arguments.py 61.5 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
Raul Puri's avatar
Raul Puri committed
2

Mohammad's avatar
Mohammad committed
3
"""Megatron arguments."""
Raul Puri's avatar
Raul Puri committed
4
5

import argparse
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
6
import json
Raul Puri's avatar
Raul Puri committed
7
import os
8
import torch
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
9
10
11
12
13
import types

from megatron.global_vars import set_retro_args, get_retro_args
from tools.retro.utils import get_args_path as get_retro_args_path

Raul Puri's avatar
Raul Puri committed
14

15
def parse_args(extra_args_provider=None, ignore_unknown_args=False):
Mohammad's avatar
Mohammad committed
16
    """Parse all arguments."""
17
18
    parser = argparse.ArgumentParser(description='Megatron-LM Arguments',
                                     allow_abbrev=False)
Mohammad's avatar
Mohammad committed
19

Mohammad's avatar
Mohammad committed
20
21
22
23
24
25
26
27
28
29
30
31
    # Standard arguments.
    parser = _add_network_size_args(parser)
    parser = _add_regularization_args(parser)
    parser = _add_training_args(parser)
    parser = _add_initialization_args(parser)
    parser = _add_learning_rate_args(parser)
    parser = _add_checkpointing_args(parser)
    parser = _add_mixed_precision_args(parser)
    parser = _add_distributed_args(parser)
    parser = _add_validation_args(parser)
    parser = _add_data_args(parser)
    parser = _add_autoresume_args(parser)
Mostofa Patwary's avatar
Mostofa Patwary committed
32
    parser = _add_biencoder_args(parser)
33
    parser = _add_vision_args(parser)
34
    parser = _add_logging_args(parser)
mshoeybi's avatar
mshoeybi committed
35
    parser = _add_inference_args(parser)
36
    parser = _add_transformer_engine_args(parser)
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
37
    parser = _add_retro_args(parser)
Mohammad's avatar
Mohammad committed
38
39
40
41

    # Custom arguments.
    if extra_args_provider is not None:
        parser = extra_args_provider(parser)
Mohammad's avatar
Mohammad committed
42

Mohammad's avatar
Mohammad committed
43
    # Parse.
44
45
46
47
    if ignore_unknown_args:
        args, _ = parser.parse_known_args()
    else:
        args = parser.parse_args()
Mohammad's avatar
Mohammad committed
48

49
50
51
52
    # Args from environment
    args.rank = int(os.getenv('RANK', '0'))
    args.world_size = int(os.getenv("WORLD_SIZE", '1'))
        
53
54
55
    return args

def validate_args(args, defaults={}):
mohammad's avatar
mohammad committed
56
    # Tensor model parallel size.
57
58
    args.tensor_model_parallel_size = min(
        args.tensor_model_parallel_size, args.world_size)
mohammad's avatar
mohammad committed
59
60
61
62
    assert args.world_size % args.tensor_model_parallel_size == 0, 'world size'\
        ' ({}) is not divisible by tensor model parallel size ({})'.format(
            args.world_size, args.tensor_model_parallel_size)
    # Pipeline model parallel size.
63
64
65
    args.pipeline_model_parallel_size = min(
        args.pipeline_model_parallel_size,
        (args.world_size // args.tensor_model_parallel_size))
66
67
    args.transformer_pipeline_model_parallel_size = (
        args.pipeline_model_parallel_size - 1
68
        if args.standalone_embedding_stage else
69
70
        args.pipeline_model_parallel_size
    )
mohammad's avatar
mohammad committed
71
    # Checks.
72
73
74
    model_parallel_size = args.pipeline_model_parallel_size * \
                          args.tensor_model_parallel_size
    assert args.world_size % model_parallel_size == 0, 'world size is not'\
75
        ' divisible by tensor parallel size ({}) times pipeline parallel ' \
mohammad's avatar
mohammad committed
76
77
        'size ({})'.format(args.world_size, args.tensor_model_parallel_size,
                           args.pipeline_model_parallel_size)
78
    args.data_parallel_size = args.world_size // model_parallel_size
Mohammad's avatar
Mohammad committed
79
    if args.rank == 0:
mohammad's avatar
mohammad committed
80
81
82
83
84
85
        print('using world size: {}, data-parallel-size: {}, '
              'tensor-model-parallel size: {}, '
              'pipeline-model-parallel size: {} '.format(
                  args.world_size, args.data_parallel_size,
                  args.tensor_model_parallel_size,
                  args.pipeline_model_parallel_size), flush=True)
86
87
88
89
90
91
    if args.pipeline_model_parallel_size > 1:
        if args.pipeline_model_parallel_split_rank is not None:
            assert args.pipeline_model_parallel_split_rank < \
                    args.pipeline_model_parallel_size, 'split rank needs'\
                    ' to be less than pipeline model parallel size ({})'.format(
                            args.pipeline_model_parallel_size)
mohammad's avatar
mohammad committed
92

93
94
95
96
97
98
99
100
101
102
    # Deprecated arguments
    assert args.batch_size is None, '--batch-size argument is no longer ' \
        'valid, use --micro-batch-size instead'
    del args.batch_size
    assert args.warmup is None, '--warmup argument is no longer valid, use ' \
        '--lr-warmup-fraction instead'
    del args.warmup
    assert args.model_parallel_size is None, '--model-parallel-size is no ' \
        'longer valid, use --tensor-model-parallel-size instead'
    del args.model_parallel_size
Vijay Korthikanti's avatar
Vijay Korthikanti committed
103

104
    if args.checkpoint_activations:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
105
106
        args.recompute_granularity = 'full'
        args.recompute_method = 'uniform'
slym's avatar
slym committed
107
108
        if args.rank == 0:
            print('--checkpoint-activations is no longer valid, '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
109
110
                  'use --recompute-granularity and --recompute-method  instead. '
                  'Defaulting to recompute-granularity=full and recompute-method=uniform.')
111
    del args.checkpoint_activations
112

Vijay Korthikanti's avatar
Vijay Korthikanti committed
113
114
115
116
    if args.recompute_activations:
        args.recompute_granularity = 'selective'
    del args.recompute_activations

Jared Casper's avatar
Jared Casper committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
    # Set input defaults.
    for key in defaults:
        # For default to be valid, it should not be provided in the
        # arguments that are passed to the program. We check this by
        # ensuring the arg is set to None.
        if getattr(args, key) is not None:
            if args.rank == 0:
                print('WARNING: overriding default arguments for {key}:{v} \
                       with {key}:{v2}'.format(key=key, v=defaults[key],
                                               v2=getattr(args, key)),
                                               flush=True)
        else:
            setattr(args, key, defaults[key])

mohammad's avatar
mohammad committed
131
132
133
134
135
136
137
138
139
    # Batch size.
    assert args.micro_batch_size is not None
    assert args.micro_batch_size > 0
    if args.global_batch_size is None:
        args.global_batch_size = args.micro_batch_size * args.data_parallel_size
        if args.rank == 0:
            print('setting global batch size to {}'.format(
                args.global_batch_size), flush=True)
    assert args.global_batch_size > 0
140
    if args.num_layers_per_virtual_pipeline_stage is not None:
141
142
143
        assert args.pipeline_model_parallel_size > 2, \
            'pipeline-model-parallel size should be greater than 2 with ' \
            'interleaved schedule'
144
145
146
147
        assert args.num_layers % args.num_layers_per_virtual_pipeline_stage == 0, \
            'number of layers is not divisible by number of layers per virtual ' \
            'pipeline stage'
        args.virtual_pipeline_model_parallel_size = \
Lawrence McAfee's avatar
Lawrence McAfee committed
148
            (args.num_layers // args.transformer_pipeline_model_parallel_size) // \
149
150
151
            args.num_layers_per_virtual_pipeline_stage
    else:
        args.virtual_pipeline_model_parallel_size = None
Mohammad's avatar
Mohammad committed
152

153
154
155
    # Parameters dtype.
    args.params_dtype = torch.float
    if args.fp16:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
156
        assert not args.bf16
157
        args.params_dtype = torch.half
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
158
159
160
    if args.bf16:
        assert not args.fp16
        args.params_dtype = torch.bfloat16
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
161
162
163
164
165
166
167
        # bfloat16 requires gradient accumulation and all-reduce to
        # be done in fp32.
        if not args.accumulate_allreduce_grads_in_fp32:
            args.accumulate_allreduce_grads_in_fp32 = True
            if args.rank == 0:
                print('accumulate and all-reduce gradients in fp32 for '
                      'bfloat16 data type.', flush=True)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
168

169
170
171
172
    if args.rank == 0:
        print('using {} for parameters ...'.format(args.params_dtype),
              flush=True)

173
174
    # If we do accumulation and all-reduces in fp32, we need to have local DDP
    # and we should make sure use-contiguous-buffers-in-local-ddp is not off.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
175
176
    if args.accumulate_allreduce_grads_in_fp32:
        assert args.DDP_impl == 'local'
177
        assert args.use_contiguous_buffers_in_local_ddp
178

179
180
181
182
183
    # If we use the distributed optimizer, we need to have local DDP
    # and we should make sure use-contiguous-buffers-in-local-ddp is on.
    if args.use_distributed_optimizer:
        assert args.DDP_impl == 'local'
        assert args.use_contiguous_buffers_in_local_ddp
184

mshoeybi's avatar
mshoeybi committed
185
186
187
188
    # For torch DDP, we do not use contiguous buffer
    if args.DDP_impl == 'torch':
        args.use_contiguous_buffers_in_local_ddp = False

189
190
191
    if args.dataloader_type is None:
        args.dataloader_type = 'single'

192
193
194
    # Consumed tokens.
    args.consumed_train_samples = 0
    args.consumed_valid_samples = 0
195

196
197
198
199
200
201
202
    # Support for variable sequence lengths across batches/microbatches.
    # set it if the dataloader supports generation of variable sequence lengths
    # across batches/microbatches. Due to additional communication overhead
    # during pipeline parallelism, it should not be set if sequence length
    # is constant during training.
    args.variable_seq_lengths = False

203
204
205
206
207
208
209
210
211
    # Iteration-based training.
    if args.train_iters:
        # If we use iteration-based training, make sure the
        # sample-based options are off.
        assert args.train_samples is None, \
            'expected iteration-based training'
        assert args.lr_decay_samples is None, \
            'expected iteration-based learning rate decay'
        assert args.lr_warmup_samples == 0, \
212
            'expected iteration-based learning rate warmup'
213
214
        assert args.rampup_batch_size is None, \
            'expected no batch-size rampup for iteration-based training'
215
        if args.lr_warmup_fraction is not None:
216
            assert args.lr_warmup_iters == 0, \
217
                'can only specify one of lr-warmup-fraction and lr-warmup-iters'
218
219
220
221
222
223
224
225
226
227
228

    # Sample-based training.
    if args.train_samples:
        # If we use sample-based training, make sure the
        # iteration-based options are off.
        assert args.train_iters is None, \
            'expected sample-based training'
        assert args.lr_decay_iters is None, \
            'expected sample-based learning rate decay'
        assert args.lr_warmup_iters == 0, \
            'expected sample-based learnig rate warmup'
229
        if args.lr_warmup_fraction is not None:
230
            assert args.lr_warmup_samples == 0, \
231
232
                'can only specify one of lr-warmup-fraction ' \
                'and lr-warmup-samples'
233

234
    if args.num_layers is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
235
236
        assert args.encoder_num_layers is None, \
            'cannot have both num-layers and encoder-num-layers specified'
237
238
        args.encoder_num_layers = args.num_layers
    else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
239
240
        assert args.encoder_num_layers is not None, \
            'either num-layers or encoder-num-layers should be specified'
241
242
        args.num_layers = args.encoder_num_layers

243
    # Check required arguments.
Mohammad's avatar
Mohammad committed
244
245
    required_args = ['num_layers', 'hidden_size', 'num_attention_heads',
                     'max_position_embeddings']
246
    for req_arg in required_args:
Mohammad's avatar
Mohammad committed
247
        _check_arg_is_not_none(args, req_arg)
248

Mohammad's avatar
Mohammad committed
249
    # Checks.
250
251
252
253
254
255
256
257
258
259
260
261
262
    if args.ffn_hidden_size is None:
        args.ffn_hidden_size = 4 * args.hidden_size

    if args.kv_channels is None:
        assert args.hidden_size % args.num_attention_heads == 0
        args.kv_channels = args.hidden_size // args.num_attention_heads

    if args.seq_length is not None:
        assert args.encoder_seq_length is None
        args.encoder_seq_length = args.seq_length
    else:
        assert args.encoder_seq_length is not None
        args.seq_length = args.encoder_seq_length
263

Mohammad's avatar
Mohammad committed
264
265
    if args.seq_length is not None:
        assert args.max_position_embeddings >= args.seq_length
Jared Casper's avatar
Jared Casper committed
266
267
    if args.decoder_seq_length is not None:
        assert args.max_position_embeddings >= args.decoder_seq_length
Mohammad's avatar
Mohammad committed
268
269
    if args.lr is not None:
        assert args.min_lr <= args.lr
Mohammad's avatar
Mohammad committed
270
271
    if args.save is not None:
        assert args.save_interval is not None
mohammad's avatar
mohammad committed
272
273
274
    # Mixed precision checks.
    if args.fp16_lm_cross_entropy:
        assert args.fp16, 'lm cross entropy in fp16 only support in fp16 mode.'
275
    if args.fp32_residual_connection:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
276
277
        assert args.fp16 or args.bf16, \
            'residual connection in fp32 only supported when using fp16 or bf16.'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
278

Vijay Korthikanti's avatar
Vijay Korthikanti committed
279
280
281
282
283
    if args.weight_decay_incr_style == 'constant':
        assert args.start_weight_decay is None
        assert args.end_weight_decay is None
        args.start_weight_decay = args.weight_decay
        args.end_weight_decay = args.weight_decay
Vijay Korthikanti's avatar
Vijay Korthikanti committed
284
    else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
285
286
        assert args.start_weight_decay is not None
        assert args.end_weight_decay is not None
287

Sangkug Lym's avatar
Sangkug Lym committed
288
289
290
291
292
293
294
295
296
297
    TORCH_MAJOR = int(torch.__version__.split('.')[0])
    TORCH_MINOR = int(torch.__version__.split('.')[1])
    # Persistent fused layer norm.
    if TORCH_MAJOR < 1 or (TORCH_MAJOR == 1 and TORCH_MINOR < 11):
        args.no_persist_layer_norm = True
        if args.rank == 0:
            print('Persistent fused layer norm kernel is supported from '
                  'pytorch v1.11 (nvidia pytorch container paired with v1.11). '
                  'Defaulting to no_persist_layer_norm=True')

Vijay Korthikanti's avatar
Vijay Korthikanti committed
298
    # Activation recomputing.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
299
    if args.distribute_saved_activations:
mshoeybi's avatar
mshoeybi committed
300
        assert args.tensor_model_parallel_size > 1, 'can distribute ' \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
301
            'recomputed activations only across tensor model ' \
mshoeybi's avatar
mshoeybi committed
302
            'parallel groups'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
303
304
305
306
307
308
        assert args.recompute_granularity == 'full', \
            'distributed recompute activations is only '\
            'application to full recompute granularity'
        assert args.recompute_method is not None, \
            'for distributed recompute activations to work you '\
            'need to use a recompute method '
309
        assert TORCH_MAJOR >= 1 and TORCH_MINOR >= 10, \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
310
            'distributed recompute activations are supported for pytorch ' \
311
312
            'v1.10 and above (Nvidia Pytorch container >= 21.07). Current ' \
            'pytorch version is v%s.%s.' % (TORCH_MAJOR, TORCH_MINOR)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
313

314
315
316
317
318
319
320
321
322
323
324
325
    # Tranformer-Engine/FP8 related checking
    if args.fp8_e4m3 or args.fp8_hybrid:
        assert args.transformer_impl == 'transformer_engine', \
            'transformer-engine required for fp8 training and inference'

    assert not (args.fp8_e4m3 and args.fp8_hybrid), \
        'cannot train with both fp8 e4m3 and hybrid formatting'

    if args.fp16:
        assert args.transformer_impl == 'local', \
            'transformer-engine not yet approved for fp16 training and inference'

Vijay Korthikanti's avatar
Vijay Korthikanti committed
326
327
328
329
    if args.recompute_granularity == 'selective':
        assert args.recompute_method is None, \
            'recompute method is not yet supported for ' \
            'selective recomputing granularity'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
330
331
332
333
334
335
336

    # disable sequence parallelism when tp=1
    # to avoid change in numerics when
    # sequence_parallelism is enabled.
    if args.tensor_model_parallel_size == 1:
        args.sequence_parallel = False

Vijay Korthikanti's avatar
Vijay Korthikanti committed
337
    # disable async_tensor_model_parallel_allreduce when
Vijay Korthikanti's avatar
Vijay Korthikanti committed
338
    # model parallel memory optimization is enabled
Vijay Korthikanti's avatar
Vijay Korthikanti committed
339
340
    if args.sequence_parallel:
        args.async_tensor_model_parallel_allreduce = False
Vijay Korthikanti's avatar
Vijay Korthikanti committed
341

342
343
344
345
346
347
348
349
350
351
    if os.environ.get('CUDA_DEVICE_MAX_CONNECTIONS') != "1":
        if args.sequence_parallel:
            raise RuntimeError(
                "Using sequence parallelism requires setting the environment variable "
                "CUDA_DEVICE_MAX_CONNECTIONS to 1")
        if args.async_tensor_model_parallel_allreduce:
            raise RuntimeError(
                "Using async gradient all reduce requires setting the environment "
                "variable CUDA_DEVICE_MAX_CONNECTIONS to 1")

Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
    # Load retro args.
    if args.retro_workdir:
        retro_args_path = get_retro_args_path(args.retro_workdir)
        if os.path.exists(retro_args_path):
            with open(retro_args_path) as f:
                retro_args = types.SimpleNamespace(**json.load(f))
                retro_args.retro_return_doc_ids = args.retro_return_doc_ids
                retro_args.retro_gpt_retrieved_length = \
                    args.retro_num_retrieved_chunks * \
                    retro_args.retro_gpt_chunk_length
                set_retro_args(retro_args)

    # Print arguments.
    _print_args("arguments", args)
    retro_args = get_retro_args()
    if retro_args and args != retro_args:
        _print_args("retro arguments", types.SimpleNamespace(**{k:v for k,v in vars(retro_args).items() if k.startswith("retro")}, rank=args.rank))
369

Mohammad's avatar
Mohammad committed
370
    return args
Mohammad's avatar
Mohammad committed
371
372


Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
373
def _print_args(title, args):
Mohammad's avatar
Mohammad committed
374
375
    """Print arguments."""
    if args.rank == 0:
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
376
        print(f'------------------------ {title} ------------------------',
mohammad's avatar
mohammad committed
377
              flush=True)
Mohammad's avatar
Mohammad committed
378
379
        str_list = []
        for arg in vars(args):
mohammad's avatar
mohammad committed
380
            dots = '.' * (48 - len(arg))
Mohammad's avatar
Mohammad committed
381
382
383
            str_list.append('  {} {} {}'.format(arg, dots, getattr(args, arg)))
        for arg in sorted(str_list, key=lambda x: x.lower()):
            print(arg, flush=True)
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
384
        print(f'-------------------- end of {title} ---------------------',
mohammad's avatar
mohammad committed
385
              flush=True)
Mohammad's avatar
Mohammad committed
386
387


388
389
390
391
def _check_arg_is_not_none(args, arg):
    assert getattr(args, arg) is not None, '{} argument is None'.format(arg)


392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
def _add_transformer_engine_args(parser):
    group = parser.add_argument_group(title='Transformer-Engine')

    group.add_argument('--fp8-e4m3', action='store_true',
                        help='E4M3 TransformerLayer', dest='fp8_e4m3')
    group.add_argument('--fp8-hybrid', action='store_true',
                        help='Hybrid FP8 TransformerLayer', dest='fp8_hybrid')
    group.add_argument('--no-fp8-wgrad', action='store_false',
                        help='Execute wgrad in higher precision even for FP8 runs', dest='fp8_wgrad')
    group.add_argument('--fp8-margin', type=int, default=0,
                        help='Scaling margin for fp8', dest='fp8_margin')
    group.add_argument('--fp8-interval', type=int, default=1,
                        help='Scaling update interval for fp8', dest='fp8_interval')
    group.add_argument('--transformer-impl', default='local',
                       choices=['local', 'transformer_engine'],
                       help='Which Transformer implementation to use.',
                       dest='transformer_impl')
    group.add_argument('--fp8-amax-history-len', type=int, default=1,
                        help='Number of steps for which amax history is recorded per tensor',
                        dest='fp8_amax_history_len')
    group.add_argument('--fp8-amax-compute-algo', default='most_recent',
                       choices=['most_recent', 'max'],
                       help='Algorithm for computing amax from history',
                       dest='fp8_amax_compute_algo')

    return parser

mshoeybi's avatar
mshoeybi committed
419
420
421
422
423
424
425
426
def _add_inference_args(parser):
    group = parser.add_argument_group(title='inference')

    group.add_argument('--inference-batch-times-seqlen-threshold',
                       type=int, default=512,
                       help='During inference, if batch-size times '
                       'sequence-length is smaller than this threshold '
                       'then we will not use pipelining, otherwise we will.')
427
428
429
430
431
    group.add_argument('--max-tokens-to-oom',
                       type=int, default=12000,
                       help='Maximum number of tokens during inference'
                       'tokens here is # in prompt + # to generate'
                       'Allows us to throw an error before OOM crashes server')
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
432
433
434
435
436
437
438
439
440
    group.add_argument('--output-bert-embeddings', action='store_true',
                       help='Output Bert embeddings (via mean pooling) from '
                       'model, rather than its binary head output or entire '
                       'hidden batch.')
    group.add_argument('--bert-embedder-type', default="megatron",
                       choices=["megatron", "huggingface"],
                       help='Select either Megatron or Huggingface as the '
                       'Bert embedder.')

mshoeybi's avatar
mshoeybi committed
441
442
    return parser

Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487

def _add_retro_args(parser):
    group = parser.add_argument_group(title='retro')

    group.add_argument('--retro-workdir', default=None,
                       help='Retro working directory, which contains the '
                       'preprocessed data for for pretraining. This directory '
                       'is built during preprocessing (see '
                       'tools/retro/README.md), and contains subdirectories '
                       'for the chunk database and pretraining neighbors.')
    group.add_argument('--retro-add-retriever',
                       action='store_true', default=False,
                       help='Add a retriever to the transformer, for use in '
                       'pretraining a Retro model.')
    group.add_argument('--retro-cyclic-train-iters', type=int, default=None,
                       help='Set number of training iterations for cyclic '
                       'Retro training.')
    group.add_argument('--retro-encoder-layers', type=int, default=2,
                       help='Number of layers to use for the retrieval '
                       'encoder.')
    group.add_argument('--retro-encoder-hidden-dropout',
                       type=float, default=0.1, help='Hidden dropout for '
                       'retrieval encoder.')
    group.add_argument('--retro-encoder-attention-dropout',
                       type=float, default=0.1, help='Attention dropout for '
                       'retrieval encoder.')
    group.add_argument("--retro-num-neighbors", type=int, default=2,
                       help='Number of neighbors to retrieve during '
                       'pretraining.')
    group.add_argument("--retro-num-retrieved-chunks", type=int, default=2,
                       help='Number of chunks to retrieve from the retrieval '
                       'database.')
    group.add_argument("--retro-return-doc-ids", action="store_true",
                       help="Turn this on when preprocessing retro data.")

    # Enforce argument naming convention.
    for action in group._group_actions:
        prefix = action.dest.split("_")[0]
        assert prefix == "retro", \
            "Retro args must be prefixed with '--retro-*', for consistent " \
            "styling. Please fix '%s'." % ", ".join(action.option_strings)

    return parser


Mohammad's avatar
Mohammad committed
488
def _add_network_size_args(parser):
Mohammad's avatar
Mohammad committed
489
    group = parser.add_argument_group(title='network size')
Mohammad's avatar
Mohammad committed
490

491
    group.add_argument('--num-layers', type=int, default=None,
Mohammad's avatar
Mohammad committed
492
                       help='Number of transformer layers.')
493
494
495
496
    group.add_argument('--encoder-num-layers', type=int, default=None,
                       help='Number of encoder transformer layers.')
    group.add_argument('--decoder-num-layers', type=int, default=None,
                       help='Number of decoder transformer layers.')
497
    group.add_argument('--hidden-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
498
                       help='Tansformer hidden size.')
499
    group.add_argument('--ffn-hidden-size', type=int, default=None,
500
501
                       help='Transformer Feed-Forward Network hidden size. '
                       'This is set to 4*hidden-size if not provided')
502
    group.add_argument('--num-attention-heads', type=int, default=None,
Mohammad's avatar
Mohammad committed
503
                       help='Number of transformer attention heads.')
504
    group.add_argument('--kv-channels', type=int, default=None,
505
506
507
508
                       help='Projection weights dimension in multi-head '
                       'attention. This is set to '
                       '   args.hidden_size // args.num_attention_heads '
                       'if not provided.')
509
    group.add_argument('--max-position-embeddings', type=int, default=None,
Mohammad's avatar
Mohammad committed
510
511
512
513
514
                       help='Maximum number of position embeddings to use. '
                       'This is the size of position embedding.')
    group.add_argument('--make-vocab-size-divisible-by', type=int, default=128,
                       help='Pad the vocab size to be divisible by this value.'
                       'This is added for computational efficieny reasons.')
Mohammad's avatar
Mohammad committed
515
516
    group.add_argument('--layernorm-epsilon', type=float, default=1e-5,
                       help='Layer norm epsilon.')
Mohammad's avatar
Mohammad committed
517
518
519
520
    group.add_argument('--apply-residual-connection-post-layernorm',
                       action='store_true',
                       help='If set, use original BERT residula connection '
                       'ordering.')
521
522
523
524
    group.add_argument('--openai-gelu', action='store_true',
                       help='Use OpenAIs GeLU implementation. This option'
                       'should not be used unless for backward compatibility'
                       'reasons.')
525
    group.add_argument('--onnx-safe', type=bool, required=False,
526
527
                       help='Use workarounds for known problems with '
                       'Torch ONNX exporter')
528
529
530
    group.add_argument('--bert-no-binary-head', action='store_false',
                       help='Disable BERT binary head.',
                       dest='bert_binary_head')
rprenger's avatar
rprenger committed
531
532
    group.add_argument('--num-experts', type=int, default=None,
                       help='Number of Experts in Switch Transformer (None means no Switch)')
Mohammad's avatar
Mohammad committed
533
534
535
    return parser


536
537
538
539
540
def _add_logging_args(parser):
    group = parser.add_argument_group(title='logging')

    group.add_argument('--log-params-norm', action='store_true',
                       help='If set, calculate and log parameters norm.')
541
    group.add_argument('--log-num-zeros-in-grad', action='store_true',
Rewon Child's avatar
Rewon Child committed
542
                       help='If set, calculate and log the number of zeros in gradient.')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
    group.add_argument('--timing-log-level', type=int,
                       default=0, choices=range(0,3),
                       help='Granularity level to measure and report timing. '
                       '   0: report only iteration time and make sure timing '
                       '      does not introduce extra overhead.'
                       '   1: report timing for operations that are executed '
                       '      very limited times (basically once) during '
                       '      each iteration (such as gradient all-reduce) '
                       '   2: report timing for operations that migh be '
                       '      executed numerous times during each iteration. '
                       'Note that setting the level to 1 or 2 might '
                       'cause increase in iteration time.')
    group.add_argument('--no-barrier-with-level-1-timing', action='store_false',
                       help='If not set, use barrier with level 1 time '
                       'measurements. Note that this is up to the user '
                       'to make sure calling barrier with their timers '
                       'will not result in hangs. This can happen if for '
                       'example the user adds a level 1 timer that is not '
                       'called by all ranks.',
                       dest='barrier_with_L1_time')
    group.add_argument('--timing-log-option', type=str, default='minmax',
                       choices=['max', 'minmax', 'all'],
                       help='Options for logging timing:'
                       '  max: report the max timing across all ranks'
                       '  minmax: report min and max timings across all ranks'
                       '  all: report timings of all ranks.')
569
570
    group.add_argument('--tensorboard-log-interval', type=int, default=1,
                       help='Report to tensorboard interval.')
571
572
573
574
    group.add_argument('--tensorboard-queue-size', type=int, default=1000,
                       help='Size of the tensorboard queue for pending events '
                       'and summaries before one of the ‘add’ calls forces a '
                       'flush to disk.')
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
    group.add_argument('--log-timers-to-tensorboard', action='store_true',
                       help='If set, write timers to tensorboard.')
    group.add_argument('--log-batch-size-to-tensorboard', action='store_true',
                       help='If set, write batch-size to tensorboard.')
    group.add_argument('--no-log-learnig-rate-to-tensorboard',
                       action='store_false',
                       help='Disable learning rate logging to tensorboard.',
                       dest='log_learning_rate_to_tensorboard')
    group.add_argument('--no-log-loss-scale-to-tensorboard',
                       action='store_false',
                       help='Disable loss-scale logging to tensorboard.',
                       dest='log_loss_scale_to_tensorboard')
    group.add_argument('--log-validation-ppl-to-tensorboard',
                       action='store_true',
                       help='If set, write validation perplexity to '
                       'tensorboard.')
591
592
    group.add_argument('--log-memory-to-tensorboard',
                       action='store_true',
593
                       help='Enable memory logging to tensorboard.')
594
595
596
    group.add_argument('--log-world-size-to-tensorboard',
                       action='store_true',
                       help='Enable world size logging to tensorboard.')
597
598
599
600

    return parser


Mohammad's avatar
Mohammad committed
601
def _add_regularization_args(parser):
Mohammad's avatar
Mohammad committed
602
603
604
    group = parser.add_argument_group(title='regularization')

    group.add_argument('--attention-dropout', type=float, default=0.1,
605
                       help='Post attention dropout probability.')
Mohammad's avatar
Mohammad committed
606
607
608
609
    group.add_argument('--hidden-dropout', type=float, default=0.1,
                       help='Dropout probability for hidden state transformer.')
    group.add_argument('--weight-decay', type=float, default=0.01,
                       help='Weight decay coefficient for L2 regularization.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
610
    group.add_argument('--start-weight-decay', type=float,
611
                       help='Initial weight decay coefficient for L2 regularization.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
612
    group.add_argument('--end-weight-decay', type=float,
613
                       help='End of run weight decay coefficient for L2 regularization.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
614
    group.add_argument('--weight-decay-incr-style', type=str, default='constant',
615
616
                       choices=['constant', 'linear', 'cosine'],
                       help='Weight decay increment function.')
Mohammad's avatar
Mohammad committed
617
618
    group.add_argument('--clip-grad', type=float, default=1.0,
                       help='Gradient clipping based on global L2 norm.')
619
    group.add_argument('--adam-beta1', type=float, default=0.9,
620
621
                       help='First coefficient for computing running averages '
                       'of gradient and its square')
622
    group.add_argument('--adam-beta2', type=float, default=0.999,
623
624
                       help='Second coefficient for computing running averages '
                       'of gradient and its square')
625
    group.add_argument('--adam-eps', type=float, default=1e-08,
626
                       help='Term added to the denominator to improve'
627
                       'numerical stability')
628
629
    group.add_argument('--sgd-momentum', type=float, default=0.9,
                       help='Momentum factor for sgd')
Mohammad's avatar
Mohammad committed
630
631
632

    return parser

Mohammad's avatar
Mohammad committed
633
634

def _add_training_args(parser):
Mohammad's avatar
Mohammad committed
635
636
    group = parser.add_argument_group(title='training')

637
    group.add_argument('--micro-batch-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
638
639
                       help='Batch size per model instance (local batch size). '
                       'Global batch size is local batch size times data '
mohammad's avatar
mohammad committed
640
                       'parallel size times number of micro batches.')
641
642
643
    group.add_argument('--batch-size', type=int, default=None,
                       help='Old batch size parameter, do not use. '
                       'Use --micro-batch-size instead')
mohammad's avatar
mohammad committed
644
    group.add_argument('--global-batch-size', type=int, default=None,
mohammad's avatar
mohammad committed
645
646
647
                       help='Training batch size. If set, it should be a '
                       'multiple of micro-batch-size times data-parallel-size. '
                       'If this value is None, then '
mohammad's avatar
mohammad committed
648
                       'use micro-batch-size * data-parallel-size as the '
mohammad's avatar
mohammad committed
649
650
                       'global batch size. This choice will result in 1 for '
                       'number of micro-batches.')
mohammad's avatar
mohammad committed
651
652
653
654
655
656
657
658
659
660
661
662
    group.add_argument('--rampup-batch-size', nargs='*', default=None,
                       help='Batch size ramp up with the following values:'
                       '  --rampup-batch-size <start batch size> '
                       '                      <batch size incerement> '
                       '                      <ramp-up samples> '
                       'For example:'
                       '   --rampup-batch-size 16 8 300000 \ '
                       '   --global-batch-size 1024'
                       'will start with global batch size 16 and over '
                       ' (1024 - 16) / 8 = 126 intervals will increase'
                       'the batch size linearly to 1024. In each interval'
                       'we will use approximately 300000 / 126 = 2380 samples.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
663
664
    group.add_argument('--recompute-activations', action='store_true',
                       help='recompute activation to allow for training '
Mohammad's avatar
Mohammad committed
665
                       'with larger models, sequences, and batch sizes.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
666
    group.add_argument('--recompute-granularity', type=str, default=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
667
                       choices=['full', 'selective'],
Vijay Korthikanti's avatar
Vijay Korthikanti committed
668
                       help='Checkpoint activations to allow for training '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
669
670
                       'with larger models, sequences, and batch sizes. '
                       'It is supported at two granularities 1) full: '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
671
                       'whole transformer layer is recomputed, '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
672
                       '2) selective: core attention part of the transformer '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
673
                       'layer is recomputed.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
674
    group.add_argument('--distribute-saved-activations',
675
                       action='store_true',
Vijay Korthikanti's avatar
Vijay Korthikanti committed
676
                       help='If set, distribute recomputed activations '
677
                       'across model parallel group.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
678
    group.add_argument('--recompute-method', type=str, default=None,
679
680
                       choices=['uniform', 'block'],
                       help='1) uniform: uniformly divide the total number of '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
681
                       'Transformer layers and recompute the input activation of '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
682
                       'each divided chunk at specified granularity, '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
683
                       '2) recompute the input activations of only a set number of '
slym's avatar
slym committed
684
                       'individual Transformer layers per pipeline stage and do the '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
685
686
687
                       'rest without any recomputing at specified granularity'
                       'default) do not apply activations recompute to any layers')
    group.add_argument('--recompute-num-layers', type=int, default=1,
688
                       help='1) uniform: the number of Transformer layers in each '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
689
                       'uniformly divided recompute unit, '
690
                       '2) block: the number of individual Transformer layers '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
691
                       'to recompute within each pipeline stage.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
692
693
694
695
696

    # deprecated
    group.add_argument('--checkpoint-activations', action='store_true',
                       help='Checkpoint activation to allow for training '
                       'with larger models, sequences, and batch sizes.')
Mohammad's avatar
Mohammad committed
697
    group.add_argument('--train-iters', type=int, default=None,
Mohammad's avatar
Mohammad committed
698
                       help='Total number of iterations to train over all '
699
700
701
702
703
704
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
    group.add_argument('--train-samples', type=int, default=None,
                       help='Total number of samples to train over all '
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
Mohammad's avatar
Mohammad committed
705
706
707
708
709
    group.add_argument('--log-interval', type=int, default=100,
                       help='Report loss and timing interval.')
    group.add_argument('--exit-interval', type=int, default=None,
                       help='Exit the program after the iteration is divisible '
                       'by this value.')
710
711
    group.add_argument('--exit-duration-in-mins', type=int, default=None,
                       help='Exit the program after this many minutes.')
712
713
714
    group.add_argument('--exit-signal-handler', action='store_true',
                       help='Dynamically save the checkpoint and shutdown the '
                       'training if SIGTERM is received')
Mohammad's avatar
Mohammad committed
715
716
    group.add_argument('--tensorboard-dir', type=str, default=None,
                       help='Write TensorBoard logs to this directory.')
717
    group.add_argument('--no-masked-softmax-fusion',
718
719
720
                       action='store_false',
                       help='Disable fusion of query_key_value scaling, '
                       'masking, and softmax.',
721
                       dest='masked_softmax_fusion')
722
723
724
725
726
727
    group.add_argument('--no-bias-gelu-fusion', action='store_false',
                       help='Disable bias and gelu fusion.',
                       dest='bias_gelu_fusion')
    group.add_argument('--no-bias-dropout-fusion', action='store_false',
                       help='Disable bias and dropout fusion.',
                       dest='bias_dropout_fusion')
728
729
730
    group.add_argument('--use-flash-attn', action='store_true',
                       help='use FlashAttention implementation of attention. '
                       'https://arxiv.org/abs/2205.14135')
731
732
733
    group.add_argument('--optimizer', type=str, default='adam',
                       choices=['adam', 'sgd'],
                       help='Optimizer function')
734
    group.add_argument('--dataloader-type', type=str, default=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
735
736
                       choices=['single', 'cyclic'],
                       help='Single pass vs multiple pass data loader')
slym's avatar
slym committed
737
    group.add_argument('--no-async-tensor-model-parallel-allreduce',
Sangkug Lym's avatar
Sangkug Lym committed
738
                       action='store_false',
slym's avatar
slym committed
739
740
                       help='Disable asynchronous execution of '
                       'tensor-model-parallel all-reduce with weight '
Sangkug Lym's avatar
Sangkug Lym committed
741
742
                       'gradient compuation of a column-linear layer.',
                       dest='async_tensor_model_parallel_allreduce')
Sangkug Lym's avatar
Sangkug Lym committed
743
744
745
746
747
    group.add_argument('--no-persist-layer-norm', action='store_true',
                       help='Disable using persistent fused layer norm kernel. '
                       'This kernel supports only a set of hidden sizes. Please '
                       'check persist_ln_hidden_sizes if your hidden '
                       'size is supported.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
748
    group.add_argument('--sequence-parallel', action='store_true',
Vijay Korthikanti's avatar
Vijay Korthikanti committed
749
                       help='Enable sequence parallel optimization.')
Sangkug Lym's avatar
Sangkug Lym committed
750
751
    group.add_argument('--no-gradient-accumulation-fusion',
                       action='store_false',
752
                       help='Disable fusing gradient accumulation to weight '
Sangkug Lym's avatar
Sangkug Lym committed
753
754
                       'gradient computation of linear layers',
                       dest='gradient_accumulation_fusion')
Mohammad's avatar
Mohammad committed
755
756
757
    return parser


Mohammad's avatar
Mohammad committed
758
def _add_initialization_args(parser):
Mohammad's avatar
Mohammad committed
759
760
761
762
763
    group = parser.add_argument_group(title='initialization')

    group.add_argument('--seed', type=int, default=1234,
                       help='Random seed used for python, numpy, '
                       'pytorch, and cuda.')
764
765
766
    group.add_argument('--data-parallel-random-init', action='store_true',
                       help='Enable random initialization of params '
                       'across data parallel ranks')
Mohammad's avatar
Mohammad committed
767
768
769
    group.add_argument('--init-method-std', type=float, default=0.02,
                       help='Standard deviation of the zero mean normal '
                       'distribution used for weight initialization.')
770
771
    group.add_argument('--init-method-xavier-uniform', action='store_true',
                       help='Enable Xavier uniform parameter initialization')
Mohammad's avatar
Mohammad committed
772

Mohammad's avatar
Mohammad committed
773
774
775
    return parser


Mohammad's avatar
Mohammad committed
776
def _add_learning_rate_args(parser):
Mohammad's avatar
Mohammad committed
777
778
    group = parser.add_argument_group(title='learning rate')

Mohammad's avatar
Mohammad committed
779
    group.add_argument('--lr', type=float, default=None,
Mohammad's avatar
Mohammad committed
780
781
782
783
                       help='Initial learning rate. Depending on decay style '
                       'and initial warmup, the learing rate at each '
                       'iteration would be different.')
    group.add_argument('--lr-decay-style', type=str, default='linear',
784
                       choices=['constant', 'linear', 'cosine', 'inverse-square-root'],
Mohammad's avatar
Mohammad committed
785
786
787
788
                       help='Learning rate decay function.')
    group.add_argument('--lr-decay-iters', type=int, default=None,
                       help='number of iterations to decay learning rate over,'
                       ' If None defaults to `--train-iters`')
789
790
791
    group.add_argument('--lr-decay-samples', type=int, default=None,
                       help='number of samples to decay learning rate over,'
                       ' If None defaults to `--train-samples`')
792
793
794
    group.add_argument('--lr-warmup-fraction', type=float, default=None,
                       help='fraction of lr-warmup-(iters/samples) to use '
                       'for warmup (as a float)')
795
796
797
798
799
800
    group.add_argument('--lr-warmup-iters', type=int, default=0,
                       help='number of iterations to linearly warmup '
                       'learning rate over.')
    group.add_argument('--lr-warmup-samples', type=int, default=0,
                       help='number of samples to linearly warmup '
                       'learning rate over.')
801
    group.add_argument('--warmup', type=int, default=None,
802
                       help='Old lr warmup argument, do not use. Use one of the'
803
                       '--lr-warmup-* arguments above')
Mohammad's avatar
Mohammad committed
804
805
806
    group.add_argument('--min-lr', type=float, default=0.0,
                       help='Minumum value for learning rate. The scheduler'
                       'clip values below this threshold.')
807
    group.add_argument('--override-opt_param-scheduler', action='store_true',
Mohammad's avatar
Mohammad committed
808
809
810
811
812
                       help='Reset the values of the scheduler (learning rate,'
                       'warmup iterations, minimum learning rate, maximum '
                       'number of iterations, and decay style from input '
                       'arguments and ignore values from checkpoints. Note'
                       'that all the above values will be reset.')
813
    group.add_argument('--use-checkpoint-opt_param-scheduler', action='store_true',
Mohammad's avatar
Mohammad committed
814
815
816
817
818
819
820
821
                       help='Use checkpoint to set the values of the scheduler '
                       '(learning rate, warmup iterations, minimum learning '
                       'rate, maximum number of iterations, and decay style '
                       'from checkpoint and ignore input arguments.')

    return parser


Mohammad's avatar
Mohammad committed
822
def _add_checkpointing_args(parser):
Mohammad's avatar
Mohammad committed
823
824
825
826
827
828
    group = parser.add_argument_group(title='checkpointing')

    group.add_argument('--save', type=str, default=None,
                       help='Output directory to save checkpoints to.')
    group.add_argument('--save-interval', type=int, default=None,
                       help='Number of iterations between checkpoint saves.')
829
    group.add_argument('--no-save-optim', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
830
                       help='Do not save current optimizer.')
831
    group.add_argument('--no-save-rng', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
832
833
834
                       help='Do not save current rng state.')
    group.add_argument('--load', type=str, default=None,
                       help='Directory containing a model checkpoint.')
Jared Casper's avatar
Jared Casper committed
835
    group.add_argument('--no-load-optim', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
836
                       help='Do not load optimizer when loading checkpoint.')
Jared Casper's avatar
Jared Casper committed
837
    group.add_argument('--no-load-rng', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
838
839
840
841
842
                       help='Do not load rng state when loading checkpoint.')
    group.add_argument('--finetune', action='store_true',
                       help='Load model for finetuning. Do not load optimizer '
                       'or rng state from checkpoint and set iteration to 0. '
                       'Assumed when loading a release checkpoint.')
843
844
845
846
847
    group.add_argument('--no-initialization', action='store_false',
                       help='Do not perform initialization when building model, '
                       'can reduce startup time when definitely loading from a '
                       'checkpoint',
                       dest='perform_initialization')
848
849
850
    group.add_argument('--use-checkpoint-args', action='store_true',
                       help='Override any command line arguments with arguments '
                       'from the checkpoint')
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
851
852
853
854
    group.add_argument('--exit-on-missing-checkpoint', action='store_true',
                       help="If '--load' is set, but checkpoint is not found "
                       "(e.g., path typo), then exit instead of random "
                       "initialization.")
Mohammad's avatar
Mohammad committed
855
856
857
858

    return parser


Mohammad's avatar
Mohammad committed
859
def _add_mixed_precision_args(parser):
Mohammad's avatar
Mohammad committed
860
861
862
863
    group = parser.add_argument_group(title='mixed precision')

    group.add_argument('--fp16', action='store_true',
                       help='Run model in fp16 mode.')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
864
865
    group.add_argument('--bf16', action='store_true',
                       help='Run model in bfloat16 mode.')
mohammad's avatar
mohammad committed
866
867
868
869
870
871
872
873
874
875
876
877
    group.add_argument('--loss-scale', type=float, default=None,
                       help='Static loss scaling, positive power of 2 '
                       'values can improve fp16 convergence. If None, dynamic'
                       'loss scaling is used.')
    group.add_argument('--initial-loss-scale', type=float, default=2**32,
                       help='Initial loss-scale for dynamic loss scaling.')
    group.add_argument('--min-loss-scale', type=float, default=1.0,
                       help='Minimum loss scale for dynamic loss scale.')
    group.add_argument('--loss-scale-window', type=float, default=1000,
                       help='Window over which to raise/lower dynamic scale.')
    group.add_argument('--hysteresis', type=int, default=2,
                       help='hysteresis for dynamic loss scaling')
878
879
    group.add_argument('--fp32-residual-connection', action='store_true',
                       help='Move residual connections to fp32.')
880
881
882
    group.add_argument('--no-query-key-layer-scaling', action='store_false',
                       help='Do not scale Q * K^T by 1 / layer-number.',
                       dest='apply_query_key_layer_scaling')
Mohammad's avatar
Mohammad committed
883
    group.add_argument('--attention-softmax-in-fp32', action='store_true',
884
885
886
                       help='Run attention masking and softmax in fp32. '
                       'This flag is ignored unless '
                       '--no-query-key-layer-scaling is specified.')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
887
888
889
    group.add_argument('--accumulate-allreduce-grads-in-fp32',
                       action='store_true',
                       help='Gradient accumulation and all-reduce in fp32.')
890
891
892
893
    group.add_argument('--fp16-lm-cross-entropy', action='store_true',
                       help='Move the cross entropy unreduced loss calculation'
                       'for lm head to fp16.')

Mohammad's avatar
Mohammad committed
894
895
896
    return parser


Mohammad's avatar
Mohammad committed
897
def _add_distributed_args(parser):
898
899
    group = parser.add_argument_group(title='distributed')

900
901
902
903
    group.add_argument('--tensor-model-parallel-size', type=int, default=1,
                       help='Degree of tensor model parallelism.')
    group.add_argument('--pipeline-model-parallel-size', type=int, default=1,
                       help='Degree of pipeline model parallelism.')
904
905
906
    group.add_argument('--pipeline-model-parallel-split-rank',
                       type=int, default=None,
                       help='Rank where encoder and decoder should be split.')
907
908
909
    group.add_argument('--model-parallel-size', type=int, default=None,
                       help='Old model parallel argument, do not use. Use '
                       '--tensor-model-parallel-size instead.')
910
911
    group.add_argument('--num-layers-per-virtual-pipeline-stage', type=int, default=None,
                       help='Number of layers per virtual pipeline stage')
Mohammad's avatar
Mohammad committed
912
913
914
    group.add_argument('--distributed-backend', default='nccl',
                       choices=['nccl', 'gloo'],
                       help='Which backend to use for distributed training.')
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
915
916
    group.add_argument('--distributed-timeout-minutes', type=int, default=10,
                       help='Timeout minutes for torch.distributed.')
Mohammad's avatar
Mohammad committed
917
    group.add_argument('--DDP-impl', default='local',
Mohammad's avatar
Mohammad committed
918
                       choices=['local', 'torch'],
Mohammad's avatar
Mohammad committed
919
920
                       help='which DistributedDataParallel implementation '
                       'to use.')
921
922
923
924
    group.add_argument('--no-contiguous-buffers-in-local-ddp',
                       action='store_false', help='If set, dont use '
                       'contiguous buffer in local DDP.',
                       dest='use_contiguous_buffers_in_local_ddp')
925
926
927
    group.add_argument('--no-scatter-gather-tensors-in-pipeline', action='store_false',
                       help='Use scatter/gather to optimize communication of tensors in pipeline',
                       dest='scatter_gather_tensors_in_pipeline')
928
929
930
931
    group.add_argument('--use-ring-exchange-p2p', action='store_true',
                       default=False, help='If set, use custom-built ring exchange '
                       'for p2p communications. Note that this option will require '
                       'a custom built image that support ring-exchange p2p.')
Mohammad's avatar
Mohammad committed
932
933
    group.add_argument('--local_rank', type=int, default=None,
                       help='local rank passed from distributed launcher.')
934
    group.add_argument('--lazy-mpu-init', type=bool, required=False,
935
936
937
938
939
940
941
942
                       help='If set to True, initialize_megatron() '
                       'skips DDP initialization and returns function to '
                       'complete it instead.Also turns on '
                       '--use-cpu-initialization flag. This is for '
                       'external DDP manager.' )
    group.add_argument('--use-cpu-initialization', action='store_true',
                       default=None, help='If set, affine parallel weights '
                       'initialization uses CPU' )
Lawrence McAfee's avatar
Lawrence McAfee committed
943
    group.add_argument('--empty-unused-memory-level', default=0, type=int,
944
945
946
947
                       choices=[0, 1, 2],
                       help='Call torch.cuda.empty_cache() each iteration '
                       '(training and eval), to reduce fragmentation.'
                       '0=off, 1=moderate, 2=aggressive.')
948
    group.add_argument('--standalone-embedding-stage', action='store_true',
Lawrence McAfee's avatar
Lawrence McAfee committed
949
950
                       default=False, help='If set, *input* embedding layer '
                       'is placed on its own pipeline stage, without any '
Lawrence McAfee's avatar
Lawrence McAfee committed
951
952
                       'transformer layers. (For T5, this flag currently only '
                       'affects the encoder embedding.)')
953
954
    group.add_argument('--use-distributed-optimizer', action='store_true',
                       help='Use distributed optimizer.')
955

Mohammad's avatar
Mohammad committed
956
957
958
    return parser


Mohammad's avatar
Mohammad committed
959
def _add_validation_args(parser):
Mohammad's avatar
Mohammad committed
960
961
962
963
964
965
966
967
968
    group = parser.add_argument_group(title='validation')

    group.add_argument('--eval-iters', type=int, default=100,
                       help='Number of iterations to run for evaluation'
                       'validation/test for.')
    group.add_argument('--eval-interval', type=int, default=1000,
                       help='Interval between running evaluation on '
                       'validation set.')

Mohammad's avatar
Mohammad committed
969
970
971
    return parser


Mohammad's avatar
Mohammad committed
972
def _add_data_args(parser):
Mohammad's avatar
Mohammad committed
973
974
    group = parser.add_argument_group(title='data and dataloader')

mohammad's avatar
mohammad committed
975
    group.add_argument('--data-path', nargs='*', default=None,
mohammad's avatar
mohammad committed
976
977
978
                       help='Path to the training dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
979
980
981
982
                       'dataset2-path ... It is used with --split when a '
                       'single dataset used for all three: train, valid '
                       'and test. It is exclusive to the other '
                       '--*-data-path args')
Mohammad's avatar
Mohammad committed
983
    group.add_argument('--split', type=str, default='969, 30, 1',
Mohammad's avatar
Mohammad committed
984
985
                       help='Comma-separated list of proportions for training,'
                       ' validation, and test split. For example the split '
986
987
                       '`90,5,5` will use 90%% of data for training, 5%% for '
                       'validation and 5%% for test.')
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
    group.add_argument('--train-data-path', nargs='*', default=None,
                       help='Path to the training dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
                       'dataset2-path ...')
    group.add_argument('--valid-data-path', nargs='*', default=None,
                       help='Path to the validation dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
                       'dataset2-path ...')
    group.add_argument('--test-data-path', nargs='*', default=None,
                       help='Path to the test dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
                       'dataset2-path ...')
1003

Mohammad's avatar
Mohammad committed
1004
    group.add_argument('--vocab-file', type=str, default=None,
Mohammad's avatar
Mohammad committed
1005
                       help='Path to the vocab file.')
Mohammad's avatar
Mohammad committed
1006
1007
    group.add_argument('--merge-file', type=str, default=None,
                       help='Path to the BPE merge file.')
1008
1009
1010
    group.add_argument('--vocab-extra-ids', type=int, default=0,
                       help='Number of additional vocabulary tokens. '
                            'They are used for span masking in the T5 model')
Mohammad's avatar
Mohammad committed
1011
    group.add_argument('--seq-length', type=int, default=None,
1012
                       help='Maximum sequence length to process.')
1013
    group.add_argument('--encoder-seq-length', type=int, default=None,
1014
1015
                       help='Maximum encoder sequence length to process.'
                       'This should be exclusive of --seq-length')
1016
1017
    group.add_argument('--decoder-seq-length', type=int, default=None,
                       help="Maximum decoder sequence length to process.")
Mostofa Patwary's avatar
Mostofa Patwary committed
1018
1019
    group.add_argument('--retriever-seq-length', type=int, default=256,
                       help='Maximum sequence length for the biencoder model '
1020
                       'for retriever')
1021
1022
1023
    group.add_argument('--sample-rate', type=float, default=1.0,
                       help='sample rate for training data. Supposed to be 0 '
                            ' < sample_rate < 1')
Mohammad's avatar
Mohammad committed
1024
1025
1026
1027
1028
1029
1030
1031
    group.add_argument('--mask-prob', type=float, default=0.15,
                       help='Probability of replacing a token with mask.')
    group.add_argument('--short-seq-prob', type=float, default=0.1,
                       help='Probability of producing a short sequence.')
    group.add_argument('--mmap-warmup', action='store_true',
                       help='Warm up mmap files.')
    group.add_argument('--num-workers', type=int, default=2,
                       help="Dataloader number of workers.")
Mohammad's avatar
Mohammad committed
1032
1033
1034
    group.add_argument('--tokenizer-type', type=str,
                       default=None,
                       choices=['BertWordPieceLowerCase',
Raul Puri's avatar
Raul Puri committed
1035
                                'BertWordPieceCase',
1036
1037
                                'GPT2BPETokenizer',
                                'SentencePieceTokenizer'],
Mohammad's avatar
Mohammad committed
1038
                       help='What type of tokenizer to use.')
1039
    group.add_argument('--tokenizer-model', type=str, default=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1040
                       help='Sentencepiece tokenizer model.')
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
    group.add_argument('--data-impl', type=str, default='infer',
                       choices=['lazy', 'cached', 'mmap', 'infer'],
                       help='Implementation of indexed datasets.')
    group.add_argument('--reset-position-ids', action='store_true',
                       help='Reset posistion ids after end-of-document token.')
    group.add_argument('--reset-attention-mask', action='store_true',
                       help='Reset self attention maske after '
                       'end-of-document token.')
    group.add_argument('--eod-mask-loss', action='store_true',
                       help='Mask loss for the end of document tokens.')
Mohammad's avatar
Mohammad committed
1051

Mohammad's avatar
Mohammad committed
1052
1053
    return parser

Raul Puri's avatar
Raul Puri committed
1054

Mohammad's avatar
Mohammad committed
1055
1056
def _add_autoresume_args(parser):
    group = parser.add_argument_group(title='autoresume')
Raul Puri's avatar
Raul Puri committed
1057

Mohammad's avatar
Mohammad committed
1058
1059
1060
1061
1062
    group.add_argument('--adlr-autoresume', action='store_true',
                       help='Enable autoresume on adlr cluster.')
    group.add_argument('--adlr-autoresume-interval', type=int, default=1000,
                       help='Intervals over which check for autoresume'
                       'termination signal')
Raul Puri's avatar
Raul Puri committed
1063

Mohammad's avatar
Mohammad committed
1064
    return parser
Neel Kant's avatar
Neel Kant committed
1065
1066


Mostofa Patwary's avatar
Mostofa Patwary committed
1067
1068
def _add_biencoder_args(parser):
    group = parser.add_argument_group(title='biencoder')
Neel Kant's avatar
Neel Kant committed
1069
1070
1071

    # network size
    group.add_argument('--ict-head-size', type=int, default=None,
1072
                       help='Size of block embeddings to be used in ICT and '
Mostofa Patwary's avatar
Mostofa Patwary committed
1073
                        'REALM (paper default: 128)')
1074
    group.add_argument('--biencoder-projection-dim', type=int, default=0,
Mostofa Patwary's avatar
Mostofa Patwary committed
1075
1076
                       help='Size of projection head used in biencoder (paper'
                        ' default: 128)')
1077
    group.add_argument('--biencoder-shared-query-context-model', action='store_true',
Mostofa Patwary's avatar
Mostofa Patwary committed
1078
1079
                        help='Whether to share the parameters of the query '
                        'and context models or not')
Neel Kant's avatar
Neel Kant committed
1080
1081
1082
1083
1084

    # checkpointing
    group.add_argument('--ict-load', type=str, default=None,
                       help='Directory containing an ICTBertModel checkpoint')
    group.add_argument('--bert-load', type=str, default=None,
1085
1086
                       help='Directory containing an BertModel checkpoint '
                       '(needed to start ICT and REALM)')
Neel Kant's avatar
Neel Kant committed
1087
1088
1089
1090
1091

    # data
    group.add_argument('--titles-data-path', type=str, default=None,
                       help='Path to titles dataset used for ICT')
    group.add_argument('--query-in-block-prob', type=float, default=0.1,
1092
1093
                       help='Probability of keeping query in block for '
                       'ICT dataset')
Neel Kant's avatar
Neel Kant committed
1094
    group.add_argument('--use-one-sent-docs', action='store_true',
Neel Kant's avatar
Neel Kant committed
1095
                       help='Whether to use one sentence documents in ICT')
1096
1097
    group.add_argument('--evidence-data-path', type=str, default=None,
                       help='Path to Wikipedia Evidence frm DPR paper')
Neel Kant's avatar
Neel Kant committed
1098

1099
    # training
1100
    group.add_argument('--retriever-report-topk-accuracies', nargs='+', type=int,
Mostofa Patwary's avatar
Mostofa Patwary committed
1101
1102
                        default=[], help="Which top-k accuracies to report "
                        "(e.g. '1 5 20')")
Mostofa Patwary's avatar
Mostofa Patwary committed
1103
    group.add_argument('--retriever-score-scaling', action='store_true',
Mostofa Patwary's avatar
Mostofa Patwary committed
1104
1105
                       help='Whether to scale retriever scores by inverse '
                        'square root of hidden size')
1106

Neel Kant's avatar
Neel Kant committed
1107
    # faiss index
Neel Kant's avatar
Neel Kant committed
1108
    group.add_argument('--block-data-path', type=str, default=None,
Neel Kant's avatar
Neel Kant committed
1109
                       help='Where to save/load BlockData to/from')
Mostofa Patwary's avatar
Mostofa Patwary committed
1110
1111
1112
    group.add_argument('--embedding-path', type=str, default=None,
                       help='Where to save/load Open-Retrieval Embedding'
                        ' data to/from')
Neel Kant's avatar
Neel Kant committed
1113
1114
1115

    # indexer
    group.add_argument('--indexer-batch-size', type=int, default=128,
1116
1117
                       help='How large of batches to use when doing indexing '
                       'jobs')
Neel Kant's avatar
Neel Kant committed
1118
    group.add_argument('--indexer-log-interval', type=int, default=1000,
1119
1120
                       help='After how many batches should the indexer '
                       'report progress')
Neel Kant's avatar
Neel Kant committed
1121
    return parser
1122
1123


1124
1125
def _add_vision_args(parser):
    group = parser.add_argument_group(title="vision")
1126

1127
    # general vision arguements
1128
1129
    group.add_argument('--num-classes', type=int, default=1000,
                       help='num of classes in vision classificaiton task')
1130
1131
1132
1133
    group.add_argument('--img-h', type=int, default=224,
                       help='Image height for vision classification task')
    group.add_argument('--img-w', type=int, default=224,
                       help='Image height for vision classification task')
1134
1135
1136
    group.add_argument('--num-channels', type=int, default=3,
                       help='Number of channels in input image data')
    group.add_argument('--patch-dim', type=int, default=16,
1137
                       help='patch dimension')
1138
1139
1140
1141
1142
1143
1144
    group.add_argument('--classes-fraction', type=float, default=1.0,
                       help='training with fraction of classes.')
    group.add_argument('--data-per-class-fraction', type=float, default=1.0,
                       help='training with fraction of data per class.')
    group.add_argument('--no-data-sharding', action='store_false',
                       help='Disable data sharding.',
                       dest='data_sharding')
1145
1146
1147
1148
    group.add_argument('--head-lr-mult', type=float, default=1.0,
                       help='learning rate multiplier for head during finetuning')

    # pretraining type and backbone selection`
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1149
1150
    group.add_argument('--vision-pretraining', action='store_true',
                       help='flag to indicate vision pretraining')
1151
    group.add_argument('--vision-pretraining-type', type=str, default='classify',
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1152
                       choices=['classify', 'inpaint', 'dino'],
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
                       help='pretraining objectives')
    group.add_argument('--vision-backbone-type', type=str, default='vit',
                       choices=['vit', 'mit', 'swin'],
                       help='backbone types types')
    group.add_argument('--swin-backbone-type', type=str, default='tiny',
                       choices=['tiny', 'base', 'h3'],
                       help='pretraining objectives')
    
    # inpainting arguments
    group.add_argument('--mask-type', type=str, default='random',
                       choices=['random', 'row'],
                       help='mask types')
    group.add_argument('--mask-factor', type=float, default=1.0,
                       help='mask size scaling parameter')
 
    # dino arguments
    group.add_argument('--iter-per-epoch', type=int, default=1250,
                       help='iterations per epoch')
    group.add_argument('--dino-local-img-size', type=int, default=96,
                       help='Image size for vision classification task')
    group.add_argument('--dino-local-crops-number', type=int, default=10,
                       help='Number of local crops')
    group.add_argument('--dino-head-hidden-size', type=int, default=2048,
                       help='Hidden dimension size in dino head')
    group.add_argument('--dino-bottleneck-size', type=int, default=256,
                       help='Bottle neck dimension in dino head ')
    group.add_argument('--dino-freeze-last-layer', type=float, default=1,
                       help='Freezing last layer weights')
    group.add_argument('--dino-norm-last-layer', action='store_true',
                       help='Disable Norm in last layer.')
    group.add_argument('--dino-warmup-teacher-temp', type=float, default=0.04,
                       help='warump teacher temperature')
    group.add_argument('--dino-teacher-temp', type=float, default=0.07,
                       help='teacher temperature')
    group.add_argument('--dino-warmup-teacher-temp-epochs', type=int, default=30,
                       help='warmup teacher temperaure epochs')
1189
1190

    return parser