arguments.py 25.3 KB
Newer Older
Raul Puri's avatar
Raul Puri committed
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
Raul Puri's avatar
Raul Puri committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Megatron arguments."""
Raul Puri's avatar
Raul Puri committed
17
18
19
20

import argparse
import os

21
import torch
22
from megatron import fused_kernels
Raul Puri's avatar
Raul Puri committed
23

24
25
def parse_args(extra_args_provider=None, defaults={},
               ignore_unknown_args=False):
Mohammad's avatar
Mohammad committed
26
    """Parse all arguments."""
27
28
    parser = argparse.ArgumentParser(description='Megatron-LM Arguments',
                                     allow_abbrev=False)
Mohammad's avatar
Mohammad committed
29

Mohammad's avatar
Mohammad committed
30
31
32
33
34
35
36
37
38
39
40
41
    # Standard arguments.
    parser = _add_network_size_args(parser)
    parser = _add_regularization_args(parser)
    parser = _add_training_args(parser)
    parser = _add_initialization_args(parser)
    parser = _add_learning_rate_args(parser)
    parser = _add_checkpointing_args(parser)
    parser = _add_mixed_precision_args(parser)
    parser = _add_distributed_args(parser)
    parser = _add_validation_args(parser)
    parser = _add_data_args(parser)
    parser = _add_autoresume_args(parser)
Neel Kant's avatar
Neel Kant committed
42
    parser = _add_realm_args(parser)
Mohammad's avatar
Mohammad committed
43
44
45
46

    # Custom arguments.
    if extra_args_provider is not None:
        parser = extra_args_provider(parser)
Mohammad's avatar
Mohammad committed
47

Mohammad's avatar
Mohammad committed
48
    # Parse.
49
50
51
52
    if ignore_unknown_args:
        args, _ = parser.parse_known_args()
    else:
        args = parser.parse_args()
Mohammad's avatar
Mohammad committed
53

Mohammad's avatar
Mohammad committed
54
55
56
    # Distributed args.
    args.rank = int(os.getenv('RANK', '0'))
    args.world_size = int(os.getenv("WORLD_SIZE", '1'))
mohammad's avatar
mohammad committed
57
    # Tensor model parallel size.
58
59
    args.tensor_model_parallel_size = min(
        args.tensor_model_parallel_size, args.world_size)
mohammad's avatar
mohammad committed
60
61
62
63
    assert args.world_size % args.tensor_model_parallel_size == 0, 'world size'\
        ' ({}) is not divisible by tensor model parallel size ({})'.format(
            args.world_size, args.tensor_model_parallel_size)
    # Pipeline model parallel size.
64
65
66
    args.pipeline_model_parallel_size = min(
        args.pipeline_model_parallel_size,
        (args.world_size // args.tensor_model_parallel_size))
67
68
    if args.pipeline_model_parallel_size > 1:
        if "ring_exchange" not in dir(torch.distributed):
mohammad's avatar
mohammad committed
69
70
71
72
73
74
75
76
77
78
            raise Exception('PyTorch with torch.distributed.ring_exchange '
                            'needed to run pipeline MP!')
    # Checks.
    args.model_parallel_size = args.pipeline_model_parallel_size * \
                               args.tensor_model_parallel_size
    assert args.world_size % args.model_parallel_size == 0, 'world size is not'\
        ' divisible by tensor parallel size ({}) times pipeline paralle ' \
        'size ({})'.format(args.world_size, args.tensor_model_parallel_size,
                           args.pipeline_model_parallel_size)
    args.data_parallel_size = args.world_size // args.model_parallel_size
Mohammad's avatar
Mohammad committed
79
    if args.rank == 0:
mohammad's avatar
mohammad committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
        print('using world size: {}, data-parallel-size: {}, '
              'tensor-model-parallel size: {}, '
              'pipeline-model-parallel size: {} '.format(
                  args.world_size, args.data_parallel_size,
                  args.tensor_model_parallel_size,
                  args.pipeline_model_parallel_size), flush=True)

    # Batch size.
    assert args.micro_batch_size is not None
    assert args.micro_batch_size > 0
    if args.global_batch_size is None:
        args.global_batch_size = args.micro_batch_size * args.data_parallel_size
        if args.rank == 0:
            print('setting global batch size to {}'.format(
                args.global_batch_size), flush=True)
    assert args.global_batch_size > 0
Mohammad's avatar
Mohammad committed
96

Mohammad's avatar
Mohammad committed
97
98
99
100
    # Fp16 loss scaling.
    args.dynamic_loss_scale = False
    if args.loss_scale is None:
        args.dynamic_loss_scale = True
Mohammad's avatar
Mohammad committed
101

102
103
104
105
106
107
108
109
    # Parameters dtype.
    args.params_dtype = torch.float
    if args.fp16:
        args.params_dtype = torch.half
    if args.rank == 0:
        print('using {} for parameters ...'.format(args.params_dtype),
              flush=True)

110
111
112
    # Consumed tokens.
    args.consumed_train_samples = 0
    args.consumed_valid_samples = 0
113

Mohammad's avatar
Mohammad committed
114
115
    # Set input defaults.
    for key in defaults:
Mohammad's avatar
Mohammad committed
116
117
118
        # For default to be valid, it should not be provided in the
        # arguments that are passed to the program. We check this by
        # ensuring the arg is set to None.
Raul Puri's avatar
Raul Puri committed
119
        if getattr(args, key) is not None:
Raul Puri's avatar
Raul Puri committed
120
            if args.rank == 0:
Raul Puri's avatar
Raul Puri committed
121
122
                print('WARNING: overriding default arguments for {key}:{v} \
                       with {key}:{v2}'.format(key=key, v=defaults[key],
Raul Puri's avatar
Raul Puri committed
123
124
                                               v2=getattr(args, key)),
                                               flush=True)
Raul Puri's avatar
Raul Puri committed
125
126
        else:
            setattr(args, key, defaults[key])
Mohammad's avatar
Mohammad committed
127

128
    # Check required arguments.
Mohammad's avatar
Mohammad committed
129
130
131
132
    required_args = ['num_layers', 'hidden_size', 'num_attention_heads',
                     'max_position_embeddings']
    for req_arg in required_args: 
        _check_arg_is_not_none(args, req_arg)
133

Mohammad's avatar
Mohammad committed
134
135
    # Checks.
    assert args.hidden_size % args.num_attention_heads == 0
Mohammad's avatar
Mohammad committed
136
137
138
139
    if args.seq_length is not None:
        assert args.max_position_embeddings >= args.seq_length
    if args.lr is not None:
        assert args.min_lr <= args.lr
Mohammad's avatar
Mohammad committed
140
141
    if args.save is not None:
        assert args.save_interval is not None
mohammad's avatar
mohammad committed
142
143
144
    # Mixed precision checks.
    if args.fp16_lm_cross_entropy:
        assert args.fp16, 'lm cross entropy in fp16 only support in fp16 mode.'
mohammad's avatar
mohammad committed
145
146
147
148
149
    # Activation checkpointing.
    if args.distribute_checkpointed_activations:
        assert args.checkpoint_activations, \
            'for distribute-checkpointed-activations to work you '\
            'need to enable checkpoint-activations'
Mohammad's avatar
Mohammad committed
150

151
152
153
154
    # load scaled_upper_triang_masked_softmax_fusion kernel
    if args.scaled_upper_triang_masked_softmax_fusion:
        fused_kernels.load_scaled_upper_triang_masked_softmax_fusion_kernel()

155
156
157
158
    # load scaled_masked_softmax_fusion kernel
    if args.scaled_masked_softmax_fusion:
        fused_kernels.load_scaled_masked_softmax_fusion_kernel()

Mohammad's avatar
Mohammad committed
159
160
    _print_args(args)
    return args
Mohammad's avatar
Mohammad committed
161
162


Mohammad's avatar
Mohammad committed
163
164
165
def _print_args(args):
    """Print arguments."""
    if args.rank == 0:
mohammad's avatar
mohammad committed
166
167
        print('------------------------ arguments ------------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
168
169
        str_list = []
        for arg in vars(args):
mohammad's avatar
mohammad committed
170
            dots = '.' * (48 - len(arg))
Mohammad's avatar
Mohammad committed
171
172
173
            str_list.append('  {} {} {}'.format(arg, dots, getattr(args, arg)))
        for arg in sorted(str_list, key=lambda x: x.lower()):
            print(arg, flush=True)
mohammad's avatar
mohammad committed
174
175
        print('-------------------- end of arguments ---------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
176
177


178
179
180
181
def _check_arg_is_not_none(args, arg):
    assert getattr(args, arg) is not None, '{} argument is None'.format(arg)


Mohammad's avatar
Mohammad committed
182
def _add_network_size_args(parser):
Mohammad's avatar
Mohammad committed
183
    group = parser.add_argument_group(title='network size')
Mohammad's avatar
Mohammad committed
184

185
    group.add_argument('--num-layers', type=int, default=None,
Mohammad's avatar
Mohammad committed
186
                       help='Number of transformer layers.')
187
    group.add_argument('--hidden-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
188
                       help='Tansformer hidden size.')
189
    group.add_argument('--num-attention-heads', type=int, default=None,
Mohammad's avatar
Mohammad committed
190
                       help='Number of transformer attention heads.')
191
    group.add_argument('--max-position-embeddings', type=int, default=None,
Mohammad's avatar
Mohammad committed
192
193
194
195
196
                       help='Maximum number of position embeddings to use. '
                       'This is the size of position embedding.')
    group.add_argument('--make-vocab-size-divisible-by', type=int, default=128,
                       help='Pad the vocab size to be divisible by this value.'
                       'This is added for computational efficieny reasons.')
Mohammad's avatar
Mohammad committed
197
198
    group.add_argument('--layernorm-epsilon', type=float, default=1e-5,
                       help='Layer norm epsilon.')
Mohammad's avatar
Mohammad committed
199
200
201
202
    group.add_argument('--apply-residual-connection-post-layernorm',
                       action='store_true',
                       help='If set, use original BERT residula connection '
                       'ordering.')
203
204
205
206
    group.add_argument('--openai-gelu', action='store_true',
                       help='Use OpenAIs GeLU implementation. This option'
                       'should not be used unless for backward compatibility'
                       'reasons.')
207
    group.add_argument('--onnx-safe', type=bool, required=False,
208
                       help='Use workarounds for known problems with Torch ONNX exporter')
Mohammad's avatar
Mohammad committed
209

Mohammad's avatar
Mohammad committed
210
211
212
    return parser


Mohammad's avatar
Mohammad committed
213
def _add_regularization_args(parser):
Mohammad's avatar
Mohammad committed
214
215
216
    group = parser.add_argument_group(title='regularization')

    group.add_argument('--attention-dropout', type=float, default=0.1,
217
                       help='Post attention dropout probability.')
Mohammad's avatar
Mohammad committed
218
219
220
221
222
223
    group.add_argument('--hidden-dropout', type=float, default=0.1,
                       help='Dropout probability for hidden state transformer.')
    group.add_argument('--weight-decay', type=float, default=0.01,
                       help='Weight decay coefficient for L2 regularization.')
    group.add_argument('--clip-grad', type=float, default=1.0,
                       help='Gradient clipping based on global L2 norm.')
224
225
226
227
228
229
230
    group.add_argument('--adam-beta1', type=float, default=0.9,
                       help='First coefficient for computing running averages of'
                       'gradient and its square')
    group.add_argument('--adam-beta2', type=float, default=0.999,
                       help='Second coefficient for computing running averages of'
                       'gradient and its square')
    group.add_argument('--adam-eps', type=float, default=1e-08,
231
                       help='Term added to the denominator to improve'
232
                       'numerical stability')
Mohammad's avatar
Mohammad committed
233
234
235

    return parser

Mohammad's avatar
Mohammad committed
236
237

def _add_training_args(parser):
Mohammad's avatar
Mohammad committed
238
239
    group = parser.add_argument_group(title='training')

240
    group.add_argument('--micro-batch-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
241
242
243
                       help='Batch size per model instance (local batch size). '
                       'Global batch size is local batch size times data '
                       'parallel size.')
mohammad's avatar
mohammad committed
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
    group.add_argument('--global-batch-size', type=int, default=None,
                       help='Training batch size. If this value is None, then '
                       'use micro-batch-size * data-parallel-size as the '
                       'global batch size')
    group.add_argument('--rampup-batch-size', nargs='*', default=None,
                       help='Batch size ramp up with the following values:'
                       '  --rampup-batch-size <start batch size> '
                       '                      <batch size incerement> '
                       '                      <ramp-up samples> '
                       'For example:'
                       '   --rampup-batch-size 16 8 300000 \ '
                       '   --global-batch-size 1024'
                       'will start with global batch size 16 and over '
                       ' (1024 - 16) / 8 = 126 intervals will increase'
                       'the batch size linearly to 1024. In each interval'
                       'we will use approximately 300000 / 126 = 2380 samples.')
Mohammad's avatar
Mohammad committed
260
261
262
    group.add_argument('--checkpoint-activations', action='store_true',
                       help='Checkpoint activation to allow for training '
                       'with larger models, sequences, and batch sizes.')
263
264
265
266
    group.add_argument('--distribute-checkpointed-activations',
                       action='store_true',
                       help='If set, distribute checkpointed activations '
                       'across model parallel group.')
Mohammad's avatar
Mohammad committed
267
268
    group.add_argument('--checkpoint-num-layers', type=int, default=1,
                       help='chunk size (number of layers) for checkpointing.')
Mohammad's avatar
Mohammad committed
269
    group.add_argument('--train-iters', type=int, default=None,
Mohammad's avatar
Mohammad committed
270
271
272
273
274
275
276
277
278
                       help='Total number of iterations to train over all '
                       'training runs.')
    group.add_argument('--log-interval', type=int, default=100,
                       help='Report loss and timing interval.')
    group.add_argument('--exit-interval', type=int, default=None,
                       help='Exit the program after the iteration is divisible '
                       'by this value.')
    group.add_argument('--tensorboard-dir', type=str, default=None,
                       help='Write TensorBoard logs to this directory.')
279
280
281
    group.add_argument('--scaled-upper-triang-masked-softmax-fusion',
                       action='store_true',
                       help='Enable fusion of query_key_value_scaling '
282
283
284
285
286
                       'time (upper diagonal) masking and softmax.')
    group.add_argument('--scaled-masked-softmax-fusion',
                       action='store_true',
                       help='Enable fusion of query_key_value_scaling '
                       'general masking and softmax.')
287
288
289
290
    group.add_argument('--bias-gelu-fusion', action='store_true',
                        help='Enable bias and gelu fusion.')
    group.add_argument('--bias-dropout-fusion', action='store_true',
                       help='Enable bias and dropout fusion.')
Mohammad's avatar
Mohammad committed
291
292
293
294

    return parser


Mohammad's avatar
Mohammad committed
295
def _add_initialization_args(parser):
Mohammad's avatar
Mohammad committed
296
297
298
299
300
301
302
303
    group = parser.add_argument_group(title='initialization')

    group.add_argument('--seed', type=int, default=1234,
                       help='Random seed used for python, numpy, '
                       'pytorch, and cuda.')
    group.add_argument('--init-method-std', type=float, default=0.02,
                       help='Standard deviation of the zero mean normal '
                       'distribution used for weight initialization.')
Mohammad's avatar
Mohammad committed
304

Mohammad's avatar
Mohammad committed
305
306
307
    return parser


Mohammad's avatar
Mohammad committed
308
def _add_learning_rate_args(parser):
Mohammad's avatar
Mohammad committed
309
310
    group = parser.add_argument_group(title='learning rate')

Mohammad's avatar
Mohammad committed
311
    group.add_argument('--lr', type=float, default=None,
Mohammad's avatar
Mohammad committed
312
313
314
315
                       help='Initial learning rate. Depending on decay style '
                       'and initial warmup, the learing rate at each '
                       'iteration would be different.')
    group.add_argument('--lr-decay-style', type=str, default='linear',
mohammad's avatar
mohammad committed
316
                       choices=['constant', 'linear', 'cosine'],
Mohammad's avatar
Mohammad committed
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
                       help='Learning rate decay function.')
    group.add_argument('--lr-decay-iters', type=int, default=None,
                       help='number of iterations to decay learning rate over,'
                       ' If None defaults to `--train-iters`')
    group.add_argument('--min-lr', type=float, default=0.0,
                       help='Minumum value for learning rate. The scheduler'
                       'clip values below this threshold.')
    group.add_argument('--warmup', type=float, default=0.01,
                       help='Percentage of total iterations to warmup on '
                       '(.01 = 1 percent of all training iters).')
    group.add_argument('--override-lr-scheduler', action='store_true',
                       help='Reset the values of the scheduler (learning rate,'
                       'warmup iterations, minimum learning rate, maximum '
                       'number of iterations, and decay style from input '
                       'arguments and ignore values from checkpoints. Note'
                       'that all the above values will be reset.')
    group.add_argument('--use-checkpoint-lr-scheduler', action='store_true',
                       help='Use checkpoint to set the values of the scheduler '
                       '(learning rate, warmup iterations, minimum learning '
                       'rate, maximum number of iterations, and decay style '
                       'from checkpoint and ignore input arguments.')

    return parser


Mohammad's avatar
Mohammad committed
342
def _add_checkpointing_args(parser):
Mohammad's avatar
Mohammad committed
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
    group = parser.add_argument_group(title='checkpointing')

    group.add_argument('--save', type=str, default=None,
                       help='Output directory to save checkpoints to.')
    group.add_argument('--save-interval', type=int, default=None,
                       help='Number of iterations between checkpoint saves.')
    group.add_argument('--no-save-optim', action='store_true',
                       help='Do not save current optimizer.')
    group.add_argument('--no-save-rng', action='store_true',
                       help='Do not save current rng state.')
    group.add_argument('--load', type=str, default=None,
                       help='Directory containing a model checkpoint.')
    group.add_argument('--no-load-optim', action='store_true',
                       help='Do not load optimizer when loading checkpoint.')
    group.add_argument('--no-load-rng', action='store_true',
                       help='Do not load rng state when loading checkpoint.')
    group.add_argument('--finetune', action='store_true',
                       help='Load model for finetuning. Do not load optimizer '
                       'or rng state from checkpoint and set iteration to 0. '
                       'Assumed when loading a release checkpoint.')

    return parser


Mohammad's avatar
Mohammad committed
367
def _add_mixed_precision_args(parser):
Mohammad's avatar
Mohammad committed
368
369
370
371
372
373
374
375
376
377
    group = parser.add_argument_group(title='mixed precision')

    group.add_argument('--fp16', action='store_true',
                       help='Run model in fp16 mode.')
    group.add_argument('--apply-query-key-layer-scaling', action='store_true',
                       help='Scale Q * K^T by 1 / layer-number. If this flag '
                       'is set, then it will automatically set '
                       'attention-softmax-in-fp32 to true')
    group.add_argument('--attention-softmax-in-fp32', action='store_true',
                       help='Run attention masking and softmax in fp32.')
Mohammad's avatar
Mohammad committed
378
379
    group.add_argument('--fp32-allreduce', action='store_true',
                       help='All-reduce in fp32')
Mohammad's avatar
Mohammad committed
380
381
382
383
384
385
386
387
388
389
    group.add_argument('--hysteresis', type=int, default=2,
                       help='hysteresis for dynamic loss scaling')
    group.add_argument('--loss-scale', type=float, default=None,
                       help='Static loss scaling, positive power of 2 '
                       'values can improve fp16 convergence. If None, dynamic'
                       'loss scaling is used.')
    group.add_argument('--loss-scale-window', type=float, default=1000,
                       help='Window over which to raise/lower dynamic scale.')
    group.add_argument('--min-scale', type=float, default=1,
                       help='Minimum loss scale for dynamic loss scale.')
390
391
392
393
    group.add_argument('--fp16-lm-cross-entropy', action='store_true',
                       help='Move the cross entropy unreduced loss calculation'
                       'for lm head to fp16.')

Mohammad's avatar
Mohammad committed
394
395
396
397

    return parser


Mohammad's avatar
Mohammad committed
398
def _add_distributed_args(parser):
399
400
    group = parser.add_argument_group(title='distributed')

401
402
403
404
    group.add_argument('--tensor-model-parallel-size', type=int, default=1,
                       help='Degree of tensor model parallelism.')
    group.add_argument('--pipeline-model-parallel-size', type=int, default=1,
                       help='Degree of pipeline model parallelism.')
Mohammad's avatar
Mohammad committed
405
406
407
408
    group.add_argument('--distributed-backend', default='nccl',
                       choices=['nccl', 'gloo'],
                       help='Which backend to use for distributed training.')
    group.add_argument('--DDP-impl', default='local',
Mohammad's avatar
Mohammad committed
409
                       choices=['local', 'torch'],
Mohammad's avatar
Mohammad committed
410
411
412
413
                       help='which DistributedDataParallel implementation '
                       'to use.')
    group.add_argument('--local_rank', type=int, default=None,
                       help='local rank passed from distributed launcher.')
414
415
    group.add_argument('--lazy-mpu-init', type=bool, required=False,
                       help='If set to True, initialize_megatron() skips DDP initialization'
Boris Fomitchev's avatar
Boris Fomitchev committed
416
417
                       ' and returns function to complete it instead.'
                       'Also turns on --use-cpu-initialization flag.'
418
                       'This is for external DDP manager.' )
419
420
    group.add_argument('--use-cpu-initialization', action='store_true',
                       help='If set, affine parallel weights initialization uses CPU' )
Mohammad's avatar
Mohammad committed
421
422
423
    return parser


Mohammad's avatar
Mohammad committed
424
def _add_validation_args(parser):
Mohammad's avatar
Mohammad committed
425
426
427
428
429
430
431
432
433
    group = parser.add_argument_group(title='validation')

    group.add_argument('--eval-iters', type=int, default=100,
                       help='Number of iterations to run for evaluation'
                       'validation/test for.')
    group.add_argument('--eval-interval', type=int, default=1000,
                       help='Interval between running evaluation on '
                       'validation set.')

Mohammad's avatar
Mohammad committed
434
435
436
    return parser


Mohammad's avatar
Mohammad committed
437
def _add_data_args(parser):
Mohammad's avatar
Mohammad committed
438
439
    group = parser.add_argument_group(title='data and dataloader')

mohammad's avatar
mohammad committed
440
    group.add_argument('--data-path', nargs='*', default=None,
mohammad's avatar
mohammad committed
441
442
443
444
                       help='Path to the training dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
                       'dataset2-path ...')
Mohammad's avatar
Mohammad committed
445
    group.add_argument('--split', type=str, default='969, 30, 1',
Mohammad's avatar
Mohammad committed
446
447
                       help='Comma-separated list of proportions for training,'
                       ' validation, and test split. For example the split '
448
449
                       '`90,5,5` will use 90%% of data for training, 5%% for '
                       'validation and 5%% for test.')
Mohammad's avatar
Mohammad committed
450
    group.add_argument('--vocab-file', type=str, default=None,
Mohammad's avatar
Mohammad committed
451
                       help='Path to the vocab file.')
Mohammad's avatar
Mohammad committed
452
453
    group.add_argument('--merge-file', type=str, default=None,
                       help='Path to the BPE merge file.')
Mohammad's avatar
Mohammad committed
454
    group.add_argument('--seq-length', type=int, default=None,
Mohammad's avatar
Mohammad committed
455
456
457
458
459
460
461
462
463
                       help="Maximum sequence length to process.")
    group.add_argument('--mask-prob', type=float, default=0.15,
                       help='Probability of replacing a token with mask.')
    group.add_argument('--short-seq-prob', type=float, default=0.1,
                       help='Probability of producing a short sequence.')
    group.add_argument('--mmap-warmup', action='store_true',
                       help='Warm up mmap files.')
    group.add_argument('--num-workers', type=int, default=2,
                       help="Dataloader number of workers.")
Mohammad's avatar
Mohammad committed
464
465
466
    group.add_argument('--tokenizer-type', type=str,
                       default=None,
                       choices=['BertWordPieceLowerCase',
Raul Puri's avatar
Raul Puri committed
467
                                'BertWordPieceCase',
Mohammad's avatar
Mohammad committed
468
469
                                'GPT2BPETokenizer'],
                       help='What type of tokenizer to use.')
470
471
472
473
474
475
476
477
478
479
    group.add_argument('--data-impl', type=str, default='infer',
                       choices=['lazy', 'cached', 'mmap', 'infer'],
                       help='Implementation of indexed datasets.')
    group.add_argument('--reset-position-ids', action='store_true',
                       help='Reset posistion ids after end-of-document token.')
    group.add_argument('--reset-attention-mask', action='store_true',
                       help='Reset self attention maske after '
                       'end-of-document token.')
    group.add_argument('--eod-mask-loss', action='store_true',
                       help='Mask loss for the end of document tokens.')
Mohammad's avatar
Mohammad committed
480

Mohammad's avatar
Mohammad committed
481
482
    return parser

Raul Puri's avatar
Raul Puri committed
483

Mohammad's avatar
Mohammad committed
484
485
def _add_autoresume_args(parser):
    group = parser.add_argument_group(title='autoresume')
Raul Puri's avatar
Raul Puri committed
486

Mohammad's avatar
Mohammad committed
487
488
489
490
491
    group.add_argument('--adlr-autoresume', action='store_true',
                       help='Enable autoresume on adlr cluster.')
    group.add_argument('--adlr-autoresume-interval', type=int, default=1000,
                       help='Intervals over which check for autoresume'
                       'termination signal')
Raul Puri's avatar
Raul Puri committed
492

Mohammad's avatar
Mohammad committed
493
    return parser
Neel Kant's avatar
Neel Kant committed
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513


def _add_realm_args(parser):
    group = parser.add_argument_group(title='realm')

    # network size
    group.add_argument('--ict-head-size', type=int, default=None,
                       help='Size of block embeddings to be used in ICT and REALM (paper default: 128)')

    # checkpointing
    group.add_argument('--ict-load', type=str, default=None,
                       help='Directory containing an ICTBertModel checkpoint')
    group.add_argument('--bert-load', type=str, default=None,
                       help='Directory containing an BertModel checkpoint (needed to start ICT and REALM)')

    # data
    group.add_argument('--titles-data-path', type=str, default=None,
                       help='Path to titles dataset used for ICT')
    group.add_argument('--query-in-block-prob', type=float, default=0.1,
                       help='Probability of keeping query in block for ICT dataset')
Neel Kant's avatar
Neel Kant committed
514
    group.add_argument('--use-one-sent-docs', action='store_true',
Neel Kant's avatar
Neel Kant committed
515
516
                       help='Whether to use one sentence documents in ICT')

517
518
519
520
    # training
    group.add_argument('--report-topk-accuracies', nargs='+', default=[],
                       help="Which top-k accuracies to report (e.g. '1 5 20')")

Neel Kant's avatar
Neel Kant committed
521
522
523
    # faiss index
    group.add_argument('--faiss-use-gpu', action='store_true',
                       help='Whether create the FaissMIPSIndex on GPU')
Neel Kant's avatar
Neel Kant committed
524
    group.add_argument('--block-data-path', type=str, default=None,
Neel Kant's avatar
Neel Kant committed
525
                       help='Where to save/load BlockData to/from')
Neel Kant's avatar
Neel Kant committed
526
527
528
529
530
531

    # indexer
    group.add_argument('--indexer-batch-size', type=int, default=128,
                       help='How large of batches to use when doing indexing jobs')
    group.add_argument('--indexer-log-interval', type=int, default=1000,
                       help='After how many batches should the indexer report progress')
Neel Kant's avatar
Neel Kant committed
532
533
    return parser