transforms.py 75.5 KB
Newer Older
1
import math
vfdev's avatar
vfdev committed
2
import numbers
3
import random
vfdev's avatar
vfdev committed
4
import warnings
vfdev's avatar
vfdev committed
5
from collections.abc import Sequence
6
from typing import Tuple, List, Optional
vfdev's avatar
vfdev committed
7
8
9
10

import torch
from torch import Tensor

11
12
13
14
15
16
try:
    import accimage
except ImportError:
    accimage = None

from . import functional as F
17
from .functional import InterpolationMode, _interpolation_modes_from_int
18

19

20
21
22
23
__all__ = ["Compose", "ToTensor", "PILToTensor", "ConvertImageDtype", "ToPILImage", "Normalize", "Resize", "Scale",
           "CenterCrop", "Pad", "Lambda", "RandomApply", "RandomChoice", "RandomOrder", "RandomCrop",
           "RandomHorizontalFlip", "RandomVerticalFlip", "RandomResizedCrop", "RandomSizedCrop", "FiveCrop", "TenCrop",
           "LinearTransformation", "ColorJitter", "RandomRotation", "RandomAffine", "Grayscale", "RandomGrayscale",
24
25
           "RandomPerspective", "RandomErasing", "GaussianBlur", "InterpolationMode", "RandomInvert", "RandomPosterize",
           "RandomSolarize", "RandomAdjustSharpness", "RandomAutocontrast", "RandomEqualize"]
26

27

28
class Compose:
29
30
    """Composes several transforms together. This transform does not support torchscript.
    Please, see the note below.
31
32
33
34
35
36
37
38
39

    Args:
        transforms (list of ``Transform`` objects): list of transforms to compose.

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
        >>>     transforms.ToTensor(),
        >>> ])
40
41
42
43
44
45
46
47
48
49
50
51
52

    .. note::
        In order to script the transformations, please use ``torch.nn.Sequential`` as below.

        >>> transforms = torch.nn.Sequential(
        >>>     transforms.CenterCrop(10),
        >>>     transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>> )
        >>> scripted_transforms = torch.jit.script(transforms)

        Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
        `lambda` functions or ``PIL.Image``.

53
54
55
56
57
58
59
60
61
62
    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img

63
64
65
66
67
68
69
70
    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string

71

72
class ToTensor:
73
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor. This transform does not support torchscript.
74
75

    Converts a PIL Image or numpy.ndarray (H x W x C) in the range
surgan12's avatar
surgan12 committed
76
77
78
79
80
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
    if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
    or if the numpy.ndarray has dtype = np.uint8

    In the other cases, tensors are returned without scaling.
81
82
83
84
85
86

    .. note::
        Because the input image is scaled to [0.0, 1.0], this transformation should not be used when
        transforming target image masks. See the `references`_ for implementing the transforms for image masks.

    .. _references: https://github.com/pytorch/vision/tree/master/references/segmentation
87
88
89
90
91
92
93
94
95
96
97
98
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(pic)

99
100
101
    def __repr__(self):
        return self.__class__.__name__ + '()'

102

103
class PILToTensor:
104
    """Convert a ``PIL Image`` to a tensor of the same type. This transform does not support torchscript.
105

vfdev's avatar
vfdev committed
106
    Converts a PIL Image (H x W x C) to a Tensor of shape (C x H x W).
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.pil_to_tensor(pic)

    def __repr__(self):
        return self.__class__.__name__ + '()'


123
class ConvertImageDtype(torch.nn.Module):
124
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly
125
    This function does not support PIL Image.
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

    Args:
        dtype (torch.dtype): Desired data type of the output

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """

    def __init__(self, dtype: torch.dtype) -> None:
143
        super().__init__()
144
145
        self.dtype = dtype

vfdev's avatar
vfdev committed
146
    def forward(self, image):
147
148
149
        return F.convert_image_dtype(image, self.dtype)


150
class ToPILImage:
151
    """Convert a tensor or an ndarray to PIL Image. This transform does not support torchscript.
152
153
154
155
156
157
158

    Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape
    H x W x C to a PIL Image while preserving the value range.

    Args:
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).
            If ``mode`` is ``None`` (default) there are some assumptions made about the input data:
vfdev's avatar
vfdev committed
159
160
161
162
163
            - If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``.
            - If the input has 3 channels, the ``mode`` is assumed to be ``RGB``.
            - If the input has 2 channels, the ``mode`` is assumed to be ``LA``.
            - If the input has 1 channel, the ``mode`` is determined by the data type (i.e ``int``, ``float``,
            ``short``).
164

csukuangfj's avatar
csukuangfj committed
165
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
    """
    def __init__(self, mode=None):
        self.mode = mode

    def __call__(self, pic):
        """
        Args:
            pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.

        Returns:
            PIL Image: Image converted to PIL Image.

        """
        return F.to_pil_image(pic, self.mode)

181
    def __repr__(self):
182
183
184
185
186
        format_string = self.__class__.__name__ + '('
        if self.mode is not None:
            format_string += 'mode={0}'.format(self.mode)
        format_string += ')'
        return format_string
187

188

189
class Normalize(torch.nn.Module):
Fang Gao's avatar
Fang Gao committed
190
    """Normalize a tensor image with mean and standard deviation.
191
    This transform does not support PIL Image.
192
193
194
    Given mean: ``(mean[1],...,mean[n])`` and std: ``(std[1],..,std[n])`` for ``n``
    channels, this transform will normalize each channel of the input
    ``torch.*Tensor`` i.e.,
abdjava's avatar
abdjava committed
195
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``
196

197
    .. note::
198
        This transform acts out of place, i.e., it does not mutate the input tensor.
199

200
201
202
    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.
203
204
        inplace(bool,optional): Bool to make this operation in-place.

205
206
    """

surgan12's avatar
surgan12 committed
207
    def __init__(self, mean, std, inplace=False):
208
        super().__init__()
209
210
        self.mean = mean
        self.std = std
surgan12's avatar
surgan12 committed
211
        self.inplace = inplace
212

213
    def forward(self, tensor: Tensor) -> Tensor:
214
215
        """
        Args:
vfdev's avatar
vfdev committed
216
            tensor (Tensor): Tensor image to be normalized.
217
218
219
220

        Returns:
            Tensor: Normalized Tensor image.
        """
surgan12's avatar
surgan12 committed
221
        return F.normalize(tensor, self.mean, self.std, self.inplace)
222

223
224
225
    def __repr__(self):
        return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)

226

vfdev's avatar
vfdev committed
227
228
class Resize(torch.nn.Module):
    """Resize the input image to the given size.
229
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
230
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
231
232
233
234
235
236

    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
237
            (size * height / width, size).
238
            In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
239
240
241
242
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` and
            ``InterpolationMode.BICUBIC`` are supported.
243
244
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.

245
246
    """

247
    def __init__(self, size, interpolation=InterpolationMode.BILINEAR):
vfdev's avatar
vfdev committed
248
        super().__init__()
249
250
251
252
253
        if not isinstance(size, (int, Sequence)):
            raise TypeError("Size should be int or sequence. Got {}".format(type(size)))
        if isinstance(size, Sequence) and len(size) not in (1, 2):
            raise ValueError("If size is a sequence, it should have 1 or 2 values")
        self.size = size
254
255
256
257

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
258
259
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
260
261
262
            )
            interpolation = _interpolation_modes_from_int(interpolation)

263
264
        self.interpolation = interpolation

vfdev's avatar
vfdev committed
265
    def forward(self, img):
266
267
        """
        Args:
vfdev's avatar
vfdev committed
268
            img (PIL Image or Tensor): Image to be scaled.
269
270

        Returns:
vfdev's avatar
vfdev committed
271
            PIL Image or Tensor: Rescaled image.
272
273
274
        """
        return F.resize(img, self.size, self.interpolation)

275
    def __repr__(self):
276
        interpolate_str = self.interpolation.value
277
        return self.__class__.__name__ + '(size={0}, interpolation={1})'.format(self.size, interpolate_str)
278

279
280
281
282
283
284
285
286
287
288
289

class Scale(Resize):
    """
    Note: This transform is deprecated in favor of Resize.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                      "please use transforms.Resize instead.")
        super(Scale, self).__init__(*args, **kwargs)


vfdev's avatar
vfdev committed
290
291
class CenterCrop(torch.nn.Module):
    """Crops the given image at the center.
292
    If the image is torch Tensor, it is expected
293
294
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
    If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
295
296
297
298

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
299
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
300
301
302
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
303
        super().__init__()
304
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
305

vfdev's avatar
vfdev committed
306
    def forward(self, img):
307
308
        """
        Args:
vfdev's avatar
vfdev committed
309
            img (PIL Image or Tensor): Image to be cropped.
310
311

        Returns:
vfdev's avatar
vfdev committed
312
            PIL Image or Tensor: Cropped image.
313
314
315
        """
        return F.center_crop(img, self.size)

316
317
318
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

319

320
321
class Pad(torch.nn.Module):
    """Pad the given image on all sides with the given "pad" value.
322
    If the image is torch Tensor, it is expected
323
324
325
    to have [..., H, W] shape, where ... means at most 2 leading dimensions for mode reflect and symmetric,
    at most 3 leading dimensions for mode edge,
    and an arbitrary number of leading dimensions for mode constant
326
327

    Args:
328
329
330
        padding (int or sequence): Padding on each border. If a single int is provided this
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
331
            this is the padding for the left, top, right and bottom borders respectively.
332
333
            In torchscript mode padding as single int is not supported, use a sequence of length 1: ``[padding, ]``.
        fill (number or str or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
334
            length 3, it is used to fill R, G, B channels respectively.
335
336
337
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
            Only int or str or tuple value is supported for PIL Image.
338
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
339
            Default is constant.
340
341
342

            - constant: pads with a constant value, this value is specified with fill

343
344
            - edge: pads with the last value at the edge of the image,
                    if input a 5D torch Tensor, the last 3 dimensions will be padded instead of the last 2
345
346
347
348

            - reflect: pads with reflection of image without repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
349
                will result in [3, 2, 1, 2, 3, 4, 3, 2]
350
351
352
353

            - symmetric: pads with reflection of image repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
354
                will result in [2, 1, 1, 2, 3, 4, 4, 3]
355
356
    """

357
358
359
360
361
362
363
364
365
366
367
368
369
    def __init__(self, padding, fill=0, padding_mode="constant"):
        super().__init__()
        if not isinstance(padding, (numbers.Number, tuple, list)):
            raise TypeError("Got inappropriate padding arg")

        if not isinstance(fill, (numbers.Number, str, tuple)):
            raise TypeError("Got inappropriate fill arg")

        if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
            raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")

        if isinstance(padding, Sequence) and len(padding) not in [1, 2, 4]:
            raise ValueError("Padding must be an int or a 1, 2, or 4 element tuple, not a " +
370
371
372
373
                             "{} element tuple".format(len(padding)))

        self.padding = padding
        self.fill = fill
374
        self.padding_mode = padding_mode
375

376
    def forward(self, img):
377
378
        """
        Args:
379
            img (PIL Image or Tensor): Image to be padded.
380
381

        Returns:
382
            PIL Image or Tensor: Padded image.
383
        """
384
        return F.pad(img, self.padding, self.fill, self.padding_mode)
385

386
    def __repr__(self):
387
388
        return self.__class__.__name__ + '(padding={0}, fill={1}, padding_mode={2})'.\
            format(self.padding, self.fill, self.padding_mode)
389

390

391
class Lambda:
392
    """Apply a user-defined lambda as a transform. This transform does not support torchscript.
393
394
395
396
397
398

    Args:
        lambd (function): Lambda/function to be used for transform.
    """

    def __init__(self, lambd):
399
400
        if not callable(lambd):
            raise TypeError("Argument lambd should be callable, got {}".format(repr(type(lambd).__name__)))
401
402
403
404
405
        self.lambd = lambd

    def __call__(self, img):
        return self.lambd(img)

406
407
408
    def __repr__(self):
        return self.__class__.__name__ + '()'

409

410
class RandomTransforms:
411
412
413
    """Base class for a list of transformations with randomness

    Args:
414
        transforms (sequence): list of transformations
415
416
417
    """

    def __init__(self, transforms):
418
419
        if not isinstance(transforms, Sequence):
            raise TypeError("Argument transforms should be a sequence")
420
421
422
423
424
425
426
427
428
429
430
431
432
433
        self.transforms = transforms

    def __call__(self, *args, **kwargs):
        raise NotImplementedError()

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


434
class RandomApply(torch.nn.Module):
435
    """Apply randomly a list of transformations with a given probability.
436
437
438
439
440
441
442
443
444
445
446
447

    .. note::
        In order to script the transformation, please use ``torch.nn.ModuleList`` as input instead of list/tuple of
        transforms as shown below:

        >>> transforms = transforms.RandomApply(torch.nn.ModuleList([
        >>>     transforms.ColorJitter(),
        >>> ]), p=0.3)
        >>> scripted_transforms = torch.jit.script(transforms)

        Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
        `lambda` functions or ``PIL.Image``.
448
449

    Args:
450
        transforms (sequence or torch.nn.Module): list of transformations
451
452
453
454
        p (float): probability
    """

    def __init__(self, transforms, p=0.5):
455
456
        super().__init__()
        self.transforms = transforms
457
458
        self.p = p

459
460
    def forward(self, img):
        if self.p < torch.rand(1):
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
            return img
        for t in self.transforms:
            img = t(img)
        return img

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        format_string += '\n    p={}'.format(self.p)
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomOrder(RandomTransforms):
477
    """Apply a list of transformations in a random order. This transform does not support torchscript.
478
479
480
481
482
483
484
485
486
487
    """
    def __call__(self, img):
        order = list(range(len(self.transforms)))
        random.shuffle(order)
        for i in order:
            img = self.transforms[i](img)
        return img


class RandomChoice(RandomTransforms):
488
    """Apply single transformation randomly picked from a list. This transform does not support torchscript.
489
490
491
492
493
494
    """
    def __call__(self, img):
        t = random.choice(self.transforms)
        return t(img)


vfdev's avatar
vfdev committed
495
496
class RandomCrop(torch.nn.Module):
    """Crop the given image at a random location.
497
    If the image is torch Tensor, it is expected
498
499
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions,
    but if non-constant padding is used, the input is expected to have at most 2 leading dimensions
500
501
502
503

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
504
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
505
        padding (int or sequence, optional): Optional padding on each border
vfdev's avatar
vfdev committed
506
            of the image. Default is None. If a single int is provided this
507
508
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
vfdev's avatar
vfdev committed
509
            this is the padding for the left, top, right and bottom borders respectively.
510
            In torchscript mode padding as single int is not supported, use a sequence of length 1: ``[padding, ]``.
511
        pad_if_needed (boolean): It will pad the image if smaller than the
ekka's avatar
ekka committed
512
            desired size to avoid raising an exception. Since cropping is done
513
            after padding, the padding seems to be done at a random offset.
514
        fill (number or str or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
515
            length 3, it is used to fill R, G, B channels respectively.
516
517
518
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
            Only int or str or tuple value is supported for PIL Image.
vfdev's avatar
vfdev committed
519
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534

             - constant: pads with a constant value, this value is specified with fill

             - edge: pads with the last value on the edge of the image

             - reflect: pads with reflection of image (without repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                will result in [3, 2, 1, 2, 3, 4, 3, 2]

             - symmetric: pads with reflection of image (repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                will result in [2, 1, 1, 2, 3, 4, 4, 3]

535
536
537
    """

    @staticmethod
vfdev's avatar
vfdev committed
538
    def get_params(img: Tensor, output_size: Tuple[int, int]) -> Tuple[int, int, int, int]:
539
540
541
        """Get parameters for ``crop`` for a random crop.

        Args:
vfdev's avatar
vfdev committed
542
            img (PIL Image or Tensor): Image to be cropped.
543
544
545
546
547
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
vfdev's avatar
vfdev committed
548
        w, h = F._get_image_size(img)
549
        th, tw = output_size
vfdev's avatar
vfdev committed
550
551
552
553
554
555

        if h + 1 < th or w + 1 < tw:
            raise ValueError(
                "Required crop size {} is larger then input image size {}".format((th, tw), (h, w))
            )

556
557
558
        if w == tw and h == th:
            return 0, 0, h, w

559
560
        i = torch.randint(0, h - th + 1, size=(1, )).item()
        j = torch.randint(0, w - tw + 1, size=(1, )).item()
561
562
        return i, j, th, tw

vfdev's avatar
vfdev committed
563
564
565
    def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode="constant"):
        super().__init__()

566
567
568
569
        self.size = tuple(_setup_size(
            size, error_msg="Please provide only two dimensions (h, w) for size."
        ))

vfdev's avatar
vfdev committed
570
571
572
573
574
575
        self.padding = padding
        self.pad_if_needed = pad_if_needed
        self.fill = fill
        self.padding_mode = padding_mode

    def forward(self, img):
576
577
        """
        Args:
vfdev's avatar
vfdev committed
578
            img (PIL Image or Tensor): Image to be cropped.
579
580

        Returns:
vfdev's avatar
vfdev committed
581
            PIL Image or Tensor: Cropped image.
582
        """
583
584
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)
585

vfdev's avatar
vfdev committed
586
        width, height = F._get_image_size(img)
587
        # pad the width if needed
vfdev's avatar
vfdev committed
588
589
590
        if self.pad_if_needed and width < self.size[1]:
            padding = [self.size[1] - width, 0]
            img = F.pad(img, padding, self.fill, self.padding_mode)
591
        # pad the height if needed
vfdev's avatar
vfdev committed
592
593
594
        if self.pad_if_needed and height < self.size[0]:
            padding = [0, self.size[0] - height]
            img = F.pad(img, padding, self.fill, self.padding_mode)
595

596
597
598
599
        i, j, h, w = self.get_params(img, self.size)

        return F.crop(img, i, j, h, w)

600
    def __repr__(self):
vfdev's avatar
vfdev committed
601
        return self.__class__.__name__ + "(size={0}, padding={1})".format(self.size, self.padding)
602

603

604
605
class RandomHorizontalFlip(torch.nn.Module):
    """Horizontally flip the given image randomly with a given probability.
606
    If the image is torch Tensor, it is expected
607
608
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
609
610
611
612
613
614

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
615
        super().__init__()
616
        self.p = p
617

618
    def forward(self, img):
619
620
        """
        Args:
621
            img (PIL Image or Tensor): Image to be flipped.
622
623

        Returns:
624
            PIL Image or Tensor: Randomly flipped image.
625
        """
626
        if torch.rand(1) < self.p:
627
628
629
            return F.hflip(img)
        return img

630
    def __repr__(self):
631
        return self.__class__.__name__ + '(p={})'.format(self.p)
632

633

634
class RandomVerticalFlip(torch.nn.Module):
vfdev's avatar
vfdev committed
635
    """Vertically flip the given image randomly with a given probability.
636
    If the image is torch Tensor, it is expected
637
638
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
639
640
641
642
643
644

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
645
        super().__init__()
646
        self.p = p
647

648
    def forward(self, img):
649
650
        """
        Args:
651
            img (PIL Image or Tensor): Image to be flipped.
652
653

        Returns:
654
            PIL Image or Tensor: Randomly flipped image.
655
        """
656
        if torch.rand(1) < self.p:
657
658
659
            return F.vflip(img)
        return img

660
    def __repr__(self):
661
        return self.__class__.__name__ + '(p={})'.format(self.p)
662

663

664
665
class RandomPerspective(torch.nn.Module):
    """Performs a random perspective transformation of the given image with a given probability.
666
    If the image is torch Tensor, it is expected
667
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
668
669

    Args:
670
671
672
        distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
            Default is 0.5.
        p (float): probability of the image being transformed. Default is 0.5.
673
674
675
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
676
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
677
678
        fill (sequence or number): Pixel fill value for the area outside the transformed
            image. Default is ``0``. If given a number, the value is used for all bands respectively.
679
            If input is PIL Image, the options is only available for ``Pillow>=5.0.0``.
680
681
    """

682
    def __init__(self, distortion_scale=0.5, p=0.5, interpolation=InterpolationMode.BILINEAR, fill=0):
683
        super().__init__()
684
        self.p = p
685
686
687
688

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
689
690
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
691
692
693
            )
            interpolation = _interpolation_modes_from_int(interpolation)

694
695
        self.interpolation = interpolation
        self.distortion_scale = distortion_scale
696
697
698
699
700
701

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")

702
        self.fill = fill
703

704
    def forward(self, img):
705
706
        """
        Args:
707
            img (PIL Image or Tensor): Image to be Perspectively transformed.
708
709

        Returns:
710
            PIL Image or Tensor: Randomly transformed image.
711
        """
712
713
714
715
716
717
718
719

        fill = self.fill
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
                fill = [float(fill)] * F._get_image_num_channels(img)
            else:
                fill = [float(f) for f in fill]

720
721
        if torch.rand(1) < self.p:
            width, height = F._get_image_size(img)
722
            startpoints, endpoints = self.get_params(width, height, self.distortion_scale)
723
            return F.perspective(img, startpoints, endpoints, self.interpolation, fill)
724
725
726
        return img

    @staticmethod
727
    def get_params(width: int, height: int, distortion_scale: float) -> Tuple[List[List[int]], List[List[int]]]:
728
729
730
        """Get parameters for ``perspective`` for a random perspective transform.

        Args:
731
732
733
            width (int): width of the image.
            height (int): height of the image.
            distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
734
735

        Returns:
736
            List containing [top-left, top-right, bottom-right, bottom-left] of the original image,
737
738
            List containing [top-left, top-right, bottom-right, bottom-left] of the transformed image.
        """
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
        half_height = height // 2
        half_width = width // 2
        topleft = [
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1, )).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1, )).item())
        ]
        topright = [
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1, )).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1, )).item())
        ]
        botright = [
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1, )).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1, )).item())
        ]
        botleft = [
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1, )).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1, )).item())
        ]
        startpoints = [[0, 0], [width - 1, 0], [width - 1, height - 1], [0, height - 1]]
758
759
760
761
762
763
764
        endpoints = [topleft, topright, botright, botleft]
        return startpoints, endpoints

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


765
766
class RandomResizedCrop(torch.nn.Module):
    """Crop the given image to random size and aspect ratio.
767
    If the image is torch Tensor, it is expected
768
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
769

770
771
    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
772
773
774
775
    is finally resized to given size.
    This is popularly used to train the Inception networks.

    Args:
776
777
        size (int or sequence): expected output size of each edge. If size is an
            int instead of sequence like (h, w), a square output size ``(size, size)`` is
778
779
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
            In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
780
781
        scale (tuple of float): scale range of the cropped image before resizing, relatively to the origin image.
        ratio (tuple of float): aspect ratio range of the cropped image before resizing.
782
783
784
785
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` and
            ``InterpolationMode.BICUBIC`` are supported.
786
787
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.

788
789
    """

790
    def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=InterpolationMode.BILINEAR):
791
        super().__init__()
792
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
793

794
        if not isinstance(scale, Sequence):
795
            raise TypeError("Scale should be a sequence")
796
        if not isinstance(ratio, Sequence):
797
            raise TypeError("Ratio should be a sequence")
798
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
799
            warnings.warn("Scale and ratio should be of kind (min, max)")
800

801
802
803
        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
804
805
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
806
807
808
            )
            interpolation = _interpolation_modes_from_int(interpolation)

809
        self.interpolation = interpolation
810
811
        self.scale = scale
        self.ratio = ratio
812
813

    @staticmethod
814
    def get_params(
815
            img: Tensor, scale: List[float], ratio: List[float]
816
    ) -> Tuple[int, int, int, int]:
817
818
819
        """Get parameters for ``crop`` for a random sized crop.

        Args:
820
            img (PIL Image or Tensor): Input image.
821
822
            scale (list): range of scale of the origin size cropped
            ratio (list): range of aspect ratio of the origin aspect ratio cropped
823
824
825
826
827

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for a random
                sized crop.
        """
vfdev's avatar
vfdev committed
828
        width, height = F._get_image_size(img)
Zhicheng Yan's avatar
Zhicheng Yan committed
829
        area = height * width
830

831
        for _ in range(10):
832
            target_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
833
834
835
836
            log_ratio = torch.log(torch.tensor(ratio))
            aspect_ratio = torch.exp(
                torch.empty(1).uniform_(log_ratio[0], log_ratio[1])
            ).item()
837
838
839
840

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

Zhicheng Yan's avatar
Zhicheng Yan committed
841
            if 0 < w <= width and 0 < h <= height:
842
843
                i = torch.randint(0, height - h + 1, size=(1,)).item()
                j = torch.randint(0, width - w + 1, size=(1,)).item()
844
845
                return i, j, h, w

846
        # Fallback to central crop
Zhicheng Yan's avatar
Zhicheng Yan committed
847
        in_ratio = float(width) / float(height)
848
        if in_ratio < min(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
849
            w = width
850
            h = int(round(w / min(ratio)))
851
        elif in_ratio > max(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
852
            h = height
853
            w = int(round(h * max(ratio)))
854
        else:  # whole image
Zhicheng Yan's avatar
Zhicheng Yan committed
855
856
857
858
            w = width
            h = height
        i = (height - h) // 2
        j = (width - w) // 2
859
        return i, j, h, w
860

861
    def forward(self, img):
862
863
        """
        Args:
864
            img (PIL Image or Tensor): Image to be cropped and resized.
865
866

        Returns:
867
            PIL Image or Tensor: Randomly cropped and resized image.
868
        """
869
        i, j, h, w = self.get_params(img, self.scale, self.ratio)
870
871
        return F.resized_crop(img, i, j, h, w, self.size, self.interpolation)

872
    def __repr__(self):
873
        interpolate_str = self.interpolation.value
874
        format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
875
876
        format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale))
        format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio))
877
878
        format_string += ', interpolation={0})'.format(interpolate_str)
        return format_string
879

880
881
882
883
884
885
886
887
888
889
890

class RandomSizedCrop(RandomResizedCrop):
    """
    Note: This transform is deprecated in favor of RandomResizedCrop.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.RandomSizedCrop transform is deprecated, " +
                      "please use transforms.RandomResizedCrop instead.")
        super(RandomSizedCrop, self).__init__(*args, **kwargs)


vfdev's avatar
vfdev committed
891
892
class FiveCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop.
893
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
894
895
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
896
897
898
899
900
901
902
903
904

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
         size (sequence or int): Desired output size of the crop. If size is an ``int``
            instead of sequence like (h, w), a square crop of size (size, size) is made.
905
            If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
906
907
908
909
910
911
912
913
914
915
916
917
918
919

    Example:
         >>> transform = Compose([
         >>>    FiveCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
920
        super().__init__()
921
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
922

vfdev's avatar
vfdev committed
923
924
925
926
927
928
929
930
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 5 images. Image can be PIL Image or Tensor
        """
931
932
        return F.five_crop(img, self.size)

933
934
935
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

936

vfdev's avatar
vfdev committed
937
938
939
class TenCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop plus the flipped version of
    these (horizontal flipping is used by default).
940
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
941
942
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
943
944
945
946
947
948
949
950
951

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
952
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
953
        vertical_flip (bool): Use vertical flipping instead of horizontal
954
955
956
957
958
959
960
961
962
963
964
965
966
967

    Example:
         >>> transform = Compose([
         >>>    TenCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size, vertical_flip=False):
vfdev's avatar
vfdev committed
968
        super().__init__()
969
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
970
971
        self.vertical_flip = vertical_flip

vfdev's avatar
vfdev committed
972
973
974
975
976
977
978
979
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 10 images. Image can be PIL Image or Tensor
        """
980
981
        return F.ten_crop(img, self.size, self.vertical_flip)

982
    def __repr__(self):
983
        return self.__class__.__name__ + '(size={0}, vertical_flip={1})'.format(self.size, self.vertical_flip)
984

985

986
class LinearTransformation(torch.nn.Module):
ekka's avatar
ekka committed
987
    """Transform a tensor image with a square transformation matrix and a mean_vector computed
988
    offline.
989
    This transform does not support PIL Image.
ekka's avatar
ekka committed
990
991
992
    Given transformation_matrix and mean_vector, will flatten the torch.*Tensor and
    subtract mean_vector from it which is then followed by computing the dot
    product with the transformation matrix and then reshaping the tensor to its
993
    original shape.
994

995
    Applications:
996
        whitening transformation: Suppose X is a column vector zero-centered data.
997
998
999
        Then compute the data covariance matrix [D x D] with torch.mm(X.t(), X),
        perform SVD on this matrix and pass it as transformation_matrix.

1000
1001
    Args:
        transformation_matrix (Tensor): tensor [D x D], D = C x H x W
ekka's avatar
ekka committed
1002
        mean_vector (Tensor): tensor [D], D = C x H x W
1003
1004
    """

ekka's avatar
ekka committed
1005
    def __init__(self, transformation_matrix, mean_vector):
1006
        super().__init__()
1007
1008
1009
        if transformation_matrix.size(0) != transformation_matrix.size(1):
            raise ValueError("transformation_matrix should be square. Got " +
                             "[{} x {}] rectangular matrix.".format(*transformation_matrix.size()))
ekka's avatar
ekka committed
1010
1011
1012

        if mean_vector.size(0) != transformation_matrix.size(0):
            raise ValueError("mean_vector should have the same length {}".format(mean_vector.size(0)) +
Francisco Massa's avatar
Francisco Massa committed
1013
1014
                             " as any one of the dimensions of the transformation_matrix [{}]"
                             .format(tuple(transformation_matrix.size())))
ekka's avatar
ekka committed
1015

1016
1017
1018
1019
        if transformation_matrix.device != mean_vector.device:
            raise ValueError("Input tensors should be on the same device. Got {} and {}"
                             .format(transformation_matrix.device, mean_vector.device))

1020
        self.transformation_matrix = transformation_matrix
ekka's avatar
ekka committed
1021
        self.mean_vector = mean_vector
1022

1023
    def forward(self, tensor: Tensor) -> Tensor:
1024
1025
        """
        Args:
vfdev's avatar
vfdev committed
1026
            tensor (Tensor): Tensor image to be whitened.
1027
1028
1029
1030

        Returns:
            Tensor: Transformed image.
        """
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
        shape = tensor.shape
        n = shape[-3] * shape[-2] * shape[-1]
        if n != self.transformation_matrix.shape[0]:
            raise ValueError("Input tensor and transformation matrix have incompatible shape." +
                             "[{} x {} x {}] != ".format(shape[-3], shape[-2], shape[-1]) +
                             "{}".format(self.transformation_matrix.shape[0]))

        if tensor.device.type != self.mean_vector.device.type:
            raise ValueError("Input tensor should be on the same device as transformation matrix and mean vector. "
                             "Got {} vs {}".format(tensor.device, self.mean_vector.device))

        flat_tensor = tensor.view(-1, n) - self.mean_vector
1043
        transformed_tensor = torch.mm(flat_tensor, self.transformation_matrix)
1044
        tensor = transformed_tensor.view(shape)
1045
1046
        return tensor

1047
    def __repr__(self):
ekka's avatar
ekka committed
1048
1049
1050
        format_string = self.__class__.__name__ + '(transformation_matrix='
        format_string += (str(self.transformation_matrix.tolist()) + ')')
        format_string += (", (mean_vector=" + str(self.mean_vector.tolist()) + ')')
1051
1052
        return format_string

1053

1054
class ColorJitter(torch.nn.Module):
1055
    """Randomly change the brightness, contrast, saturation and hue of an image.
1056
    If the image is torch Tensor, it is expected
1057
1058
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, mode "1", "L", "I", "F" and modes with transparency (alpha channel) are not supported.
1059
1060

    Args:
yaox12's avatar
yaox12 committed
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
        brightness (float or tuple of float (min, max)): How much to jitter brightness.
            brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
            or the given [min, max]. Should be non negative numbers.
        contrast (float or tuple of float (min, max)): How much to jitter contrast.
            contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
            or the given [min, max]. Should be non negative numbers.
        saturation (float or tuple of float (min, max)): How much to jitter saturation.
            saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
            or the given [min, max]. Should be non negative numbers.
        hue (float or tuple of float (min, max)): How much to jitter hue.
            hue_factor is chosen uniformly from [-hue, hue] or the given [min, max].
            Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
1073
    """
1074

1075
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
1076
        super().__init__()
yaox12's avatar
yaox12 committed
1077
1078
1079
1080
1081
1082
        self.brightness = self._check_input(brightness, 'brightness')
        self.contrast = self._check_input(contrast, 'contrast')
        self.saturation = self._check_input(saturation, 'saturation')
        self.hue = self._check_input(hue, 'hue', center=0, bound=(-0.5, 0.5),
                                     clip_first_on_zero=False)

1083
    @torch.jit.unused
yaox12's avatar
yaox12 committed
1084
1085
1086
1087
    def _check_input(self, value, name, center=1, bound=(0, float('inf')), clip_first_on_zero=True):
        if isinstance(value, numbers.Number):
            if value < 0:
                raise ValueError("If {} is a single number, it must be non negative.".format(name))
1088
            value = [center - float(value), center + float(value)]
yaox12's avatar
yaox12 committed
1089
            if clip_first_on_zero:
1090
                value[0] = max(value[0], 0.0)
yaox12's avatar
yaox12 committed
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
        elif isinstance(value, (tuple, list)) and len(value) == 2:
            if not bound[0] <= value[0] <= value[1] <= bound[1]:
                raise ValueError("{} values should be between {}".format(name, bound))
        else:
            raise TypeError("{} should be a single number or a list/tuple with lenght 2.".format(name))

        # if value is 0 or (1., 1.) for brightness/contrast/saturation
        # or (0., 0.) for hue, do nothing
        if value[0] == value[1] == center:
            value = None
        return value
1102
1103

    @staticmethod
1104
1105
1106
1107
1108
1109
    def get_params(brightness: Optional[List[float]],
                   contrast: Optional[List[float]],
                   saturation: Optional[List[float]],
                   hue: Optional[List[float]]
                   ) -> Tuple[Tensor, Optional[float], Optional[float], Optional[float], Optional[float]]:
        """Get the parameters for the randomized transform to be applied on image.
1110

1111
1112
1113
1114
1115
1116
1117
1118
1119
        Args:
            brightness (tuple of float (min, max), optional): The range from which the brightness_factor is chosen
                uniformly. Pass None to turn off the transformation.
            contrast (tuple of float (min, max), optional): The range from which the contrast_factor is chosen
                uniformly. Pass None to turn off the transformation.
            saturation (tuple of float (min, max), optional): The range from which the saturation_factor is chosen
                uniformly. Pass None to turn off the transformation.
            hue (tuple of float (min, max), optional): The range from which the hue_factor is chosen uniformly.
                Pass None to turn off the transformation.
1120
1121

        Returns:
1122
1123
            tuple: The parameters used to apply the randomized transform
            along with their random order.
1124
        """
1125
        fn_idx = torch.randperm(4)
1126

1127
1128
1129
1130
        b = None if brightness is None else float(torch.empty(1).uniform_(brightness[0], brightness[1]))
        c = None if contrast is None else float(torch.empty(1).uniform_(contrast[0], contrast[1]))
        s = None if saturation is None else float(torch.empty(1).uniform_(saturation[0], saturation[1]))
        h = None if hue is None else float(torch.empty(1).uniform_(hue[0], hue[1]))
1131

1132
        return fn_idx, b, c, s, h
1133

1134
    def forward(self, img):
1135
1136
        """
        Args:
1137
            img (PIL Image or Tensor): Input image.
1138
1139

        Returns:
1140
1141
            PIL Image or Tensor: Color jittered image.
        """
1142
1143
1144
        fn_idx, brightness_factor, contrast_factor, saturation_factor, hue_factor = \
            self.get_params(self.brightness, self.contrast, self.saturation, self.hue)

1145
        for fn_id in fn_idx:
1146
            if fn_id == 0 and brightness_factor is not None:
1147
                img = F.adjust_brightness(img, brightness_factor)
1148
            elif fn_id == 1 and contrast_factor is not None:
1149
                img = F.adjust_contrast(img, contrast_factor)
1150
            elif fn_id == 2 and saturation_factor is not None:
1151
                img = F.adjust_saturation(img, saturation_factor)
1152
            elif fn_id == 3 and hue_factor is not None:
1153
1154
1155
                img = F.adjust_hue(img, hue_factor)

        return img
1156

1157
    def __repr__(self):
1158
1159
1160
1161
1162
1163
        format_string = self.__class__.__name__ + '('
        format_string += 'brightness={0}'.format(self.brightness)
        format_string += ', contrast={0}'.format(self.contrast)
        format_string += ', saturation={0}'.format(self.saturation)
        format_string += ', hue={0})'.format(self.hue)
        return format_string
1164

1165

1166
class RandomRotation(torch.nn.Module):
1167
    """Rotate the image by angle.
1168
    If the image is torch Tensor, it is expected
1169
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1170
1171

    Args:
1172
        degrees (sequence or number): Range of degrees to select from.
1173
1174
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees).
1175
1176
1177
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1178
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
1179
1180
1181
1182
        expand (bool, optional): Optional expansion flag.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
1183
        center (sequence, optional): Optional center of rotation, (x, y). Origin is the upper left corner.
1184
            Default is the center of the image.
1185
1186
        fill (sequence or number): Pixel fill value for the area outside the rotated
            image. Default is ``0``. If given a number, the value is used for all bands respectively.
1187
            If input is PIL Image, the options is only available for ``Pillow>=5.2.0``.
1188
        resample (int, optional): deprecated argument and will be removed since v0.10.0.
1189
            Please use the ``interpolation`` parameter instead.
1190
1191
1192

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1193
1194
    """

1195
    def __init__(
1196
        self, degrees, interpolation=InterpolationMode.NEAREST, expand=False, center=None, fill=0, resample=None
1197
    ):
1198
        super().__init__()
1199
1200
1201
1202
1203
1204
1205
1206
1207
        if resample is not None:
            warnings.warn(
                "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
            )
            interpolation = _interpolation_modes_from_int(resample)

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
1208
1209
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
1210
1211
1212
            )
            interpolation = _interpolation_modes_from_int(interpolation)

1213
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2, ))
1214
1215

        if center is not None:
1216
            _check_sequence_input(center, "center", req_sizes=(2, ))
1217
1218

        self.center = center
1219

1220
        self.resample = self.interpolation = interpolation
1221
        self.expand = expand
1222
1223
1224
1225
1226
1227

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")

1228
        self.fill = fill
1229
1230

    @staticmethod
1231
    def get_params(degrees: List[float]) -> float:
1232
1233
1234
        """Get parameters for ``rotate`` for a random rotation.

        Returns:
1235
            float: angle parameter to be passed to ``rotate`` for random rotation.
1236
        """
1237
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1238
1239
        return angle

1240
    def forward(self, img):
1241
        """
1242
        Args:
1243
            img (PIL Image or Tensor): Image to be rotated.
1244
1245

        Returns:
1246
            PIL Image or Tensor: Rotated image.
1247
        """
1248
1249
1250
1251
1252
1253
        fill = self.fill
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
                fill = [float(fill)] * F._get_image_num_channels(img)
            else:
                fill = [float(f) for f in fill]
1254
        angle = self.get_params(self.degrees)
1255
1256

        return F.rotate(img, angle, self.resample, self.expand, self.center, fill)
1257

1258
    def __repr__(self):
1259
        interpolate_str = self.interpolation.value
1260
        format_string = self.__class__.__name__ + '(degrees={0}'.format(self.degrees)
1261
        format_string += ', interpolation={0}'.format(interpolate_str)
1262
1263
1264
        format_string += ', expand={0}'.format(self.expand)
        if self.center is not None:
            format_string += ', center={0}'.format(self.center)
1265
1266
        if self.fill is not None:
            format_string += ', fill={0}'.format(self.fill)
1267
1268
        format_string += ')'
        return format_string
1269

1270

1271
1272
class RandomAffine(torch.nn.Module):
    """Random affine transformation of the image keeping center invariant.
1273
    If the image is torch Tensor, it is expected
1274
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1275
1276

    Args:
1277
        degrees (sequence or number): Range of degrees to select from.
1278
            If degrees is a number instead of sequence like (min, max), the range of degrees
1279
            will be (-degrees, +degrees). Set to 0 to deactivate rotations.
1280
1281
1282
1283
1284
1285
        translate (tuple, optional): tuple of maximum absolute fraction for horizontal
            and vertical translations. For example translate=(a, b), then horizontal shift
            is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
            randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
        scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
            randomly sampled from the range a <= scale <= b. Will keep original scale by default.
1286
        shear (sequence or number, optional): Range of degrees to select from.
ptrblck's avatar
ptrblck committed
1287
            If shear is a number, a shear parallel to the x axis in the range (-shear, +shear)
1288
1289
            will be applied. Else if shear is a sequence of 2 values a shear parallel to the x axis in the
            range (shear[0], shear[1]) will be applied. Else if shear is a sequence of 4 values,
ptrblck's avatar
ptrblck committed
1290
            a x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
1291
            Will not apply shear by default.
1292
1293
1294
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1295
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
1296
1297
        fill (sequence or number): Pixel fill value for the area outside the transformed
            image. Default is ``0``. If given a number, the value is used for all bands respectively.
1298
            If input is PIL Image, the options is only available for ``Pillow>=5.0.0``.
1299
        fillcolor (sequence or number, optional): deprecated argument and will be removed since v0.10.0.
1300
            Please use the ``fill`` parameter instead.
1301
        resample (int, optional): deprecated argument and will be removed since v0.10.0.
1302
            Please use the ``interpolation`` parameter instead.
1303
1304
1305

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1306
1307
    """

1308
    def __init__(
1309
        self, degrees, translate=None, scale=None, shear=None, interpolation=InterpolationMode.NEAREST, fill=0,
1310
1311
        fillcolor=None, resample=None
    ):
1312
        super().__init__()
1313
1314
1315
1316
1317
1318
1319
1320
1321
        if resample is not None:
            warnings.warn(
                "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
            )
            interpolation = _interpolation_modes_from_int(resample)

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
1322
1323
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
1324
1325
1326
1327
1328
1329
1330
1331
1332
            )
            interpolation = _interpolation_modes_from_int(interpolation)

        if fillcolor is not None:
            warnings.warn(
                "Argument fillcolor is deprecated and will be removed since v0.10.0. Please, use fill instead"
            )
            fill = fillcolor

1333
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2, ))
1334
1335

        if translate is not None:
1336
            _check_sequence_input(translate, "translate", req_sizes=(2, ))
1337
1338
1339
1340
1341
1342
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError("translation values should be between 0 and 1")
        self.translate = translate

        if scale is not None:
1343
            _check_sequence_input(scale, "scale", req_sizes=(2, ))
1344
1345
1346
1347
1348
1349
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
1350
            self.shear = _setup_angle(shear, name="shear", req_sizes=(2, 4))
1351
1352
1353
        else:
            self.shear = shear

1354
        self.resample = self.interpolation = interpolation
1355
1356
1357
1358
1359
1360

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")

1361
        self.fillcolor = self.fill = fill
1362
1363

    @staticmethod
1364
1365
1366
1367
1368
1369
1370
    def get_params(
            degrees: List[float],
            translate: Optional[List[float]],
            scale_ranges: Optional[List[float]],
            shears: Optional[List[float]],
            img_size: List[int]
    ) -> Tuple[float, Tuple[int, int], float, Tuple[float, float]]:
1371
1372
1373
        """Get parameters for affine transformation

        Returns:
1374
            params to be passed to the affine transformation
1375
        """
1376
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1377
        if translate is not None:
1378
1379
1380
1381
1382
            max_dx = float(translate[0] * img_size[0])
            max_dy = float(translate[1] * img_size[1])
            tx = int(round(torch.empty(1).uniform_(-max_dx, max_dx).item()))
            ty = int(round(torch.empty(1).uniform_(-max_dy, max_dy).item()))
            translations = (tx, ty)
1383
1384
1385
1386
        else:
            translations = (0, 0)

        if scale_ranges is not None:
1387
            scale = float(torch.empty(1).uniform_(scale_ranges[0], scale_ranges[1]).item())
1388
1389
1390
        else:
            scale = 1.0

1391
        shear_x = shear_y = 0.0
1392
        if shears is not None:
1393
1394
1395
1396
1397
            shear_x = float(torch.empty(1).uniform_(shears[0], shears[1]).item())
            if len(shears) == 4:
                shear_y = float(torch.empty(1).uniform_(shears[2], shears[3]).item())

        shear = (shear_x, shear_y)
1398
1399
1400

        return angle, translations, scale, shear

1401
    def forward(self, img):
1402
        """
1403
            img (PIL Image or Tensor): Image to be transformed.
1404
1405

        Returns:
1406
            PIL Image or Tensor: Affine transformed image.
1407
        """
1408
1409
1410
1411
1412
1413
        fill = self.fill
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
                fill = [float(fill)] * F._get_image_num_channels(img)
            else:
                fill = [float(f) for f in fill]
1414
1415
1416
1417

        img_size = F._get_image_size(img)

        ret = self.get_params(self.degrees, self.translate, self.scale, self.shear, img_size)
1418
1419

        return F.affine(img, *ret, interpolation=self.interpolation, fill=fill)
1420
1421
1422
1423
1424
1425
1426
1427
1428

    def __repr__(self):
        s = '{name}(degrees={degrees}'
        if self.translate is not None:
            s += ', translate={translate}'
        if self.scale is not None:
            s += ', scale={scale}'
        if self.shear is not None:
            s += ', shear={shear}'
1429
        if self.interpolation != InterpolationMode.NEAREST:
1430
1431
1432
            s += ', interpolation={interpolation}'
        if self.fill != 0:
            s += ', fill={fill}'
1433
1434
        s += ')'
        d = dict(self.__dict__)
1435
        d['interpolation'] = self.interpolation.value
1436
1437
1438
        return s.format(name=self.__class__.__name__, **d)


1439
class Grayscale(torch.nn.Module):
1440
    """Convert image to grayscale.
1441
1442
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1443

1444
1445
1446
1447
    Args:
        num_output_channels (int): (1 or 3) number of channels desired for output image

    Returns:
1448
        PIL Image: Grayscale version of the input.
1449
1450
         - If ``num_output_channels == 1`` : returned image is single channel
         - If ``num_output_channels == 3`` : returned image is 3 channel with r == g == b
1451
1452
1453
1454

    """

    def __init__(self, num_output_channels=1):
1455
        super().__init__()
1456
1457
        self.num_output_channels = num_output_channels

vfdev's avatar
vfdev committed
1458
    def forward(self, img):
1459
1460
        """
        Args:
1461
            img (PIL Image or Tensor): Image to be converted to grayscale.
1462
1463

        Returns:
1464
            PIL Image or Tensor: Grayscaled image.
1465
        """
1466
        return F.rgb_to_grayscale(img, num_output_channels=self.num_output_channels)
1467

1468
    def __repr__(self):
1469
        return self.__class__.__name__ + '(num_output_channels={0})'.format(self.num_output_channels)
1470

1471

1472
class RandomGrayscale(torch.nn.Module):
1473
    """Randomly convert image to grayscale with a probability of p (default 0.1).
1474
1475
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1476

1477
1478
1479
1480
    Args:
        p (float): probability that image should be converted to grayscale.

    Returns:
1481
        PIL Image or Tensor: Grayscale version of the input image with probability p and unchanged
1482
1483
1484
        with probability (1-p).
        - If input image is 1 channel: grayscale version is 1 channel
        - If input image is 3 channel: grayscale version is 3 channel with r == g == b
1485
1486
1487
1488

    """

    def __init__(self, p=0.1):
1489
        super().__init__()
1490
1491
        self.p = p

vfdev's avatar
vfdev committed
1492
    def forward(self, img):
1493
1494
        """
        Args:
1495
            img (PIL Image or Tensor): Image to be converted to grayscale.
1496
1497

        Returns:
1498
            PIL Image or Tensor: Randomly grayscaled image.
1499
        """
1500
1501
1502
        num_output_channels = F._get_image_num_channels(img)
        if torch.rand(1) < self.p:
            return F.rgb_to_grayscale(img, num_output_channels=num_output_channels)
1503
        return img
1504
1505

    def __repr__(self):
1506
        return self.__class__.__name__ + '(p={0})'.format(self.p)
1507
1508


1509
class RandomErasing(torch.nn.Module):
1510
1511
    """ Randomly selects a rectangle region in an torch Tensor image and erases its pixels.
    This transform does not support PIL Image.
vfdev's avatar
vfdev committed
1512
    'Random Erasing Data Augmentation' by Zhong et al. See https://arxiv.org/abs/1708.04896
1513

1514
1515
1516
1517
1518
1519
1520
1521
    Args:
         p: probability that the random erasing operation will be performed.
         scale: range of proportion of erased area against input image.
         ratio: range of aspect ratio of erased area.
         value: erasing value. Default is 0. If a single int, it is used to
            erase all pixels. If a tuple of length 3, it is used to erase
            R, G, B channels respectively.
            If a str of 'random', erasing each pixel with random values.
Zhun Zhong's avatar
Zhun Zhong committed
1522
         inplace: boolean to make this transform inplace. Default set to False.
1523

1524
1525
    Returns:
        Erased Image.
1526

vfdev's avatar
vfdev committed
1527
    Example:
1528
        >>> transform = transforms.Compose([
1529
1530
1531
1532
        >>>   transforms.RandomHorizontalFlip(),
        >>>   transforms.ToTensor(),
        >>>   transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>>   transforms.RandomErasing(),
1533
1534
1535
        >>> ])
    """

Zhun Zhong's avatar
Zhun Zhong committed
1536
    def __init__(self, p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False):
1537
1538
1539
1540
1541
1542
1543
1544
1545
        super().__init__()
        if not isinstance(value, (numbers.Number, str, tuple, list)):
            raise TypeError("Argument value should be either a number or str or a sequence")
        if isinstance(value, str) and value != "random":
            raise ValueError("If value is str, it should be 'random'")
        if not isinstance(scale, (tuple, list)):
            raise TypeError("Scale should be a sequence")
        if not isinstance(ratio, (tuple, list)):
            raise TypeError("Ratio should be a sequence")
1546
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
1547
            warnings.warn("Scale and ratio should be of kind (min, max)")
1548
        if scale[0] < 0 or scale[1] > 1:
1549
            raise ValueError("Scale should be between 0 and 1")
1550
        if p < 0 or p > 1:
1551
            raise ValueError("Random erasing probability should be between 0 and 1")
1552
1553
1554
1555
1556

        self.p = p
        self.scale = scale
        self.ratio = ratio
        self.value = value
1557
        self.inplace = inplace
1558
1559

    @staticmethod
1560
1561
1562
    def get_params(
            img: Tensor, scale: Tuple[float, float], ratio: Tuple[float, float], value: Optional[List[float]] = None
    ) -> Tuple[int, int, int, int, Tensor]:
1563
1564
1565
        """Get parameters for ``erase`` for a random erasing.

        Args:
vfdev's avatar
vfdev committed
1566
            img (Tensor): Tensor image to be erased.
1567
1568
            scale (sequence): range of proportion of erased area against input image.
            ratio (sequence): range of aspect ratio of erased area.
1569
1570
1571
            value (list, optional): erasing value. If None, it is interpreted as "random"
                (erasing each pixel with random values). If ``len(value)`` is 1, it is interpreted as a number,
                i.e. ``value[0]``.
1572
1573
1574
1575

        Returns:
            tuple: params (i, j, h, w, v) to be passed to ``erase`` for random erasing.
        """
vfdev's avatar
vfdev committed
1576
        img_c, img_h, img_w = img.shape[-3], img.shape[-2], img.shape[-1]
1577
        area = img_h * img_w
1578

1579
        for _ in range(10):
1580
1581
            erase_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
            aspect_ratio = torch.empty(1).uniform_(ratio[0], ratio[1]).item()
1582
1583
1584

            h = int(round(math.sqrt(erase_area * aspect_ratio)))
            w = int(round(math.sqrt(erase_area / aspect_ratio)))
1585
1586
1587
1588
1589
1590
1591
            if not (h < img_h and w < img_w):
                continue

            if value is None:
                v = torch.empty([img_c, h, w], dtype=torch.float32).normal_()
            else:
                v = torch.tensor(value)[:, None, None]
1592

1593
1594
            i = torch.randint(0, img_h - h + 1, size=(1, )).item()
            j = torch.randint(0, img_w - w + 1, size=(1, )).item()
1595
            return i, j, h, w, v
1596

Zhun Zhong's avatar
Zhun Zhong committed
1597
1598
1599
        # Return original image
        return 0, 0, img_h, img_w, img

1600
    def forward(self, img):
1601
1602
        """
        Args:
vfdev's avatar
vfdev committed
1603
            img (Tensor): Tensor image to be erased.
1604
1605
1606
1607

        Returns:
            img (Tensor): Erased Tensor image.
        """
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
        if torch.rand(1) < self.p:

            # cast self.value to script acceptable type
            if isinstance(self.value, (int, float)):
                value = [self.value, ]
            elif isinstance(self.value, str):
                value = None
            elif isinstance(self.value, tuple):
                value = list(self.value)
            else:
                value = self.value

            if value is not None and not (len(value) in (1, img.shape[-3])):
                raise ValueError(
                    "If value is a sequence, it should have either a single value or "
                    "{} (number of input channels)".format(img.shape[-3])
                )

            x, y, h, w, v = self.get_params(img, scale=self.scale, ratio=self.ratio, value=value)
1627
            return F.erase(img, x, y, h, w, v, self.inplace)
1628
        return img
1629
1630


1631
1632
class GaussianBlur(torch.nn.Module):
    """Blurs image with randomly chosen Gaussian blur.
1633
1634
    If the image is torch Tensor, it is expected
    to have [..., C, H, W] shape, where ... means an arbitrary number of leading dimensions.
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668

    Args:
        kernel_size (int or sequence): Size of the Gaussian kernel.
        sigma (float or tuple of float (min, max)): Standard deviation to be used for
            creating kernel to perform blurring. If float, sigma is fixed. If it is tuple
            of float (min, max), sigma is chosen uniformly at random to lie in the
            given range.

    Returns:
        PIL Image or Tensor: Gaussian blurred version of the input image.

    """

    def __init__(self, kernel_size, sigma=(0.1, 2.0)):
        super().__init__()
        self.kernel_size = _setup_size(kernel_size, "Kernel size should be a tuple/list of two integers")
        for ks in self.kernel_size:
            if ks <= 0 or ks % 2 == 0:
                raise ValueError("Kernel size value should be an odd and positive number.")

        if isinstance(sigma, numbers.Number):
            if sigma <= 0:
                raise ValueError("If sigma is a single number, it must be positive.")
            sigma = (sigma, sigma)
        elif isinstance(sigma, Sequence) and len(sigma) == 2:
            if not 0. < sigma[0] <= sigma[1]:
                raise ValueError("sigma values should be positive and of the form (min, max).")
        else:
            raise ValueError("sigma should be a single number or a list/tuple with length 2.")

        self.sigma = sigma

    @staticmethod
    def get_params(sigma_min: float, sigma_max: float) -> float:
vfdev's avatar
vfdev committed
1669
        """Choose sigma for random gaussian blurring.
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682

        Args:
            sigma_min (float): Minimum standard deviation that can be chosen for blurring kernel.
            sigma_max (float): Maximum standard deviation that can be chosen for blurring kernel.

        Returns:
            float: Standard deviation to be passed to calculate kernel for gaussian blurring.
        """
        return torch.empty(1).uniform_(sigma_min, sigma_max).item()

    def forward(self, img: Tensor) -> Tensor:
        """
        Args:
vfdev's avatar
vfdev committed
1683
            img (PIL Image or Tensor): image to be blurred.
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696

        Returns:
            PIL Image or Tensor: Gaussian blurred image
        """
        sigma = self.get_params(self.sigma[0], self.sigma[1])
        return F.gaussian_blur(img, self.kernel_size, [sigma, sigma])

    def __repr__(self):
        s = '(kernel_size={}, '.format(self.kernel_size)
        s += 'sigma={})'.format(self.sigma)
        return self.__class__.__name__ + s


1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
def _setup_size(size, error_msg):
    if isinstance(size, numbers.Number):
        return int(size), int(size)

    if isinstance(size, Sequence) and len(size) == 1:
        return size[0], size[0]

    if len(size) != 2:
        raise ValueError(error_msg)

    return size


def _check_sequence_input(x, name, req_sizes):
    msg = req_sizes[0] if len(req_sizes) < 2 else " or ".join([str(s) for s in req_sizes])
    if not isinstance(x, Sequence):
        raise TypeError("{} should be a sequence of length {}.".format(name, msg))
    if len(x) not in req_sizes:
        raise ValueError("{} should be sequence of length {}.".format(name, msg))


def _setup_angle(x, name, req_sizes=(2, )):
    if isinstance(x, numbers.Number):
        if x < 0:
            raise ValueError("If {} is a single number, it must be positive.".format(name))
        x = [-x, x]
    else:
        _check_sequence_input(x, name, req_sizes)

    return [float(d) for d in x]
1727
1728
1729
1730


class RandomInvert(torch.nn.Module):
    """Inverts the colors of the given image randomly with a given probability.
1731
1732
1733
    If img is a Tensor, it is expected to be in [..., 1 or 3, H, W] format,
    where ... means it can have an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760

    Args:
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be inverted.

        Returns:
            PIL Image or Tensor: Randomly color inverted image.
        """
        if torch.rand(1).item() < self.p:
            return F.invert(img)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


class RandomPosterize(torch.nn.Module):
    """Posterize the image randomly with a given probability by reducing the
1761
1762
1763
    number of bits for each color channel. If the image is torch Tensor, it should be of type torch.uint8,
    and it is expected to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792

    Args:
        bits (int): number of bits to keep for each channel (0-8)
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, bits, p=0.5):
        super().__init__()
        self.bits = bits
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be posterized.

        Returns:
            PIL Image or Tensor: Randomly posterized image.
        """
        if torch.rand(1).item() < self.p:
            return F.posterize(img, self.bits)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(bits={},p={})'.format(self.bits, self.p)


class RandomSolarize(torch.nn.Module):
    """Solarize the image randomly with a given probability by inverting all pixel
1793
1794
1795
    values above a threshold. If img is a Tensor, it is expected to be in [..., 1 or 3, H, W] format,
    where ... means it can have an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823

    Args:
        threshold (float): all pixels equal or above this value are inverted.
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, threshold, p=0.5):
        super().__init__()
        self.threshold = threshold
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be solarized.

        Returns:
            PIL Image or Tensor: Randomly solarized image.
        """
        if torch.rand(1).item() < self.p:
            return F.solarize(img, self.threshold)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(threshold={},p={})'.format(self.threshold, self.p)


class RandomAdjustSharpness(torch.nn.Module):
1824
1825
    """Adjust the sharpness of the image randomly with a given probability. If the image is torch Tensor,
    it is expected to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856

    Args:
        sharpness_factor (float):  How much to adjust the sharpness. Can be
            any non negative number. 0 gives a blurred image, 1 gives the
            original image while 2 increases the sharpness by a factor of 2.
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, sharpness_factor, p=0.5):
        super().__init__()
        self.sharpness_factor = sharpness_factor
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be sharpened.

        Returns:
            PIL Image or Tensor: Randomly sharpened image.
        """
        if torch.rand(1).item() < self.p:
            return F.adjust_sharpness(img, self.sharpness_factor)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(sharpness_factor={},p={})'.format(self.sharpness_factor, self.p)


class RandomAutocontrast(torch.nn.Module):
    """Autocontrast the pixels of the given image randomly with a given probability.
1857
1858
1859
    If the image is torch Tensor, it is expected
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886

    Args:
        p (float): probability of the image being autocontrasted. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be autocontrasted.

        Returns:
            PIL Image or Tensor: Randomly autocontrasted image.
        """
        if torch.rand(1).item() < self.p:
            return F.autocontrast(img)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


class RandomEqualize(torch.nn.Module):
    """Equalize the histogram of the given image randomly with a given probability.
1887
1888
1889
    If the image is torch Tensor, it is expected
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "P", "L" or "RGB".
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912

    Args:
        p (float): probability of the image being equalized. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be equalized.

        Returns:
            PIL Image or Tensor: Randomly equalized image.
        """
        if torch.rand(1).item() < self.p:
            return F.equalize(img)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)