch_device)

Yoach Lacombe's avatar
Yoach Lacombe committed
3421
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.bfloat16)
3422
3423
                model.to(torch_device)

3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
                dummy_input = inputs_dict[model.main_input_name][:1]
                if dummy_input.dtype in [torch.float32, torch.float16]:
                    dummy_input = dummy_input.to(torch.bfloat16)

                dummy_attention_mask = inputs_dict.get("attention_mask", None)

                if dummy_attention_mask is not None:
                    dummy_attention_mask = dummy_attention_mask[:1]
                    dummy_attention_mask[:, 1:] = 1
                    dummy_attention_mask[:, :1] = 0
3434

3435
3436
3437
3438
3439
3440
3441
3442
                if model.config.is_encoder_decoder:
                    decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[:1]

                    outputs = model(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
                    outputs_fa = model_fa(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
                else:
                    outputs = model(dummy_input, output_hidden_states=True)
                    outputs_fa = model_fa(dummy_input, output_hidden_states=True)
3443

3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
                logits = (
                    outputs.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs.decoder_hidden_states[-1]
                )
                logits_fa = (
                    outputs_fa.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs_fa.decoder_hidden_states[-1]
                )
3454

3455
                assert torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2)
3456

3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
                if model.config.is_encoder_decoder:
                    other_inputs = {
                        "decoder_input_ids": decoder_input_ids,
                        "decoder_attention_mask": dummy_attention_mask,
                        "output_hidden_states": True,
                    }
                    if dummy_attention_mask is not None:
                        other_inputs["attention_mask"] = dummy_attention_mask

                    outputs = model(dummy_input, **other_inputs)
                    outputs_fa = model_fa(dummy_input, **other_inputs)
                else:
                    other_inputs = {
                        "output_hidden_states": True,
                    }
                    if dummy_attention_mask is not None:
                        other_inputs["attention_mask"] = dummy_attention_mask

                    outputs = model(dummy_input, **other_inputs)
                    outputs_fa = model_fa(dummy_input, **other_inputs)

                logits = (
                    outputs.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs.decoder_hidden_states[-1]
                )
                logits_fa = (
                    outputs_fa.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs_fa.decoder_hidden_states[-1]
                )
3488

3489
                assert torch.allclose(logits_fa[1:], logits[1:], atol=4e-2, rtol=4e-2)
3490

3491
3492
                # check with inference + dropout
                model.train()
3493
                _ = model_fa(dummy_input, **other_inputs)
3494

3495
3496
3497
3498
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
3499
    @is_flaky
Yoach Lacombe's avatar
Yoach Lacombe committed
3500
    def test_flash_attn_2_inference_equivalence_right_padding(self):
3501
3502
        for model_class in self.all_model_classes:
            if not model_class._supports_flash_attn_2:
3503
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3504

3505
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
3506
3507
3508
3509
3510
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model_fa = model_class.from_pretrained(
3511
                    tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
3512
3513
3514
                )
                model_fa.to(torch_device)

Yoach Lacombe's avatar
Yoach Lacombe committed
3515
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.bfloat16)
3516
3517
                model.to(torch_device)

3518
3519
3520
3521
3522
                dummy_input = inputs_dict[model.main_input_name][:1]
                if dummy_input.dtype in [torch.float32, torch.float16]:
                    dummy_input = dummy_input.to(torch.bfloat16)

                dummy_attention_mask = inputs_dict.get("attention_mask", None)
3523

3524
3525
3526
3527
                if dummy_attention_mask is not None:
                    dummy_attention_mask = dummy_attention_mask[:1]
                    dummy_attention_mask[:, :-1] = 1
                    dummy_attention_mask[:, -1:] = 0
3528

3529
3530
                if model.config.is_encoder_decoder:
                    decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[:1]
3531

3532
3533
3534
3535
3536
                    outputs = model(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
                    outputs_fa = model_fa(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
                else:
                    outputs = model(dummy_input, output_hidden_states=True)
                    outputs_fa = model_fa(dummy_input, output_hidden_states=True)
3537

3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
                logits = (
                    outputs.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs.decoder_hidden_states[-1]
                )
                logits_fa = (
                    outputs_fa.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs_fa.decoder_hidden_states[-1]
                )
3548

3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
                assert torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2)

                if model.config.is_encoder_decoder:
                    other_inputs = {
                        "decoder_input_ids": decoder_input_ids,
                        "decoder_attention_mask": dummy_attention_mask,
                        "output_hidden_states": True,
                    }
                    if dummy_attention_mask is not None:
                        other_inputs["attention_mask"] = dummy_attention_mask

                    outputs = model(dummy_input, **other_inputs)
                    outputs_fa = model_fa(dummy_input, **other_inputs)
                else:
                    other_inputs = {
                        "output_hidden_states": True,
                    }
                    if dummy_attention_mask is not None:
                        other_inputs["attention_mask"] = dummy_attention_mask

                    outputs = model(dummy_input, **other_inputs)
                    outputs_fa = model_fa(dummy_input, **other_inputs)

                logits = (
                    outputs.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs.decoder_hidden_states[-1]
                )
                logits_fa = (
                    outputs_fa.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs_fa.decoder_hidden_states[-1]
                )

                assert torch.allclose(logits_fa[:-1], logits[:-1], atol=4e-2, rtol=4e-2)
3584
3585
3586
3587
3588

    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
3589
    @is_flaky
3590
3591
3592
    def test_flash_attn_2_generate_left_padding(self):
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
3593
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3594

3595
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
3596
3597
3598
3599
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
3600
3601
3602
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True).to(
                    torch_device
                )
3603

3604
3605
3606
3607
3608
3609
3610
3611
                dummy_input = inputs_dict[model.main_input_name]
                if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                    dummy_input = dummy_input.to(torch.float16)

                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
                # make sure we do left padding
                dummy_attention_mask[:, :-1] = 0
                dummy_attention_mask[:, -1:] = 1
3612
3613
3614
3615
3616
3617

                out = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

                model = model_class.from_pretrained(
3618
3619
3620
3621
                    tmpdirname,
                    torch_dtype=torch.float16,
                    attn_implementation="flash_attention_2",
                    low_cpu_mem_usage=True,
3622
3623
3624
3625
3626
3627
                ).to(torch_device)

                out_fa = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

3628
                self.assertTrue(torch.allclose(out, out_fa))
3629
3630
3631
3632

    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
3633
    @is_flaky
3634
3635
3636
3637
    @slow
    def test_flash_attn_2_generate_padding_right(self):
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
3638
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3639

3640
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
3641
3642
3643
3644
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
3645
3646
3647
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True).to(
                    torch_device
                )
3648

3649
3650
3651
3652
3653
                dummy_input = inputs_dict[model.main_input_name]
                if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                    dummy_input = dummy_input.to(torch.float16)

                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
3654
                # make sure we do right padding
3655
3656
                dummy_attention_mask[:, :-1] = 1
                dummy_attention_mask[:, -1:] = 0
3657
3658
3659
3660
3661
3662

                out = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

                model = model_class.from_pretrained(
3663
3664
3665
3666
                    tmpdirname,
                    torch_dtype=torch.float16,
                    attn_implementation="flash_attention_2",
                    low_cpu_mem_usage=True,
3667
3668
3669
3670
3671
3672
                ).to(torch_device)

                out_fa = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

3673
                self.assertTrue(torch.allclose(out, out_fa))
3674

3675
3676
3677
3678
3679
3680
3681
    @parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
    @require_torch_sdpa
    @slow
    def test_eager_matches_sdpa_inference(self, torch_dtype: str):
        if not self.all_model_classes[0]._supports_sdpa:
            self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA")

fxmarty's avatar
fxmarty committed
3682
3683
3684
3685
3686
3687
3688
        if torch_dtype == "float16" and not is_torch_fp16_available_on_device(torch_device):
            self.skipTest(f"float16 not supported on {torch_device} (on the specific device currently used)")

        if torch_dtype == "bfloat16" and not is_torch_bf16_available_on_device(torch_device):
            self.skipTest(
                f"bfloat16 not supported on {torch_device} (on the specific device currently used, e.g. Nvidia T4 GPU)"
            )
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704

        # Not sure whether it's fine to put torch.XXX in a decorator if torch is not available so hacking it here instead.
        if torch_dtype == "float16":
            torch_dtype = torch.float16
        elif torch_dtype == "bfloat16":
            torch_dtype = torch.bfloat16
        elif torch_dtype == "float32":
            torch_dtype = torch.float32

        atols = {
            ("cpu", False, torch.float32): 1e-6,
            ("cpu", False, torch.bfloat16): 1e-2,
            ("cpu", True, torch.float32): 1e-6,
            ("cpu", True, torch.bfloat16): 1e-2,
            ("cuda", False, torch.float32): 1e-6,
            ("cuda", False, torch.bfloat16): 1e-2,
fxmarty's avatar
fxmarty committed
3705
            ("cuda", False, torch.float16): 5e-3,
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
            ("cuda", True, torch.float32): 1e-6,
            ("cuda", True, torch.bfloat16): 1e-2,
            ("cuda", True, torch.float16): 5e-3,
        }
        rtols = {
            ("cpu", False, torch.float32): 1e-4,
            ("cpu", False, torch.bfloat16): 1e-2,
            ("cpu", True, torch.float32): 1e-4,
            ("cpu", True, torch.bfloat16): 1e-2,
            ("cuda", False, torch.float32): 1e-4,
            ("cuda", False, torch.bfloat16): 1e-2,
fxmarty's avatar
fxmarty committed
3717
            ("cuda", False, torch.float16): 5e-3,
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
            ("cuda", True, torch.float32): 1e-4,
            ("cuda", True, torch.bfloat16): 3e-2,
            ("cuda", True, torch.float16): 5e-3,
        }

        def get_mean_reldiff(failcase, x, ref, atol, rtol):
            return f"{failcase}: mean relative difference: {((x - ref).abs() / (ref.abs() + 1e-12)).mean():.3e}, torch atol = {atol}, torch rtol = {rtol}"

        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            model = model_class(config)
3729
3730
3731
3732
3733
            # FIXME: we deactivate boolean mask for models using "use_mask_token" in their constructors.
            # These models support masking only in the case `use_mask_token=True`. Otherwise they cannot consume an input mask.
            # This means that the class needs to be instantiated much later, after `use_mask` is set, which means a significant refactor of the code.
            # However masking there is not done at any layers that matters (i.e self-attention), therefore we can safely deactivate it.
            deactivate_mask = "use_mask_token" in inspect.signature(model_class).parameters
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753

            is_encoder_decoder = model.config.is_encoder_decoder

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model_sdpa = model_class.from_pretrained(tmpdirname, torch_dtype=torch_dtype)
                model_sdpa = model_sdpa.eval().to(torch_device)

                self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")

                model_eager = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch_dtype,
                    attn_implementation="eager",
                )
                model_eager = model_eager.eval().to(torch_device)

                self.assertTrue(model_eager.config._attn_implementation == "eager")

                for name, submodule in model_eager.named_modules():
3754
3755
                    class_name = submodule.__class__.__name__
                    if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
3756
3757
3758
3759
                        raise ValueError("The eager model should not have SDPA attention layers")

                has_sdpa = False
                for name, submodule in model_sdpa.named_modules():
3760
3761
                    class_name = submodule.__class__.__name__
                    if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
3762
3763
3764
3765
3766
                        has_sdpa = True
                        break
                if not has_sdpa and model_sdpa.config.model_type != "falcon":
                    raise ValueError("The SDPA model should have SDPA attention layers")

3767
                # We use these for loops instead of parameterized.expand just for the interest of avoiding loading/saving 16 times the model,
3768
3769
3770
3771
                # but it would be nicer to have an efficient way to use parameterized.expand
                fail_cases = []
                for padding_side in ["left", "right"]:
                    for use_mask in [False, True]:
3772
3773
3774
3775
3776
3777
                        for output_attentions in [True, False]:
                            can_output_attn = "output_attentions" in inspect.signature(model_sdpa.forward).parameters
                            if not (self.has_attentions and can_output_attn) and output_attentions:
                                continue
                            for batch_size in [1, 5]:
                                dummy_input = inputs_dict[model.main_input_name]
3778
3779

                                if dummy_input.dtype in [torch.float32, torch.bfloat16, torch.float16]:
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
                                    dummy_input = dummy_input.to(torch_dtype)

                                dummy_input = dummy_input[:batch_size]
                                if dummy_input.shape[0] != batch_size:
                                    if dummy_input.dtype in [torch.float32, torch.bfloat16, torch.float16]:
                                        extension = torch.rand(
                                            batch_size - dummy_input.shape[0],
                                            *dummy_input.shape[1:],
                                            dtype=torch_dtype,
                                            device=torch_device,
                                        )
                                        dummy_input = torch.cat((dummy_input, extension), dim=0).to(torch_device)
3792
                                    else:
3793
3794
3795
3796
3797
3798
3799
                                        extension = torch.randint(
                                            high=5,
                                            size=(batch_size - dummy_input.shape[0], *dummy_input.shape[1:]),
                                            dtype=dummy_input.dtype,
                                            device=torch_device,
                                        )
                                        dummy_input = torch.cat((dummy_input, extension), dim=0).to(torch_device)
3800

3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
                                if not use_mask:
                                    dummy_attention_mask = None
                                else:
                                    dummy_attention_mask = inputs_dict.get("attention_mask", None)
                                    if dummy_attention_mask is None:
                                        if is_encoder_decoder:
                                            seqlen = inputs_dict.get("decoder_input_ids", dummy_input).shape[-1]
                                        else:
                                            seqlen = dummy_input.shape[-1]
                                        dummy_attention_mask = (
                                            torch.ones(batch_size, seqlen).to(torch.int64).to(torch_device)
                                        )

                                    dummy_attention_mask = dummy_attention_mask[:batch_size]
                                    if dummy_attention_mask.shape[0] != batch_size:
3816
                                        extension = torch.ones(
3817
3818
3819
                                            batch_size - dummy_attention_mask.shape[0],
                                            *dummy_attention_mask.shape[1:],
                                            dtype=dummy_attention_mask.dtype,
3820
3821
                                            device=torch_device,
                                        )
3822
3823
                                        dummy_attention_mask = torch.cat((dummy_attention_mask, extension), dim=0)
                                        dummy_attention_mask = dummy_attention_mask.to(torch_device)
3824

3825
                                    dummy_attention_mask[:] = 1
3826
                                    if padding_side == "left":
3827
3828
3829
3830
3831
                                        dummy_attention_mask[-1, :-1] = 1
                                        dummy_attention_mask[-1, -4:] = 0
                                    elif padding_side == "right":
                                        dummy_attention_mask[-1, 1:] = 1
                                        dummy_attention_mask[-1, :3] = 0
3832

3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
                                for enable_kernels in [False, True]:
                                    failcase = f"padding_side={padding_side}, use_mask={use_mask}, batch_size={batch_size}, enable_kernels={enable_kernels}"
                                    if is_encoder_decoder:
                                        decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[
                                            :batch_size
                                        ]
                                        if decoder_input_ids.shape[0] != batch_size:
                                            extension = torch.ones(
                                                batch_size - decoder_input_ids.shape[0],
                                                *decoder_input_ids.shape[1:],
                                                dtype=decoder_input_ids.dtype,
                                                device=torch_device,
3845
                                            )
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
                                            decoder_input_ids = torch.cat((decoder_input_ids, extension), dim=0)
                                            decoder_input_ids = decoder_input_ids.to(torch_device)

                                        # TODO: never an `attention_mask` arg here?
                                        processed_inputs = {
                                            model.main_input_name: dummy_input,
                                            "decoder_input_ids": decoder_input_ids,
                                            "decoder_attention_mask": dummy_attention_mask,
                                            "output_hidden_states": True,
                                        }
                                    else:
                                        processed_inputs = {
                                            model.main_input_name: dummy_input,
                                            "output_hidden_states": True,
                                        }

                                        # Otherwise fails for e.g. WhisperEncoderModel
                                        if "attention_mask" in inspect.signature(model_eager.forward).parameters:
                                            processed_inputs["attention_mask"] = dummy_attention_mask

                                        if (
                                            self.has_attentions
                                            and "output_attentions" in inspect.signature(model_sdpa.forward).parameters
                                        ):
                                            processed_inputs["output_attentions"] = output_attentions
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
                                    if not deactivate_mask and (
                                        "bool_masked_pos" in inspect.signature(model_eager.forward).parameters
                                    ):
                                        dummy_mask = torch.ones((self.model_tester.num_masks,))

                                        # In case of additional token (like class) we define a custom `mask_length`
                                        if hasattr(self.model_tester, "mask_length"):
                                            mask_length = self.model_tester.mask_length - dummy_mask.size(0)
                                        else:
                                            mask_length = self.model_tester.seq_length - dummy_mask.size(0)
                                        dummy_mask = torch.cat([dummy_mask, torch.zeros(mask_length)])
                                        dummy_bool_masked_pos = dummy_mask.expand(batch_size, -1).bool()
                                        processed_inputs["bool_masked_pos"] = dummy_bool_masked_pos.to(torch_device)

                                    if "noise" in inspect.signature(model_eager.forward).parameters:
                                        np.random.seed(2)
                                        num_patches = int(
                                            (self.model_tester.image_size // self.model_tester.patch_size) ** 2
                                        )
                                        noise = np.random.uniform(size=(batch_size, num_patches))
                                        processed_inputs["noise"] = torch.from_numpy(noise)
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913

                                    # TODO: test gradients as well (& for FA2 as well!)
                                    with torch.no_grad():
                                        with torch.backends.cuda.sdp_kernel(
                                            enable_flash=enable_kernels,
                                            enable_math=True,
                                            enable_mem_efficient=enable_kernels,
                                        ):
                                            prepared_inputs = self._prepare_for_class(processed_inputs, model_class)
                                            outputs_eager = model_eager(**prepared_inputs)
                                            outputs_sdpa = model_sdpa(**prepared_inputs)

                                    logits_eager = (
                                        outputs_eager.hidden_states[-1]
                                        if not is_encoder_decoder
                                        else outputs_eager.decoder_hidden_states[-1]
                                    )
                                    logits_sdpa = (
                                        outputs_sdpa.hidden_states[-1]
                                        if not is_encoder_decoder
                                        else outputs_sdpa.decoder_hidden_states[-1]
                                    )
3914

3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
                                    if torch_device in ["cpu", "cuda"]:
                                        atol = atols[torch_device, enable_kernels, torch_dtype]
                                        rtol = rtols[torch_device, enable_kernels, torch_dtype]
                                    else:
                                        atol = 1e-7
                                        rtol = 1e-4

                                    # Masked tokens output slightly deviates - we don't mind that.
                                    if use_mask:
                                        if padding_side == "left":
                                            sub_sdpa = logits_sdpa[:-1]
                                            sub_eager = logits_eager[:-1]
                                            if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                                fail_cases.append(
                                                    get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
                                                )

                                            sub_sdpa = logits_sdpa[-1, :-4]
                                            sub_eager = logits_eager[-1, :-4]
                                            if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                                fail_cases.append(
                                                    get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
                                                )

                                            # Testing the padding tokens is not really meaningful but anyway
                                            # sub_sdpa = logits_sdpa[-1, -4:]
                                            # sub_eager = logits_eager[-1, -4:]
                                            # if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                            #     fail_cases.append(get_mean_reldiff(failcase, sub_sdpa, sub_eager, 4e-2, 4e-2))
                                        elif padding_side == "right":
                                            sub_sdpa = logits_sdpa[:-1]
                                            sub_eager = logits_eager[:-1]
                                            if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                                fail_cases.append(
                                                    get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
                                                )

                                            sub_sdpa = logits_sdpa[-1, 3:]
                                            sub_eager = logits_eager[-1, 3:]
                                            if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                                fail_cases.append(
                                                    get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
                                                )

                                            # Testing the padding tokens is not really meaningful but anyway
                                            # sub_sdpa = logits_sdpa[-1, :3]
                                            # sub_eager = logits_eager[-1, :3]
                                            # if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                            #     fail_cases.append(get_mean_reldiff(failcase, sub_sdpa, sub_eager, 4e-2, 4e-2))
3964

3965
3966
                                    else:
                                        if not torch.allclose(logits_sdpa, logits_eager, atol=atol, rtol=rtol):
3967
                                            fail_cases.append(
3968
                                                get_mean_reldiff(failcase, logits_sdpa, logits_eager, atol, rtol)
3969
3970
3971
3972
                                            )

                self.assertTrue(len(fail_cases) == 0, "\n".join(fail_cases))

3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
    @require_torch_sdpa
    @require_torch_gpu
    @slow
    def test_sdpa_can_dispatch_on_flash(self):
        compute_capability = torch.cuda.get_device_capability()
        major, _ = compute_capability

        if not torch.version.cuda or major < 8:
            self.skipTest("This test requires an NVIDIA GPU with compute capability >= 8.0")

        for model_class in self.all_model_classes:
            if not model_class._supports_sdpa:
                self.skipTest(f"{model_class.__name__} does not support SDPA")

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
3988
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
Raushan Turganbay's avatar
Raushan Turganbay committed
3989
            if config.model_type in ["llava", "llava_next", "vipllava", "video_llava"]:
3990
                self.skipTest("Llava-like models currently (transformers==4.39.1) requires an attention_mask input")
Pablo Montalvo's avatar
Pablo Montalvo committed
3991
3992
3993
3994
            if config.model_type in ["paligemma"]:
                self.skipTest(
                    "PaliGemma-like models currently (transformers==4.41.0) requires an attention_mask input"
                )
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
            if config.model_type in ["idefics"]:
                self.skipTest("Idefics currently (transformers==4.39.1) requires an image_attention_mask input")
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, attn_implementation="sdpa")
                model.to(torch_device)

                inputs_dict.pop("attention_mask", None)
                inputs_dict.pop("decoder_attention_mask", None)

                for name, inp in inputs_dict.items():
                    if isinstance(inp, torch.Tensor) and inp.dtype in [torch.float32, torch.float16]:
                        inputs_dict[name] = inp.to(torch.float16)

                with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
                    _ = model(**inputs_dict)

4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
    @require_torch_sdpa
    @slow
    def test_eager_matches_sdpa_generate(self):
        max_new_tokens = 30

        if len(self.all_generative_model_classes) == 0:
            self.skipTest(f"{self.__class__.__name__} tests a model that does support generate: skipping this test")

        for model_class in self.all_generative_model_classes:
            if not model_class._supports_sdpa:
                self.skipTest(f"{model_class.__name__} does not support SDPA")

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            dummy_input = inputs_dict[model_class.main_input_name]
            if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                dummy_input = dummy_input.to(torch.float16)

            # make sure that all models have enough positions for generation
            if hasattr(config, "max_position_embeddings"):
                config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1

            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))

                model_sdpa = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch.float16,
                    low_cpu_mem_usage=True,
                ).to(torch_device)

                self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")

                model_eager = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch.float16,
                    low_cpu_mem_usage=True,
                    attn_implementation="eager",
                ).to(torch_device)

                self.assertTrue(model_eager.config._attn_implementation == "eager")

                for name, submodule in model_eager.named_modules():
4061
4062
                    class_name = submodule.__class__.__name__
                    if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
4063
4064
4065
4066
                        raise ValueError("The eager model should not have SDPA attention layers")

                has_sdpa = False
                for name, submodule in model_sdpa.named_modules():
4067
4068
                    class_name = submodule.__class__.__name__
                    if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
                        has_sdpa = True
                        break
                if not has_sdpa:
                    raise ValueError("The SDPA model should have SDPA attention layers")

                # Just test that a large cache works as expected
                res_eager = model_eager.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False
                )

                res_sdpa = model_sdpa.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False
                )

                self.assertTrue(torch.allclose(res_eager, res_sdpa))

4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
    @require_torch_sdpa
    def test_sdpa_matches_eager_sliding_window(self):
        WINDOW_ATTENTION_MODELS = ["mistral", "mixtral", "qwen2", "qwen_moe", "starcoder2"]

        if len(self.all_generative_model_classes) == 0:
            self.skipTest(f"No generative model classes for {self.__class__.__name__}")

        for model_class in self.all_generative_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            if config.model_type not in WINDOW_ATTENTION_MODELS:
                self.skipTest(f"{config.model_type} does not use window attention")

            config.sliding_window = 2

            dummy_input = inputs_dict[model_class.main_input_name]
            attention_mask = inputs_dict["attention_mask"]

            self.assertTrue(dummy_input.ndim == 2)
            self.assertTrue(dummy_input.shape[1] > 6)

            with tempfile.TemporaryDirectory() as tmpdir:
                with torch.device(torch_device):
                    model_eager = AutoModelForCausalLM.from_config(
                        config, attn_implementation="eager", torch_dtype=torch.float32
                    )

                model_eager.save_pretrained(tmpdir)

                with torch.device(torch_device):
                    model_sdpa = AutoModelForCausalLM.from_pretrained(
                        tmpdir, attn_implementation="sdpa", torch_dtype=torch.float32
                    )

                model_eager = model_eager.eval()
                model_sdpa = model_sdpa.eval()

                with torch.no_grad():
                    with torch.backends.cuda.sdp_kernel(
                        enable_flash=False,
                        enable_math=True,
                        enable_mem_efficient=False,
                    ):
                        res_eager = model_eager(**inputs_dict, return_dict=False)[0]
                        res_sdpa = model_sdpa(**inputs_dict, return_dict=False)[0]

                # Only non-padding tokens are expected to match.
                self.assertTrue(
4133
                    torch.allclose(res_eager[attention_mask == 1], res_sdpa[attention_mask == 1], rtol=1e-4, atol=1e-4)
4134
4135
                )

4136
4137
4138
4139
4140
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_generate_use_cache(self):
4141
4142
        max_new_tokens = 30

4143
4144
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
4145
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
4146

4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            dummy_input = inputs_dict[model_class.main_input_name]
            if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                dummy_input = dummy_input.to(torch.float16)

            # make sure that all models have enough positions for generation
            if hasattr(config, "max_position_embeddings"):
                config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1

4157
4158
4159
4160
4161
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

4162
                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
4163
4164

                model = model_class.from_pretrained(
4165
4166
                    tmpdirname,
                    torch_dtype=torch.float16,
4167
                    attn_implementation="flash_attention_2",
4168
                    low_cpu_mem_usage=True,
4169
4170
4171
4172
                ).to(torch_device)

                # Just test that a large cache works as expected
                _ = model.generate(
4173
4174
4175
4176
4177
                    dummy_input,
                    attention_mask=dummy_attention_mask,
                    max_new_tokens=max_new_tokens,
                    do_sample=False,
                    use_cache=True,
4178
4179
                )

4180
4181
4182
4183
4184
4185
4186
4187
    @require_flash_attn
    @require_torch_gpu
    @require_bitsandbytes
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_fp32_ln(self):
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
4188
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
4189
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
4190
4191
4192
4193
            model = model_class(config)
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

4194
4195
                dummy_input = inputs_dict[model.main_input_name]
                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
4196
                batch_size = dummy_attention_mask.shape[0]
4197

4198
4199
4200
4201
4202
                is_padding_right = dummy_attention_mask[:, -1].sum().item() != batch_size

                # To avoid errors with padding_side=="right"
                if is_padding_right:
                    dummy_attention_mask = torch.ones_like(dummy_input)
4203
4204
4205
4206

                model = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch.float16,
4207
                    attn_implementation="flash_attention_2",
4208
4209
4210
4211
4212
4213
4214
4215
4216
                    low_cpu_mem_usage=True,
                    load_in_4bit=True,
                )

                for _, param in model.named_parameters():
                    # upcast only layer norms
                    if (param.dtype == torch.float16) or (param.dtype == torch.bfloat16):
                        param.data = param.data.to(torch.float32)

4217
                if model.config.is_encoder_decoder:
4218
4219
4220
                    dummy_decoder_input_ids = inputs_dict["decoder_input_ids"]
                    dummy_decoder_attention_mask = inputs_dict["decoder_attention_mask"]

4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
                    _ = model(dummy_input, decoder_input_ids=dummy_decoder_input_ids)
                    # with attention mask
                    _ = model(
                        dummy_input,
                        attention_mask=dummy_attention_mask,
                        decoder_input_ids=dummy_decoder_input_ids,
                        decoder_attention_mask=dummy_decoder_attention_mask,
                    )
                else:
                    _ = model(dummy_input)
                    # with attention mask
                    _ = model(dummy_input, attention_mask=dummy_attention_mask)
4233

4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
    @is_pt_tf_cross_test
    def test_tf_from_pt_safetensors(self):
        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            tf_model_class_name = "TF" + model_class.__name__  # Add the "TF" at the beginning
            if not hasattr(transformers, tf_model_class_name):
                # transformers does not have this model in TF version yet
                return

            tf_model_class = getattr(transformers, tf_model_class_name)

            pt_model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_model.save_pretrained(tmpdirname, safe_serialization=True)
                tf_model_1 = tf_model_class.from_pretrained(tmpdirname, from_pt=True)

                pt_model.save_pretrained(tmpdirname, safe_serialization=False)
                tf_model_2 = tf_model_class.from_pretrained(tmpdirname, from_pt=True)

                # Check models are equal
                for p1, p2 in zip(tf_model_1.weights, tf_model_2.weights):
                    self.assertTrue(np.allclose(p1.numpy(), p2.numpy()))

    @is_pt_flax_cross_test
    def test_flax_from_pt_safetensors(self):
        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            flax_model_class_name = "Flax" + model_class.__name__  # Add the "Flax at the beginning
            if not hasattr(transformers, flax_model_class_name):
                # transformers does not have this model in Flax version yet
                return

            flax_model_class = getattr(transformers, flax_model_class_name)

            pt_model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_model.save_pretrained(tmpdirname, safe_serialization=True)
                flax_model_1 = flax_model_class.from_pretrained(tmpdirname, from_pt=True)

                pt_model.save_pretrained(tmpdirname, safe_serialization=False)
                flax_model_2 = flax_model_class.from_pretrained(tmpdirname, from_pt=True)

                # Check models are equal
                self.assertTrue(check_models_equal(flax_model_1, flax_model_2))

4283
4284
4285
4286
4287
4288
4289
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_from_config(self):
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
4290
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
4291
4292
4293
4294

            config, _ = self.model_tester.prepare_config_and_inputs_for_common()
            # TODO: to change it in the future with other relevant auto classes
            fa2_model = AutoModelForCausalLM.from_config(
4295
                config, attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
            ).to(torch_device)

            dummy_input = torch.LongTensor([[0, 2, 3, 4], [0, 2, 3, 4]]).to(torch_device)
            dummy_attention_mask = torch.LongTensor([[1, 1, 1, 1], [0, 1, 1, 1]]).to(torch_device)

            fa2_correctly_converted = False

            for _, module in fa2_model.named_modules():
                if "FlashAttention" in module.__class__.__name__:
                    fa2_correctly_converted = True
                    break

            self.assertTrue(fa2_correctly_converted)

            _ = fa2_model(input_ids=dummy_input, attention_mask=dummy_attention_mask)

            with tempfile.TemporaryDirectory() as tmpdirname:
                fa2_model.save_pretrained(tmpdirname)

                model_from_pretrained = AutoModelForCausalLM.from_pretrained(tmpdirname)

4317
                self.assertTrue(model_from_pretrained.config._attn_implementation != "flash_attention_2")
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327

                fa2_correctly_converted = False

                for _, module in model_from_pretrained.named_modules():
                    if "FlashAttention" in module.__class__.__name__:
                        fa2_correctly_converted = True
                        break

                self.assertFalse(fa2_correctly_converted)

4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
    def _get_custom_4d_mask_test_data(self):
        # Sequence in which all but the last token is the same
        input_ids = torch.tensor(
            [[10, 11, 12, 13], [10, 11, 12, 14], [10, 11, 12, 15]], device=torch_device, dtype=torch.int64
        )
        position_ids = torch.tensor([[0, 1, 2, 3]] * 3, device=torch_device, dtype=torch.int64)

        # Combining common prefix with the unique ending tokens:
        input_ids_shared_prefix = torch.cat([input_ids[0][:-1], input_ids[:, -1]]).unsqueeze(0)

        # Creating a 4D mask where each of the last 3 tokens do not attend to each other.
        mask_shared_prefix = torch.tensor(
            [
                [
                    [
                        [1, 0, 0, 0, 0, 0],
                        [1, 1, 0, 0, 0, 0],
                        [1, 1, 1, 0, 0, 0],
                        [1, 1, 1, 1, 0, 0],
                        [1, 1, 1, 0, 1, 0],
                        [1, 1, 1, 0, 0, 1],
                    ]
                ]
            ],
        )
        # inverting the attention mask
        mask_dtype = torch.float32
        min_dtype = torch.finfo(mask_dtype).min
        mask_shared_prefix = (mask_shared_prefix.eq(0.0)).to(dtype=mask_dtype, device=torch_device) * min_dtype

        # Creating a position_ids tensor. note the repeating figures in the end.
        position_ids_shared_prefix = torch.tensor([[0, 1, 2, 3, 3, 3]], device=torch_device, dtype=torch.int64)

        return input_ids, position_ids, input_ids_shared_prefix, mask_shared_prefix, position_ids_shared_prefix

    def test_custom_4d_attention_mask(self):
        if len(self.all_generative_model_classes) == 0:
            self.skipTest("Model architecture has no generative classes, and thus not necessarily supporting 4D masks")

        for model_class in self.all_generative_model_classes:
4368
            if not model_class._supports_static_cache:
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
                self.skipTest(f"{model_class.__name__} is not guaranteed to work with custom 4D attention masks")
            config, _ = self.model_tester.prepare_config_and_inputs_for_common()
            model = model_class(config).to(device=torch_device, dtype=torch.float32)

            (
                input_ids,
                position_ids,
                input_ids_shared_prefix,
                mask_shared_prefix,
                position_ids_shared_prefix,
            ) = self._get_custom_4d_mask_test_data()

            logits = model.forward(input_ids, position_ids=position_ids).logits
            # logits.shape == torch.Size([3, 4, ...])

            logits_shared_prefix = model(
                input_ids_shared_prefix,
                attention_mask=mask_shared_prefix,
                position_ids=position_ids_shared_prefix,
            )[0]
            # logits_shared_prefix.shape == torch.Size([1, 6, ...])

            out_last_tokens = logits[:, -1, :]  # last tokens in each batch line
            out_shared_prefix_last_tokens = logits_shared_prefix[0, -3:, :]  # last three tokens

            # comparing greedily-chosen tokens:
            assert torch.equal(out_last_tokens.max(axis=1).indices, out_shared_prefix_last_tokens.max(axis=1).indices)

            # comparing softmax-normalized logits:
            normalized_0 = F.softmax(out_last_tokens)
            normalized_1 = F.softmax(out_shared_prefix_last_tokens)
            torch.testing.assert_close(normalized_0, normalized_1, rtol=1e-3, atol=1e-4)

4402

4403
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
4404
4405


thomwolf's avatar
thomwolf committed
4406
def ids_tensor(shape, vocab_size, rng=None, name=None):
4407
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
4408
    if rng is None:
4409
        rng = global_rng
thomwolf's avatar
thomwolf committed
4410

thomwolf's avatar
thomwolf committed
4411
4412
4413
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
4414

thomwolf's avatar
thomwolf committed
4415
4416
4417
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
4418

4419
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
4420
4421


4422
4423
4424
def random_attention_mask(shape, rng=None, name=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
    # make sure that at least one token is attended to for each batch
4425
4426
    # we choose the 1st token so this property of `at least one being non-zero` still holds after applying causal mask
    attn_mask[:, 0] = 1
4427
4428
4429
    return attn_mask


4430
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
4431
    """Creates a random float32 tensor"""
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

4443
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()