transforms.py 63.6 KB
Newer Older
1
import math
vfdev's avatar
vfdev committed
2
import numbers
3
import random
vfdev's avatar
vfdev committed
4
import warnings
vfdev's avatar
vfdev committed
5
from collections.abc import Sequence
6
from typing import Tuple, List, Optional
vfdev's avatar
vfdev committed
7
8

import torch
9
from PIL import Image
vfdev's avatar
vfdev committed
10
11
from torch import Tensor

12
13
14
15
16
17
18
try:
    import accimage
except ImportError:
    accimage = None

from . import functional as F

19
20
21
22
__all__ = ["Compose", "ToTensor", "PILToTensor", "ConvertImageDtype", "ToPILImage", "Normalize", "Resize", "Scale",
           "CenterCrop", "Pad", "Lambda", "RandomApply", "RandomChoice", "RandomOrder", "RandomCrop",
           "RandomHorizontalFlip", "RandomVerticalFlip", "RandomResizedCrop", "RandomSizedCrop", "FiveCrop", "TenCrop",
           "LinearTransformation", "ColorJitter", "RandomRotation", "RandomAffine", "Grayscale", "RandomGrayscale",
23
           "RandomPerspective", "RandomErasing", "GaussianBlur"]
24

25
26
27
28
29
_pil_interpolation_to_str = {
    Image.NEAREST: 'PIL.Image.NEAREST',
    Image.BILINEAR: 'PIL.Image.BILINEAR',
    Image.BICUBIC: 'PIL.Image.BICUBIC',
    Image.LANCZOS: 'PIL.Image.LANCZOS',
surgan12's avatar
surgan12 committed
30
31
    Image.HAMMING: 'PIL.Image.HAMMING',
    Image.BOX: 'PIL.Image.BOX',
32
33
}

34

35
class Compose:
36
37
    """Composes several transforms together. This transform does not support torchscript.
    Please, see the note below.
38
39
40
41
42
43
44
45
46

    Args:
        transforms (list of ``Transform`` objects): list of transforms to compose.

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
        >>>     transforms.ToTensor(),
        >>> ])
47
48
49
50
51
52
53
54
55
56
57
58
59

    .. note::
        In order to script the transformations, please use ``torch.nn.Sequential`` as below.

        >>> transforms = torch.nn.Sequential(
        >>>     transforms.CenterCrop(10),
        >>>     transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>> )
        >>> scripted_transforms = torch.jit.script(transforms)

        Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
        `lambda` functions or ``PIL.Image``.

60
61
62
63
64
65
66
67
68
69
    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img

70
71
72
73
74
75
76
77
    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string

78

79
class ToTensor:
80
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor. This transform does not support torchscript.
81
82

    Converts a PIL Image or numpy.ndarray (H x W x C) in the range
surgan12's avatar
surgan12 committed
83
84
85
86
87
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
    if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
    or if the numpy.ndarray has dtype = np.uint8

    In the other cases, tensors are returned without scaling.
88
89
90
91
92
93

    .. note::
        Because the input image is scaled to [0.0, 1.0], this transformation should not be used when
        transforming target image masks. See the `references`_ for implementing the transforms for image masks.

    .. _references: https://github.com/pytorch/vision/tree/master/references/segmentation
94
95
96
97
98
99
100
101
102
103
104
105
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(pic)

106
107
108
    def __repr__(self):
        return self.__class__.__name__ + '()'

109

110
class PILToTensor:
111
    """Convert a ``PIL Image`` to a tensor of the same type. This transform does not support torchscript.
112

vfdev's avatar
vfdev committed
113
    Converts a PIL Image (H x W x C) to a Tensor of shape (C x H x W).
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.pil_to_tensor(pic)

    def __repr__(self):
        return self.__class__.__name__ + '()'


130
class ConvertImageDtype(torch.nn.Module):
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly

    Args:
        dtype (torch.dtype): Desired data type of the output

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """

    def __init__(self, dtype: torch.dtype) -> None:
149
        super().__init__()
150
151
        self.dtype = dtype

vfdev's avatar
vfdev committed
152
    def forward(self, image):
153
154
155
        return F.convert_image_dtype(image, self.dtype)


156
class ToPILImage:
157
    """Convert a tensor or an ndarray to PIL Image. This transform does not support torchscript.
158
159
160
161
162
163
164

    Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape
    H x W x C to a PIL Image while preserving the value range.

    Args:
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).
            If ``mode`` is ``None`` (default) there are some assumptions made about the input data:
vfdev's avatar
vfdev committed
165
166
167
168
169
            - If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``.
            - If the input has 3 channels, the ``mode`` is assumed to be ``RGB``.
            - If the input has 2 channels, the ``mode`` is assumed to be ``LA``.
            - If the input has 1 channel, the ``mode`` is determined by the data type (i.e ``int``, ``float``,
            ``short``).
170

csukuangfj's avatar
csukuangfj committed
171
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
    """
    def __init__(self, mode=None):
        self.mode = mode

    def __call__(self, pic):
        """
        Args:
            pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.

        Returns:
            PIL Image: Image converted to PIL Image.

        """
        return F.to_pil_image(pic, self.mode)

187
    def __repr__(self):
188
189
190
191
192
        format_string = self.__class__.__name__ + '('
        if self.mode is not None:
            format_string += 'mode={0}'.format(self.mode)
        format_string += ')'
        return format_string
193

194

195
class Normalize(torch.nn.Module):
Fang Gao's avatar
Fang Gao committed
196
    """Normalize a tensor image with mean and standard deviation.
197
198
199
    Given mean: ``(mean[1],...,mean[n])`` and std: ``(std[1],..,std[n])`` for ``n``
    channels, this transform will normalize each channel of the input
    ``torch.*Tensor`` i.e.,
abdjava's avatar
abdjava committed
200
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``
201

202
    .. note::
203
        This transform acts out of place, i.e., it does not mutate the input tensor.
204

205
206
207
    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.
208
209
        inplace(bool,optional): Bool to make this operation in-place.

210
211
    """

surgan12's avatar
surgan12 committed
212
    def __init__(self, mean, std, inplace=False):
213
        super().__init__()
214
215
        self.mean = mean
        self.std = std
surgan12's avatar
surgan12 committed
216
        self.inplace = inplace
217

218
    def forward(self, tensor: Tensor) -> Tensor:
219
220
        """
        Args:
vfdev's avatar
vfdev committed
221
            tensor (Tensor): Tensor image to be normalized.
222
223
224
225

        Returns:
            Tensor: Normalized Tensor image.
        """
surgan12's avatar
surgan12 committed
226
        return F.normalize(tensor, self.mean, self.std, self.inplace)
227

228
229
230
    def __repr__(self):
        return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)

231

vfdev's avatar
vfdev committed
232
233
234
235
class Resize(torch.nn.Module):
    """Resize the input image to the given size.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
236
237
238
239
240
241

    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
242
243
244
            (size * height / width, size).
            In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[size, ]``.
vfdev's avatar
vfdev committed
245
246
247
        interpolation (int, optional): Desired interpolation enum defined by `filters`_.
            Default is ``PIL.Image.BILINEAR``. If input is Tensor, only ``PIL.Image.NEAREST``, ``PIL.Image.BILINEAR``
            and ``PIL.Image.BICUBIC`` are supported.
248
249
250
    """

    def __init__(self, size, interpolation=Image.BILINEAR):
vfdev's avatar
vfdev committed
251
        super().__init__()
252
        self.size = _setup_size(size, error_msg="If size is a sequence, it should have 2 values")
253
254
        self.interpolation = interpolation

vfdev's avatar
vfdev committed
255
    def forward(self, img):
256
257
        """
        Args:
vfdev's avatar
vfdev committed
258
            img (PIL Image or Tensor): Image to be scaled.
259
260

        Returns:
vfdev's avatar
vfdev committed
261
            PIL Image or Tensor: Rescaled image.
262
263
264
        """
        return F.resize(img, self.size, self.interpolation)

265
    def __repr__(self):
266
267
        interpolate_str = _pil_interpolation_to_str[self.interpolation]
        return self.__class__.__name__ + '(size={0}, interpolation={1})'.format(self.size, interpolate_str)
268

269
270
271
272
273
274
275
276
277
278
279

class Scale(Resize):
    """
    Note: This transform is deprecated in favor of Resize.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                      "please use transforms.Resize instead.")
        super(Scale, self).__init__(*args, **kwargs)


vfdev's avatar
vfdev committed
280
281
282
283
class CenterCrop(torch.nn.Module):
    """Crops the given image at the center.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
284
285
286
287

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
vfdev's avatar
vfdev committed
288
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
289
290
291
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
292
        super().__init__()
293
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
294

vfdev's avatar
vfdev committed
295
    def forward(self, img):
296
297
        """
        Args:
vfdev's avatar
vfdev committed
298
            img (PIL Image or Tensor): Image to be cropped.
299
300

        Returns:
vfdev's avatar
vfdev committed
301
            PIL Image or Tensor: Cropped image.
302
303
304
        """
        return F.center_crop(img, self.size)

305
306
307
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

308

309
310
311
312
class Pad(torch.nn.Module):
    """Pad the given image on all sides with the given "pad" value.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
313
314

    Args:
315
        padding (int or tuple or list): Padding on each border. If a single int is provided this
316
317
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
318
319
320
            this is the padding for the left, top, right and bottom borders respectively.
            In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[padding, ]``.
321
        fill (int or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
322
            length 3, it is used to fill R, G, B channels respectively.
323
            This value is only used when the padding_mode is constant
324
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
vfdev's avatar
vfdev committed
325
            Default is constant. Mode symmetric is not yet supported for Tensor inputs.
326
327
328
329
330
331
332
333

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value at the edge of the image

            - reflect: pads with reflection of image without repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
334
                will result in [3, 2, 1, 2, 3, 4, 3, 2]
335
336
337
338

            - symmetric: pads with reflection of image repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
339
                will result in [2, 1, 1, 2, 3, 4, 4, 3]
340
341
    """

342
343
344
345
346
347
348
349
350
351
352
353
354
    def __init__(self, padding, fill=0, padding_mode="constant"):
        super().__init__()
        if not isinstance(padding, (numbers.Number, tuple, list)):
            raise TypeError("Got inappropriate padding arg")

        if not isinstance(fill, (numbers.Number, str, tuple)):
            raise TypeError("Got inappropriate fill arg")

        if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
            raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")

        if isinstance(padding, Sequence) and len(padding) not in [1, 2, 4]:
            raise ValueError("Padding must be an int or a 1, 2, or 4 element tuple, not a " +
355
356
357
358
                             "{} element tuple".format(len(padding)))

        self.padding = padding
        self.fill = fill
359
        self.padding_mode = padding_mode
360

361
    def forward(self, img):
362
363
        """
        Args:
364
            img (PIL Image or Tensor): Image to be padded.
365
366

        Returns:
367
            PIL Image or Tensor: Padded image.
368
        """
369
        return F.pad(img, self.padding, self.fill, self.padding_mode)
370

371
    def __repr__(self):
372
373
        return self.__class__.__name__ + '(padding={0}, fill={1}, padding_mode={2})'.\
            format(self.padding, self.fill, self.padding_mode)
374

375

376
class Lambda:
377
    """Apply a user-defined lambda as a transform. This transform does not support torchscript.
378
379
380
381
382
383

    Args:
        lambd (function): Lambda/function to be used for transform.
    """

    def __init__(self, lambd):
384
385
        if not callable(lambd):
            raise TypeError("Argument lambd should be callable, got {}".format(repr(type(lambd).__name__)))
386
387
388
389
390
        self.lambd = lambd

    def __call__(self, img):
        return self.lambd(img)

391
392
393
    def __repr__(self):
        return self.__class__.__name__ + '()'

394

395
class RandomTransforms:
396
397
398
399
400
401
402
    """Base class for a list of transformations with randomness

    Args:
        transforms (list or tuple): list of transformations
    """

    def __init__(self, transforms):
403
404
        if not isinstance(transforms, Sequence):
            raise TypeError("Argument transforms should be a sequence")
405
406
407
408
409
410
411
412
413
414
415
416
417
418
        self.transforms = transforms

    def __call__(self, *args, **kwargs):
        raise NotImplementedError()

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


419
class RandomApply(torch.nn.Module):
420
    """Apply randomly a list of transformations with a given probability.
421
422
423
424
425
426
427
428
429
430
431
432

    .. note::
        In order to script the transformation, please use ``torch.nn.ModuleList`` as input instead of list/tuple of
        transforms as shown below:

        >>> transforms = transforms.RandomApply(torch.nn.ModuleList([
        >>>     transforms.ColorJitter(),
        >>> ]), p=0.3)
        >>> scripted_transforms = torch.jit.script(transforms)

        Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
        `lambda` functions or ``PIL.Image``.
433
434

    Args:
435
        transforms (list or tuple or torch.nn.Module): list of transformations
436
437
438
439
        p (float): probability
    """

    def __init__(self, transforms, p=0.5):
440
441
        super().__init__()
        self.transforms = transforms
442
443
        self.p = p

444
445
    def forward(self, img):
        if self.p < torch.rand(1):
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
            return img
        for t in self.transforms:
            img = t(img)
        return img

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        format_string += '\n    p={}'.format(self.p)
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomOrder(RandomTransforms):
462
    """Apply a list of transformations in a random order. This transform does not support torchscript.
463
464
465
466
467
468
469
470
471
472
    """
    def __call__(self, img):
        order = list(range(len(self.transforms)))
        random.shuffle(order)
        for i in order:
            img = self.transforms[i](img)
        return img


class RandomChoice(RandomTransforms):
473
    """Apply single transformation randomly picked from a list. This transform does not support torchscript.
474
475
476
477
478
479
    """
    def __call__(self, img):
        t = random.choice(self.transforms)
        return t(img)


vfdev's avatar
vfdev committed
480
481
482
483
484
class RandomCrop(torch.nn.Module):
    """Crop the given image at a random location.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
485
486
487
488

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
vfdev's avatar
vfdev committed
489
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
490
        padding (int or sequence, optional): Optional padding on each border
vfdev's avatar
vfdev committed
491
492
493
494
495
496
            of the image. Default is None. If a single int is provided this
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
            this is the padding for the left, top, right and bottom borders respectively.
            In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[padding, ]``.
497
        pad_if_needed (boolean): It will pad the image if smaller than the
ekka's avatar
ekka committed
498
            desired size to avoid raising an exception. Since cropping is done
499
            after padding, the padding seems to be done at a random offset.
vfdev's avatar
vfdev committed
500
        fill (int or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
501
502
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant
vfdev's avatar
vfdev committed
503
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
vfdev's avatar
vfdev committed
504
            Mode symmetric is not yet supported for Tensor inputs.
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519

             - constant: pads with a constant value, this value is specified with fill

             - edge: pads with the last value on the edge of the image

             - reflect: pads with reflection of image (without repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                will result in [3, 2, 1, 2, 3, 4, 3, 2]

             - symmetric: pads with reflection of image (repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                will result in [2, 1, 1, 2, 3, 4, 4, 3]

520
521
522
    """

    @staticmethod
vfdev's avatar
vfdev committed
523
    def get_params(img: Tensor, output_size: Tuple[int, int]) -> Tuple[int, int, int, int]:
524
525
526
        """Get parameters for ``crop`` for a random crop.

        Args:
vfdev's avatar
vfdev committed
527
            img (PIL Image or Tensor): Image to be cropped.
528
529
530
531
532
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
vfdev's avatar
vfdev committed
533
        w, h = F._get_image_size(img)
534
        th, tw = output_size
vfdev's avatar
vfdev committed
535
536
537
538
539
540

        if h + 1 < th or w + 1 < tw:
            raise ValueError(
                "Required crop size {} is larger then input image size {}".format((th, tw), (h, w))
            )

541
542
543
        if w == tw and h == th:
            return 0, 0, h, w

544
545
        i = torch.randint(0, h - th + 1, size=(1, )).item()
        j = torch.randint(0, w - tw + 1, size=(1, )).item()
546
547
        return i, j, th, tw

vfdev's avatar
vfdev committed
548
549
550
    def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode="constant"):
        super().__init__()

551
552
553
554
        self.size = tuple(_setup_size(
            size, error_msg="Please provide only two dimensions (h, w) for size."
        ))

vfdev's avatar
vfdev committed
555
556
557
558
559
560
        self.padding = padding
        self.pad_if_needed = pad_if_needed
        self.fill = fill
        self.padding_mode = padding_mode

    def forward(self, img):
561
562
        """
        Args:
vfdev's avatar
vfdev committed
563
            img (PIL Image or Tensor): Image to be cropped.
564
565

        Returns:
vfdev's avatar
vfdev committed
566
            PIL Image or Tensor: Cropped image.
567
        """
568
569
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)
570

vfdev's avatar
vfdev committed
571
        width, height = F._get_image_size(img)
572
        # pad the width if needed
vfdev's avatar
vfdev committed
573
574
575
        if self.pad_if_needed and width < self.size[1]:
            padding = [self.size[1] - width, 0]
            img = F.pad(img, padding, self.fill, self.padding_mode)
576
        # pad the height if needed
vfdev's avatar
vfdev committed
577
578
579
        if self.pad_if_needed and height < self.size[0]:
            padding = [0, self.size[0] - height]
            img = F.pad(img, padding, self.fill, self.padding_mode)
580

581
582
583
584
        i, j, h, w = self.get_params(img, self.size)

        return F.crop(img, i, j, h, w)

585
    def __repr__(self):
vfdev's avatar
vfdev committed
586
        return self.__class__.__name__ + "(size={0}, padding={1})".format(self.size, self.padding)
587

588

589
590
591
592
593
class RandomHorizontalFlip(torch.nn.Module):
    """Horizontally flip the given image randomly with a given probability.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
594
595
596
597
598
599

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
600
        super().__init__()
601
        self.p = p
602

603
    def forward(self, img):
604
605
        """
        Args:
606
            img (PIL Image or Tensor): Image to be flipped.
607
608

        Returns:
609
            PIL Image or Tensor: Randomly flipped image.
610
        """
611
        if torch.rand(1) < self.p:
612
613
614
            return F.hflip(img)
        return img

615
    def __repr__(self):
616
        return self.__class__.__name__ + '(p={})'.format(self.p)
617

618

619
class RandomVerticalFlip(torch.nn.Module):
vfdev's avatar
vfdev committed
620
    """Vertically flip the given image randomly with a given probability.
621
622
623
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
624
625
626
627
628
629

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
630
        super().__init__()
631
        self.p = p
632

633
    def forward(self, img):
634
635
        """
        Args:
636
            img (PIL Image or Tensor): Image to be flipped.
637
638

        Returns:
639
            PIL Image or Tensor: Randomly flipped image.
640
        """
641
        if torch.rand(1) < self.p:
642
643
644
            return F.vflip(img)
        return img

645
    def __repr__(self):
646
        return self.__class__.__name__ + '(p={})'.format(self.p)
647

648

649
650
651
652
class RandomPerspective(torch.nn.Module):
    """Performs a random perspective transformation of the given image with a given probability.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
653
654

    Args:
655
656
657
658
659
660
661
662
663
        distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
            Default is 0.5.
        p (float): probability of the image being transformed. Default is 0.5.
        interpolation (int): Interpolation type. If input is Tensor, only ``PIL.Image.NEAREST`` and
            ``PIL.Image.BILINEAR`` are supported. Default, ``PIL.Image.BILINEAR`` for PIL images and Tensors.
        fill (n-tuple or int or float): Pixel fill value for area outside the rotated
            image. If int or float, the value is used for all bands respectively. Default is 0.
            This option is only available for ``pillow>=5.0.0``. This option is not supported for Tensor
            input. Fill value for the area outside the transform in the output image is always 0.
664
665
666

    """

667
668
    def __init__(self, distortion_scale=0.5, p=0.5, interpolation=Image.BILINEAR, fill=0):
        super().__init__()
669
670
671
        self.p = p
        self.interpolation = interpolation
        self.distortion_scale = distortion_scale
672
        self.fill = fill
673

674
    def forward(self, img):
675
676
        """
        Args:
677
            img (PIL Image or Tensor): Image to be Perspectively transformed.
678
679

        Returns:
680
            PIL Image or Tensor: Randomly transformed image.
681
        """
682
683
        if torch.rand(1) < self.p:
            width, height = F._get_image_size(img)
684
            startpoints, endpoints = self.get_params(width, height, self.distortion_scale)
685
            return F.perspective(img, startpoints, endpoints, self.interpolation, self.fill)
686
687
688
        return img

    @staticmethod
689
    def get_params(width: int, height: int, distortion_scale: float) -> Tuple[List[List[int]], List[List[int]]]:
690
691
692
        """Get parameters for ``perspective`` for a random perspective transform.

        Args:
693
694
695
            width (int): width of the image.
            height (int): height of the image.
            distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
696
697

        Returns:
698
            List containing [top-left, top-right, bottom-right, bottom-left] of the original image,
699
700
            List containing [top-left, top-right, bottom-right, bottom-left] of the transformed image.
        """
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
        half_height = height // 2
        half_width = width // 2
        topleft = [
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1, )).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1, )).item())
        ]
        topright = [
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1, )).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1, )).item())
        ]
        botright = [
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1, )).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1, )).item())
        ]
        botleft = [
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1, )).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1, )).item())
        ]
        startpoints = [[0, 0], [width - 1, 0], [width - 1, height - 1], [0, height - 1]]
720
721
722
723
724
725
726
        endpoints = [topleft, topright, botright, botleft]
        return startpoints, endpoints

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


727
728
729
730
class RandomResizedCrop(torch.nn.Module):
    """Crop the given image to random size and aspect ratio.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
731

732
733
    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
734
735
736
737
    is finally resized to given size.
    This is popularly used to train the Inception networks.

    Args:
738
739
740
741
742
        size (int or sequence): expected output size of each edge. If size is an
            int instead of sequence like (h, w), a square output size ``(size, size)`` is
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
        scale (tuple of float): range of size of the origin size cropped
        ratio (tuple of float): range of aspect ratio of the origin aspect ratio cropped.
vfdev's avatar
vfdev committed
743
744
745
        interpolation (int): Desired interpolation enum defined by `filters`_.
            Default is ``PIL.Image.BILINEAR``. If input is Tensor, only ``PIL.Image.NEAREST``, ``PIL.Image.BILINEAR``
            and ``PIL.Image.BICUBIC`` are supported.
746
747
    """

748
    def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=Image.BILINEAR):
749
        super().__init__()
750
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
751

752
        if not isinstance(scale, Sequence):
753
            raise TypeError("Scale should be a sequence")
754
        if not isinstance(ratio, Sequence):
755
            raise TypeError("Ratio should be a sequence")
756
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
757
            warnings.warn("Scale and ratio should be of kind (min, max)")
758

759
        self.interpolation = interpolation
760
761
        self.scale = scale
        self.ratio = ratio
762
763

    @staticmethod
764
    def get_params(
765
            img: Tensor, scale: List[float], ratio: List[float]
766
    ) -> Tuple[int, int, int, int]:
767
768
769
        """Get parameters for ``crop`` for a random sized crop.

        Args:
770
            img (PIL Image or Tensor): Input image.
771
772
            scale (list): range of scale of the origin size cropped
            ratio (list): range of aspect ratio of the origin aspect ratio cropped
773
774
775
776
777

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for a random
                sized crop.
        """
vfdev's avatar
vfdev committed
778
        width, height = F._get_image_size(img)
Zhicheng Yan's avatar
Zhicheng Yan committed
779
        area = height * width
780

781
        for _ in range(10):
782
            target_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
783
784
785
786
            log_ratio = torch.log(torch.tensor(ratio))
            aspect_ratio = torch.exp(
                torch.empty(1).uniform_(log_ratio[0], log_ratio[1])
            ).item()
787
788
789
790

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

Zhicheng Yan's avatar
Zhicheng Yan committed
791
            if 0 < w <= width and 0 < h <= height:
792
793
                i = torch.randint(0, height - h + 1, size=(1,)).item()
                j = torch.randint(0, width - w + 1, size=(1,)).item()
794
795
                return i, j, h, w

796
        # Fallback to central crop
Zhicheng Yan's avatar
Zhicheng Yan committed
797
        in_ratio = float(width) / float(height)
798
        if in_ratio < min(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
799
            w = width
800
            h = int(round(w / min(ratio)))
801
        elif in_ratio > max(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
802
            h = height
803
            w = int(round(h * max(ratio)))
804
        else:  # whole image
Zhicheng Yan's avatar
Zhicheng Yan committed
805
806
807
808
            w = width
            h = height
        i = (height - h) // 2
        j = (width - w) // 2
809
        return i, j, h, w
810

811
    def forward(self, img):
812
813
        """
        Args:
814
            img (PIL Image or Tensor): Image to be cropped and resized.
815
816

        Returns:
817
            PIL Image or Tensor: Randomly cropped and resized image.
818
        """
819
        i, j, h, w = self.get_params(img, self.scale, self.ratio)
820
821
        return F.resized_crop(img, i, j, h, w, self.size, self.interpolation)

822
    def __repr__(self):
823
824
        interpolate_str = _pil_interpolation_to_str[self.interpolation]
        format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
825
826
        format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale))
        format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio))
827
828
        format_string += ', interpolation={0})'.format(interpolate_str)
        return format_string
829

830
831
832
833
834
835
836
837
838
839
840

class RandomSizedCrop(RandomResizedCrop):
    """
    Note: This transform is deprecated in favor of RandomResizedCrop.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.RandomSizedCrop transform is deprecated, " +
                      "please use transforms.RandomResizedCrop instead.")
        super(RandomSizedCrop, self).__init__(*args, **kwargs)


vfdev's avatar
vfdev committed
841
842
843
844
845
class FiveCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
846
847
848
849
850
851
852
853
854

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
         size (sequence or int): Desired output size of the crop. If size is an ``int``
            instead of sequence like (h, w), a square crop of size (size, size) is made.
vfdev's avatar
vfdev committed
855
            If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
856
857
858
859
860
861
862
863
864
865
866
867
868
869

    Example:
         >>> transform = Compose([
         >>>    FiveCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
870
        super().__init__()
871
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
872

vfdev's avatar
vfdev committed
873
874
875
876
877
878
879
880
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 5 images. Image can be PIL Image or Tensor
        """
881
882
        return F.five_crop(img, self.size)

883
884
885
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

886

vfdev's avatar
vfdev committed
887
888
889
890
891
892
class TenCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop plus the flipped version of
    these (horizontal flipping is used by default).
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
893
894
895
896
897
898
899
900
901

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
vfdev's avatar
vfdev committed
902
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
903
        vertical_flip (bool): Use vertical flipping instead of horizontal
904
905
906
907
908
909
910
911
912
913
914
915
916
917

    Example:
         >>> transform = Compose([
         >>>    TenCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size, vertical_flip=False):
vfdev's avatar
vfdev committed
918
        super().__init__()
919
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
920
921
        self.vertical_flip = vertical_flip

vfdev's avatar
vfdev committed
922
923
924
925
926
927
928
929
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 10 images. Image can be PIL Image or Tensor
        """
930
931
        return F.ten_crop(img, self.size, self.vertical_flip)

932
    def __repr__(self):
933
        return self.__class__.__name__ + '(size={0}, vertical_flip={1})'.format(self.size, self.vertical_flip)
934

935

936
class LinearTransformation(torch.nn.Module):
ekka's avatar
ekka committed
937
    """Transform a tensor image with a square transformation matrix and a mean_vector computed
938
    offline.
ekka's avatar
ekka committed
939
940
941
    Given transformation_matrix and mean_vector, will flatten the torch.*Tensor and
    subtract mean_vector from it which is then followed by computing the dot
    product with the transformation matrix and then reshaping the tensor to its
942
    original shape.
943

944
    Applications:
945
        whitening transformation: Suppose X is a column vector zero-centered data.
946
947
948
        Then compute the data covariance matrix [D x D] with torch.mm(X.t(), X),
        perform SVD on this matrix and pass it as transformation_matrix.

949
950
    Args:
        transformation_matrix (Tensor): tensor [D x D], D = C x H x W
ekka's avatar
ekka committed
951
        mean_vector (Tensor): tensor [D], D = C x H x W
952
953
    """

ekka's avatar
ekka committed
954
    def __init__(self, transformation_matrix, mean_vector):
955
        super().__init__()
956
957
958
        if transformation_matrix.size(0) != transformation_matrix.size(1):
            raise ValueError("transformation_matrix should be square. Got " +
                             "[{} x {}] rectangular matrix.".format(*transformation_matrix.size()))
ekka's avatar
ekka committed
959
960
961

        if mean_vector.size(0) != transformation_matrix.size(0):
            raise ValueError("mean_vector should have the same length {}".format(mean_vector.size(0)) +
Francisco Massa's avatar
Francisco Massa committed
962
963
                             " as any one of the dimensions of the transformation_matrix [{}]"
                             .format(tuple(transformation_matrix.size())))
ekka's avatar
ekka committed
964

965
966
967
968
        if transformation_matrix.device != mean_vector.device:
            raise ValueError("Input tensors should be on the same device. Got {} and {}"
                             .format(transformation_matrix.device, mean_vector.device))

969
        self.transformation_matrix = transformation_matrix
ekka's avatar
ekka committed
970
        self.mean_vector = mean_vector
971

972
    def forward(self, tensor: Tensor) -> Tensor:
973
974
        """
        Args:
vfdev's avatar
vfdev committed
975
            tensor (Tensor): Tensor image to be whitened.
976
977
978
979

        Returns:
            Tensor: Transformed image.
        """
980
981
982
983
984
985
986
987
988
989
990
991
        shape = tensor.shape
        n = shape[-3] * shape[-2] * shape[-1]
        if n != self.transformation_matrix.shape[0]:
            raise ValueError("Input tensor and transformation matrix have incompatible shape." +
                             "[{} x {} x {}] != ".format(shape[-3], shape[-2], shape[-1]) +
                             "{}".format(self.transformation_matrix.shape[0]))

        if tensor.device.type != self.mean_vector.device.type:
            raise ValueError("Input tensor should be on the same device as transformation matrix and mean vector. "
                             "Got {} vs {}".format(tensor.device, self.mean_vector.device))

        flat_tensor = tensor.view(-1, n) - self.mean_vector
992
        transformed_tensor = torch.mm(flat_tensor, self.transformation_matrix)
993
        tensor = transformed_tensor.view(shape)
994
995
        return tensor

996
    def __repr__(self):
ekka's avatar
ekka committed
997
998
999
        format_string = self.__class__.__name__ + '(transformation_matrix='
        format_string += (str(self.transformation_matrix.tolist()) + ')')
        format_string += (", (mean_vector=" + str(self.mean_vector.tolist()) + ')')
1000
1001
        return format_string

1002

1003
class ColorJitter(torch.nn.Module):
1004
1005
1006
    """Randomly change the brightness, contrast and saturation of an image.

    Args:
yaox12's avatar
yaox12 committed
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
        brightness (float or tuple of float (min, max)): How much to jitter brightness.
            brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
            or the given [min, max]. Should be non negative numbers.
        contrast (float or tuple of float (min, max)): How much to jitter contrast.
            contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
            or the given [min, max]. Should be non negative numbers.
        saturation (float or tuple of float (min, max)): How much to jitter saturation.
            saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
            or the given [min, max]. Should be non negative numbers.
        hue (float or tuple of float (min, max)): How much to jitter hue.
            hue_factor is chosen uniformly from [-hue, hue] or the given [min, max].
            Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
1019
    """
1020

1021
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
1022
        super().__init__()
yaox12's avatar
yaox12 committed
1023
1024
1025
1026
1027
1028
        self.brightness = self._check_input(brightness, 'brightness')
        self.contrast = self._check_input(contrast, 'contrast')
        self.saturation = self._check_input(saturation, 'saturation')
        self.hue = self._check_input(hue, 'hue', center=0, bound=(-0.5, 0.5),
                                     clip_first_on_zero=False)

1029
    @torch.jit.unused
yaox12's avatar
yaox12 committed
1030
1031
1032
1033
    def _check_input(self, value, name, center=1, bound=(0, float('inf')), clip_first_on_zero=True):
        if isinstance(value, numbers.Number):
            if value < 0:
                raise ValueError("If {} is a single number, it must be non negative.".format(name))
1034
            value = [center - float(value), center + float(value)]
yaox12's avatar
yaox12 committed
1035
            if clip_first_on_zero:
1036
                value[0] = max(value[0], 0.0)
yaox12's avatar
yaox12 committed
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
        elif isinstance(value, (tuple, list)) and len(value) == 2:
            if not bound[0] <= value[0] <= value[1] <= bound[1]:
                raise ValueError("{} values should be between {}".format(name, bound))
        else:
            raise TypeError("{} should be a single number or a list/tuple with lenght 2.".format(name))

        # if value is 0 or (1., 1.) for brightness/contrast/saturation
        # or (0., 0.) for hue, do nothing
        if value[0] == value[1] == center:
            value = None
        return value
1048
1049

    @staticmethod
1050
    @torch.jit.unused
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
    def get_params(brightness, contrast, saturation, hue):
        """Get a randomized transform to be applied on image.

        Arguments are same as that of __init__.

        Returns:
            Transform which randomly adjusts brightness, contrast and
            saturation in a random order.
        """
        transforms = []
yaox12's avatar
yaox12 committed
1061
1062
1063

        if brightness is not None:
            brightness_factor = random.uniform(brightness[0], brightness[1])
1064
1065
            transforms.append(Lambda(lambda img: F.adjust_brightness(img, brightness_factor)))

yaox12's avatar
yaox12 committed
1066
1067
        if contrast is not None:
            contrast_factor = random.uniform(contrast[0], contrast[1])
1068
1069
            transforms.append(Lambda(lambda img: F.adjust_contrast(img, contrast_factor)))

yaox12's avatar
yaox12 committed
1070
1071
        if saturation is not None:
            saturation_factor = random.uniform(saturation[0], saturation[1])
1072
1073
            transforms.append(Lambda(lambda img: F.adjust_saturation(img, saturation_factor)))

yaox12's avatar
yaox12 committed
1074
1075
        if hue is not None:
            hue_factor = random.uniform(hue[0], hue[1])
1076
1077
            transforms.append(Lambda(lambda img: F.adjust_hue(img, hue_factor)))

vfdev's avatar
vfdev committed
1078
        random.shuffle(transforms)
1079
1080
1081
1082
        transform = Compose(transforms)

        return transform

1083
    def forward(self, img):
1084
1085
        """
        Args:
1086
            img (PIL Image or Tensor): Input image.
1087
1088

        Returns:
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
            PIL Image or Tensor: Color jittered image.
        """
        fn_idx = torch.randperm(4)
        for fn_id in fn_idx:
            if fn_id == 0 and self.brightness is not None:
                brightness = self.brightness
                brightness_factor = torch.tensor(1.0).uniform_(brightness[0], brightness[1]).item()
                img = F.adjust_brightness(img, brightness_factor)

            if fn_id == 1 and self.contrast is not None:
                contrast = self.contrast
                contrast_factor = torch.tensor(1.0).uniform_(contrast[0], contrast[1]).item()
                img = F.adjust_contrast(img, contrast_factor)

            if fn_id == 2 and self.saturation is not None:
                saturation = self.saturation
                saturation_factor = torch.tensor(1.0).uniform_(saturation[0], saturation[1]).item()
                img = F.adjust_saturation(img, saturation_factor)

            if fn_id == 3 and self.hue is not None:
                hue = self.hue
                hue_factor = torch.tensor(1.0).uniform_(hue[0], hue[1]).item()
                img = F.adjust_hue(img, hue_factor)

        return img
1114

1115
    def __repr__(self):
1116
1117
1118
1119
1120
1121
        format_string = self.__class__.__name__ + '('
        format_string += 'brightness={0}'.format(self.brightness)
        format_string += ', contrast={0}'.format(self.contrast)
        format_string += ', saturation={0}'.format(self.saturation)
        format_string += ', hue={0})'.format(self.hue)
        return format_string
1122

1123

1124
class RandomRotation(torch.nn.Module):
1125
    """Rotate the image by angle.
1126
1127
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1128
1129
1130
1131
1132

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees).
1133
        resample (int, optional): An optional resampling filter. See `filters`_ for more information.
1134
            If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
1135
            If input is Tensor, only ``PIL.Image.NEAREST`` and ``PIL.Image.BILINEAR`` are supported.
1136
1137
1138
1139
        expand (bool, optional): Optional expansion flag.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
1140
        center (list or tuple, optional): Optional center of rotation, (x, y). Origin is the upper left corner.
1141
            Default is the center of the image.
Philip Meier's avatar
Philip Meier committed
1142
1143
        fill (n-tuple or int or float): Pixel fill value for area outside the rotated
            image. If int or float, the value is used for all bands respectively.
1144
1145
1146
            Defaults to 0 for all bands. This option is only available for Pillow>=5.2.0.
            This option is not supported for Tensor input. Fill value for the area outside the transform in the output
            image is always 0.
1147
1148
1149

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1150
1151
    """

Philip Meier's avatar
Philip Meier committed
1152
    def __init__(self, degrees, resample=False, expand=False, center=None, fill=None):
1153
        super().__init__()
1154
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2, ))
1155
1156

        if center is not None:
1157
            _check_sequence_input(center, "center", req_sizes=(2, ))
1158
1159

        self.center = center
1160
1161
1162

        self.resample = resample
        self.expand = expand
1163
        self.fill = fill
1164
1165

    @staticmethod
1166
    def get_params(degrees: List[float]) -> float:
1167
1168
1169
        """Get parameters for ``rotate`` for a random rotation.

        Returns:
1170
            float: angle parameter to be passed to ``rotate`` for random rotation.
1171
        """
1172
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1173
1174
        return angle

1175
    def forward(self, img):
1176
        """
1177
        Args:
1178
            img (PIL Image or Tensor): Image to be rotated.
1179
1180

        Returns:
1181
            PIL Image or Tensor: Rotated image.
1182
1183
        """
        angle = self.get_params(self.degrees)
1184
        return F.rotate(img, angle, self.resample, self.expand, self.center, self.fill)
1185

1186
    def __repr__(self):
1187
1188
1189
1190
1191
        format_string = self.__class__.__name__ + '(degrees={0}'.format(self.degrees)
        format_string += ', resample={0}'.format(self.resample)
        format_string += ', expand={0}'.format(self.expand)
        if self.center is not None:
            format_string += ', center={0}'.format(self.center)
1192
1193
        if self.fill is not None:
            format_string += ', fill={0}'.format(self.fill)
1194
1195
        format_string += ')'
        return format_string
1196

1197

1198
1199
1200
1201
class RandomAffine(torch.nn.Module):
    """Random affine transformation of the image keeping center invariant.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1202
1203
1204
1205

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
1206
            will be (-degrees, +degrees). Set to 0 to deactivate rotations.
1207
1208
1209
1210
1211
1212
1213
        translate (tuple, optional): tuple of maximum absolute fraction for horizontal
            and vertical translations. For example translate=(a, b), then horizontal shift
            is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
            randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
        scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
            randomly sampled from the range a <= scale <= b. Will keep original scale by default.
        shear (sequence or float or int, optional): Range of degrees to select from.
ptrblck's avatar
ptrblck committed
1214
            If shear is a number, a shear parallel to the x axis in the range (-shear, +shear)
1215
            will be applied. Else if shear is a tuple or list of 2 values a shear parallel to the x axis in the
ptrblck's avatar
ptrblck committed
1216
1217
            range (shear[0], shear[1]) will be applied. Else if shear is a tuple or list of 4 values,
            a x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
1218
1219
1220
1221
1222
1223
1224
            Will not apply shear by default.
        resample (int, optional): An optional resampling filter. See `filters`_ for more information.
            If omitted, or if the image has mode "1" or "P", it is set to ``PIL.Image.NEAREST``.
            If input is Tensor, only ``PIL.Image.NEAREST`` and ``PIL.Image.BILINEAR`` are supported.
        fillcolor (tuple or int): Optional fill color (Tuple for RGB Image and int for grayscale) for the area
            outside the transform in the output image (Pillow>=5.0.0). This option is not supported for Tensor
            input. Fill value for the area outside the transform in the output image is always 0.
1225
1226
1227

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1228
1229
    """

1230
1231
    def __init__(self, degrees, translate=None, scale=None, shear=None, resample=0, fillcolor=0):
        super().__init__()
1232
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2, ))
1233
1234

        if translate is not None:
1235
            _check_sequence_input(translate, "translate", req_sizes=(2, ))
1236
1237
1238
1239
1240
1241
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError("translation values should be between 0 and 1")
        self.translate = translate

        if scale is not None:
1242
            _check_sequence_input(scale, "scale", req_sizes=(2, ))
1243
1244
1245
1246
1247
1248
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
1249
            self.shear = _setup_angle(shear, name="shear", req_sizes=(2, 4))
1250
1251
1252
1253
1254
1255
1256
        else:
            self.shear = shear

        self.resample = resample
        self.fillcolor = fillcolor

    @staticmethod
1257
1258
1259
1260
1261
1262
1263
    def get_params(
            degrees: List[float],
            translate: Optional[List[float]],
            scale_ranges: Optional[List[float]],
            shears: Optional[List[float]],
            img_size: List[int]
    ) -> Tuple[float, Tuple[int, int], float, Tuple[float, float]]:
1264
1265
1266
        """Get parameters for affine transformation

        Returns:
1267
            params to be passed to the affine transformation
1268
        """
1269
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1270
        if translate is not None:
1271
1272
1273
1274
1275
            max_dx = float(translate[0] * img_size[0])
            max_dy = float(translate[1] * img_size[1])
            tx = int(round(torch.empty(1).uniform_(-max_dx, max_dx).item()))
            ty = int(round(torch.empty(1).uniform_(-max_dy, max_dy).item()))
            translations = (tx, ty)
1276
1277
1278
1279
        else:
            translations = (0, 0)

        if scale_ranges is not None:
1280
            scale = float(torch.empty(1).uniform_(scale_ranges[0], scale_ranges[1]).item())
1281
1282
1283
        else:
            scale = 1.0

1284
        shear_x = shear_y = 0.0
1285
        if shears is not None:
1286
1287
1288
1289
1290
            shear_x = float(torch.empty(1).uniform_(shears[0], shears[1]).item())
            if len(shears) == 4:
                shear_y = float(torch.empty(1).uniform_(shears[2], shears[3]).item())

        shear = (shear_x, shear_y)
1291
1292
1293

        return angle, translations, scale, shear

1294
    def forward(self, img):
1295
        """
1296
            img (PIL Image or Tensor): Image to be transformed.
1297
1298

        Returns:
1299
            PIL Image or Tensor: Affine transformed image.
1300
        """
1301
1302
1303
1304

        img_size = F._get_image_size(img)

        ret = self.get_params(self.degrees, self.translate, self.scale, self.shear, img_size)
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
        return F.affine(img, *ret, resample=self.resample, fillcolor=self.fillcolor)

    def __repr__(self):
        s = '{name}(degrees={degrees}'
        if self.translate is not None:
            s += ', translate={translate}'
        if self.scale is not None:
            s += ', scale={scale}'
        if self.shear is not None:
            s += ', shear={shear}'
        if self.resample > 0:
            s += ', resample={resample}'
        if self.fillcolor != 0:
            s += ', fillcolor={fillcolor}'
        s += ')'
        d = dict(self.__dict__)
        d['resample'] = _pil_interpolation_to_str[d['resample']]
        return s.format(name=self.__class__.__name__, **d)


1325
class Grayscale(torch.nn.Module):
1326
    """Convert image to grayscale.
1327
1328
1329
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading
    dimensions
1330

1331
1332
1333
1334
    Args:
        num_output_channels (int): (1 or 3) number of channels desired for output image

    Returns:
1335
        PIL Image: Grayscale version of the input.
1336
1337
         - If ``num_output_channels == 1`` : returned image is single channel
         - If ``num_output_channels == 3`` : returned image is 3 channel with r == g == b
1338
1339
1340
1341

    """

    def __init__(self, num_output_channels=1):
1342
        super().__init__()
1343
1344
        self.num_output_channels = num_output_channels

vfdev's avatar
vfdev committed
1345
    def forward(self, img):
1346
1347
        """
        Args:
1348
            img (PIL Image or Tensor): Image to be converted to grayscale.
1349
1350

        Returns:
1351
            PIL Image or Tensor: Grayscaled image.
1352
        """
1353
        return F.rgb_to_grayscale(img, num_output_channels=self.num_output_channels)
1354

1355
    def __repr__(self):
1356
        return self.__class__.__name__ + '(num_output_channels={0})'.format(self.num_output_channels)
1357

1358

1359
class RandomGrayscale(torch.nn.Module):
1360
    """Randomly convert image to grayscale with a probability of p (default 0.1).
1361
1362
1363
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading
    dimensions
1364

1365
1366
1367
1368
    Args:
        p (float): probability that image should be converted to grayscale.

    Returns:
1369
        PIL Image or Tensor: Grayscale version of the input image with probability p and unchanged
1370
1371
1372
        with probability (1-p).
        - If input image is 1 channel: grayscale version is 1 channel
        - If input image is 3 channel: grayscale version is 3 channel with r == g == b
1373
1374
1375
1376

    """

    def __init__(self, p=0.1):
1377
        super().__init__()
1378
1379
        self.p = p

vfdev's avatar
vfdev committed
1380
    def forward(self, img):
1381
1382
        """
        Args:
1383
            img (PIL Image or Tensor): Image to be converted to grayscale.
1384
1385

        Returns:
1386
            PIL Image or Tensor: Randomly grayscaled image.
1387
        """
1388
1389
1390
        num_output_channels = F._get_image_num_channels(img)
        if torch.rand(1) < self.p:
            return F.rgb_to_grayscale(img, num_output_channels=num_output_channels)
1391
        return img
1392
1393

    def __repr__(self):
1394
        return self.__class__.__name__ + '(p={0})'.format(self.p)
1395
1396


1397
class RandomErasing(torch.nn.Module):
1398
    """ Randomly selects a rectangle region in an image and erases its pixels.
vfdev's avatar
vfdev committed
1399
    'Random Erasing Data Augmentation' by Zhong et al. See https://arxiv.org/abs/1708.04896
1400

1401
1402
1403
1404
1405
1406
1407
1408
    Args:
         p: probability that the random erasing operation will be performed.
         scale: range of proportion of erased area against input image.
         ratio: range of aspect ratio of erased area.
         value: erasing value. Default is 0. If a single int, it is used to
            erase all pixels. If a tuple of length 3, it is used to erase
            R, G, B channels respectively.
            If a str of 'random', erasing each pixel with random values.
Zhun Zhong's avatar
Zhun Zhong committed
1409
         inplace: boolean to make this transform inplace. Default set to False.
1410

1411
1412
    Returns:
        Erased Image.
1413

vfdev's avatar
vfdev committed
1414
    Example:
1415
        >>> transform = transforms.Compose([
1416
1417
1418
1419
        >>>   transforms.RandomHorizontalFlip(),
        >>>   transforms.ToTensor(),
        >>>   transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>>   transforms.RandomErasing(),
1420
1421
1422
        >>> ])
    """

Zhun Zhong's avatar
Zhun Zhong committed
1423
    def __init__(self, p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False):
1424
1425
1426
1427
1428
1429
1430
1431
1432
        super().__init__()
        if not isinstance(value, (numbers.Number, str, tuple, list)):
            raise TypeError("Argument value should be either a number or str or a sequence")
        if isinstance(value, str) and value != "random":
            raise ValueError("If value is str, it should be 'random'")
        if not isinstance(scale, (tuple, list)):
            raise TypeError("Scale should be a sequence")
        if not isinstance(ratio, (tuple, list)):
            raise TypeError("Ratio should be a sequence")
1433
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
1434
            warnings.warn("Scale and ratio should be of kind (min, max)")
1435
        if scale[0] < 0 or scale[1] > 1:
1436
            raise ValueError("Scale should be between 0 and 1")
1437
        if p < 0 or p > 1:
1438
            raise ValueError("Random erasing probability should be between 0 and 1")
1439
1440
1441
1442
1443

        self.p = p
        self.scale = scale
        self.ratio = ratio
        self.value = value
1444
        self.inplace = inplace
1445
1446

    @staticmethod
1447
1448
1449
    def get_params(
            img: Tensor, scale: Tuple[float, float], ratio: Tuple[float, float], value: Optional[List[float]] = None
    ) -> Tuple[int, int, int, int, Tensor]:
1450
1451
1452
        """Get parameters for ``erase`` for a random erasing.

        Args:
vfdev's avatar
vfdev committed
1453
            img (Tensor): Tensor image to be erased.
1454
1455
1456
1457
1458
            scale (tuple or list): range of proportion of erased area against input image.
            ratio (tuple or list): range of aspect ratio of erased area.
            value (list, optional): erasing value. If None, it is interpreted as "random"
                (erasing each pixel with random values). If ``len(value)`` is 1, it is interpreted as a number,
                i.e. ``value[0]``.
1459
1460
1461
1462

        Returns:
            tuple: params (i, j, h, w, v) to be passed to ``erase`` for random erasing.
        """
vfdev's avatar
vfdev committed
1463
        img_c, img_h, img_w = img.shape[-3], img.shape[-2], img.shape[-1]
1464
        area = img_h * img_w
1465

1466
        for _ in range(10):
1467
1468
            erase_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
            aspect_ratio = torch.empty(1).uniform_(ratio[0], ratio[1]).item()
1469
1470
1471

            h = int(round(math.sqrt(erase_area * aspect_ratio)))
            w = int(round(math.sqrt(erase_area / aspect_ratio)))
1472
1473
1474
1475
1476
1477
1478
            if not (h < img_h and w < img_w):
                continue

            if value is None:
                v = torch.empty([img_c, h, w], dtype=torch.float32).normal_()
            else:
                v = torch.tensor(value)[:, None, None]
1479

1480
1481
            i = torch.randint(0, img_h - h + 1, size=(1, )).item()
            j = torch.randint(0, img_w - w + 1, size=(1, )).item()
1482
            return i, j, h, w, v
1483

Zhun Zhong's avatar
Zhun Zhong committed
1484
1485
1486
        # Return original image
        return 0, 0, img_h, img_w, img

1487
    def forward(self, img):
1488
1489
        """
        Args:
vfdev's avatar
vfdev committed
1490
            img (Tensor): Tensor image to be erased.
1491
1492
1493
1494

        Returns:
            img (Tensor): Erased Tensor image.
        """
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
        if torch.rand(1) < self.p:

            # cast self.value to script acceptable type
            if isinstance(self.value, (int, float)):
                value = [self.value, ]
            elif isinstance(self.value, str):
                value = None
            elif isinstance(self.value, tuple):
                value = list(self.value)
            else:
                value = self.value

            if value is not None and not (len(value) in (1, img.shape[-3])):
                raise ValueError(
                    "If value is a sequence, it should have either a single value or "
                    "{} (number of input channels)".format(img.shape[-3])
                )

            x, y, h, w, v = self.get_params(img, scale=self.scale, ratio=self.ratio, value=value)
1514
            return F.erase(img, x, y, h, w, v, self.inplace)
1515
        return img
1516
1517


1518
1519
1520
class GaussianBlur(torch.nn.Module):
    """Blurs image with randomly chosen Gaussian blur.
    The image can be a PIL Image or a Tensor, in which case it is expected
vfdev's avatar
vfdev committed
1521
    to have [..., C, H, W] shape, where ... means an arbitrary number of leading
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
    dimensions

    Args:
        kernel_size (int or sequence): Size of the Gaussian kernel.
        sigma (float or tuple of float (min, max)): Standard deviation to be used for
            creating kernel to perform blurring. If float, sigma is fixed. If it is tuple
            of float (min, max), sigma is chosen uniformly at random to lie in the
            given range.

    Returns:
        PIL Image or Tensor: Gaussian blurred version of the input image.

    """

    def __init__(self, kernel_size, sigma=(0.1, 2.0)):
        super().__init__()
        self.kernel_size = _setup_size(kernel_size, "Kernel size should be a tuple/list of two integers")
        for ks in self.kernel_size:
            if ks <= 0 or ks % 2 == 0:
                raise ValueError("Kernel size value should be an odd and positive number.")

        if isinstance(sigma, numbers.Number):
            if sigma <= 0:
                raise ValueError("If sigma is a single number, it must be positive.")
            sigma = (sigma, sigma)
        elif isinstance(sigma, Sequence) and len(sigma) == 2:
            if not 0. < sigma[0] <= sigma[1]:
                raise ValueError("sigma values should be positive and of the form (min, max).")
        else:
            raise ValueError("sigma should be a single number or a list/tuple with length 2.")

        self.sigma = sigma

    @staticmethod
    def get_params(sigma_min: float, sigma_max: float) -> float:
vfdev's avatar
vfdev committed
1557
        """Choose sigma for random gaussian blurring.
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570

        Args:
            sigma_min (float): Minimum standard deviation that can be chosen for blurring kernel.
            sigma_max (float): Maximum standard deviation that can be chosen for blurring kernel.

        Returns:
            float: Standard deviation to be passed to calculate kernel for gaussian blurring.
        """
        return torch.empty(1).uniform_(sigma_min, sigma_max).item()

    def forward(self, img: Tensor) -> Tensor:
        """
        Args:
vfdev's avatar
vfdev committed
1571
            img (PIL Image or Tensor): image to be blurred.
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584

        Returns:
            PIL Image or Tensor: Gaussian blurred image
        """
        sigma = self.get_params(self.sigma[0], self.sigma[1])
        return F.gaussian_blur(img, self.kernel_size, [sigma, sigma])

    def __repr__(self):
        s = '(kernel_size={}, '.format(self.kernel_size)
        s += 'sigma={})'.format(self.sigma)
        return self.__class__.__name__ + s


1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
def _setup_size(size, error_msg):
    if isinstance(size, numbers.Number):
        return int(size), int(size)

    if isinstance(size, Sequence) and len(size) == 1:
        return size[0], size[0]

    if len(size) != 2:
        raise ValueError(error_msg)

    return size


def _check_sequence_input(x, name, req_sizes):
    msg = req_sizes[0] if len(req_sizes) < 2 else " or ".join([str(s) for s in req_sizes])
    if not isinstance(x, Sequence):
        raise TypeError("{} should be a sequence of length {}.".format(name, msg))
    if len(x) not in req_sizes:
        raise ValueError("{} should be sequence of length {}.".format(name, msg))


def _setup_angle(x, name, req_sizes=(2, )):
    if isinstance(x, numbers.Number):
        if x < 0:
            raise ValueError("If {} is a single number, it must be positive.".format(name))
        x = [-x, x]
    else:
        _check_sequence_input(x, name, req_sizes)

    return [float(d) for d in x]