test_modeling_common.py 215 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
15
import collections
16
import copy
17
import gc
18
import inspect
Naman Garg's avatar
Naman Garg committed
19
import math
20
import os
21
import os.path
Aymeric Augustin's avatar
Aymeric Augustin committed
22
import random
Sylvain Gugger's avatar
Sylvain Gugger committed
23
import re
24
import tempfile
25
import warnings
26
from collections import defaultdict
NielsRogge's avatar
NielsRogge committed
27
from typing import Dict, List, Tuple
thomwolf's avatar
thomwolf committed
28

29
import numpy as np
30
from packaging import version
31
from parameterized import parameterized
32
from pytest import mark
33
34

import transformers
35
36
from transformers import (
    AutoModel,
37
    AutoModelForCausalLM,
38
    AutoModelForSequenceClassification,
39
    AutoTokenizer,
40
    PretrainedConfig,
41
    PreTrainedModel,
42
43
    is_torch_available,
    logging,
44
    set_seed,
45
)
46
from transformers.models.auto import get_values
47
48
49
50
51
52
53
54
55
56
57
58
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES,
    MODEL_FOR_BACKBONE_MAPPING_NAMES,
    MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES,
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
    MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES,
    MODEL_FOR_MASKED_LM_MAPPING_NAMES,
    MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
    MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES,
Naman Garg's avatar
Naman Garg committed
59
    MODEL_FOR_PRETRAINING_MAPPING_NAMES,
60
61
62
63
64
65
    MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
    MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
amyeroberts's avatar
amyeroberts committed
66
    MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES,
67
68
    MODEL_MAPPING_NAMES,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
69
70
from transformers.testing_utils import (
    CaptureLogger,
71
    is_flaky,
72
73
    is_pt_flax_cross_test,
    is_pt_tf_cross_test,
74
    require_accelerate,
75
    require_bitsandbytes,
76
    require_flash_attn,
77
    require_read_token,
78
    require_safetensors,
Sylvain Gugger's avatar
Sylvain Gugger committed
79
    require_torch,
80
    require_torch_gpu,
81
    require_torch_multi_accelerator,
Sylvain Gugger's avatar
Sylvain Gugger committed
82
    require_torch_multi_gpu,
83
    require_torch_sdpa,
Sylvain Gugger's avatar
Sylvain Gugger committed
84
85
86
    slow,
    torch_device,
)
87
from transformers.utils import (
88
89
    CONFIG_NAME,
    GENERATION_CONFIG_NAME,
90
    SAFE_WEIGHTS_NAME,
91
    is_accelerate_available,
92
93
    is_flax_available,
    is_tf_available,
fxmarty's avatar
fxmarty committed
94
95
    is_torch_bf16_available_on_device,
    is_torch_fp16_available_on_device,
96
    is_torch_fx_available,
97
    is_torch_sdpa_available,
98
)
99
from transformers.utils.generic import ContextManagers, ModelOutput
100

Aymeric Augustin's avatar
Aymeric Augustin committed
101

102
103
104
105
if is_accelerate_available():
    from accelerate.utils import compute_module_sizes


106
if is_torch_available():
107
    import torch
108
    import torch.nn.functional as F
109
    from safetensors.torch import load_file as safe_load_file
110
    from safetensors.torch import save_file as safe_save_file
111
    from torch import nn
thomwolf's avatar
thomwolf committed
112

113
    from transformers import MODEL_MAPPING, AdaptiveEmbedding
114
    from transformers.modeling_utils import load_state_dict, no_init_weights
Sylvain Gugger's avatar
Sylvain Gugger committed
115
    from transformers.pytorch_utils import id_tensor_storage
thomwolf's avatar
thomwolf committed
116

Sylvain Gugger's avatar
Sylvain Gugger committed
117

118
119
120
if is_tf_available():
    import tensorflow as tf

121
122
if is_flax_available():
    import jax.numpy as jnp
123

124
    from tests.utils.test_modeling_flax_utils import check_models_equal
125
126
127
128
129
    from transformers.modeling_flax_pytorch_utils import (
        convert_pytorch_state_dict_to_flax,
        load_flax_weights_in_pytorch_model,
    )

130
if is_torch_fx_available():
131
    from transformers.utils.fx import _FX_SUPPORTED_MODELS_WITH_KV_CACHE, symbolic_trace
132

133

134
135
136
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
137
        if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
Lysandre Debut's avatar
Lysandre Debut committed
138
            setattr(configs_no_init, key, 1e-10)
139
140
141
        if isinstance(getattr(configs_no_init, key, None), PretrainedConfig):
            no_init_subconfig = _config_zero_init(getattr(configs_no_init, key))
            setattr(configs_no_init, key, no_init_subconfig)
142
143
    return configs_no_init

thomwolf's avatar
thomwolf committed
144

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
def _mock_init_weights(self, module):
    for name, param in module.named_parameters(recurse=False):
        # Use the first letter of the name to get a value and go from a <> -13 to z <> 12
        value = ord(name[0].lower()) - 110
        param.data.fill_(value)


def _mock_all_init_weights(self):
    # Prune heads if needed
    if self.config.pruned_heads:
        self.prune_heads(self.config.pruned_heads)

    import transformers.modeling_utils

    if transformers.modeling_utils._init_weights:
        for module in self.modules():
            module._is_hf_initialized = False
        # Initialize weights
        self.apply(self._initialize_weights)

        # Tie weights should be skipped when not initializing all weights
        # since from_pretrained(...) calls tie weights anyways
        self.tie_weights()


170
171
172
173
@require_torch
class ModelTesterMixin:
    model_tester = None
    all_model_classes = ()
174
    all_generative_model_classes = ()
175
    fx_compatible = False
Patrick von Platen's avatar
Patrick von Platen committed
176
177
178
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
179
    test_resize_position_embeddings = False
Patrick von Platen's avatar
Patrick von Platen committed
180
    test_head_masking = True
181
    test_mismatched_shapes = True
182
    test_missing_keys = True
183
    test_model_parallel = False
184
    is_encoder_decoder = False
185
    has_attentions = True
186
    model_split_percents = [0.5, 0.7, 0.9]
187

188
189
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
190
        if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
191
            inputs_dict = {
192
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
193
                if isinstance(v, torch.Tensor) and v.ndim > 1
Sylvain Gugger's avatar
Sylvain Gugger committed
194
                else v
195
196
                for k, v in inputs_dict.items()
            }
197
        elif model_class.__name__ in get_values(MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES):
198
            inputs_dict.pop("attention_mask")
Naman Garg's avatar
Naman Garg committed
199
200
201
202
203
204
205
206
        elif model_class.__name__ == MODEL_FOR_PRETRAINING_MAPPING_NAMES["hiera"]:
            config = self.model_tester.get_config()
            mask_spatial_shape = [
                i // s // ms for i, s, ms in zip(config.image_size, config.patch_stride, config.masked_unit_size)
            ]
            num_windows = math.prod(mask_spatial_shape)
            torch.manual_seed(0)
            inputs_dict["noise"] = torch.rand(self.model_tester.batch_size, num_windows)
207
208

        if return_labels:
209
            if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
210
                inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
211
212
213
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
                *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
214
            ]:
215
216
217
218
219
220
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
221
222
223
224
225
226
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES),
227
            ]:
228
229
230
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
231
232
233
234
235
236
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_CAUSAL_LM_MAPPING_NAMES),
                *get_values(MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES),
                *get_values(MODEL_FOR_MASKED_LM_MAPPING_NAMES),
                *get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES),
amyeroberts's avatar
amyeroberts committed
237
                *get_values(MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES),
238
239
240
241
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
242
            elif model_class.__name__ in get_values(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES):
NielsRogge's avatar
NielsRogge committed
243
244
245
246
                num_patches = self.model_tester.image_size // self.model_tester.patch_size
                inputs_dict["bool_masked_pos"] = torch.zeros(
                    (self.model_tester.batch_size, num_patches**2), dtype=torch.long, device=torch_device
                )
247
            elif model_class.__name__ in get_values(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES):
NielsRogge's avatar
NielsRogge committed
248
249
250
251
                batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape
                inputs_dict["labels"] = torch.zeros(
                    [self.model_tester.batch_size, height, width], device=torch_device
                ).long()
252

253
254
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
255
    def test_save_load(self):
256
257
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

258
259
260
261
        def check_save_load(out1, out2):
            # make sure we don't have nans
            out_2 = out2.cpu().numpy()
            out_2[np.isnan(out_2)] = 0
262
            out_2 = out_2[~np.isneginf(out_2)]
263
264
265

            out_1 = out1.cpu().numpy()
            out_1[np.isnan(out_1)] = 0
266
            out_1 = out_1[~np.isneginf(out_1)]
267
268
269
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

270
271
272
273
274
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
275
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
276

277
            with tempfile.TemporaryDirectory() as tmpdirname:
278
                model.save_pretrained(tmpdirname)
279
280
281
282
283
284
285

                # the config file (and the generation config file, if it can generate) should be saved
                self.assertTrue(os.path.exists(os.path.join(tmpdirname, CONFIG_NAME)))
                self.assertEqual(
                    model.can_generate(), os.path.exists(os.path.join(tmpdirname, GENERATION_CONFIG_NAME))
                )

286
                model = model_class.from_pretrained(tmpdirname)
287
                model.to(torch_device)
288
                with torch.no_grad():
289
                    second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
thomwolf's avatar
thomwolf committed
290

291
292
293
294
295
            if isinstance(first, tuple) and isinstance(second, tuple):
                for tensor1, tensor2 in zip(first, second):
                    check_save_load(tensor1, tensor2)
            else:
                check_save_load(first, second)
296

297
298
299
300
301
302
303
304
305
306
307
308
    def test_from_pretrained_no_checkpoint(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            state_dict = model.state_dict()

            new_model = model_class.from_pretrained(
                pretrained_model_name_or_path=None, config=config, state_dict=state_dict
            )
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.equal(p1, p2))

309
310
311
312
    def test_keep_in_fp32_modules(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            if model_class._keep_in_fp32_modules is None:
amyeroberts's avatar
amyeroberts committed
313
                self.skipTest(reason="Model class has no _keep_in_fp32_modules attribute defined")
314
315
316
317
318
319
320
321
322
323
324
325
326

            model = model_class(config)
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16)

                for name, param in model.named_parameters():
                    if any(n in model_class._keep_in_fp32_modules for n in name.split(".")):
                        self.assertTrue(param.dtype == torch.float32)
                    else:
                        self.assertTrue(param.dtype == torch.float16, name)

327
    def test_save_load_keys_to_ignore_on_save(self):
328
329
330
331
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
332
333
            _keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None)
            if _keys_to_ignore_on_save is None:
334
335
336
                continue

            # check the keys are in the original state_dict
337
            for k in _keys_to_ignore_on_save:
338
                self.assertIn(k, model.state_dict().keys(), "\n".join(model.state_dict().keys()))
339
340
341
342

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
343
344
345
                output_model_file = os.path.join(tmpdirname, SAFE_WEIGHTS_NAME)
                state_dict_saved = safe_load_file(output_model_file)

346
                for k in _keys_to_ignore_on_save:
347
                    self.assertNotIn(k, state_dict_saved.keys(), "\n".join(state_dict_saved.keys()))
348

Sylvain Gugger's avatar
Sylvain Gugger committed
349
350
                # Test we can load the state dict in the model, necessary for the checkpointing API in Trainer.
                load_result = model.load_state_dict(state_dict_saved, strict=False)
351
352
353
354
355
356
                keys_to_ignore = set(model._keys_to_ignore_on_save)

                if hasattr(model, "_tied_weights_keys"):
                    keys_to_ignore.update(set(model._tied_weights_keys))

                self.assertTrue(len(load_result.missing_keys) == 0 or set(load_result.missing_keys) == keys_to_ignore)
Sylvain Gugger's avatar
Sylvain Gugger committed
357
358
                self.assertTrue(len(load_result.unexpected_keys) == 0)

359
360
361
362
363
364
365
366
367
368
369
    def test_gradient_checkpointing_backward_compatibility(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            config.gradient_checkpointing = True
            model = model_class(config)
            self.assertTrue(model.is_gradient_checkpointing)

370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
    def test_gradient_checkpointing_enable_disable(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            # at init model should have gradient checkpointing disabled
            model = model_class(config)
            self.assertFalse(model.is_gradient_checkpointing)

            # check enable works
            model.gradient_checkpointing_enable()
            self.assertTrue(model.is_gradient_checkpointing)

385
386
387
388
389
390
391
            # Loop over all modules and check that relevant modules have gradient_checkpointing set to True
            for n, m in model.named_modules():
                if hasattr(m, "gradient_checkpointing"):
                    self.assertTrue(
                        m.gradient_checkpointing, f"Module {n} does not have gradient_checkpointing set to True"
                    )

392
393
394
395
            # check disable works
            model.gradient_checkpointing_disable()
            self.assertFalse(model.is_gradient_checkpointing)

396
397
398
399
400
401
402
            # Loop over all modules and check that relevant modules have gradient_checkpointing set to False
            for n, m in model.named_modules():
                if hasattr(m, "gradient_checkpointing"):
                    self.assertFalse(
                        m.gradient_checkpointing, f"Module {n} does not have gradient_checkpointing set to False"
                    )

403
    @is_flaky(description="low likelihood of failure, reason not yet discovered")
404
405
    def test_save_load_fast_init_from_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
406
        if config.__class__ not in MODEL_MAPPING:
amyeroberts's avatar
amyeroberts committed
407
408
            self.skipTest(reason="Model class not in MODEL_MAPPING")

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(model_class):
                pass

            model_class_copy = CopyClass

            # make sure that all keys are expected for test
            model_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
430
431
            model_class_copy._init_weights = _mock_init_weights
            model_class_copy.init_weights = _mock_all_init_weights
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447

            model = base_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = model_class_copy.from_pretrained(tmpdirname)
                model_slow_init = model_class_copy.from_pretrained(tmpdirname, _fast_init=False)
448
                # Before we test anything
449
450

                for key in model_fast_init.state_dict().keys():
451
452
453
454
455
                    if isinstance(model_slow_init.state_dict()[key], torch.BoolTensor):
                        max_diff = (model_slow_init.state_dict()[key] ^ model_fast_init.state_dict()[key]).sum().item()
                    else:
                        max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
456

457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
    @slow
    @require_accelerate
    @mark.accelerate_tests
    def test_save_load_low_cpu_mem_usage(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        with tempfile.TemporaryDirectory() as saved_model_path:
            for model_class in self.all_model_classes:
                model_to_save = model_class(config)
                model_to_save.save_pretrained(saved_model_path)

                self._check_save_load_low_cpu_mem_usage(model_class, saved_model_path)

    @slow
    @require_accelerate
    @mark.accelerate_tests
    def test_save_load_low_cpu_mem_usage_checkpoints(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        with tempfile.TemporaryDirectory() as saved_model_path:
            for model_class in self.all_model_classes:
                model_to_save = model_class(config)
                model_to_save.config.save_pretrained(saved_model_path)
                torch.save(model_to_save.state_dict(), os.path.join(saved_model_path, "pytorch_model.bin"))

                self._check_save_load_low_cpu_mem_usage(model_class, saved_model_path)

    @slow
    @require_accelerate
    @mark.accelerate_tests
    def test_save_load_low_cpu_mem_usage_no_safetensors(self):
        with tempfile.TemporaryDirectory() as saved_model_path:
            for model_class in self.all_model_classes:
                config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
                model_to_save = model_class(config)

                model_to_save.save_pretrained(saved_model_path, safe_serialization=False)
                self._check_save_load_low_cpu_mem_usage(model_class, saved_model_path)

    def _check_save_load_low_cpu_mem_usage(self, model_class, saved_model_path):
495
496
        from accelerate.utils.modeling import named_module_tensors

497
498
499
500
501
502
503
504
505
506
507
508
509
510
        # Load the low usage and the normal models.
        model_low_usage, loading_info = model_class.from_pretrained(
            saved_model_path,
            low_cpu_mem_usage=True,
            output_loading_info=True,
        )
        model_non_low_usage = model_class.from_pretrained(saved_model_path)

        # Check that there were no missing keys.
        self.assertEqual(loading_info["missing_keys"], [])

        # The low_cpu_mem_usage=True causes the model params to be initialized with device=meta, and then
        # subsequently loaded with the correct values and onto the correct device. We check if there are any
        # remaining params that were not properly loaded.
511
        for name, tensor in named_module_tensors(model_low_usage, recurse=True):
512
            self.assertNotEqual(
513
                tensor.device,
514
                torch.device("meta"),
515
                "Tensor '" + name + "' has not been properly loaded and has device=meta.",
516
517
518
519
            )

        # Check that the parameters are equal.
        for p1, p2 in zip(model_low_usage.parameters(), model_non_low_usage.parameters()):
Arthur's avatar
Arthur committed
520
            self.assertEqual(p1.data.ne(p2.data).sum(), 0)
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537

        # Check that the state dict keys are equal.
        self.assertEqual(set(model_low_usage.state_dict().keys()), set(model_non_low_usage.state_dict().keys()))

        # Check that the shared tensors are equal.
        tensor_ptrs1 = collections.defaultdict(list)
        for name, tensor in model_low_usage.state_dict().items():
            tensor_ptrs1[id_tensor_storage(tensor)].append(name)
        tied_params1 = [names for _, names in tensor_ptrs1.items() if len(names) > 1]

        tensor_ptrs2 = collections.defaultdict(list)
        for name, tensor in model_non_low_usage.state_dict().items():
            tensor_ptrs2[id_tensor_storage(tensor)].append(name)
        tied_params2 = [names for _, names in tensor_ptrs2.items() if len(names) > 1]

        self.assertEqual(tied_params1, tied_params2)

538
539
    def test_save_load_fast_init_to_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
540
        if config.__class__ not in MODEL_MAPPING:
amyeroberts's avatar
amyeroberts committed
541
542
            self.skipTest(reason="Model class not in MODEL_MAPPING")

543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(base_class):
                pass

            base_class_copy = CopyClass

            # make sure that all keys are expected for test
            base_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
564
565
            base_class_copy._init_weights = _mock_init_weights
            base_class_copy.init_weights = _mock_all_init_weights
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583

            model = model_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.config.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = base_class_copy.from_pretrained(tmpdirname)
                model_slow_init = base_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
584
585
586
587
588
589
590
591
592
                    if isinstance(model_slow_init.state_dict()[key], torch.BoolTensor):
                        max_diff = torch.max(
                            model_slow_init.state_dict()[key] ^ model_fast_init.state_dict()[key]
                        ).item()
                    else:
                        max_diff = torch.max(
                            torch.abs(model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key])
                        ).item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
593

594
595
596
    def test_torch_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        if config.__class__ not in MODEL_MAPPING:
amyeroberts's avatar
amyeroberts committed
597
598
            self.skipTest(reason="Model class not in MODEL_MAPPING")

599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(base_class):
                pass

            base_class_copy = CopyClass

            # make sure that all keys are expected for test
            base_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
            base_class_copy._init_weights = _mock_init_weights
            base_class_copy.init_weights = _mock_all_init_weights

            model = model_class(config)
            state_dict = model.state_dict()

            def check_equal(loaded):
                for key in state_dict.keys():
                    max_diff = torch.max(
                        state_dict()[key] ^ loaded[key]
                        if isinstance(state_dict[key], torch.BoolTensor)
                        else torch.abs(state_dict[key] - loaded[key])
                    ).item()
                    self.assertLessEqual(max_diff, 1e-6, msg=f"{key} not identical")

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_checkpoint_path = os.path.join(tmpdirname, "pytorch_model.bin")
                torch.save(state_dict, pt_checkpoint_path, _use_new_zipfile_serialization=True)
                check_equal(load_state_dict(pt_checkpoint_path))
                torch.save(state_dict, pt_checkpoint_path, _use_new_zipfile_serialization=False)
                check_equal(load_state_dict(pt_checkpoint_path))

Patrick von Platen's avatar
Patrick von Platen committed
643
    def test_initialization(self):
644
645
646
647
648
649
650
651
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
652
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
653
                        [0.0, 1.0],
654
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
655
                    )
thomwolf's avatar
thomwolf committed
656

Patrick von Platen's avatar
Patrick von Platen committed
657
    def test_determinism(self):
658
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
659
660
661
662
663
664

        def check_determinism(first, second):
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
665
666
            out_1 = out_1[~np.isneginf(out_1)]
            out_2 = out_2[~np.isneginf(out_2)]
667
668
669
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

670
671
672
673
674
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
675
676
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
Weizhen's avatar
Weizhen committed
677

678
679
680
681
682
            if isinstance(first, tuple) and isinstance(second, tuple):
                for tensor1, tensor2 in zip(first, second):
                    check_determinism(tensor1, tensor2)
            else:
                check_determinism(first, second)
683

684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
    def test_batching_equivalence(self):
        """
        Tests that the model supports batching and that the output is the nearly the same for the same input in
        different batch sizes.
        (Why "nearly the same" not "exactly the same"? Batching uses different matmul shapes, which often leads to
        different results: https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535)
        """

        def get_tensor_equivalence_function(batched_input):
            # models operating on continuous spaces have higher abs difference than LMs
            # instead, we can rely on cos distance for image/speech models, similar to `diffusers`
            if "input_ids" not in batched_input:
                return lambda tensor1, tensor2: (
                    1.0 - F.cosine_similarity(tensor1.float().flatten(), tensor2.float().flatten(), dim=0, eps=1e-38)
                )
            return lambda tensor1, tensor2: torch.max(torch.abs(tensor1 - tensor2))

        def recursive_check(batched_object, single_row_object, model_name, key):
            if isinstance(batched_object, (list, tuple)):
                for batched_object_value, single_row_object_value in zip(batched_object, single_row_object):
                    recursive_check(batched_object_value, single_row_object_value, model_name, key)
            elif isinstance(batched_object, dict):
                for batched_object_value, single_row_object_value in zip(
                    batched_object.values(), single_row_object.values()
                ):
                    recursive_check(batched_object_value, single_row_object_value, model_name, key)
710
711
            # do not compare returned loss (0-dim tensor) / codebook ids (int) / caching objects
            elif batched_object is None or not isinstance(batched_object, torch.Tensor):
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
                return
            elif batched_object.dim() == 0:
                return
            else:
                # indexing the first element does not always work
                # e.g. models that output similarity scores of size (N, M) would need to index [0, 0]
                slice_ids = [slice(0, index) for index in single_row_object.shape]
                batched_row = batched_object[slice_ids]
                self.assertFalse(
                    torch.isnan(batched_row).any(), f"Batched output has `nan` in {model_name} for key={key}"
                )
                self.assertFalse(
                    torch.isinf(batched_row).any(), f"Batched output has `inf` in {model_name} for key={key}"
                )
                self.assertFalse(
                    torch.isnan(single_row_object).any(), f"Single row output has `nan` in {model_name} for key={key}"
                )
                self.assertFalse(
                    torch.isinf(single_row_object).any(), f"Single row output has `inf` in {model_name} for key={key}"
                )
                self.assertTrue(
                    (equivalence(batched_row, single_row_object)) <= 1e-03,
                    msg=(
                        f"Batched and Single row outputs are not equal in {model_name} for key={key}. "
                        f"Difference={equivalence(batched_row, single_row_object)}."
                    ),
                )

        config, batched_input = self.model_tester.prepare_config_and_inputs_for_common()
        equivalence = get_tensor_equivalence_function(batched_input)

        for model_class in self.all_model_classes:
            config.output_hidden_states = True

            model_name = model_class.__name__
            if hasattr(self.model_tester, "prepare_config_and_inputs_for_model_class"):
                config, batched_input = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
            batched_input_prepared = self._prepare_for_class(batched_input, model_class)
            model = model_class(config).to(torch_device).eval()

            batch_size = self.model_tester.batch_size
            single_row_input = {}
            for key, value in batched_input_prepared.items():
                if isinstance(value, torch.Tensor) and value.shape[0] % batch_size == 0:
                    # e.g. musicgen has inputs of size (bs*codebooks). in most cases value.shape[0] == batch_size
                    single_batch_shape = value.shape[0] // batch_size
                    single_row_input[key] = value[:single_batch_shape]
                else:
                    single_row_input[key] = value

            with torch.no_grad():
                model_batched_output = model(**batched_input_prepared)
                model_row_output = model(**single_row_input)

            if isinstance(model_batched_output, torch.Tensor):
                model_batched_output = {"model_output": model_batched_output}
                model_row_output = {"model_output": model_row_output}

            for key in model_batched_output:
                # DETR starts from zero-init queries to decoder, leading to cos_similarity = `nan`
                if hasattr(self, "zero_init_hidden_state") and "decoder_hidden_states" in key:
                    model_batched_output[key] = model_batched_output[key][1:]
                    model_row_output[key] = model_row_output[key][1:]
                recursive_check(model_batched_output[key], model_row_output[key], model_name, key)

777
    def check_training_gradient_checkpointing(self, gradient_checkpointing_kwargs=None):
778
        if not self.model_tester.is_training:
amyeroberts's avatar
amyeroberts committed
779
            self.skipTest(reason="ModelTester is not configured to run training tests")
780
781

        for model_class in self.all_model_classes:
782
783
            if (
                model_class.__name__
784
785
786
787
                in [
                    *get_values(MODEL_MAPPING_NAMES),
                    *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES),
                ]
788
789
                or not model_class.supports_gradient_checkpointing
            ):
790
                continue
791

792
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
793
794
            config.use_cache = False
            config.return_dict = True
795
            model = model_class(config)
796

797
            model.to(torch_device)
798
            model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=gradient_checkpointing_kwargs)
799
            model.train()
800
801
802
803
804
805
806

            # unfreeze additional layers
            for p in model.parameters():
                p.requires_grad_(True)

            optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

807
808
809
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()
810
            optimizer.step()
811

812
813
814
815
816
            for k, v in model.named_parameters():
                if v.requires_grad:
                    self.assertTrue(v.grad is not None, f"{k} in {model_class.__name__} has no gradient!")

    def test_training(self):
817
        if not self.model_tester.is_training:
amyeroberts's avatar
amyeroberts committed
818
            self.skipTest(reason="ModelTester is not configured to run training tests")
819
820

        for model_class in self.all_model_classes:
821
822
823
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.return_dict = True

824
825
826
827
            if model_class.__name__ in [
                *get_values(MODEL_MAPPING_NAMES),
                *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES),
            ]:
828
                continue
829

830
831
832
833
834
835
836
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

837
838
839
840
841
842
843
844
845
846
847
848
849
    def test_training_gradient_checkpointing(self):
        # Scenario - 1 default behaviour
        self.check_training_gradient_checkpointing()

    def test_training_gradient_checkpointing_use_reentrant(self):
        # Scenario - 2 with `use_reentrant=True` - this is the default value that is used in pytorch's
        # torch.utils.checkpoint.checkpoint
        self.check_training_gradient_checkpointing(gradient_checkpointing_kwargs={"use_reentrant": True})

    def test_training_gradient_checkpointing_use_reentrant_false(self):
        # Scenario - 3 with `use_reentrant=False` pytorch suggests users to use this value for
        # future releases: https://pytorch.org/docs/stable/checkpoint.html
        self.check_training_gradient_checkpointing(gradient_checkpointing_kwargs={"use_reentrant": False})
850

Patrick von Platen's avatar
Patrick von Platen committed
851
    def test_attention_outputs(self):
852
853
854
        if not self.has_attentions:
            self.skipTest(reason="Model does not output attentions")

855
856
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True
857

858
859
860
861
862
863
864
865
866
867
868
869
        seq_len = getattr(self.model_tester, "seq_length", None)
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
        decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
870
            config.return_dict = True
871
872
873
874
875
876
877
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
878

879
880
881
882
883
884
885
886
887
888
            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
889

890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
            out_len = len(outputs)

            if self.is_encoder_decoder:
                correct_outlen = 5

                # loss is at first position
                if "labels" in inputs_dict:
                    correct_outlen += 1  # loss is added to beginning
                # Question Answering model returns start_logits and end_logits
909
910
911
                if model_class.__name__ in [
                    *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
                    *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
912
                ]:
913
914
915
916
917
918
919
920
921
922
923
924
925
926
                    correct_outlen += 1  # start_logits and end_logits instead of only 1 output
                if "past_key_values" in outputs:
                    correct_outlen += 1  # past_key_values have been returned

                self.assertEqual(out_len, correct_outlen)

                # decoder attentions
                decoder_attentions = outputs.decoder_attentions
                self.assertIsInstance(decoder_attentions, (list, tuple))
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
                )
927

928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
                # cross attentions
                cross_attentions = outputs.cross_attentions
                self.assertIsInstance(cross_attentions, (list, tuple))
                self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(cross_attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_attention_heads,
                        decoder_seq_length,
                        encoder_key_length,
                    ],
                )

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
971

972
    @slow
973
    def test_torchscript_simple(self):
974
975
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
976

977
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
978
    def test_torchscript_output_attentions(self):
979
980
981
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
982

983
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
984
    def test_torchscript_output_hidden_state(self):
985
986
987
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
988

989
990
991
992
    # This is copied from `torch/testing/_internal/jit_utils.py::clear_class_registry`
    def clear_torch_jit_class_registry(self):
        torch._C._jit_clear_class_registry()
        torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore()
993
994
995
        # torch 1.8 has no `_clear_class_state` in `torch.jit._state`
        if hasattr(torch.jit._state, "_clear_class_state"):
            torch.jit._state._clear_class_state()
996

997
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
998
        if not self.test_torchscript:
amyeroberts's avatar
amyeroberts committed
999
            self.skipTest(reason="test_torchscript is set to `False`")
1000

1001
1002
1003
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
1004
            for attn_implementation in ["eager", "sdpa"]:
1005
                if attn_implementation == "sdpa" and (not model_class._supports_sdpa or not is_torch_sdpa_available()):
1006
                    continue
1007

1008
1009
1010
1011
1012
                configs_no_init._attn_implementation = attn_implementation
                model = model_class(config=configs_no_init)
                model.to(torch_device)
                model.eval()
                inputs = self._prepare_for_class(inputs_dict, model_class)
thomwolf's avatar
thomwolf committed
1013

1014
                main_input_name = model_class.main_input_name
thomwolf's avatar
thomwolf committed
1015

1016
                try:
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
                    if model.config.is_encoder_decoder:
                        model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                        main_input = inputs[main_input_name]
                        attention_mask = inputs["attention_mask"]
                        decoder_input_ids = inputs["decoder_input_ids"]
                        decoder_attention_mask = inputs["decoder_attention_mask"]
                        model(main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
                        traced_model = torch.jit.trace(
                            model, (main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
                        )
                    elif "bbox" in inputs and "image" in inputs:  # LayoutLMv2 requires additional inputs
                        input_ids = inputs["input_ids"]
                        bbox = inputs["bbox"]
                        image = inputs["image"].tensor
                        model(input_ids, bbox, image)
                        traced_model = torch.jit.trace(
                            model, (input_ids, bbox, image), check_trace=False
                        )  # when traced model is checked, an error is produced due to name mangling
                    elif "bbox" in inputs:  # Bros requires additional inputs (bbox)
                        input_ids = inputs["input_ids"]
                        bbox = inputs["bbox"]
                        model(input_ids, bbox)
                        traced_model = torch.jit.trace(
                            model, (input_ids, bbox), check_trace=False
                        )  # when traced model is checked, an error is produced due to name mangling
Eduardo Pacheco's avatar
Eduardo Pacheco committed
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
                    elif (
                        "pixel_values" in inputs and "prompt_pixel_values" in inputs and "prompt_masks" in inputs
                    ):  # SegGpt requires additional inputs
                        pixel_values = inputs["pixel_values"]
                        prompt_pixel_values = inputs["prompt_pixel_values"]
                        prompt_masks = inputs["prompt_masks"]
                        model(pixel_values, prompt_pixel_values, prompt_masks)
                        traced_model = torch.jit.trace(
                            model, (pixel_values, prompt_pixel_values, prompt_masks), check_trace=False
                        )  # when traced model is checked, an error is produced due to name mangling
1052
1053
1054
1055
1056
1057
1058
1059
1060
                    else:
                        main_input = inputs[main_input_name]

                        if model.config._attn_implementation == "sdpa":
                            trace_input = {main_input_name: main_input}

                            if "attention_mask" in inputs:
                                trace_input["attention_mask"] = inputs["attention_mask"]
                            else:
amyeroberts's avatar
amyeroberts committed
1061
                                self.skipTest(reason="testing SDPA without attention_mask is not supported")
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083

                            model(main_input, attention_mask=inputs["attention_mask"])
                            # example_kwarg_inputs was introduced in torch==2.0, but it is fine here since SDPA has a requirement on torch>=2.1.
                            traced_model = torch.jit.trace(model, example_kwarg_inputs=trace_input)
                        else:
                            model(main_input)
                            traced_model = torch.jit.trace(model, (main_input,))
                except RuntimeError:
                    self.fail("Couldn't trace module.")

                with tempfile.TemporaryDirectory() as tmp_dir_name:
                    pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")

                    try:
                        torch.jit.save(traced_model, pt_file_name)
                    except Exception:
                        self.fail("Couldn't save module.")

                    try:
                        loaded_model = torch.jit.load(pt_file_name)
                    except Exception:
                        self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
1084

1085
1086
                model.to(torch_device)
                model.eval()
thomwolf's avatar
thomwolf committed
1087

1088
1089
                loaded_model.to(torch_device)
                loaded_model.eval()
thomwolf's avatar
thomwolf committed
1090

1091
1092
                model_state_dict = model.state_dict()
                loaded_model_state_dict = loaded_model.state_dict()
1093

1094
1095
1096
1097
                non_persistent_buffers = {}
                for key in loaded_model_state_dict.keys():
                    if key not in model_state_dict.keys():
                        non_persistent_buffers[key] = loaded_model_state_dict[key]
1098

1099
1100
1101
                loaded_model_state_dict = {
                    key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
                }
1102

1103
                self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
1104

1105
1106
1107
1108
1109
1110
1111
                model_buffers = list(model.buffers())
                for non_persistent_buffer in non_persistent_buffers.values():
                    found_buffer = False
                    for i, model_buffer in enumerate(model_buffers):
                        if torch.equal(non_persistent_buffer, model_buffer):
                            found_buffer = True
                            break
1112

1113
1114
                    self.assertTrue(found_buffer)
                    model_buffers.pop(i)
1115

1116
1117
1118
1119
1120
1121
                models_equal = True
                for layer_name, p1 in model_state_dict.items():
                    if layer_name in loaded_model_state_dict:
                        p2 = loaded_model_state_dict[layer_name]
                        if p1.data.ne(p2.data).sum() > 0:
                            models_equal = False
thomwolf's avatar
thomwolf committed
1122

1123
                self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
1124

1125
1126
1127
                # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
                # (Even with this call, there are still memory leak by ~0.04MB)
                self.clear_torch_jit_class_registry()
1128

1129
1130
1131
1132
1133
1134
1135
1136
    def test_torch_fx(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict)

    def test_torch_fx_output_loss(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict, output_loss=True)

1137
1138
    def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False):
        if not is_torch_fx_available() or not self.fx_compatible:
1139
1140
1141
            self.skipTest(
                f"Either torch.fx is not available, or the model type {config.model_type} is not compatible with torch.fx"
            )
1142
1143
1144
1145

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.return_dict = False

1146
        for model_class in self.all_model_classes:
1147
1148
1149
1150
1151
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss)

1152
1153
            # We may want to test several inputs (various shapes, etc.).
            inputs_to_test = [inputs]
1154

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
            if model.config.is_encoder_decoder:
                model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                labels = inputs.get("labels", None)
                input_names = [
                    "attention_mask",
                    "decoder_attention_mask",
                    "decoder_input_ids",
                    "input_features",
                    "input_ids",
                    "input_values",
                ]
                if labels is not None:
                    input_names.append("labels")
            else:
                input_names = [
                    "attention_mask",
                    "bbox",
                    "input_features",
                    "input_ids",
                    "input_values",
1175
                    "inputs_embeds",
1176
1177
1178
1179
                    "pixel_values",
                    "token_type_ids",
                    "visual_feats",
                    "visual_pos",
Naman Garg's avatar
Naman Garg committed
1180
                    "noise",
1181
                ]
1182

1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
                labels = inputs.get("labels", None)
                start_positions = inputs.get("start_positions", None)
                end_positions = inputs.get("end_positions", None)
                if labels is not None:
                    input_names.append("labels")
                if start_positions is not None:
                    input_names.append("start_positions")
                if end_positions is not None:
                    input_names.append("end_positions")

                if model.config.model_type in _FX_SUPPORTED_MODELS_WITH_KV_CACHE:
                    input_names.append("past_key_values")

                    # Generally model_tester.prepare_config_and_inputs_for_common seem not to generate past key values inputs.
                    if "past_key_values" not in inputs:
                        batch_size = inputs[next(iter(inputs))].shape[0]
                        num_heads = model.config.num_attention_heads
                        head_dim = model.config.hidden_size // model.config.num_attention_heads

                        cache_shape = (batch_size, num_heads, 0, head_dim)
                        empty_pkv = tuple(
                            (
                                torch.rand(cache_shape, dtype=torch.float, device=torch_device),
                                torch.rand(cache_shape, dtype=torch.float, device=torch_device),
1207
                            )
1208
1209
                            for i in range(model.config.num_hidden_layers)
                        )
1210

1211
1212
1213
1214
1215
1216
1217
1218
1219
                        cache_length = 9
                        cache_shape = (batch_size, num_heads, cache_length, head_dim)
                        non_empty_pkv = tuple(
                            (
                                torch.rand(cache_shape, dtype=torch.float, device=torch_device),
                                torch.rand(cache_shape, dtype=torch.float, device=torch_device),
                            )
                            for i in range(model.config.num_hidden_layers)
                        )
1220

1221
                        inps = copy.deepcopy(inputs_to_test[0])
1222

1223
                        inputs_to_test[0]["past_key_values"] = empty_pkv
1224

1225
1226
                        inps["past_key_values"] = non_empty_pkv
                        inputs_to_test.append(inps)
1227

1228
1229
1230
1231
                        past_mask = torch.ones(batch_size, cache_length, device=torch_device, dtype=torch.float)
                        inputs_to_test[1]["attention_mask"] = torch.cat(
                            (past_mask, inputs_to_test[1]["attention_mask"]), dim=1
                        )
1232

1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
                forward_parameters = inspect.signature(model.forward).parameters
                if "input_ids" in forward_parameters and "inputs_embeds" in forward_parameters:
                    inps = copy.deepcopy(inputs_to_test[0])

                    embedding_size = (
                        model.config.embedding_size
                        if getattr(model.config, "embedding_size", None) is not None
                        and model.config.model_type != "megatron-bert"
                        else model.config.hidden_size
                    )

                    if (
                        model.config.model_type in MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES
                        and model.__class__.__name__
                        == MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES[model.config.model_type]
                    ):
                        batch_size, num_choices, sequence_length = inputs["input_ids"].shape
                        shape = (batch_size, num_choices, sequence_length, embedding_size)
                    elif inps["input_ids"].ndim == 2:
                        batch_size, sequence_length = inputs["input_ids"].shape
                        shape = (batch_size, sequence_length, embedding_size)
                    else:
                        self.skipTest("Unknown case")

                    del inps["input_ids"]
                    inps["inputs_embeds"] = torch.rand(shape, dtype=torch.float, device=torch_device)
                    inputs_to_test.append(inps)
1260

1261
1262
            for inps in inputs_to_test:
                filtered_inputs = {k: v for (k, v) in inps.items() if k in input_names}
1263
                input_names_to_trace = list(filtered_inputs.keys())
1264

1265
1266
1267
1268
                if model.__class__.__name__ in set(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values()) and (
                    not hasattr(model.config, "problem_type") or model.config.problem_type is None
                ):
                    model.config.problem_type = "single_label_classification"
1269

1270
1271
1272
                model.config.use_cache = "past_key_values" in input_names_to_trace

                traced_model = symbolic_trace(model, input_names_to_trace)
1273

1274
1275
1276
                with torch.no_grad():
                    traced_output = traced_model(**filtered_inputs)
                    model_output = model(**filtered_inputs)
1277

1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
                def flatten_output(output):
                    flatten = []
                    for x in output:
                        if isinstance(x, (tuple, list)):
                            flatten += flatten_output(x)
                        elif not isinstance(x, torch.Tensor):
                            continue
                        else:
                            flatten.append(x)
                    return flatten
1288

1289
1290
1291
                model_output = flatten_output(model_output)
                traced_output = flatten_output(traced_output)
                num_outputs = len(model_output)
1292
1293
1294

                for i in range(num_outputs):
                    self.assertTrue(
1295
1296
                        torch.allclose(model_output[i], traced_output[i]),
                        f"traced {i}th output doesn't match model {i}th output for {model_class}",
1297
1298
                    )

1299
1300
1301
                # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
                # (Even with this call, there are still memory leak by ~0.04MB)
                self.clear_torch_jit_class_registry()
1302

Patrick von Platen's avatar
Patrick von Platen committed
1303
1304
    def test_headmasking(self):
        if not self.test_head_masking:
amyeroberts's avatar
amyeroberts committed
1305
            self.skipTest(reason="Model does not support head masking")
1306

1307
1308
1309
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
1310

1311
        inputs_dict["output_attentions"] = True
1312
1313
1314
1315
1316
1317
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
1318

1319
1320
1321
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
Lysandre's avatar
Lysandre committed
1322
1323
1324
                self.model_tester.num_hidden_layers,
                self.model_tester.num_attention_heads,
                device=torch_device,
1325
1326
1327
1328
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
1329
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
1330
            inputs["head_mask"] = head_mask
1331
1332
1333
1334
1335
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.forward)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
1336
1337
                if "cross_attn_head_mask" in arg_names:
                    inputs["cross_attn_head_mask"] = head_mask
1338
            outputs = model(**inputs, return_dict=True)
1339
1340
1341
1342
1343
1344
1345
1346
1347

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        torch.sum(torch.isnan(t)), t.numel() / 4
                    )  # Check we don't have more than 25% nans (arbitrary)
                attentions = [
                    t.masked_fill(torch.isnan(t), 0.0) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
                if len(attentions) > 2:  # encoder-decoder models have only 2 layers in each module
                    self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
1369
                check_attentions_validity(outputs.cross_attentions)
1370
1371
            else:
                check_attentions_validity(outputs.attentions)
1372

Patrick von Platen's avatar
Patrick von Platen committed
1373
1374
    def test_head_pruning(self):
        if not self.test_pruning:
amyeroberts's avatar
amyeroberts committed
1375
            self.skipTest(reason="Pruning is not activated")
1376
1377

        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1378
1379
1380
1381
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1382

1383
1384
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1385

1386
            inputs_dict["output_attentions"] = True
1387
1388
1389
1390
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1391
1392
1393
1394
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1395
1396
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
1397
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1398

1399
            attentions = outputs[-1]
1400

1401
            self.assertEqual(attentions[0].shape[-3], 1)
1402
1403
            # TODO: To have this check, we will need at least 3 layers. Do we really need it?
            # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
1404
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
1405

Patrick von Platen's avatar
Patrick von Platen committed
1406
1407
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
amyeroberts's avatar
amyeroberts committed
1408
            self.skipTest(reason="Pruning is not activated")
LysandreJik's avatar
LysandreJik committed
1409

1410
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1411
1412
1413
1414
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1415
1416
1417

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1418

1419
            inputs_dict["output_attentions"] = True
1420
1421
1422
1423
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1424
1425
1426
1427
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1428
            model.prune_heads(heads_to_prune)
1429

1430
            with tempfile.TemporaryDirectory() as temp_dir_name:
1431
1432
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
1433
                model.to(torch_device)
1434

1435
            with torch.no_grad():
1436
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1437
1438
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
1439
1440
            # TODO: To have this check, we will need at least 3 layers. Do we really need it?
            # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
1441
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
1442

Patrick von Platen's avatar
Patrick von Platen committed
1443
1444
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
amyeroberts's avatar
amyeroberts committed
1445
            self.skipTest(reason="Pruning is not activated")
1446

1447
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1448
1449
1450
1451
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1452

1453
1454
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1455

1456
            inputs_dict["output_attentions"] = True
1457
            config.output_hidden_states = False
1458

1459
1460
1461
1462
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1463
            config.pruned_heads = heads_to_prune
1464

1465
1466
1467
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1468

1469
            with torch.no_grad():
1470
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1471
            attentions = outputs[-1]
1472

1473
            self.assertEqual(attentions[0].shape[-3], 1)
1474
1475
            # TODO: To have this check, we will need at least 3 layers. Do we really need it?
            # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
1476
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
1477

Patrick von Platen's avatar
Patrick von Platen committed
1478
1479
    def test_head_pruning_integration(self):
        if not self.test_pruning:
amyeroberts's avatar
amyeroberts committed
1480
            self.skipTest(reason="Pruning is not activated")
1481

1482
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1483
1484
1485
1486
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1487

1488
1489
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1490

1491
            inputs_dict["output_attentions"] = True
1492
            config.output_hidden_states = False
1493

1494
            heads_to_prune = {1: [1, 2]}
1495
            config.pruned_heads = heads_to_prune
1496

1497
1498
1499
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1500

1501
            with torch.no_grad():
1502
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1503
            attentions = outputs[-1]
1504

1505
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 0)
1506
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
thomwolf's avatar
thomwolf committed
1507

1508
            with tempfile.TemporaryDirectory() as temp_dir_name:
1509
1510
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
1511
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
1512

1513
            with torch.no_grad():
1514
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1515
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
1516

1517
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 0)
1518
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
thomwolf's avatar
thomwolf committed
1519

1520
            heads_to_prune = {0: [0], 1: [1, 2]}
1521
            model.prune_heads(heads_to_prune)
1522

1523
            with torch.no_grad():
1524
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1525
            attentions = outputs[-1]
1526

1527
1528
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
1529

1530
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2]})
thomwolf's avatar
thomwolf committed
1531

Patrick von Platen's avatar
Patrick von Platen committed
1532
    def test_hidden_states_output(self):
Joseph Liu's avatar
Joseph Liu committed
1533
        def check_hidden_states_output(inputs_dict, config, model_class):
1534
            model = model_class(config)
1535
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
1536
            model.eval()
Joseph Liu's avatar
Joseph Liu committed
1537

thomwolf's avatar
thomwolf committed
1538
            with torch.no_grad():
1539
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1540
1541

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
1542

Sylvain Gugger's avatar
Sylvain Gugger committed
1543
1544
1545
1546
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)
1547

Patrick von Platen's avatar
Patrick von Platen committed
1548
1549
1550
1551
1552
1553
1554
            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

1555
            self.assertListEqual(
Lysandre's avatar
Lysandre committed
1556
1557
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
1558
            )
thomwolf's avatar
thomwolf committed
1559

1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
            if config.is_encoder_decoder:
                hidden_states = outputs.decoder_hidden_states

                self.assertIsInstance(hidden_states, (list, tuple))
                self.assertEqual(len(hidden_states), expected_num_layers)
                seq_len = getattr(self.model_tester, "seq_length", None)
                decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)

                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [decoder_seq_length, self.model_tester.hidden_size],
                )

Joseph Liu's avatar
Joseph Liu committed
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

1585
1586
1587
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
1588
        config.output_attentions = self.has_attentions
1589
1590
1591
1592
1593
1594
1595
1596
1597

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)
1598

1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
        output = outputs[0]

        if config.is_encoder_decoder:
            # Seq2Seq models
            encoder_hidden_states = outputs.encoder_hidden_states[0]
            encoder_hidden_states.retain_grad()

            decoder_hidden_states = outputs.decoder_hidden_states[0]
            decoder_hidden_states.retain_grad()

1609
1610
1611
1612
1613
1614
1615
1616
1617
            if self.has_attentions:
                encoder_attentions = outputs.encoder_attentions[0]
                encoder_attentions.retain_grad()

                decoder_attentions = outputs.decoder_attentions[0]
                decoder_attentions.retain_grad()

                cross_attentions = outputs.cross_attentions[0]
                cross_attentions.retain_grad()
1618
1619
1620
1621
1622

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(encoder_hidden_states.grad)
            self.assertIsNotNone(decoder_hidden_states.grad)
1623
1624
1625
1626
1627

            if self.has_attentions:
                self.assertIsNotNone(encoder_attentions.grad)
                self.assertIsNotNone(decoder_attentions.grad)
                self.assertIsNotNone(cross_attentions.grad)
1628
1629
1630
1631
        else:
            # Encoder-/Decoder-only models
            hidden_states = outputs.hidden_states[0]
            hidden_states.retain_grad()
1632
1633
1634
1635

            if self.has_attentions:
                attentions = outputs.attentions[0]
                attentions.retain_grad()
1636
1637
1638
1639

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(hidden_states.grad)
1640
1641
1642

            if self.has_attentions:
                self.assertIsNotNone(attentions.grad)
1643

Pradhy729's avatar
Pradhy729 committed
1644
    def test_feed_forward_chunking(self):
Lysandre's avatar
Lysandre committed
1645
1646
1647
1648
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Pradhy729's avatar
Pradhy729 committed
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
        for model_class in self.all_model_classes:
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

1667
1668
    def test_resize_position_vector_embeddings(self):
        if not self.test_resize_position_embeddings:
amyeroberts's avatar
amyeroberts committed
1669
            self.skipTest(reason="Model does not have position embeddings")
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745

        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

            if self.model_tester.is_training is False:
                model.eval()

            max_position_embeddings = config.max_position_embeddings

            # Retrieve the embeddings and clone theme
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                encoder_cloned_embeddings = encoder_model_embed.weight.clone()
                decoder_cloned_embeddings = decoder_model_embed.weight.clone()
            else:
                model_embed = model.get_position_embeddings()
                cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the position embeddings with a larger max_position_embeddings increases
            # the model's postion embeddings size
            model.resize_position_embeddings(max_position_embeddings + 10)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings + 10)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] + 10)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] + 10)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the position embeddings with a smaller max_position_embeddings decreases
            # the model's max_position_embeddings
            model.resize_position_embeddings(max_position_embeddings - 5)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings - 5)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] - 5)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] - 5)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 5)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True

            if model.config.is_encoder_decoder:
                for p1, p2 in zip(encoder_cloned_embeddings, encoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
                for p1, p2 in zip(decoder_cloned_embeddings, decoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
            else:
                for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False

            self.assertTrue(models_equal)

Patrick von Platen's avatar
Patrick von Platen committed
1746
    def test_resize_tokens_embeddings(self):
Lysandre's avatar
Lysandre committed
1747
1748
1749
1750
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
1751
        if not self.test_resize_embeddings:
amyeroberts's avatar
amyeroberts committed
1752
            self.skipTest(reason="test_resize_embeddings is set to `False`")
1753
1754
1755
1756

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
1757
            model.to(torch_device)
1758

Patrick von Platen's avatar
Patrick von Platen committed
1759
1760
1761
            if self.model_tester.is_training is False:
                model.eval()

1762
            model_vocab_size = config.text_config.vocab_size if hasattr(config, "text_config") else config.vocab_size
1763
1764
1765
1766
1767
1768
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
1769
1770
1771
1772
1773
1774
            new_model_vocab_size = (
                model.config.text_config.vocab_size
                if hasattr(model.config, "text_config")
                else model.config.vocab_size
            )
            self.assertEqual(new_model_vocab_size, model_vocab_size + 10)
1775
1776
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
1777
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
1778
            model(**self._prepare_for_class(inputs_dict, model_class))
1779
1780
1781

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
1782
1783
1784
1785
1786
1787
            new_model_vocab_size = (
                model.config.text_config.vocab_size
                if hasattr(model.config, "text_config")
                else model.config.vocab_size
            )
            self.assertEqual(new_model_vocab_size, model_vocab_size - 15)
1788
1789
1790
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

1791
1792
1793
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1794
1795
1796
1797

            # make sure that decoder_input_ids are resized as well
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1798
            model(**self._prepare_for_class(inputs_dict, model_class))
1799

1800
1801
1802
1803
1804
1805
1806
1807
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

1808
1809
1810
1811
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

1812
            model_vocab_size = config.text_config.vocab_size if hasattr(config, "text_config") else config.vocab_size
1813
            model.resize_token_embeddings(model_vocab_size + 10, pad_to_multiple_of=1)
1814
1815
1816
1817
1818
1819
            new_model_vocab_size = (
                model.config.text_config.vocab_size
                if hasattr(model.config, "text_config")
                else model.config.vocab_size
            )
            self.assertTrue(new_model_vocab_size + 10, model_vocab_size)
1820
1821

            model_embed = model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=64)
1822
1823
1824
1825
1826
            new_model_vocab_size = (
                model.config.text_config.vocab_size
                if hasattr(model.config, "text_config")
                else model.config.vocab_size
            )
1827
1828
            self.assertTrue(model_embed.weight.shape[0] // 64, 0)

1829
1830
            self.assertTrue(model_embed.weight.shape[0], new_model_vocab_size)
            self.assertTrue(new_model_vocab_size, model.vocab_size)
Arthur's avatar
Arthur committed
1831

1832
1833
1834
            model_embed = model.resize_token_embeddings(model_vocab_size + 13, pad_to_multiple_of=64)
            self.assertTrue(model_embed.weight.shape[0] // 64, 0)

1835
1836
1837
1838
1839
            # Check that resizing a model to a multiple of pad_to_multiple leads to a model of exactly that size
            target_dimension = 128
            model_embed = model.resize_token_embeddings(target_dimension, pad_to_multiple_of=64)
            self.assertTrue(model_embed.weight.shape[0], target_dimension)

1840
1841
1842
1843
1844
1845
            with self.assertRaisesRegex(
                ValueError,
                "Asking to pad the embedding matrix to a multiple of `1.3`, which is not and integer. Please make sure to pass an integer",
            ):
                model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=1.3)

1846
1847
1848
1849
1850
1851
    def test_resize_embeddings_untied(self):
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
amyeroberts's avatar
amyeroberts committed
1852
            self.skipTest(reason="test_resize_embeddings is set to `False`")
1853
1854
1855
1856
1857

        original_config.tie_word_embeddings = False

        # if model cannot untied embeddings -> leave test
        if original_config.tie_word_embeddings:
amyeroberts's avatar
amyeroberts committed
1858
            self.skipTest(reason="Model cannot untied embeddings")
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config).to(torch_device)

            # if no output embeddings -> leave test
            if model.get_output_embeddings() is None:
                continue

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
1869
            model_vocab_size = config.text_config.vocab_size if hasattr(config, "text_config") else config.vocab_size
1870
            model.resize_token_embeddings(model_vocab_size + 10)
1871
1872
1873
1874
1875
1876
            new_model_vocab_size = (
                model.config.text_config.vocab_size
                if hasattr(model.config, "text_config")
                else model.config.vocab_size
            )
            self.assertEqual(new_model_vocab_size, model_vocab_size + 10)
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model.resize_token_embeddings(model_vocab_size - 15)
1887
1888
1889
1890
1891
1892
            new_model_vocab_size = (
                model.config.text_config.vocab_size
                if hasattr(model.config, "text_config")
                else model.config.vocab_size
            )
            self.assertEqual(new_model_vocab_size, model_vocab_size - 15)
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
            # Check that it actually resizes the embeddings matrix
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

1907
    def test_model_get_set_embeddings(self):
1908
1909
1910
1911
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1912
            self.assertIsInstance(model.get_input_embeddings(), (nn.Embedding, AdaptiveEmbedding))
1913
1914
1915
1916
1917

            new_input_embedding_layer = nn.Embedding(10, 10)
            model.set_input_embeddings(new_input_embedding_layer)
            self.assertEqual(model.get_input_embeddings(), new_input_embedding_layer)

1918
            x = model.get_output_embeddings()
1919
            self.assertTrue(x is None or isinstance(x, nn.Linear))
1920

1921
1922
1923
1924
1925
1926
1927
    def test_model_main_input_name(self):
        for model_class in self.all_model_classes:
            model_signature = inspect.signature(getattr(model_class, "forward"))
            # The main input is the name of the argument after `self`
            observed_main_input_name = list(model_signature.parameters.keys())[1]
            self.assertEqual(model_class.main_input_name, observed_main_input_name)

1928
    def test_correct_missing_keys(self):
1929
        if not self.test_missing_keys:
amyeroberts's avatar
amyeroberts committed
1930
            self.skipTest(reason="test_missing_keys is set to `False`")
1931
1932
1933
1934
1935
1936
1937
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
                extra_params = {k: v for k, v in model.named_parameters() if not k.startswith(base_model_prefix)}
                extra_params.update({k: v for k, v in model.named_buffers() if not k.startswith(base_model_prefix)})
                # Some models define this as None
                if model._keys_to_ignore_on_load_missing:
                    for key in model._keys_to_ignore_on_load_missing:
                        extra_params.pop(key, None)

                if not extra_params:
                    # In that case, we *are* on a head model, but every
                    # single key is not actual parameters and this is
                    # tested in `test_tied_model_weights_key_ignore` test.
                    continue

1951
1952
1953
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)
1954
                    self.assertGreater(len(loading_info["missing_keys"]), 0, model.__class__.__name__)
1955

1956
1957
    def test_tie_model_weights(self):
        if not self.test_torchscript:
amyeroberts's avatar
amyeroberts committed
1958
            self.skipTest(reason="test_torchscript is set to `False`")
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
1983
1984
            vocab_size = config.text_config.vocab_size if hasattr(config, "text_config") else config.vocab_size
            model_tied.resize_token_embeddings(vocab_size + 10)
1985
1986
1987
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

1988
1989
    @require_safetensors
    def test_can_use_safetensors(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
1990
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
        for model_class in self.all_model_classes:
            model_tied = model_class(config)
            with tempfile.TemporaryDirectory() as d:
                try:
                    model_tied.save_pretrained(d, safe_serialization=True)
                except Exception as e:
                    raise Exception(f"Class {model_class.__name__} cannot be saved using safetensors: {e}")

                model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True)
                # Checking the state dicts are correct
                reloaded_state = model_reloaded.state_dict()
                for k, v in model_tied.state_dict().items():
                    self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded")
                    torch.testing.assert_close(
                        v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}"
                    )
Sylvain Gugger's avatar
Sylvain Gugger committed
2007
2008
                # Checking there was no complain of missing weights
                self.assertEqual(infos["missing_keys"], [])
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024

                # Checking the tensor sharing are correct
                ptrs = defaultdict(list)
                for k, v in model_tied.state_dict().items():
                    ptrs[v.data_ptr()].append(k)

                shared_ptrs = {k: v for k, v in ptrs.items() if len(v) > 1}

                for _, shared_names in shared_ptrs.items():
                    reloaded_ptrs = {reloaded_state[k].data_ptr() for k in shared_names}
                    self.assertEqual(
                        len(reloaded_ptrs),
                        1,
                        f"The shared pointers are incorrect, found different pointers for keys {shared_names}",
                    )

Sylvain Gugger's avatar
Sylvain Gugger committed
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
    def test_load_save_without_tied_weights(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        config.tie_word_embeddings = False
        for model_class in self.all_model_classes:
            model = model_class(config)
            with tempfile.TemporaryDirectory() as d:
                model.save_pretrained(d)

                model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True)
                # Checking the state dicts are correct
                reloaded_state = model_reloaded.state_dict()
                for k, v in model.state_dict().items():
                    self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded")
                    torch.testing.assert_close(
                        v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}"
                    )
                # Checking there was no complain of missing weights
                self.assertEqual(infos["missing_keys"], [])

Sylvain Gugger's avatar
Sylvain Gugger committed
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
    def test_tied_weights_keys(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        config.tie_word_embeddings = True
        for model_class in self.all_model_classes:
            model_tied = model_class(config)

            ptrs = collections.defaultdict(list)
            for name, tensor in model_tied.state_dict().items():
                ptrs[id_tensor_storage(tensor)].append(name)

            # These are all the pointers of shared tensors.
            tied_params = [names for _, names in ptrs.items() if len(names) > 1]

            tied_weight_keys = model_tied._tied_weights_keys if model_tied._tied_weights_keys is not None else []
            # Detect we get a hit for each key
            for key in tied_weight_keys:
2060
2061
                is_tied_key = any(re.search(key, p) for group in tied_params for p in group)
                self.assertTrue(is_tied_key, f"{key} is not a tied weight key for {model_class}.")
Sylvain Gugger's avatar
Sylvain Gugger committed
2062
2063
2064
2065
2066
2067
2068

            # Removed tied weights found from tied params -> there should only be one left after
            for key in tied_weight_keys:
                for i in range(len(tied_params)):
                    tied_params[i] = [p for p in tied_params[i] if re.search(key, p) is None]

            tied_params = [group for group in tied_params if len(group) > 1]
Sylvain Gugger's avatar
Sylvain Gugger committed
2069
2070
2071
2072
2073
            self.assertListEqual(
                tied_params,
                [],
                f"Missing `_tied_weights_keys` for {model_class}: add all of {tied_params} except one.",
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
2074

Sylvain Gugger's avatar
Sylvain Gugger committed
2075
2076
    def test_model_weights_reload_no_missing_tied_weights(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
2077
        for model_class in self.all_model_classes:
Sylvain Gugger's avatar
Sylvain Gugger committed
2078
2079
2080
            model = model_class(config)
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.save_pretrained(tmp_dir)
2081
2082
2083

                # We are nuking ALL weights on file, so every parameter should
                # yell on load. We're going to detect if we yell too much, or too little.
2084
2085
                placeholder_dict = {"tensor": torch.tensor([1, 2])}
                safe_save_file(placeholder_dict, os.path.join(tmp_dir, "model.safetensors"), metadata={"format": "pt"})
Sylvain Gugger's avatar
Sylvain Gugger committed
2086
                model_reloaded, infos = model_class.from_pretrained(tmp_dir, output_loading_info=True)
2087
2088
2089
2090

                prefix = f"{model_reloaded.base_model_prefix}."
                params = dict(model_reloaded.named_parameters())
                params.update(dict(model_reloaded.named_buffers()))
2091
                param_names = {k[len(prefix) :] if k.startswith(prefix) else k for k in params.keys()}
2092
2093
2094
2095

                missing_keys = set(infos["missing_keys"])

                extra_missing = missing_keys - param_names
Sylvain Gugger's avatar
Sylvain Gugger committed
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
                # Remove tied weights from extra missing: they are normally not warned as missing if their tied
                # counterpart is present but here there are no weights at all so we do get the warning.
                ptrs = collections.defaultdict(list)
                for name, tensor in model_reloaded.state_dict().items():
                    ptrs[id_tensor_storage(tensor)].append(name)
                tied_params = [names for _, names in ptrs.items() if len(names) > 1]
                for group in tied_params:
                    group = {k[len(prefix) :] if k.startswith(prefix) else k for k in group}
                    # We remove the group from extra_missing if not all weights from group are in it
                    if len(group - extra_missing) > 0:
                        extra_missing = extra_missing - set(group)
2107
2108
2109
2110

                self.assertEqual(
                    extra_missing,
                    set(),
Sylvain Gugger's avatar
Sylvain Gugger committed
2111
2112
                    f"This model {model_class.__name__} might be missing some `keys_to_ignore`: {extra_missing}. "
                    f"For debugging, tied parameters are {tied_params}",
2113
2114
                )

Sylvain Gugger's avatar
Sylvain Gugger committed
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
                missed_missing = param_names - missing_keys
                # Remove nonpersistent buffers from missed_missing
                buffers = [n for n, _ in model_reloaded.named_buffers()]
                nonpersistent_buffers = {n for n in buffers if n not in model_reloaded.state_dict()}
                nonpersistent_buffers = {
                    k[len(prefix) :] if k.startswith(prefix) else k for k in nonpersistent_buffers
                }
                missed_missing = missed_missing - nonpersistent_buffers

                if model_reloaded._keys_to_ignore_on_load_missing is None:
                    expected_missing = set()
                else:
                    expected_missing = set(model_reloaded._keys_to_ignore_on_load_missing)
                self.assertEqual(
                    missed_missing,
                    expected_missing,
                    f"This model {model_class.__name__} ignores keys {missed_missing} but they look like real"
                    " parameters. If they are non persistent buffers make sure to instantiate them with"
                    " `persistent=False`",
                )
2135

2136
2137
2138
    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Sam Shleifer's avatar
Sam Shleifer committed
2139
2140
2141
2142
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

2143
2144
2145
2146
2147
2148
2149
2150
2151
        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
NielsRogge's avatar
NielsRogge committed
2152
2153
2154
2155
2156
                    elif isinstance(tuple_object, Dict):
                        for tuple_iterable_value, dict_iterable_value in zip(
                            tuple_object.values(), dict_object.values()
                        ):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
2157
2158
2159
2160
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
Sam Shleifer's avatar
Sam Shleifer committed
2161
2162
2163
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
Sylvain Gugger's avatar
Sylvain Gugger committed
2164
2165
2166
2167
2168
2169
                            msg=(
                                "Tuple and dict output are not equal. Difference:"
                                f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                                f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                                f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                            ),
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

2195
2196
2197
2198
            if self.has_attentions:
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
2199

2200
2201
2202
2203
2204
2205
2206
2207
2208
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(
                    model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
                )
2209

2210
2211
2212
2213
    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _make_attention_mask_non_null(self, inputs_dict):
        """Make sure no sequence has all zeros as attention mask"""
2214

2215
2216
2217
        for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]:
            if k in inputs_dict:
                attention_mask = inputs_dict[k]
2218

2219
2220
2221
2222
2223
2224
                # Make sure no all 0s attention masks - to avoid failure at this moment.
                # Put `1` at the beginning of sequences to make it still work when combining causal attention masks.
                # TODO: remove this line once a fix regarding large negative values for attention mask is done.
                attention_mask = torch.cat(
                    [torch.ones_like(attention_mask[:, :1], dtype=attention_mask.dtype), attention_mask[:, 1:]], dim=-1
                )
2225

2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
                # Here we make the first sequence with all 0s as attention mask.
                # Currently, this will fail for `TFWav2Vec2Model`. This is caused by the different large negative
                # values, like `1e-4`, `1e-9`, `1e-30` and `-inf` for attention mask across models/frameworks.
                # TODO: enable this block once the large negative values thing is cleaned up.
                # (see https://github.com/huggingface/transformers/issues/14859)
                # attention_mask = torch.cat(
                #     [torch.zeros_like(attention_mask[:1], dtype=attention_mask.dtype), attention_mask[1:]],
                #     dim=0
                # )

                inputs_dict[k] = attention_mask

    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _postprocessing_to_ignore_test_cases(self, tf_outputs, pt_outputs, model_class):
        """For temporarily ignoring some failed test cases (issues to be fixed)"""

2243
2244
        tf_keys = {k for k, v in tf_outputs.items() if v is not None}
        pt_keys = {k for k, v in pt_outputs.items() if v is not None}
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270

        key_differences = tf_keys.symmetric_difference(pt_keys)

        if model_class.__name__ in [
            "FlaubertWithLMHeadModel",
            "FunnelForPreTraining",
            "ElectraForPreTraining",
            "XLMWithLMHeadModel",
        ]:
            for k in key_differences:
                if k in ["loss", "losses"]:
                    tf_keys.discard(k)
                    pt_keys.discard(k)
        elif model_class.__name__.startswith("GPT2"):
            # `TFGPT2` has `past_key_values` as a tensor while `GPT2` has it as a tuple.
            tf_keys.discard("past_key_values")
            pt_keys.discard("past_key_values")

        # create new outputs from the remaining fields
        new_tf_outputs = type(tf_outputs)(**{k: tf_outputs[k] for k in tf_keys})
        new_pt_outputs = type(pt_outputs)(**{k: pt_outputs[k] for k in pt_keys})

        return new_tf_outputs, new_pt_outputs

    # Copied from tests.test_modeling_tf_common.TFModelTesterMixin.check_pt_tf_outputs
    def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
2271
        """Check the outputs from PyTorch and TensorFlow models are close enough. Checks are done in a recursive way.
2272

2273
2274
2275
2276
2277
2278
2279
2280
        Args:
            model_class: The class of the model that is currently testing. For example, `TFBertModel`,
                TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Mainly used for providing more informative
                error messages.
            name (`str`): The name of the output. For example, `output.hidden_states`, `output.attentions`, etc.
            attributes (`Tuple[str]`): The names of the output's element if the output is a tuple/list with each element
                being a named field in the output.
        """
2281

2282
2283
2284
        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")
2285

2286
2287
2288
2289
2290
2291
        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(tf_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `tf_outputs` is",
            )
2292

2293
2294
2295
            # Don't copy this block to model specific test file!
            # TODO: remove this method and this line after issues are fixed
            tf_outputs, pt_outputs = self._postprocessing_to_ignore_test_cases(tf_outputs, pt_outputs, model_class)
2296

2297
2298
            tf_keys = [k for k, v in tf_outputs.items() if v is not None]
            pt_keys = [k for k, v in pt_outputs.items() if v is not None]
2299

2300
            self.assertEqual(tf_keys, pt_keys, f"{name}: Output keys differ between TF and PyTorch")
2301

2302
            # convert to the case of `tuple`
2303
            # appending each key to the current (string) `name`
2304
2305
2306
2307
            attributes = tuple([f"{name}.{k}" for k in tf_keys])
            self.check_pt_tf_outputs(
                tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )
2308

2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(tf_outputs) in [tuple, list]:
            self.assertEqual(type(tf_outputs), type(pt_outputs), f"{name}: Output types differ between TF and PyTorch")
            self.assertEqual(len(tf_outputs), len(pt_outputs), f"{name}: Output lengths differ between TF and PyTorch")

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(tf_outputs),
2319
                    f"{name}: The tuple `attributes` should have the same length as `tf_outputs`",
2320
                )
2321
            else:
2322
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name`
2323
                attributes = tuple([f"{name}_{idx}" for idx in range(len(tf_outputs))])
2324

2325
2326
            for tf_output, pt_output, attr in zip(tf_outputs, pt_outputs, attributes):
                self.check_pt_tf_outputs(tf_output, pt_output, model_class, tol=tol, name=attr)
2327

2328
2329
2330
2331
        elif isinstance(tf_outputs, tf.Tensor):
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `tf_outputs` is"
            )
2332

2333
2334
            tf_outputs = tf_outputs.numpy()
            pt_outputs = pt_outputs.detach().to("cpu").numpy()
2335

2336
2337
2338
            self.assertEqual(
                tf_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between TF and PyTorch"
            )
2339

2340
2341
2342
2343
            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(tf_outputs):
                tf_outputs = np.array([tf_outputs])
                pt_outputs = np.array([pt_outputs])
2344

2345
2346
            tf_nans = np.isnan(tf_outputs)
            pt_nans = np.isnan(pt_outputs)
2347

2348
2349
2350
2351
            pt_outputs[tf_nans] = 0
            tf_outputs[tf_nans] = 0
            pt_outputs[pt_nans] = 0
            tf_outputs[pt_nans] = 0
2352

2353
            max_diff = np.amax(np.abs(tf_outputs - pt_outputs))
2354
            self.assertLessEqual(max_diff, tol, f"{name}: Difference between PyTorch and TF is {max_diff} (>= {tol}).")
2355
2356
        else:
            raise ValueError(
2357
                "`tf_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `tf.Tensor`. Got"
Sylvain Gugger's avatar
Sylvain Gugger committed
2358
                f" {type(tf_outputs)} instead."
2359
2360
            )

2361
2362
2363
2364
    def prepare_tf_inputs_from_pt_inputs(self, pt_inputs_dict):
        tf_inputs_dict = {}
        for key, tensor in pt_inputs_dict.items():
            # skip key that does not exist in tf
2365
            if isinstance(tensor, bool):
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
                tf_inputs_dict[key] = tensor
            elif key == "input_values":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            elif key == "pixel_values":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            elif key == "input_features":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            # other general float inputs
            elif tensor.is_floating_point():
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            else:
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.int32)
2378

2379
        return tf_inputs_dict
2380

2381
2382
    def check_pt_tf_models(self, tf_model, pt_model, pt_inputs_dict):
        tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
2383

2384
2385
2386
2387
        # send pytorch inputs to the correct device
        pt_inputs_dict = {
            k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items()
        }
2388

2389
2390
        # send pytorch model to the correct device
        pt_model.to(torch_device)
2391

2392
2393
        # Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences
        pt_model.eval()
2394

2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
        with torch.no_grad():
            pt_outputs = pt_model(**pt_inputs_dict)
        tf_outputs = tf_model(tf_inputs_dict)

        # tf models returned loss is usually a tensor rather than a scalar.
        # (see `hf_compute_loss`: it uses `tf.keras.losses.Reduction.NONE`)
        # Change it here to a scalar to match PyTorch models' loss
        tf_loss = getattr(tf_outputs, "loss", None)
        if tf_loss is not None:
            tf_outputs.loss = tf.math.reduce_mean(tf_loss)

        self.check_pt_tf_outputs(tf_outputs, pt_outputs, type(pt_model))

    @is_pt_tf_cross_test
Matt's avatar
Matt committed
2409
    def test_pt_tf_model_equivalence(self, allow_missing_keys=False):
2410
        import transformers
2411
2412

        for model_class in self.all_model_classes:
2413
2414
2415
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            tf_model_class_name = "TF" + model_class.__name__  # Add the "TF" at the beginning
2416
            if not hasattr(transformers, tf_model_class_name):
amyeroberts's avatar
amyeroberts committed
2417
                self.skipTest(reason="transformers does not have TF version of this model yet")
2418

2419
2420
2421
            # Output all for aggressive testing
            config.output_hidden_states = True
            config.output_attentions = self.has_attentions
2422

2423
2424
2425
2426
            # Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency
            # of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`.
            # TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it.
            self._make_attention_mask_non_null(inputs_dict)
2427
2428

            tf_model_class = getattr(transformers, tf_model_class_name)
2429
2430

            pt_model = model_class(config)
2431
2432
2433
2434
2435
2436
2437
2438
2439
            tf_model = tf_model_class(config)

            pt_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            pt_inputs_dict_with_labels = self._prepare_for_class(
                inputs_dict,
                model_class,
                # Not all models accept "labels" in the forward pass (yet :) )
                return_labels=True if "labels" in inspect.signature(model_class.forward).parameters.keys() else False,
            )
2440
2441
2442
2443
2444
2445
2446
2447
2448

            # make sure only tf inputs are forward that actually exist in function args
            tf_input_keys = set(inspect.signature(tf_model.call).parameters.keys())

            # remove all head masks
            tf_input_keys.discard("head_mask")
            tf_input_keys.discard("cross_attn_head_mask")
            tf_input_keys.discard("decoder_head_mask")

2449
            pt_inputs_dict = {k: v for k, v in pt_inputs_dict.items() if k in tf_input_keys}
2450
2451
2452
2453
            pt_inputs_dict_with_labels = {k: v for k, v in pt_inputs_dict_with_labels.items() if k in tf_input_keys}

            # For some models (e.g. base models), there is no label returned.
            # Set the input dict to `None` to avoid check outputs twice for the same input dicts.
2454
            if not set(pt_inputs_dict_with_labels.keys()).symmetric_difference(pt_inputs_dict.keys()):
2455
                pt_inputs_dict_with_labels = None
2456
2457

            # Check we can load pt model in tf and vice-versa with model => model functions
2458
2459
            # Here requires `tf_inputs_dict` to build `tf_model`
            tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
Matt's avatar
Matt committed
2460
2461
2462
2463
2464
2465
            tf_model = transformers.load_pytorch_model_in_tf2_model(
                tf_model, pt_model, tf_inputs=tf_inputs_dict, allow_missing_keys=allow_missing_keys
            )
            pt_model = transformers.load_tf2_model_in_pytorch_model(
                pt_model, tf_model, allow_missing_keys=allow_missing_keys
            )
2466

2467
2468
2469
2470
2471
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
            # check with `labels`
            if pt_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels)
2472
2473
2474
2475
2476

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
Matt's avatar
Matt committed
2477
2478
2479
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(
                    tf_model, pt_checkpoint_path, allow_missing_keys=allow_missing_keys
                )
2480
2481
2482

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
Matt's avatar
Matt committed
2483
2484
2485
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(
                    pt_model, tf_checkpoint_path, allow_missing_keys=allow_missing_keys
                )
2486

2487
2488
2489
2490
2491
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
            # check with `labels`
            if pt_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels)
2492
2493
2494
2495
2496

    def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
        diff = np.abs((a - b)).max()
        self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).")

2497
    def check_pt_flax_outputs(self, fx_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
2498
2499
2500
2501
2502
2503
2504
2505
2506
        """
        Args:
            model_class: The class of the model that is currently testing. For example, ..., etc.
            Currently unused, but it could make debugging easier and faster.

            names: A string, or a list of strings. These specify what fx_outputs/pt_outputs represent in the model outputs.
                Currently unused, but in the future, we could use this information to make the error message clearer
                by giving the name(s) of the output tensor(s) with large difference(s) between PT and Flax.
        """
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546

        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")

        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(fx_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `fx_outputs` is",
            )

            fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
            pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

            self.assertEqual(fx_keys, pt_keys, f"{name}: Output keys differ between Flax and PyTorch")

            # convert to the case of `tuple`
            # appending each key to the current (string) `name`
            attributes = tuple([f"{name}.{k}" for k in fx_keys])
            self.check_pt_flax_outputs(
                fx_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )

        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(fx_outputs) in [tuple, list]:
            self.assertEqual(
                type(fx_outputs), type(pt_outputs), f"{name}: Output types differ between Flax and PyTorch"
            )
            self.assertEqual(
                len(fx_outputs), len(pt_outputs), f"{name}: Output lengths differ between Flax and PyTorch"
            )

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(fx_outputs),
                    f"{name}: The tuple `attributes` should have the same length as `fx_outputs`",
                )
2547
            else:
2548
2549
2550
2551
2552
2553
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name`
                attributes = tuple([f"{name}_{idx}" for idx in range(len(fx_outputs))])

            for fx_output, pt_output, attr in zip(fx_outputs, pt_outputs, attributes):
                self.check_pt_flax_outputs(fx_output, pt_output, model_class, tol=tol, name=attr)

2554
        elif isinstance(fx_outputs, jnp.ndarray):
2555
2556
2557
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `fx_outputs` is"
            )
2558
2559
2560
2561
2562

            # Using `np.asarray` gives `ValueError: assignment destination is read-only` at the line `fx_outputs[fx_nans] = 0`.
            fx_outputs = np.array(fx_outputs)
            pt_outputs = pt_outputs.detach().to("cpu").numpy()

2563
2564
2565
2566
2567
2568
2569
2570
2571
            self.assertEqual(
                fx_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between Flax and PyTorch"
            )

            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(fx_outputs):
                fx_outputs = np.array([fx_outputs])
                pt_outputs = np.array([pt_outputs])

2572
2573
2574
2575
2576
2577
2578
2579
            fx_nans = np.isnan(fx_outputs)
            pt_nans = np.isnan(pt_outputs)

            pt_outputs[fx_nans] = 0
            fx_outputs[fx_nans] = 0
            pt_outputs[pt_nans] = 0
            fx_outputs[pt_nans] = 0

2580
2581
2582
2583
            max_diff = np.amax(np.abs(fx_outputs - pt_outputs))
            self.assertLessEqual(
                max_diff, tol, f"{name}: Difference between PyTorch and Flax is {max_diff} (>= {tol})."
            )
2584
2585
        else:
            raise ValueError(
2586
2587
                "`fx_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `jnp.ndarray`. Got"
                f" {type(fx_outputs)} instead."
2588
2589
            )

2590
2591
2592
2593
2594
2595
2596
2597
2598
    @is_pt_flax_cross_test
    def test_equivalence_pt_to_flax(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
amyeroberts's avatar
amyeroberts committed
2599
                    self.skipTest(reason="No Flax model exists for this class")
2600

2601
2602
2603
2604
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

2605
2606
                fx_model_class = getattr(transformers, fx_model_class_name)

2607
2608
2609
2610
2611
2612
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

2613
2614
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
2615

2616
2617
2618
2619
2620
2621
2622
2623
2624
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

2625
2626
2627
2628
2629
2630
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }

                # convert inputs to Flax
2631
                fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)}
2632

2633
2634
2635
                fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
                fx_model.params = fx_state

2636
2637
2638
                # send pytorch model to the correct device
                pt_model.to(torch_device)

2639
                with torch.no_grad():
2640
2641
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)
2642

2643
2644
2645
2646
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2647
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)
2648
2649
2650
2651
2652

                with tempfile.TemporaryDirectory() as tmpdirname:
                    pt_model.save_pretrained(tmpdirname)
                    fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, from_pt=True)

2653
2654
2655
2656
2657
2658
                fx_outputs_loaded = fx_model_loaded(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs_loaded.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2659
                self.check_pt_flax_outputs(fx_outputs_loaded, pt_outputs, model_class)
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669

    @is_pt_flax_cross_test
    def test_equivalence_flax_to_pt(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
amyeroberts's avatar
amyeroberts committed
2670
                    self.skipTest(reason="No Flax model exists for this class")
2671

2672
2673
2674
2675
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

2676
2677
                fx_model_class = getattr(transformers, fx_model_class_name)

2678
2679
2680
2681
2682
2683
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

2684
2685
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
2686

2687
2688
2689
2690
2691
2692
2693
2694
2695
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

2696
2697
2698
2699
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }
2700

2701
                # convert inputs to Flax
2702
                fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)}
2703

2704
2705
2706
2707
2708
2709
2710
                pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)

                # make sure weights are tied in PyTorch
                pt_model.tie_weights()

                # send pytorch model to the correct device
                pt_model.to(torch_device)
2711

2712
2713
2714
2715
2716
2717
2718
2719
                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2720
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)
2721
2722
2723

                with tempfile.TemporaryDirectory() as tmpdirname:
                    fx_model.save_pretrained(tmpdirname)
2724
2725
2726
                    pt_model_loaded = model_class.from_pretrained(
                        tmpdirname, from_flax=True, attn_implementation=fx_model.config._attn_implementation
                    )
2727

2728
2729
2730
2731
                # send pytorch model to the correct device
                pt_model_loaded.to(torch_device)
                pt_model_loaded.eval()

2732
                with torch.no_grad():
2733
                    pt_outputs_loaded = pt_model_loaded(**pt_inputs)
2734

2735
2736
2737
2738
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs_loaded.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2739
                self.check_pt_flax_outputs(fx_outputs, pt_outputs_loaded, model_class)
2740

Patrick von Platen's avatar
Patrick von Platen committed
2741
    def test_inputs_embeds(self):
2742
2743
2744
2745
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
2746
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
2747
            model.eval()
2748

2749
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
2750

2751
2752
2753
2754
2755
2756
2757
2758
2759
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

2760
2761
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
2762
                inputs["inputs_embeds"] = wte(input_ids)
2763
            else:
2764
2765
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
2766

thomwolf's avatar
thomwolf committed
2767
            with torch.no_grad():
Weizhen's avatar
Weizhen committed
2768
                model(**inputs)[0]
2769

2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
    def test_inputs_embeds_matches_input_ids(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class.__name__ not in get_values(MODEL_MAPPING_NAMES):
                continue
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            model_forward_args = inspect.signature(model.forward).parameters
            if "inputs_embeds" not in model_forward_args:
amyeroberts's avatar
amyeroberts committed
2782
                self.skipTest(reason="This model doesn't use `inputs_embeds`")
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814

            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
            pad_token_id = config.pad_token_id if config.pad_token_id is not None else 1

            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                # some models infer position ids/attn mask differently when input ids
                # by check if pad_token let's make sure no padding is in input ids
                not_pad_token_id = pad_token_id + 1 if max(0, pad_token_id - 1) == 0 else pad_token_id - 1
                input_ids[input_ids == pad_token_id] = not_pad_token_id
                del inputs["input_ids"]
                inputs_embeds = wte(input_ids)
                with torch.no_grad():
                    out_ids = model(input_ids=input_ids, **inputs)[0]
                    out_embeds = model(inputs_embeds=inputs_embeds, **inputs)[0]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                encoder_input_ids[encoder_input_ids == pad_token_id] = max(0, pad_token_id + 1)
                decoder_input_ids[decoder_input_ids == pad_token_id] = max(0, pad_token_id + 1)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)
                inputs_embeds = wte(encoder_input_ids)
                decoder_inputs_embeds = wte(decoder_input_ids)
                with torch.no_grad():
                    out_ids = model(input_ids=encoder_input_ids, decoder_input_ids=decoder_input_ids, **inputs)[0]
                    out_embeds = model(
                        inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, **inputs
                    )[0]
            self.assertTrue(torch.allclose(out_embeds, out_ids))

2815
2816
    @require_torch_multi_gpu
    def test_multi_gpu_data_parallel_forward(self):
2817
2818
2819
2820
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
2821
        blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"]
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
2836
            model = nn.DataParallel(model)
2837
            with torch.no_grad():
2838
                _ = model(**self._prepare_for_class(inputs_dict, model_class))
2839

2840
2841
2842
    @require_torch_multi_gpu
    def test_model_parallelization(self):
        if not self.test_model_parallel:
amyeroberts's avatar
amyeroberts committed
2843
            self.skipTest(reason="test_model_parallel is set to False")
2844

2845
        # a candidate for testing_utils
2846
        def get_current_gpu_memory_use():
Patrick von Platen's avatar
Patrick von Platen committed
2847
            """returns a list of cuda memory allocations per GPU in MBs"""
2848
2849
2850
2851
2852

            per_device_memory = []
            for id in range(torch.cuda.device_count()):
                with torch.cuda.device(id):
                    per_device_memory.append(torch.cuda.memory_allocated() >> 20)
2853
2854
2855
2856
2857
2858
2859
2860
2861

            return per_device_memory

        # Needs a large model to see the difference.
        config = self.model_tester.get_large_model_config()

        for model_class in self.all_parallelizable_model_classes:
            torch.cuda.empty_cache()

2862
2863
2864
            # 1. single gpu memory load + unload + memory measurements
            # Retrieve initial memory usage (can easily be ~0.6-1.5GB if cuda-kernels have been preloaded by previous tests)
            memory_at_start = get_current_gpu_memory_use()
2865

2866
2867
            # Put model on device 0 and take a memory snapshot
            model = model_class(config)
2868
2869
2870
            model.to("cuda:0")
            memory_after_model_load = get_current_gpu_memory_use()

2871
2872
2873
            # The memory use on device 0 should be higher than it was initially.
            self.assertGreater(memory_after_model_load[0], memory_at_start[0])

2874
            del model
2875
            gc.collect()
2876
2877
            torch.cuda.empty_cache()

2878
2879
2880
            # 2. MP test
            # it's essential to re-calibrate the usage before the next stage
            memory_at_start = get_current_gpu_memory_use()
2881
2882

            # Spread model layers over multiple devices
2883
            model = model_class(config)
2884
2885
2886
2887
            model.parallelize()
            memory_after_parallelization = get_current_gpu_memory_use()

            # Assert that the memory use on all devices is higher than it was when loaded only on CPU
2888
            for n in range(len(model.device_map.keys())):
2889
                self.assertGreater(memory_after_parallelization[n], memory_at_start[n])
2890

2891
            # Assert that the memory use of device 0 is lower than it was when the entire model was loaded on it
2892
2893
            self.assertLess(memory_after_parallelization[0], memory_after_model_load[0])

2894
2895
            # Assert that the memory use of device 1 is higher than it was when the entire model was loaded
            # on device 0 and device 1 wasn't used at all
2896
2897
2898
            self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1])

            del model
2899
            gc.collect()
2900
2901
2902
2903
2904
            torch.cuda.empty_cache()

    @require_torch_multi_gpu
    def test_model_parallel_equal_results(self):
        if not self.test_model_parallel:
amyeroberts's avatar
amyeroberts committed
2905
            self.skipTest(reason="test_model_parallel is set to False")
2906
2907
2908
2909
2910
2911

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)

2912
            def cast_to_device(dictionary, device):
2913
2914
2915
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
2916
                        output[k] = v.to(device)
2917
2918
2919
2920
2921
                    else:
                        output[k] = v

                return output

2922
2923
2924
2925
2926
2927
            model = model_class(config)
            output = model(**cast_to_device(inputs_dict, "cpu"))

            model.parallelize()

            parallel_output = model(**cast_to_device(inputs_dict, "cuda:0"))
2928
2929
2930
2931
2932
2933
2934
2935

            for value, parallel_value in zip(output, parallel_output):
                if isinstance(value, torch.Tensor):
                    self.assertTrue(torch.allclose(value, parallel_value.to("cpu"), atol=1e-7))
                elif isinstance(value, (Tuple, List)):
                    for value_, parallel_value_ in zip(value, parallel_value):
                        self.assertTrue(torch.allclose(value_, parallel_value_.to("cpu"), atol=1e-7))

2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
    def check_device_map_is_respected(self, model, device_map):
        for param_name, param in model.named_parameters():
            # Find device in device_map
            while len(param_name) > 0 and param_name not in device_map:
                param_name = ".".join(param_name.split(".")[:-1])
            if param_name not in device_map:
                raise ValueError("device map is incomplete, it does not contain any device for `param_name`.")

            param_device = device_map[param_name]
            if param_device in ["cpu", "disk"]:
                self.assertEqual(param.device, torch.device("meta"))
2947
2948
            elif param_device in ["mps"]:
                self.assertEqual(param.device, torch.device("mps"))
2949
            else:
2950
2951
                # when loaded with device_map, `param_device` are integer values for cuda/xpu/npu/mlu
                self.assertEqual(param.device, torch.device(f"{torch_device}:{param_device}"))
2952

Sylvain Gugger's avatar
Sylvain Gugger committed
2953
    @require_accelerate
2954
    @mark.accelerate_tests
Sylvain Gugger's avatar
Sylvain Gugger committed
2955
    @require_torch_gpu
2956
    def test_disk_offload_bin(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
2957
2958
2959
2960
2961
2962
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

2963
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2964
2965
            model = model_class(config).eval()
            model = model.to(torch_device)
2966
            torch.manual_seed(0)
2967
            base_output = model(**inputs_dict_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2968
2969
2970

            model_size = compute_module_sizes(model)[""]
            with tempfile.TemporaryDirectory() as tmp_dir:
2971
                model.cpu().save_pretrained(tmp_dir, safe_serialization=False)
Sylvain Gugger's avatar
Sylvain Gugger committed
2972
2973

                with self.assertRaises(ValueError):
Yih-Dar's avatar
Yih-Dar committed
2974
2975
                    max_size = int(self.model_split_percents[0] * model_size)
                    max_memory = {0: max_size, "cpu": max_size}
Sylvain Gugger's avatar
Sylvain Gugger committed
2976
2977
2978
                    # This errors out cause it's missing an offload folder
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)

Yih-Dar's avatar
Yih-Dar committed
2979
2980
                max_size = int(self.model_split_percents[1] * model_size)
                max_memory = {0: max_size, "cpu": max_size}
Sylvain Gugger's avatar
Sylvain Gugger committed
2981
2982
2983
2984
2985
                new_model = model_class.from_pretrained(
                    tmp_dir, device_map="auto", max_memory=max_memory, offload_folder=tmp_dir
                )

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)
2986
                torch.manual_seed(0)
2987
                new_output = new_model(**inputs_dict_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2988

2989
2990
2991
2992
                if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple):
                    self.assertTrue(torch.allclose(a, b, atol=1e-5) for a, b in zip(base_output[0], new_output[0]))
                else:
                    self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
Sylvain Gugger's avatar
Sylvain Gugger committed
2993

2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
    @require_accelerate
    @mark.accelerate_tests
    @require_torch_gpu
    def test_disk_offload_safetensors(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config).eval()
            model = model.to(torch_device)
            torch.manual_seed(0)
            base_output = model(**inputs_dict_class)

            model_size = compute_module_sizes(model)[""]
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                max_size = int(self.model_split_percents[1] * model_size)
                max_memory = {0: max_size, "cpu": max_size}

                # This doesn't error out as it's in safetensors and doesn't need an offload folder
                new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)
                torch.manual_seed(0)
                new_output = new_model(**inputs_dict_class)

3024
3025
3026
3027
                if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple):
                    self.assertTrue(torch.allclose(a, b, atol=1e-5) for a, b in zip(base_output[0], new_output[0]))
                else:
                    self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
3028

3029
    @require_accelerate
3030
    @mark.accelerate_tests
3031
3032
3033
3034
3035
3036
3037
3038
    @require_torch_gpu
    def test_cpu_offload(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

3039
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
3040
3041
            model = model_class(config).eval()
            model = model.to(torch_device)
3042
3043

            torch.manual_seed(0)
3044
            base_output = model(**inputs_dict_class)
3045
3046
3047

            model_size = compute_module_sizes(model)[""]
            # We test several splits of sizes to make sure it works.
Yih-Dar's avatar
Yih-Dar committed
3048
            max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                for max_size in max_gpu_sizes:
                    max_memory = {0: max_size, "cpu": model_size * 2}
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                    # Making sure part of the model will actually end up offloaded
                    self.assertSetEqual(set(new_model.hf_device_map.values()), {0, "cpu"})

                    self.check_device_map_is_respected(new_model, new_model.hf_device_map)
3059
3060

                    torch.manual_seed(0)
3061
                    new_output = new_model(**inputs_dict_class)
3062

3063
3064
3065
3066
                    if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple):
                        self.assertTrue(torch.allclose(a, b, atol=1e-5) for a, b in zip(base_output[0], new_output[0]))
                    else:
                        self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
3067
3068

    @require_accelerate
3069
    @mark.accelerate_tests
3070
    @require_torch_multi_accelerator
3071
3072
3073
3074
3075
3076
3077
    def test_model_parallelism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

3078
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
3079
3080
            model = model_class(config).eval()
            model = model.to(torch_device)
3081
3082

            torch.manual_seed(0)
3083
            base_output = model(**inputs_dict_class)
3084
3085
3086

            model_size = compute_module_sizes(model)[""]
            # We test several splits of sizes to make sure it works.
3087
            max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
3088
3089
3090
3091
3092
3093
3094
3095
3096
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                for max_size in max_gpu_sizes:
                    max_memory = {0: max_size, 1: model_size * 2, "cpu": model_size * 2}
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                    # Making sure part of the model will actually end up offloaded
                    self.assertSetEqual(set(new_model.hf_device_map.values()), {0, 1})
                    self.check_device_map_is_respected(new_model, new_model.hf_device_map)
3097
3098

                    torch.manual_seed(0)
3099
                    new_output = new_model(**inputs_dict_class)
3100

3101
3102
3103
3104
                    if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple):
                        self.assertTrue(torch.allclose(a, b, atol=1e-5) for a, b in zip(base_output[0], new_output[0]))
                    else:
                        self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
3105

3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
    def test_problem_types(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        problem_types = [
            {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
            {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
            {"title": "regression", "num_labels": 1, "dtype": torch.float},
        ]

        for model_class in self.all_model_classes:
3116
3117
3118
            if model_class.__name__ not in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
3119
            ]:
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
                continue

            for problem_type in problem_types:
                with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):
                    config.problem_type = problem_type["title"]
                    config.num_labels = problem_type["num_labels"]

                    model = model_class(config)
                    model.to(torch_device)
                    model.train()

                    inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)

                    if problem_type["num_labels"] > 1:
                        inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])

                    inputs["labels"] = inputs["labels"].to(problem_type["dtype"])

3138
3139
3140
3141
3142
3143
                    # This tests that we do not trigger the warning form PyTorch "Using a target size that is different
                    # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
                    # they have the same size." which is a symptom something in wrong for the regression problem.
                    # See https://github.com/huggingface/transformers/issues/11780
                    with warnings.catch_warnings(record=True) as warning_list:
                        loss = model(**inputs).loss
3144
3145
3146
3147
3148
                    for w in warning_list:
                        if "Using a target size that is different to the input size" in str(w.message):
                            raise ValueError(
                                f"Something is going wrong in the regression problem: intercepted {w.message}"
                            )
3149

3150
3151
                    loss.backward()

3152
    def test_load_with_mismatched_shapes(self):
3153
        if not self.test_mismatched_shapes:
amyeroberts's avatar
amyeroberts committed
3154
            self.skipTest(reason="test_missmatched_shapes is set to False")
3155
3156
3157
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
3158
            if model_class.__name__ not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES):
3159
3160
3161
3162
3163
3164
3165
3166
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(config)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
3167
                    with self.assertRaises(RuntimeError):
3168
                        new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
3169
3170
                    with self.assertRaises(RuntimeError):
                        new_model_without_prefix = AutoModel.from_pretrained(tmp_dir, vocab_size=10)
3171
3172

                    logger = logging.get_logger("transformers.modeling_utils")
3173

3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
                    with CaptureLogger(logger) as cl:
                        new_model = AutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    new_model.to(torch_device)
                    inputs = self._prepare_for_class(inputs_dict, model_class)
                    logits = new_model(**inputs).logits
                    self.assertEqual(logits.shape[1], 42)

3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
                    with CaptureLogger(logger) as cl:
                        new_model_without_prefix = AutoModel.from_pretrained(
                            tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    input_ids = ids_tensor((2, 8), 10)
                    new_model_without_prefix.to(torch_device)
                    if self.is_encoder_decoder:
                        new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
                    else:
                        new_model_without_prefix(input_ids)

3196
3197
    def test_mismatched_shapes_have_properly_initialized_weights(self):
        if not self.test_mismatched_shapes:
amyeroberts's avatar
amyeroberts committed
3198
            self.skipTest(reason="test_missmatched_shapes is set to False")
3199
3200
3201
3202
3203
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)

        for model_class in self.all_model_classes:
Yih-Dar's avatar
Yih-Dar committed
3204
3205
3206
3207
3208
3209
3210
3211
3212
            mappings = [
                MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
                MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
                MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
                MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
            ]
            is_classication_model = any(model_class.__name__ in get_values(mapping) for mapping in mappings)

            if not is_classication_model:
3213
3214
                continue

Yih-Dar's avatar
Yih-Dar committed
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
            # TODO: ydshieh
            is_special_classes = model_class.__name__ in [
                "wav2vec2.masked_spec_embed",
                "Wav2Vec2ForSequenceClassification",
                "CLIPForImageClassification",
                "RegNetForImageClassification",
                "ResNetForImageClassification",
                "UniSpeechSatForSequenceClassification",
                "Wav2Vec2BertForSequenceClassification",
                "PvtV2ForImageClassification",
                "Wav2Vec2ConformerForSequenceClassification",
                "WavLMForSequenceClassification",
                "SwiftFormerForImageClassification",
                "SEWForSequenceClassification",
                "BitForImageClassification",
                "SEWDForSequenceClassification",
                "SiglipForImageClassification",
                "HubertForSequenceClassification",
                "Swinv2ForImageClassification",
                "Data2VecAudioForSequenceClassification",
                "UniSpeechForSequenceClassification",
                "PvtForImageClassification",
            ]
            special_param_names = [
                r"^bit\.",
                r"^classifier\.weight",
                r"^classifier\.bias",
                r"^classifier\..+\.weight",
                r"^classifier\..+\.bias",
                r"^data2vec_audio\.",
                r"^dist_head\.",
                r"^head\.",
                r"^hubert\.",
                r"^pvt\.",
                r"^pvt_v2\.",
                r"^regnet\.",
                r"^resnet\.",
                r"^sew\.",
                r"^sew_d\.",
                r"^swiftformer\.",
                r"^swinv2\.",
                r"^transformers\.models\.swiftformer\.",
                r"^unispeech\.",
                r"^unispeech_sat\.",
                r"^vision_model\.",
                r"^wav2vec2\.",
                r"^wav2vec2_bert\.",
                r"^wav2vec2_conformer\.",
                r"^wavlm\.",
            ]

3266
3267
3268
3269
3270
3271
3272
            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(configs_no_init)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
                    with self.assertRaises(RuntimeError):
Yih-Dar's avatar
Yih-Dar committed
3273
                        new_model = model_class.from_pretrained(tmp_dir, num_labels=42)
3274
3275
3276
3277

                    logger = logging.get_logger("transformers.modeling_utils")

                    with CaptureLogger(logger) as cl:
Yih-Dar's avatar
Yih-Dar committed
3278
                        new_model = model_class.from_pretrained(tmp_dir, num_labels=42, ignore_mismatched_sizes=True)
3279
3280
3281
3282
                    self.assertIn("the shapes did not match", cl.out)

                    for name, param in new_model.named_parameters():
                        if param.requires_grad:
Yih-Dar's avatar
Yih-Dar committed
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
                            param_mean = ((param.data.mean() * 1e9).round() / 1e9).item()
                            if not (
                                is_special_classes
                                and any(len(re.findall(target, name)) > 0 for target in special_param_names)
                            ):
                                self.assertIn(
                                    param_mean,
                                    [0.0, 1.0],
                                    msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                                )
                            else:
                                # Here we allow the parameters' mean to be in the range [-5.0, 5.0] instead of being
                                # either `0.0` or `1.0`, because their initializations are not using
                                # `config.initializer_factor` (or something similar). The purpose of this test is simply
                                # to make sure they are properly initialized (to avoid very large value or even `nan`).
                                self.assertGreaterEqual(
                                    param_mean,
                                    -5.0,
                                    msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                                )
                                self.assertLessEqual(
                                    param_mean,
                                    5.0,
                                    msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                                )
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376

    def test_matched_shapes_have_loaded_weights_when_some_mismatched_shapes_exist(self):
        # 1. Create a dummy class. Should have buffers as well? To make sure we test __init__
        class MyClass(PreTrainedModel):
            config_class = PretrainedConfig

            def __init__(self, config=None):
                super().__init__(config if config is not None else PretrainedConfig())
                self.linear = nn.Linear(10, config.num_labels, bias=True)
                self.embedding = nn.Embedding(10, 10)
                self.std = 1

            def _init_weights(self, module):
                if isinstance(module, nn.Linear):
                    module.weight.data = nn.init.kaiming_uniform_(module.weight.data, np.sqrt(5))
                    if module.bias is not None:
                        module.bias.data = module.bias.data.normal_(mean=0.0, std=self.std)

        # Used to make sure the weights with matched shape are loaded correctly
        config = PretrainedConfig()
        config.num_labels = 3
        model = MyClass(config=config)

        # Used to make sure the weights with mismatched shape are properly initialized
        set_seed(0)
        config = PretrainedConfig()
        config.num_labels = 4
        # not to init. the weights during the creation: to match the logic in `from_pretrained`, so we can keep the
        # same sequence of random ops in the execution path to allow us to compare `target_model` and `new_model` below
        # for `linear` part.
        with ContextManagers([no_init_weights(True)]):
            target_model = MyClass(config=config)
        target_model.apply(target_model._initialize_weights)

        with tempfile.TemporaryDirectory() as tmpdirname:
            state_dict = model.state_dict()
            del state_dict["linear.weight"]

            model.config.save_pretrained(tmpdirname)
            torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

            set_seed(0)
            new_model = MyClass.from_pretrained(tmpdirname, num_labels=4, ignore_mismatched_sizes=True)

            for key in new_model.state_dict().keys():
                # check weight values for weights with matched shapes are identical
                # (i.e. correctly loaded from the checkpoint)
                if key not in ["linear.weight", "linear.bias"]:
                    max_diff = torch.max(torch.abs(model.state_dict()[key] - new_model.state_dict()[key]))
                    self.assertLessEqual(
                        max_diff.item(),
                        1e-6,
                        msg=f"the weight values for `{key}` in `new_model` and `model` are  not identical",
                    )
                else:
                    # check we have some mismatched shapes
                    self.assertNotEqual(
                        model.state_dict()[key].shape,
                        new_model.state_dict()[key].shape,
                        msg=f"the weight shapes for {key} in `model` and `new_model` should differ",
                    )
                    # check the weights with mismatched shape are properly initialized
                    max_diff = torch.max(torch.abs(new_model.state_dict()[key] - target_model.state_dict()[key]))
                    self.assertLessEqual(
                        max_diff.item(),
                        1e-6,
                        msg=f"the weight values for `{key}` in `new_model` and `target_model` are not identical",
                    )

3377
3378
3379
3380
3381
3382
3383
3384
3385
    def test_model_is_small(self):
        # Just a consistency check to make sure we are not running tests on 80M parameter models.
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            num_params = model.num_parameters()
            assert (
                num_params < 1000000
3386
            ), f"{model_class} is too big for the common tests ({num_params})! It should have 1M max."
3387

3388
3389
3390
3391
3392
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_conversion(self):
amyeroberts's avatar
amyeroberts committed
3393
3394
3395
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

3396
3397
3398
3399
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class._supports_flash_attn_2:
3400
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3401
3402
3403
3404
3405
3406

            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(
3407
                    tmpdirname, torch_dtype=torch.float16, attn_implementation="flash_attention_2"
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
                ).to(torch_device)

                for _, module in model.named_modules():
                    if "FlashAttention" in module.__class__.__name__:
                        return

                self.assertTrue(False, "FlashAttention2 modules not found in model")

    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
3420
    @is_flaky()
Yoach Lacombe's avatar
Yoach Lacombe committed
3421
    def test_flash_attn_2_inference_equivalence(self):
amyeroberts's avatar
amyeroberts committed
3422
3423
3424
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

3425
3426
        for model_class in self.all_model_classes:
            if not model_class._supports_flash_attn_2:
3427
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3428

3429
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
3430
3431
3432
3433
3434
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model_fa = model_class.from_pretrained(
3435
                    tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
3436
3437
3438
                )
                model_fa.to(torch_device)

Yoach Lacombe's avatar
Yoach Lacombe committed
3439
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.bfloat16)
3440
3441
                model.to(torch_device)

3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
                dummy_input = inputs_dict[model.main_input_name][:1]
                if dummy_input.dtype in [torch.float32, torch.float16]:
                    dummy_input = dummy_input.to(torch.bfloat16)

                dummy_attention_mask = inputs_dict.get("attention_mask", None)

                if dummy_attention_mask is not None:
                    dummy_attention_mask = dummy_attention_mask[:1]
                    dummy_attention_mask[:, 1:] = 1
                    dummy_attention_mask[:, :1] = 0
3452

3453
3454
3455
3456
3457
3458
3459
3460
                if model.config.is_encoder_decoder:
                    decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[:1]

                    outputs = model(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
                    outputs_fa = model_fa(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
                else:
                    outputs = model(dummy_input, output_hidden_states=True)
                    outputs_fa = model_fa(dummy_input, output_hidden_states=True)
3461

3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
                logits = (
                    outputs.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs.decoder_hidden_states[-1]
                )
                logits_fa = (
                    outputs_fa.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs_fa.decoder_hidden_states[-1]
                )
3472

3473
                assert torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2)
3474

3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
                if model.config.is_encoder_decoder:
                    other_inputs = {
                        "decoder_input_ids": decoder_input_ids,
                        "decoder_attention_mask": dummy_attention_mask,
                        "output_hidden_states": True,
                    }
                    if dummy_attention_mask is not None:
                        other_inputs["attention_mask"] = dummy_attention_mask

                    outputs = model(dummy_input, **other_inputs)
                    outputs_fa = model_fa(dummy_input, **other_inputs)
                else:
                    other_inputs = {
                        "output_hidden_states": True,
                    }
                    if dummy_attention_mask is not None:
                        other_inputs["attention_mask"] = dummy_attention_mask

                    outputs = model(dummy_input, **other_inputs)
                    outputs_fa = model_fa(dummy_input, **other_inputs)

                logits = (
                    outputs.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs.decoder_hidden_states[-1]
                )
                logits_fa = (
                    outputs_fa.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs_fa.decoder_hidden_states[-1]
                )
3506

3507
                assert torch.allclose(logits_fa[1:], logits[1:], atol=4e-2, rtol=4e-2)
3508

3509
3510
                # check with inference + dropout
                model.train()
3511
                _ = model_fa(dummy_input, **other_inputs)
3512

3513
3514
3515
3516
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
3517
    @is_flaky()
Yoach Lacombe's avatar
Yoach Lacombe committed
3518
    def test_flash_attn_2_inference_equivalence_right_padding(self):
amyeroberts's avatar
amyeroberts committed
3519
3520
3521
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

3522
3523
        for model_class in self.all_model_classes:
            if not model_class._supports_flash_attn_2:
3524
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3525

3526
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
3527
3528
3529
3530
3531
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model_fa = model_class.from_pretrained(
3532
                    tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
3533
3534
3535
                )
                model_fa.to(torch_device)

Yoach Lacombe's avatar
Yoach Lacombe committed
3536
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.bfloat16)
3537
3538
                model.to(torch_device)

3539
3540
3541
3542
3543
                dummy_input = inputs_dict[model.main_input_name][:1]
                if dummy_input.dtype in [torch.float32, torch.float16]:
                    dummy_input = dummy_input.to(torch.bfloat16)

                dummy_attention_mask = inputs_dict.get("attention_mask", None)
3544

3545
3546
3547
3548
                if dummy_attention_mask is not None:
                    dummy_attention_mask = dummy_attention_mask[:1]
                    dummy_attention_mask[:, :-1] = 1
                    dummy_attention_mask[:, -1:] = 0
3549

3550
3551
                if model.config.is_encoder_decoder:
                    decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[:1]
3552

3553
3554
3555
3556
3557
                    outputs = model(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
                    outputs_fa = model_fa(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
                else:
                    outputs = model(dummy_input, output_hidden_states=True)
                    outputs_fa = model_fa(dummy_input, output_hidden_states=True)
3558

3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
                logits = (
                    outputs.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs.decoder_hidden_states[-1]
                )
                logits_fa = (
                    outputs_fa.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs_fa.decoder_hidden_states[-1]
                )
3569

3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
                assert torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2)

                if model.config.is_encoder_decoder:
                    other_inputs = {
                        "decoder_input_ids": decoder_input_ids,
                        "decoder_attention_mask": dummy_attention_mask,
                        "output_hidden_states": True,
                    }
                    if dummy_attention_mask is not None:
                        other_inputs["attention_mask"] = dummy_attention_mask

                    outputs = model(dummy_input, **other_inputs)
                    outputs_fa = model_fa(dummy_input, **other_inputs)
                else:
                    other_inputs = {
                        "output_hidden_states": True,
                    }
                    if dummy_attention_mask is not None:
                        other_inputs["attention_mask"] = dummy_attention_mask

                    outputs = model(dummy_input, **other_inputs)
                    outputs_fa = model_fa(dummy_input, **other_inputs)

                logits = (
                    outputs.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs.decoder_hidden_states[-1]
                )
                logits_fa = (
                    outputs_fa.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs_fa.decoder_hidden_states[-1]
                )

                assert torch.allclose(logits_fa[:-1], logits[:-1], atol=4e-2, rtol=4e-2)
3605
3606
3607
3608
3609

    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
3610
    @is_flaky()
3611
    def test_flash_attn_2_generate_left_padding(self):
amyeroberts's avatar
amyeroberts committed
3612
3613
3614
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

3615
3616
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
3617
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3618

3619
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
3620
3621
3622
3623
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
3624
3625
3626
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True).to(
                    torch_device
                )
3627

3628
3629
3630
3631
3632
3633
3634
3635
                dummy_input = inputs_dict[model.main_input_name]
                if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                    dummy_input = dummy_input.to(torch.float16)

                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
                # make sure we do left padding
                dummy_attention_mask[:, :-1] = 0
                dummy_attention_mask[:, -1:] = 1
3636
3637
3638
3639
3640
3641

                out = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

                model = model_class.from_pretrained(
3642
3643
3644
3645
                    tmpdirname,
                    torch_dtype=torch.float16,
                    attn_implementation="flash_attention_2",
                    low_cpu_mem_usage=True,
3646
3647
3648
3649
3650
3651
                ).to(torch_device)

                out_fa = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

3652
                self.assertTrue(torch.allclose(out, out_fa))
3653
3654
3655
3656

    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
3657
    @is_flaky()
3658
3659
    @slow
    def test_flash_attn_2_generate_padding_right(self):
amyeroberts's avatar
amyeroberts committed
3660
3661
3662
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

3663
3664
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
3665
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3666

3667
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
3668
3669
3670
3671
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
3672
3673
3674
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True).to(
                    torch_device
                )
3675

3676
3677
3678
3679
3680
                dummy_input = inputs_dict[model.main_input_name]
                if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                    dummy_input = dummy_input.to(torch.float16)

                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
3681
                # make sure we do right padding
3682
3683
                dummy_attention_mask[:, :-1] = 1
                dummy_attention_mask[:, -1:] = 0
3684
3685
3686
3687
3688
3689

                out = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

                model = model_class.from_pretrained(
3690
3691
3692
3693
                    tmpdirname,
                    torch_dtype=torch.float16,
                    attn_implementation="flash_attention_2",
                    low_cpu_mem_usage=True,
3694
3695
3696
3697
3698
3699
                ).to(torch_device)

                out_fa = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

3700
                self.assertTrue(torch.allclose(out, out_fa))
3701

3702
3703
3704
3705
    @parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
    @require_torch_sdpa
    @slow
    def test_eager_matches_sdpa_inference(self, torch_dtype: str):
amyeroberts's avatar
amyeroberts committed
3706
3707
3708
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

3709
3710
3711
        if not self.all_model_classes[0]._supports_sdpa:
            self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA")

fxmarty's avatar
fxmarty committed
3712
3713
3714
3715
3716
3717
3718
        if torch_dtype == "float16" and not is_torch_fp16_available_on_device(torch_device):
            self.skipTest(f"float16 not supported on {torch_device} (on the specific device currently used)")

        if torch_dtype == "bfloat16" and not is_torch_bf16_available_on_device(torch_device):
            self.skipTest(
                f"bfloat16 not supported on {torch_device} (on the specific device currently used, e.g. Nvidia T4 GPU)"
            )
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734

        # Not sure whether it's fine to put torch.XXX in a decorator if torch is not available so hacking it here instead.
        if torch_dtype == "float16":
            torch_dtype = torch.float16
        elif torch_dtype == "bfloat16":
            torch_dtype = torch.bfloat16
        elif torch_dtype == "float32":
            torch_dtype = torch.float32

        atols = {
            ("cpu", False, torch.float32): 1e-6,
            ("cpu", False, torch.bfloat16): 1e-2,
            ("cpu", True, torch.float32): 1e-6,
            ("cpu", True, torch.bfloat16): 1e-2,
            ("cuda", False, torch.float32): 1e-6,
            ("cuda", False, torch.bfloat16): 1e-2,
fxmarty's avatar
fxmarty committed
3735
            ("cuda", False, torch.float16): 5e-3,
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
            ("cuda", True, torch.float32): 1e-6,
            ("cuda", True, torch.bfloat16): 1e-2,
            ("cuda", True, torch.float16): 5e-3,
        }
        rtols = {
            ("cpu", False, torch.float32): 1e-4,
            ("cpu", False, torch.bfloat16): 1e-2,
            ("cpu", True, torch.float32): 1e-4,
            ("cpu", True, torch.bfloat16): 1e-2,
            ("cuda", False, torch.float32): 1e-4,
            ("cuda", False, torch.bfloat16): 1e-2,
fxmarty's avatar
fxmarty committed
3747
            ("cuda", False, torch.float16): 5e-3,
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
            ("cuda", True, torch.float32): 1e-4,
            ("cuda", True, torch.bfloat16): 3e-2,
            ("cuda", True, torch.float16): 5e-3,
        }

        def get_mean_reldiff(failcase, x, ref, atol, rtol):
            return f"{failcase}: mean relative difference: {((x - ref).abs() / (ref.abs() + 1e-12)).mean():.3e}, torch atol = {atol}, torch rtol = {rtol}"

        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            model = model_class(config)
3759
3760
3761
3762
3763
            # FIXME: we deactivate boolean mask for models using "use_mask_token" in their constructors.
            # These models support masking only in the case `use_mask_token=True`. Otherwise they cannot consume an input mask.
            # This means that the class needs to be instantiated much later, after `use_mask` is set, which means a significant refactor of the code.
            # However masking there is not done at any layers that matters (i.e self-attention), therefore we can safely deactivate it.
            deactivate_mask = "use_mask_token" in inspect.signature(model_class).parameters
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783

            is_encoder_decoder = model.config.is_encoder_decoder

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model_sdpa = model_class.from_pretrained(tmpdirname, torch_dtype=torch_dtype)
                model_sdpa = model_sdpa.eval().to(torch_device)

                self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")

                model_eager = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch_dtype,
                    attn_implementation="eager",
                )
                model_eager = model_eager.eval().to(torch_device)

                self.assertTrue(model_eager.config._attn_implementation == "eager")

                for name, submodule in model_eager.named_modules():
3784
3785
                    class_name = submodule.__class__.__name__
                    if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
3786
3787
3788
3789
                        raise ValueError("The eager model should not have SDPA attention layers")

                has_sdpa = False
                for name, submodule in model_sdpa.named_modules():
3790
3791
                    class_name = submodule.__class__.__name__
                    if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
3792
3793
3794
3795
3796
                        has_sdpa = True
                        break
                if not has_sdpa and model_sdpa.config.model_type != "falcon":
                    raise ValueError("The SDPA model should have SDPA attention layers")

3797
                # We use these for loops instead of parameterized.expand just for the interest of avoiding loading/saving 16 times the model,
3798
3799
3800
3801
                # but it would be nicer to have an efficient way to use parameterized.expand
                fail_cases = []
                for padding_side in ["left", "right"]:
                    for use_mask in [False, True]:
3802
3803
3804
3805
3806
3807
                        for output_attentions in [True, False]:
                            can_output_attn = "output_attentions" in inspect.signature(model_sdpa.forward).parameters
                            if not (self.has_attentions and can_output_attn) and output_attentions:
                                continue
                            for batch_size in [1, 5]:
                                dummy_input = inputs_dict[model.main_input_name]
3808
3809

                                if dummy_input.dtype in [torch.float32, torch.bfloat16, torch.float16]:
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
                                    dummy_input = dummy_input.to(torch_dtype)

                                dummy_input = dummy_input[:batch_size]
                                if dummy_input.shape[0] != batch_size:
                                    if dummy_input.dtype in [torch.float32, torch.bfloat16, torch.float16]:
                                        extension = torch.rand(
                                            batch_size - dummy_input.shape[0],
                                            *dummy_input.shape[1:],
                                            dtype=torch_dtype,
                                            device=torch_device,
                                        )
                                        dummy_input = torch.cat((dummy_input, extension), dim=0).to(torch_device)
3822
                                    else:
3823
3824
3825
3826
3827
3828
3829
                                        extension = torch.randint(
                                            high=5,
                                            size=(batch_size - dummy_input.shape[0], *dummy_input.shape[1:]),
                                            dtype=dummy_input.dtype,
                                            device=torch_device,
                                        )
                                        dummy_input = torch.cat((dummy_input, extension), dim=0).to(torch_device)
3830

3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
                                if not use_mask:
                                    dummy_attention_mask = None
                                else:
                                    dummy_attention_mask = inputs_dict.get("attention_mask", None)
                                    if dummy_attention_mask is None:
                                        if is_encoder_decoder:
                                            seqlen = inputs_dict.get("decoder_input_ids", dummy_input).shape[-1]
                                        else:
                                            seqlen = dummy_input.shape[-1]
                                        dummy_attention_mask = (
                                            torch.ones(batch_size, seqlen).to(torch.int64).to(torch_device)
                                        )

                                    dummy_attention_mask = dummy_attention_mask[:batch_size]
                                    if dummy_attention_mask.shape[0] != batch_size:
3846
                                        extension = torch.ones(
3847
3848
3849
                                            batch_size - dummy_attention_mask.shape[0],
                                            *dummy_attention_mask.shape[1:],
                                            dtype=dummy_attention_mask.dtype,
3850
3851
                                            device=torch_device,
                                        )
3852
3853
                                        dummy_attention_mask = torch.cat((dummy_attention_mask, extension), dim=0)
                                        dummy_attention_mask = dummy_attention_mask.to(torch_device)
3854

3855
                                    dummy_attention_mask[:] = 1
3856
                                    if padding_side == "left":
3857
3858
3859
3860
3861
                                        dummy_attention_mask[-1, :-1] = 1
                                        dummy_attention_mask[-1, -4:] = 0
                                    elif padding_side == "right":
                                        dummy_attention_mask[-1, 1:] = 1
                                        dummy_attention_mask[-1, :3] = 0
3862

3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
                                for enable_kernels in [False, True]:
                                    failcase = f"padding_side={padding_side}, use_mask={use_mask}, batch_size={batch_size}, enable_kernels={enable_kernels}"
                                    if is_encoder_decoder:
                                        decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[
                                            :batch_size
                                        ]
                                        if decoder_input_ids.shape[0] != batch_size:
                                            extension = torch.ones(
                                                batch_size - decoder_input_ids.shape[0],
                                                *decoder_input_ids.shape[1:],
                                                dtype=decoder_input_ids.dtype,
                                                device=torch_device,
3875
                                            )
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
                                            decoder_input_ids = torch.cat((decoder_input_ids, extension), dim=0)
                                            decoder_input_ids = decoder_input_ids.to(torch_device)

                                        # TODO: never an `attention_mask` arg here?
                                        processed_inputs = {
                                            model.main_input_name: dummy_input,
                                            "decoder_input_ids": decoder_input_ids,
                                            "decoder_attention_mask": dummy_attention_mask,
                                            "output_hidden_states": True,
                                        }
                                    else:
                                        processed_inputs = {
                                            model.main_input_name: dummy_input,
                                            "output_hidden_states": True,
                                        }

                                        # Otherwise fails for e.g. WhisperEncoderModel
                                        if "attention_mask" in inspect.signature(model_eager.forward).parameters:
                                            processed_inputs["attention_mask"] = dummy_attention_mask

                                        if (
                                            self.has_attentions
                                            and "output_attentions" in inspect.signature(model_sdpa.forward).parameters
                                        ):
                                            processed_inputs["output_attentions"] = output_attentions
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
                                    if not deactivate_mask and (
                                        "bool_masked_pos" in inspect.signature(model_eager.forward).parameters
                                    ):
                                        dummy_mask = torch.ones((self.model_tester.num_masks,))

                                        # In case of additional token (like class) we define a custom `mask_length`
                                        if hasattr(self.model_tester, "mask_length"):
                                            mask_length = self.model_tester.mask_length - dummy_mask.size(0)
                                        else:
                                            mask_length = self.model_tester.seq_length - dummy_mask.size(0)
                                        dummy_mask = torch.cat([dummy_mask, torch.zeros(mask_length)])
                                        dummy_bool_masked_pos = dummy_mask.expand(batch_size, -1).bool()
                                        processed_inputs["bool_masked_pos"] = dummy_bool_masked_pos.to(torch_device)

                                    if "noise" in inspect.signature(model_eager.forward).parameters:
                                        np.random.seed(2)
                                        num_patches = int(
                                            (self.model_tester.image_size // self.model_tester.patch_size) ** 2
                                        )
                                        noise = np.random.uniform(size=(batch_size, num_patches))
                                        processed_inputs["noise"] = torch.from_numpy(noise)
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943

                                    # TODO: test gradients as well (& for FA2 as well!)
                                    with torch.no_grad():
                                        with torch.backends.cuda.sdp_kernel(
                                            enable_flash=enable_kernels,
                                            enable_math=True,
                                            enable_mem_efficient=enable_kernels,
                                        ):
                                            prepared_inputs = self._prepare_for_class(processed_inputs, model_class)
                                            outputs_eager = model_eager(**prepared_inputs)
                                            outputs_sdpa = model_sdpa(**prepared_inputs)

                                    logits_eager = (
                                        outputs_eager.hidden_states[-1]
                                        if not is_encoder_decoder
                                        else outputs_eager.decoder_hidden_states[-1]
                                    )
                                    logits_sdpa = (
                                        outputs_sdpa.hidden_states[-1]
                                        if not is_encoder_decoder
                                        else outputs_sdpa.decoder_hidden_states[-1]
                                    )
3944

3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
                                    if torch_device in ["cpu", "cuda"]:
                                        atol = atols[torch_device, enable_kernels, torch_dtype]
                                        rtol = rtols[torch_device, enable_kernels, torch_dtype]
                                    else:
                                        atol = 1e-7
                                        rtol = 1e-4

                                    # Masked tokens output slightly deviates - we don't mind that.
                                    if use_mask:
                                        if padding_side == "left":
                                            sub_sdpa = logits_sdpa[:-1]
                                            sub_eager = logits_eager[:-1]
                                            if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                                fail_cases.append(
                                                    get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
                                                )

                                            sub_sdpa = logits_sdpa[-1, :-4]
                                            sub_eager = logits_eager[-1, :-4]
                                            if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                                fail_cases.append(
                                                    get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
                                                )

                                            # Testing the padding tokens is not really meaningful but anyway
                                            # sub_sdpa = logits_sdpa[-1, -4:]
                                            # sub_eager = logits_eager[-1, -4:]
                                            # if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                            #     fail_cases.append(get_mean_reldiff(failcase, sub_sdpa, sub_eager, 4e-2, 4e-2))
                                        elif padding_side == "right":
                                            sub_sdpa = logits_sdpa[:-1]
                                            sub_eager = logits_eager[:-1]
                                            if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                                fail_cases.append(
                                                    get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
                                                )

                                            sub_sdpa = logits_sdpa[-1, 3:]
                                            sub_eager = logits_eager[-1, 3:]
                                            if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                                fail_cases.append(
                                                    get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
                                                )

                                            # Testing the padding tokens is not really meaningful but anyway
                                            # sub_sdpa = logits_sdpa[-1, :3]
                                            # sub_eager = logits_eager[-1, :3]
                                            # if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                            #     fail_cases.append(get_mean_reldiff(failcase, sub_sdpa, sub_eager, 4e-2, 4e-2))
3994

3995
3996
                                    else:
                                        if not torch.allclose(logits_sdpa, logits_eager, atol=atol, rtol=rtol):
3997
                                            fail_cases.append(
3998
                                                get_mean_reldiff(failcase, logits_sdpa, logits_eager, atol, rtol)
3999
4000
4001
4002
                                            )

                self.assertTrue(len(fail_cases) == 0, "\n".join(fail_cases))

4003
4004
4005
4006
    @require_torch_sdpa
    @require_torch_gpu
    @slow
    def test_sdpa_can_dispatch_on_flash(self):
amyeroberts's avatar
amyeroberts committed
4007
4008
4009
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

4010
4011
4012
4013
        compute_capability = torch.cuda.get_device_capability()
        major, _ = compute_capability

        if not torch.version.cuda or major < 8:
amyeroberts's avatar
amyeroberts committed
4014
            self.skipTest(reason="This test requires an NVIDIA GPU with compute capability >= 8.0")
4015
4016
4017
4018
4019
4020

        for model_class in self.all_model_classes:
            if not model_class._supports_sdpa:
                self.skipTest(f"{model_class.__name__} does not support SDPA")

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
4021
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
Raushan Turganbay's avatar
Raushan Turganbay committed
4022
            if config.model_type in ["llava", "llava_next", "vipllava", "video_llava"]:
amyeroberts's avatar
amyeroberts committed
4023
4024
4025
                self.skipTest(
                    reason="Llava-like models currently (transformers==4.39.1) requires an attention_mask input"
                )
Pablo Montalvo's avatar
Pablo Montalvo committed
4026
4027
4028
4029
            if config.model_type in ["paligemma"]:
                self.skipTest(
                    "PaliGemma-like models currently (transformers==4.41.0) requires an attention_mask input"
                )
4030
            if config.model_type in ["idefics"]:
amyeroberts's avatar
amyeroberts committed
4031
                self.skipTest(reason="Idefics currently (transformers==4.39.1) requires an image_attention_mask input")
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, attn_implementation="sdpa")
                model.to(torch_device)

                inputs_dict.pop("attention_mask", None)
                inputs_dict.pop("decoder_attention_mask", None)

                for name, inp in inputs_dict.items():
                    if isinstance(inp, torch.Tensor) and inp.dtype in [torch.float32, torch.float16]:
                        inputs_dict[name] = inp.to(torch.float16)

                with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
                    _ = model(**inputs_dict)

4049
4050
4051
4052
    @require_torch_sdpa
    @require_torch_gpu
    @slow
    def test_sdpa_can_compile_dynamic(self):
amyeroberts's avatar
amyeroberts committed
4053
4054
4055
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

4056
4057
4058
4059
        compute_capability = torch.cuda.get_device_capability()
        major, _ = compute_capability

        if not torch.version.cuda or major < 8:
amyeroberts's avatar
amyeroberts committed
4060
            self.skipTest(reason="This test requires an NVIDIA GPU with compute capability >= 8.0")
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092

        for model_class in self.all_model_classes:
            if not model_class._supports_sdpa:
                self.skipTest(f"{model_class.__name__} does not support SDPA")

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            if config.model_type in ["dbrx"]:
                self.skipTest(
                    "DBRX (transformers==4.40) requires a modification to support dynamic shapes with compile."
                )
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, attn_implementation="sdpa")
                model.to(torch_device)

                # For PyTorch 2.1 - 2.3.0 set `dynamic=True`. In the future setting `dynamic=None` and using `torch._dynamo.mark_dynamic()`
                # on input tensors will be required. `mark_dynamic` currently raises inconsistent shape errors.
                model = torch.compile(model, dynamic=True)

                inputs_dict.pop("attention_mask", None)
                inputs_dict.pop("decoder_attention_mask", None)
                for name, inp in inputs_dict.items():
                    if isinstance(inp, torch.Tensor) and inp.dtype in [torch.float32, torch.float16]:
                        inputs_dict[name] = inp.to(torch.float16)

                # use no_grad to save some memory
                with torch.no_grad():
                    _ = model(**inputs_dict)

4093
4094
4095
    @require_torch_sdpa
    @slow
    def test_eager_matches_sdpa_generate(self):
amyeroberts's avatar
amyeroberts committed
4096
4097
4098
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
        max_new_tokens = 30

        if len(self.all_generative_model_classes) == 0:
            self.skipTest(f"{self.__class__.__name__} tests a model that does support generate: skipping this test")

        for model_class in self.all_generative_model_classes:
            if not model_class._supports_sdpa:
                self.skipTest(f"{model_class.__name__} does not support SDPA")

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            dummy_input = inputs_dict[model_class.main_input_name]
            if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                dummy_input = dummy_input.to(torch.float16)

            # make sure that all models have enough positions for generation
            if hasattr(config, "max_position_embeddings"):
                config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1

            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))

                model_sdpa = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch.float16,
                    low_cpu_mem_usage=True,
                ).to(torch_device)

                self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")

                model_eager = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch.float16,
                    low_cpu_mem_usage=True,
                    attn_implementation="eager",
                ).to(torch_device)

                self.assertTrue(model_eager.config._attn_implementation == "eager")

                for name, submodule in model_eager.named_modules():
4143
4144
                    class_name = submodule.__class__.__name__
                    if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
4145
4146
4147
4148
                        raise ValueError("The eager model should not have SDPA attention layers")

                has_sdpa = False
                for name, submodule in model_sdpa.named_modules():
4149
4150
                    class_name = submodule.__class__.__name__
                    if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
                        has_sdpa = True
                        break
                if not has_sdpa:
                    raise ValueError("The SDPA model should have SDPA attention layers")

                # Just test that a large cache works as expected
                res_eager = model_eager.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False
                )

                res_sdpa = model_sdpa.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False
                )

                self.assertTrue(torch.allclose(res_eager, res_sdpa))

4167
4168
    @require_torch_sdpa
    def test_sdpa_matches_eager_sliding_window(self):
amyeroberts's avatar
amyeroberts committed
4169
4170
4171
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
        WINDOW_ATTENTION_MODELS = ["mistral", "mixtral", "qwen2", "qwen_moe", "starcoder2"]

        if len(self.all_generative_model_classes) == 0:
            self.skipTest(f"No generative model classes for {self.__class__.__name__}")

        for model_class in self.all_generative_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            if config.model_type not in WINDOW_ATTENTION_MODELS:
                self.skipTest(f"{config.model_type} does not use window attention")

            config.sliding_window = 2

            dummy_input = inputs_dict[model_class.main_input_name]
            attention_mask = inputs_dict["attention_mask"]

            self.assertTrue(dummy_input.ndim == 2)
            self.assertTrue(dummy_input.shape[1] > 6)

            with tempfile.TemporaryDirectory() as tmpdir:
                with torch.device(torch_device):
                    model_eager = AutoModelForCausalLM.from_config(
                        config, attn_implementation="eager", torch_dtype=torch.float32
                    )

                model_eager.save_pretrained(tmpdir)

                with torch.device(torch_device):
                    model_sdpa = AutoModelForCausalLM.from_pretrained(
                        tmpdir, attn_implementation="sdpa", torch_dtype=torch.float32
                    )

                model_eager = model_eager.eval()
                model_sdpa = model_sdpa.eval()

                with torch.no_grad():
                    with torch.backends.cuda.sdp_kernel(
                        enable_flash=False,
                        enable_math=True,
                        enable_mem_efficient=False,
                    ):
                        res_eager = model_eager(**inputs_dict, return_dict=False)[0]
                        res_sdpa = model_sdpa(**inputs_dict, return_dict=False)[0]

                # Only non-padding tokens are expected to match.
                self.assertTrue(
4218
                    torch.allclose(res_eager[attention_mask == 1], res_sdpa[attention_mask == 1], rtol=1e-4, atol=1e-4)
4219
4220
                )

4221
4222
4223
4224
4225
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_generate_use_cache(self):
amyeroberts's avatar
amyeroberts committed
4226
4227
4228
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

4229
4230
        max_new_tokens = 30

4231
4232
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
4233
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
4234

4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            dummy_input = inputs_dict[model_class.main_input_name]
            if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                dummy_input = dummy_input.to(torch.float16)

            # make sure that all models have enough positions for generation
            if hasattr(config, "max_position_embeddings"):
                config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1

4245
4246
4247
4248
4249
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

4250
                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
4251
4252

                model = model_class.from_pretrained(
4253
4254
                    tmpdirname,
                    torch_dtype=torch.float16,
4255
                    attn_implementation="flash_attention_2",
4256
                    low_cpu_mem_usage=True,
4257
4258
4259
4260
                ).to(torch_device)

                # Just test that a large cache works as expected
                _ = model.generate(
4261
4262
4263
4264
4265
                    dummy_input,
                    attention_mask=dummy_attention_mask,
                    max_new_tokens=max_new_tokens,
                    do_sample=False,
                    use_cache=True,
4266
4267
                )

4268
4269
4270
4271
4272
4273
    @require_flash_attn
    @require_torch_gpu
    @require_bitsandbytes
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_fp32_ln(self):
amyeroberts's avatar
amyeroberts committed
4274
4275
4276
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

4277
4278
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
4279
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
4280
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
4281
4282
4283
4284
            model = model_class(config)
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

4285
4286
                dummy_input = inputs_dict[model.main_input_name]
                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
4287
                batch_size = dummy_attention_mask.shape[0]
4288

4289
4290
4291
4292
4293
                is_padding_right = dummy_attention_mask[:, -1].sum().item() != batch_size

                # To avoid errors with padding_side=="right"
                if is_padding_right:
                    dummy_attention_mask = torch.ones_like(dummy_input)
4294
4295
4296
4297

                model = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch.float16,
4298
                    attn_implementation="flash_attention_2",
4299
4300
4301
4302
4303
4304
4305
4306
4307
                    low_cpu_mem_usage=True,
                    load_in_4bit=True,
                )

                for _, param in model.named_parameters():
                    # upcast only layer norms
                    if (param.dtype == torch.float16) or (param.dtype == torch.bfloat16):
                        param.data = param.data.to(torch.float32)

4308
                if model.config.is_encoder_decoder:
4309
4310
4311
                    dummy_decoder_input_ids = inputs_dict["decoder_input_ids"]
                    dummy_decoder_attention_mask = inputs_dict["decoder_attention_mask"]

4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
                    _ = model(dummy_input, decoder_input_ids=dummy_decoder_input_ids)
                    # with attention mask
                    _ = model(
                        dummy_input,
                        attention_mask=dummy_attention_mask,
                        decoder_input_ids=dummy_decoder_input_ids,
                        decoder_attention_mask=dummy_decoder_attention_mask,
                    )
                else:
                    _ = model(dummy_input)
                    # with attention mask
                    _ = model(dummy_input, attention_mask=dummy_attention_mask)
4324

4325
4326
4327
4328
4329
4330
4331
    @is_pt_tf_cross_test
    def test_tf_from_pt_safetensors(self):
        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            tf_model_class_name = "TF" + model_class.__name__  # Add the "TF" at the beginning
            if not hasattr(transformers, tf_model_class_name):
amyeroberts's avatar
amyeroberts committed
4332
                self.skipTest(reason="transformers does not have this model in TF version yet")
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355

            tf_model_class = getattr(transformers, tf_model_class_name)

            pt_model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_model.save_pretrained(tmpdirname, safe_serialization=True)
                tf_model_1 = tf_model_class.from_pretrained(tmpdirname, from_pt=True)

                pt_model.save_pretrained(tmpdirname, safe_serialization=False)
                tf_model_2 = tf_model_class.from_pretrained(tmpdirname, from_pt=True)

                # Check models are equal
                for p1, p2 in zip(tf_model_1.weights, tf_model_2.weights):
                    self.assertTrue(np.allclose(p1.numpy(), p2.numpy()))

    @is_pt_flax_cross_test
    def test_flax_from_pt_safetensors(self):
        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            flax_model_class_name = "Flax" + model_class.__name__  # Add the "Flax at the beginning
            if not hasattr(transformers, flax_model_class_name):
amyeroberts's avatar
amyeroberts committed
4356
                self.skipTest(reason="transformers does not have this model in Flax version yet")
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371

            flax_model_class = getattr(transformers, flax_model_class_name)

            pt_model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_model.save_pretrained(tmpdirname, safe_serialization=True)
                flax_model_1 = flax_model_class.from_pretrained(tmpdirname, from_pt=True)

                pt_model.save_pretrained(tmpdirname, safe_serialization=False)
                flax_model_2 = flax_model_class.from_pretrained(tmpdirname, from_pt=True)

                # Check models are equal
                self.assertTrue(check_models_equal(flax_model_1, flax_model_2))

4372
4373
4374
4375
4376
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_from_config(self):
amyeroberts's avatar
amyeroberts committed
4377
4378
4379
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

4380
4381
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
4382
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
4383
4384
4385
4386

            config, _ = self.model_tester.prepare_config_and_inputs_for_common()
            # TODO: to change it in the future with other relevant auto classes
            fa2_model = AutoModelForCausalLM.from_config(
4387
                config, attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
            ).to(torch_device)

            dummy_input = torch.LongTensor([[0, 2, 3, 4], [0, 2, 3, 4]]).to(torch_device)
            dummy_attention_mask = torch.LongTensor([[1, 1, 1, 1], [0, 1, 1, 1]]).to(torch_device)

            fa2_correctly_converted = False

            for _, module in fa2_model.named_modules():
                if "FlashAttention" in module.__class__.__name__:
                    fa2_correctly_converted = True
                    break

            self.assertTrue(fa2_correctly_converted)

            _ = fa2_model(input_ids=dummy_input, attention_mask=dummy_attention_mask)

            with tempfile.TemporaryDirectory() as tmpdirname:
                fa2_model.save_pretrained(tmpdirname)

                model_from_pretrained = AutoModelForCausalLM.from_pretrained(tmpdirname)

4409
                self.assertTrue(model_from_pretrained.config._attn_implementation != "flash_attention_2")
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419

                fa2_correctly_converted = False

                for _, module in model_from_pretrained.named_modules():
                    if "FlashAttention" in module.__class__.__name__:
                        fa2_correctly_converted = True
                        break

                self.assertFalse(fa2_correctly_converted)

4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
    def _get_custom_4d_mask_test_data(self):
        # Sequence in which all but the last token is the same
        input_ids = torch.tensor(
            [[10, 11, 12, 13], [10, 11, 12, 14], [10, 11, 12, 15]], device=torch_device, dtype=torch.int64
        )
        position_ids = torch.tensor([[0, 1, 2, 3]] * 3, device=torch_device, dtype=torch.int64)

        # Combining common prefix with the unique ending tokens:
        input_ids_shared_prefix = torch.cat([input_ids[0][:-1], input_ids[:, -1]]).unsqueeze(0)

        # Creating a 4D mask where each of the last 3 tokens do not attend to each other.
        mask_shared_prefix = torch.tensor(
            [
                [
                    [
                        [1, 0, 0, 0, 0, 0],
                        [1, 1, 0, 0, 0, 0],
                        [1, 1, 1, 0, 0, 0],
                        [1, 1, 1, 1, 0, 0],
                        [1, 1, 1, 0, 1, 0],
                        [1, 1, 1, 0, 0, 1],
                    ]
                ]
            ],
        )
        # inverting the attention mask
        mask_dtype = torch.float32
        min_dtype = torch.finfo(mask_dtype).min
        mask_shared_prefix = (mask_shared_prefix.eq(0.0)).to(dtype=mask_dtype, device=torch_device) * min_dtype

        # Creating a position_ids tensor. note the repeating figures in the end.
        position_ids_shared_prefix = torch.tensor([[0, 1, 2, 3, 3, 3]], device=torch_device, dtype=torch.int64)

        return input_ids, position_ids, input_ids_shared_prefix, mask_shared_prefix, position_ids_shared_prefix

    def test_custom_4d_attention_mask(self):
amyeroberts's avatar
amyeroberts committed
4456
4457
4458
        if not self.has_attentions:
            self.skipTest(reason="Model architecture does not support attentions")

4459
        if len(self.all_generative_model_classes) == 0:
amyeroberts's avatar
amyeroberts committed
4460
4461
4462
            self.skipTest(
                reason="Model architecture has no generative classes, and thus not necessarily supporting 4D masks"
            )
4463
4464

        for model_class in self.all_generative_model_classes:
4465
            if not model_class._supports_static_cache:
4466
4467
                self.skipTest(f"{model_class.__name__} is not guaranteed to work with custom 4D attention masks")
            config, _ = self.model_tester.prepare_config_and_inputs_for_common()
4468
4469
            if getattr(config, "sliding_window", 0) > 0:
                self.skipTest(f"{model_class.__name__} with sliding window attention is not supported by this test")
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
            model = model_class(config).to(device=torch_device, dtype=torch.float32)

            (
                input_ids,
                position_ids,
                input_ids_shared_prefix,
                mask_shared_prefix,
                position_ids_shared_prefix,
            ) = self._get_custom_4d_mask_test_data()

            logits = model.forward(input_ids, position_ids=position_ids).logits
            # logits.shape == torch.Size([3, 4, ...])

            logits_shared_prefix = model(
                input_ids_shared_prefix,
                attention_mask=mask_shared_prefix,
                position_ids=position_ids_shared_prefix,
            )[0]
            # logits_shared_prefix.shape == torch.Size([1, 6, ...])

            out_last_tokens = logits[:, -1, :]  # last tokens in each batch line
            out_shared_prefix_last_tokens = logits_shared_prefix[0, -3:, :]  # last three tokens

            # comparing softmax-normalized logits:
            normalized_0 = F.softmax(out_last_tokens)
            normalized_1 = F.softmax(out_shared_prefix_last_tokens)
            torch.testing.assert_close(normalized_0, normalized_1, rtol=1e-3, atol=1e-4)

4498
4499
4500
4501
4502
4503
    # For now, Let's focus only on GPU for `torch.compile`
    @slow
    @require_torch_gpu
    @require_read_token
    def test_torch_compile(self):
        if version.parse(torch.__version__) < version.parse("2.3"):
amyeroberts's avatar
amyeroberts committed
4504
            self.skipTest(reason="This test requires torch >= 2.3 to run.")
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529

        if not hasattr(self, "_torch_compile_test_ckpt"):
            self.skipTest(f"{self.__class__.__name__} doesn't have the attribute `_torch_compile_test_ckpt`.")
        ckpt = self._torch_compile_test_ckpt

        os.environ["TOKENIZERS_PARALLELISM"] = "false"

        batch_size = 1
        n_iter = 3

        tokenizer = AutoTokenizer.from_pretrained(ckpt)
        model = AutoModelForCausalLM.from_pretrained(ckpt, torch_dtype=torch.float16).to(torch_device)

        model.generation_config.max_new_tokens = 4
        model.generation_config.max_new_tokens = 4

        model.generation_config.cache_implementation = "static"
        model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)

        input_text = "Why dogs are cute?"
        input_ids = tokenizer([input_text] * batch_size, return_tensors="pt").to(torch_device)

        for i in range(n_iter):
            _ = model.generate(**input_ids, do_sample=False)

4530

4531
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
4532
4533


thomwolf's avatar
thomwolf committed
4534
def ids_tensor(shape, vocab_size, rng=None, name=None):
4535
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
4536
    if rng is None:
4537
        rng = global_rng
thomwolf's avatar
thomwolf committed
4538

thomwolf's avatar
thomwolf committed
4539
4540
4541
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
4542

thomwolf's avatar
thomwolf committed
4543
4544
4545
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
4546

4547
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
4548
4549


4550
4551
4552
def random_attention_mask(shape, rng=None, name=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
    # make sure that at least one token is attended to for each batch
4553
4554
    # we choose the 1st token so this property of `at least one being non-zero` still holds after applying causal mask
    attn_mask[:, 0] = 1
4555
4556
4557
    return attn_mask


4558
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
4559
    """Creates a random float32 tensor"""
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

4571
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()